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Ung' Some introductory words . ..

This talk is based on the articles

Weils, C.H. (2008). Modelling time series of counts with
overdispersion. Accepted for publication in Statistical Me-
thods and Applications.

WeilR, C.H. (2009). The INARCH(1) Model for Overdi-

spersed Time Series of Counts. Submitted.

All references mentioned in this talk correspond to the re-

ferences in this article.
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Processes of Counts
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Motivation



Ung' Counts with Overdispersion

Processes of counts commonly observed in real-world app-

lications. Examples from diverse fields in practice:

e insurance (e. g., time series of claim counts),

e economics (e. g., counts of price changes),

e statistical process control (e. g., counts of defects),

e traffic (e. g., counts of accidents),

e network monitoring (e. g., intrusion detection system),

e epidemiology (e. g., counts of diseases), and others.
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Ung' Counts with Overdispersion

Example 1: Monthly claims counts (1987 to 1994):
burn related injuries in heavy manufacturing industry.
Source: Freeland (1998).
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Ung' Counts with Overdispersion

Example 2: Monthly strike data (1994 to 2002):

number of work stoppages leading to 1000 workers or more
being idle in effect in the period.

Source: U.S. Bureau of Labor Statistics.
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Ude Counts with Overdispersion

Analysis of both time series:

Partial autocorrelation function of
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Ung' Counts with Overdispersion

Analysis of both time series: (continued)

For both examples, AR(1)-like dependence structure

= Popular Poisson INAR(1) model appropriate?
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Ung' Counts with Overdispersion

Analysis of both time series: (continued)

Marginal properties:

e Example 1: mean 8.60 and variance 11.36;
e Example 2: mean 4.94 and variance 7.92.

= Overdispersion for both examples!

= The popular Poisson INAR(1) model cannot be used!
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Ung' Counts with Overdispersion

Overdispersion commonly observed in practice.
Typical reasons:
e presence of positive correlation between monitored events
(Friedman, 1993; Poortema, 1999; Paroli et al., 2000);

e variation in probability of monitored events (Heimann,

1996; Poortema, 1999; Christensen et al., 2003);

e further potential causes of overdispersion discussed by

Jackson (1972).
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Ung' Counts with Overdispersion

Modeling time series of overdispersed counts:
INGARCH models, the integer-valued generalized auto-

regressive conditional heteroskedasticity models.

INGARCH models introduced by Heinen (2003),
further investigated by Ferland et al. (2006); Weilk (2008).

Defined by an ARMA-like recursion,

strictly stationary solution with finite first and second order
moments exists (Ferland et al., 2006),

ARMA-like autocorrelation structure (Weils, 2008).
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WO INARCH(1) Model: Definition & Properties

Definition:

Let (X¢)7 be a process with range Ng = {0, 1, ...},
let 6 >0and 0 < a< 1.

(Xt)7 is said to follow an INARCH(1) model

if X¢, conditioned on X;_1,X;_o,...,

is Poisson distributed according to Po(B8+ o - X;_1).

Christian H. Weils — University of Wiurzburg




WO INARCH(1) Model: Definition & Properties

Basic properties:
e Stationary Markov chain with transition probabilities

pilj ‘= P(Xi=1| X1 =17)

exp (=8 —a-j)- (ﬁt?'jy > 0,

e autocorrelation function px(n) := Corr[ X, Xi—_pn] = ™.
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WO INARCH(1) Model: Definition & Properties

Proposition: (Marginal Cumulants)

The cumulants follow recursively from
K1 = %, kn = —(1—an)~1 Z 1 Sp,i ki form > 2,

where s, ; are Stirling numbers of first kind:

0 and Snan = 1 for n 2 1,
Spj—1 —MN*Spj forg,=1,...,nand n > 1.

Sn,0

Sn+41,5
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WO INARCH(1) Model: Definition & Properties

Proposition: (Marginal Cumulants) (continued)

In particular,

R1 — % — E[Xt]7 Ko — (1—0&)?1—0&2) — V[Xt]7

. e., overdispersion,

1 4+ 202 14+ 6a2 4+ 5a3 + 6a°
K — K ’ K - "R Y
3 1-a3 " (1—a3)(1 - a%) 2

I. e., skewness and excess of X; are given by

14202 e 1+6a2+5a3+6a° :
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WO INARCH(1) Model: Definition & Properties

Estimation of Parameters:
e conditional maximum likelihood approach:

(B+a-g)

1!

pilj = exp(—=8—a-j)

e conditional least squares approach:

ElX: | X1 =241] = B+ a-x4_1;

e method of moments:

B
px = T px(1l) = «a.
— &
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WO INARCH(1) Model: Definition & Properties

INARCH(1) model performs very well for above examples:

e Example 1:
ML-estimates 3 = 4.3796 and & = 0.4911,
model mean 8.61 and variance 11.34,

empirical mean 8.60 and variance 11.36.

e Example 2:
ML-estimates 3 = 1.8114 and a = 0.6364,
model mean 4.98 and variance 8.37,

empirical mean 4.94 and variance 7.92.
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Wi Monitoring INARCH(1) Processes

INARCH(1) process is AR(1)-like process of counts
= try to adapt approaches developed for Poisson INAR(1)
processes (Weils, 2007, 2009; Weils & Testik, 2009).

Most basic approach:
c chart with lower and upper control limits LCL and UCL,

which monitors the observed counts X; directly.

