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Some introductory remarks . ..

This talk is based on the paper

Weils, C.H., Gbb, R.:
Measuring Serial Dependence in Categorical Time Series.

Preprint 265, University of Wiurzburg, 2006.

All references mentioned in this talk correspond to the

references in this paper.
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Measuring Serial Dependence — Motivation

An intrinsic feature of a time series is that, typically,
adjacent observations are dependent. The nature of
this dependence among observations of a time series is
of considerable practical interest. Time series analysis
IS concerned with techniques for the analysis of this

dependence. (Box et al., 1994, p. 1)
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Measuring Serial Dependence — Motivation

Cardinal time series:
Convenient measure of serial dependence:

(Partial) Autocorrelation.

Categorical time series:

Measures of serial dependence?
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Measuring Serial Dependence — Motivation

Concepts of Stationarity:

e Strict stationarity: Applicable to any type of time series.
But too strict for practice.

e Cardinal time series: Weak stationarity coordinated with
autocorrelation.

e Categorical time series: Weak stationarity?
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Measuring Categorical Dispersion — A Review

Intuitive understanding of dispersion:

X shows large dispersion

Y
Y

High uncertainty about the outcome of X

= Uncertainty of Categorical Random Variable?
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Measuring Categorical Dispersion — A Review

TwoO extreme cases:

Uniform distribution:

Maximal uncertainty about the outcome of X.

One-point distribution:

Perfect certainty about the outcome of X.

= Hallmarks for definition of any measure of dispersion!
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Measuring Categorical Dispersion — A Review

Numerous contributions in literature:

e Desirable properties, suggestions on measures:
Uschner (1987), Vogel & Kiesl (1999), and many more.

e Dispersion in the discrete ordinal case: Kiesl (2003).
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L m o 2
Gini index: vo(X) = (1 — > p7)
m—1 j=1
1 ™m
Entropy: I/E(X) L= —m Z P Inp]
=
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Measuring Categorical Dispersion — A Review

Important properties of these measures:
e continuous and symmetric functions
of distribution p;, = P(X = x;),
e range [0; 1],
e Mmaximum value 1 in case of uniform distribution,
e Mminimal value 0 in case of one-point distribution,

m—1

e inequality: == (1 — minp;) > vg(X) > vo(X).
J
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Measures of Dependence — Desirable Properties

Some notational remarks:
e X, Y categorical random variables with range
Ve =1{x1,...,Tm,} resp. Vy ={y1,...,Ymy}-
e marginal distributions:
P(X = ;) = pzi, P(Y =y;) =py ;.
e Ranges chosen such that p; ;,p, ; > 0.

e p;; = P(X ==;,Y = y;) joint probability,

pi; = P(X = x;]Y = y;) = 2 conditional probability.
i|J J Py,
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Measures of Dependence — Desirable Properties

Extreme cases:

e X, Y (stochastically) independent iff p,; = pg;-Dpy ;-

o X perfectly depends on Y iff for every 7 =1,...,my:
conditional distribution of X, conditioned on Y = y;,

IS @ one-point distribution.
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Measures of Dependence — Desirable Properties

Properties of Perfect Dependence:

e If X depends perfectly on Y, then my < my.

o Let my = my. If X depends perfectly on Y, then Y
depends perfectly on X.

Perfect dependence is in general a non-symmetric relation.
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Measures of Dependence — Desirable Properties

Essential properties of measure A(X,Y ) of dependence:
o A(X,Y) only depends on my, my and pg ;, py i, Pij,
continuous function thereof.
e X, Y are independent : A(X,Y) =0.
o Fixed mg, my and p;;,p, ;- A(X,Y) has range [0, a].
e X depends perfectly on Y <::> AX,Y) = a.

e [ he measure is symmetric in X and Y.
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Measures of Dependence — Reduction of Variation

v(X)—Ev(X]Y)]

Elv(X]Y)]
v(X) '

Concept: A, (X|Y) v(X)

— 1 —

e Goodman and Kruskal’s = based on the Gini index:

A (X|Y) Py
Y 1 o Zz—l pazv,i
e [ he uncertainty coefficient based on entropy:
Pij
Z 1 Z] 1 Pij In (px Dy

AW (XY
g | Z@T'rgl Pzx .1 Inp, 2
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Measures of Dependence — Reduction of Variation

Properties:
e A(X,Y) only depends on mg, my and pg i, py i, Pij
continuous function thereof.
e X, Y are independent < A(X,Y) =0.
o Fixed mg, my and p;;,p, ;- A(X,Y) has range [0; 1].
e X depends perfectlyonY <« A(X,Y)=1.

e [ he measure is not symmetric in X and Y.
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Measures of Dependence — Reduction of Variation

e Goodman and Kruskal's X\ based on Chebycheff disp.:

) Y521 Max; pjj — MaX; Py
AN (X)Y) = i
14
1 — maxz-px,i

Properties: Like above, but:

e X, Y are independent = A(X,Y)=0.

The inverse is not true!
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Measures of Dependence — Sample Statistics

Popular examples:

e Pearsons’s x?-statistic: m = min (mg, my).