Since INARCH(1) process is Markov chain, ARLs can be
computed with Markov chain approach of Brook & Evans

(1972).
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Wi Monitoring INARCH(1) Processes

Markov chain approach of Brook & Evans (1972):
Let in-control model (8Bg,ag) and LCL,UCL € Ng be fixed.
= in-control states LCL,... , UCL.

Corresponding true transition probabilities

pijj = exp(=B—a-j)- wt-?'])
summarized in matrix

PrcrL|iLcrL "' PUCL|LCL
Q = : :
PrcriucrL "' PUCL|UCL
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Wi Monitoring INARCH(1) Processes

MC approach: (continued)
The components u; of solution of (I— Q)u = 1 are condi-
tional ARLS, conditioned on event that process started in

state 1.
= Overall ARL given by
ARL = 1+ 3V40 - P(Xy =1i).

Problem:
Explicit expression for marginal probabilities p;, ;= P(X; = 1)
of INARCH(1) process not known!
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Wi Monitoring INARCH(1) Processes

First solution:
(Xt)7 is ergodic Markov chain, it follows that

p; = liMnooo py(n) for all 4,5 € Np,
where n-step transition probabilities
p7;|j(n) =P(Xi =1 | Xi—n = J)

follow recursively via

pi\j(n) — Zfozo qu|r'pr|j(n_1)-
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Wi Monitoring INARCH(1) Processes

First solution: (continued)
These relations allow to determine marginal probabilities
numerically:

Choosing M, N € N sufficiently large, we approximate

bi ~ pz'|j<N>7 where p@'|j(n) ~ Equo pi|r'pr|j(n_ 1)
for arbitrary ¢,5 € Ng, e. 9., choose j := [ux].

Disadvantage: computationally rather intensive, requires

appropriate choice of M, N.
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WO Poisson-Charlier Expansion

Probability generating function (pgf) of X: px(2) := E[z*].
Factorial cumulant generating function (fcgf):

= KJ(T). r

kx(2) = In(px(1+2)) = nB[A+2)7] = ¥ —3

r=1

where coefficients k(. referred to as factorial cumulants.
Factorial cumulants related to usual cumulants via

K(n) = Xj=1 Sn,j " Kj- (sp, ;- Stirling numbers)

Example: Poisson distribution Po()\), then kx(z) = Az, i. e.,
K(1) = k1 = A and R(p) = O for » > 2.
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WO Poisson-Charlier Expansion

If fcgf of X known, then pgf

K

(?!“) (2 — 1)7“).

r

px(2) = exp(kx(z—1)) = exp (L,

Idea: Approximate true pgf of X by mth order approximation

aY

px(z) ~ exp (¥, . (z—1)7).

If X Poisson distributed, then first order approximation al-

ready gives exact pgf.
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WO Poisson-Charlier Expansion

Poisson-Charlier expansion of Barbour (1987) further re-

finement of this approach.

Let m; := e "1 .k} /il denote Poisson probabilities.

Let V denote difference operator: Vm; = m; — m;_1.

Then mt" order Poisson-Charlier approximation of true
probability p; given by fin (V) 7, where fp, is (m— 1)t order
Taylor polynomial around z = 0 and evaluated in z =1 of

f(z,V) = exp (1- § ) (—zV)T>.

I
& =20 T:
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WO Poisson-Charlier Expansion

The first four Poisson-Charlier approximations:
(V) = 1,
f2(V) = 14 3rV2

f3(V) = 1+435r2)V? = gr3) V> + g5 V4
1432 K
fa(V) = 143580V = gr3) Vo + (57 + 24)V*

1 5 1.3 6
—128(2)RE)V T agha)V
So only knowledge about first few factorial cumulants of X

required!
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UNI

wi Poisson-Charlier Expansion

Proposition: (Marginal Factorial Cumulants)
Factorial cumulants of INARCH(1) process determined from

usual cumulants via

n

R(1) = K1, R(p) = & - Kn for n > 2.
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WO Poisson-Charlier Expansion

We investigate performance of Poisson-Charlier approxima-

tions by considering effect on ARL of ¢ chart.

We consider approximations up to order 4, since higher or-

der approximations become too complex for practice.

Some illustrative graphs in the following, where shifts in g

compared to Bg are considered, while o = «ap.
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UNI

wi Poisson-Charlier Expansion

ARL(B) of ¢ chart and relative errors of Poisson-Charlier
approximations (PCn) for (8g,apg) = (2.5,0.5):
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UNI

wi Poisson-Charlier Expansion

ARL(B) of ¢ chart and relative errors of Poisson-Charlier
approximations (PCn) for (8g,ag) = (2,0.6):
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UNI

wi Poisson-Charlier Expansion

ARL(B) of ¢ chart and relative errors of Poisson-Charlier
approximations (PCn) for (8g,ag) = (1.25,0.75):
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WO Poisson-Charlier Expansion

It becomes clear that for ag < 0.5, any Poisson-Charlier

approximation of order > 2 leads to a satisfactory approxi-
mation of the ARLS.

For ag = 0.6, at least the approximations of order > 3 can
be used, while these approximations lead to errors between
—5% and +5% for ag = 0.75.
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UNI

Conclusions

e INARCH(1) model: simple and parsimoniously parame-

trized model for time series of overdispersed counts.

e Explicit expressions for marginal (factorial) cumulants,
autocorrelation function, transition probabilities,

but not for marginal probabilities.

e Approximate ARLsS of ¢ chart through approximation of
marginal distribution via Poisson-Charlier expansion.
PC approximation better than Poisson approximation,

really satisfactorily only for moderate autocorrelation.
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