My My Ce : 2

X,,%(X,Y) —ny ¥ (pZ] p:c,zpy,]) .
i=1j=1  Pz,iPy,j
2

o ®2 measure; P2(X,Y) = Xn(f’y).
e Sakoda’s measure: p*(X,Y) = \/% (1 — H_CDQl(X Y)).
e Cramér’'s v: v(X,Y) = ¢(ﬂ)§,_y1)_
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Measures of Dependence — Sample Statistics

Properties:
o A(X,Y) only depends on myg, my and pg ;, py i, Pij,
continuous function thereof.
e X, Y are independent < A(X,Y)=0.
o Fixed mg, my and p;;,p, ;- A(X,Y) has range [0, a].
e X depends perfectlyonY < A(X,Y) =a.

e T he measure is symmetric in X and Y.

Sakoda’'s measure, Cramér's v: a = 1.
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Measures of Dependence — Signed Dependence

Motivation:
Cardinal case: Positive and negative correlation.
Definition:
e X, Y with identical range {z1,...,2m}-
e X, Y perfectly positively dependent,
If they are perfectly dependent and
It p;; = 1 for all z.
o X, Y perfectly negatively dependent
if perf. dep. and Pij; = O for all z.
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Measures of Dependence — Signed Dependence

Essential properties of measure A(X,Y ) of dependence:
o A(X,Y) only depends on m; and pg ;, py i, Pij,
continuous function thereof.
e X, Y are independent <::> A(X,Y) =0.
o Fixed mz, pz;,py.i: A(X,Y) has range [l;u], | <0 < u.

e X, Y perfectly positively dependent A(X,Y) = u.

AX,Y) = 1.

=
<=
o X, Y perfectly negatively dependent <::>

e [ he measure is symmetric in X and Y.
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Measures of Dependence — Signed Dependence

Cohen'’s k: k(X,Y) = {fl(pjj_px’jpy’j).

j=1DPx,jPy,j
Properties:
o x(X,Y) only depends on m; and pg ;, Py i, Pij
continuous function thereof.

e X, Y are independent = k(X, Y) = 0.

j=1Px,jPyj 1]
j=1Pz,jPy,j '
e X, Y perfectly positively dependent <« k(X,Y)=1.

o Fixed my,, Px Zapyj- k has range [ 1— Z

o X, Y perfectly negatively dependent = k minimal.
e [ he measure is symmetric in X and Y.
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Serial Dependence — Weak Stationarity

e Previously defined measures all applicable to

categorical time series: A(X¢, X;_)

e Important simplification: X; and X;_; have same range
= Perfect dependence is symmetric relation,

= Signed perfect dependence defined.

e In general: A(Xy, X;_) depends on t.

Christian H. Weils — University of Wiurzburg



Serial Dependence — Weak Stationarity

Weak forms of stationarity for categorical processes:

e Marginal stationarity.

e Harris & McGee (2004): affects marginal distribution.

e Measure A stationarity. A(X:, X;_;) invariant in t.
But no standard measure exists.

e Bivariate stationarity: Joint distribution of X, ., X;
Invariant in t.
= A(X¢, X;_p) invariant in t for any A, i. e.,
‘Autodependence’: A(k) = A(X¢, Xi_p).
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Serial Dependence — Weak Stationarity

Bivariate stationarity = Simplifications:
R 1 —

e Goodman's : AS7 (k) e T =17}
e Pearson’s y?-statistic: X3(k) = n¥%_; (pij(kp)i;fipj)Q-
e Crameér's v: v(k) \/:égf_)l)_

e Cohen’'s k: r(k) 11(;73(’?2?]? )
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Serial Dependence — An Example

NDARMA model of Jacobs & Lewis (1983):
o (g¢)z i.i.d. with marginal by P(e; = z;) = 7;.

e i.i.d. decision variables Dy = (aq ¢,--.,0p¢t,80.4s---,B8qt) ~
MULT(1; ¢1,- .., ¢p,%0: - - -, Pq)-
® Xt — 1 Xt—l_l_- . .—l—()ép,t Xt—p —I— ﬁO,t 5t+- . -’l‘ﬁq,t Et—q-

¢ P(th — xilaXtQ — xiQ) —
i1 o (]. — COI’F[th,XtQ]) —+ 52'12'2 Tiq COI’I’[th,XtQ]
= Positive dependence.
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Serial Dependence — An Example

Corr[Xy,, Xt,] always interpretable, and:

COFI’[th, th] K(tha th)

(X, Xt,)

= \/Az(/T)(th,XtQ)-
Under bivariate stationary:

Estimation of &, v, AS) possible

= Check for model adequacy.
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Serial Dependence — An Example

(Xt)7 bivariate stationary NDARMA(p, q) process,
with ‘autocorrelation’ p(k) = Corr[X¢, X;_1].

Yule-Walker equations:

p , q—k ,
p(k) = j;l j p(lk =3l + X pits r(0),
= Model estimation.

Also partial autocorrelation for identifying DAR(p) model.
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Bovine leukemia virus:

Serial Dependence — An Example

Lag k| &) o) VA (R) | (k)
1 0.0804 (0.1134 0.1118 0.0804
2 0.0248 | 0.0445 0.0447 0.0185
3 0.0008|0.0281 0.0299 | —0.0026
4| —0.0065|0.0222 0.0232 | —0.0069
5[ —0.0151|0.0294 0.0300 | —0.0141

7o = 0.220, 7. = 0.331, 7y = 0.210,7; = 0.239.
DAR(2): g = 0.903, ¢1 = 0.079, ¢ = 0.0109.
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