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Some introductory remarks . . .

This talk is based on the paper

Weiß, C.H., Göb, R.:

Measuring Serial Dependence in Categorical Time Series.

Preprint 265, University of Würzburg, 2006.

All references mentioned in this talk correspond to the

references in this paper.
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Measuring Serial Dependence – Motivation

An intrinsic feature of a time series is that, typically,

adjacent observations are dependent. The nature of

this dependence among observations of a time series is

of considerable practical interest. Time series analysis

is concerned with techniques for the analysis of this

dependence. (Box et al., 1994, p. 1)
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Measuring Serial Dependence – Motivation

Cardinal time series:

Convenient measure of serial dependence:

(Partial) Autocorrelation.

Categorical time series:

Measures of serial dependence?
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Measuring Serial Dependence – Motivation

Concepts of Stationarity:

• Strict stationarity: Applicable to any type of time series.

But too strict for practice.

• Cardinal time series: Weak stationarity coordinated with

autocorrelation.

• Categorical time series: Weak stationarity?
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Measuring Categorical Dispersion – A Review

Intuitive understanding of dispersion:

X shows large dispersion

≈
High uncertainty about the outcome of X

⇒ Uncertainty of Categorical Random Variable?
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Measuring Categorical Dispersion – A Review

Two extreme cases:

Uniform distribution:

Maximal uncertainty about the outcome of X.

One-point distribution:

Perfect certainty about the outcome of X.

⇒ Hallmarks for definition of any measure of dispersion!
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Measuring Categorical Dispersion – A Review

Numerous contributions in literature:

• Desirable properties, suggestions on measures:

Uschner (1987), Vogel & Kiesl (1999), and many more.

• Dispersion in the discrete ordinal case: Kiesl (2003).
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Measuring Categorical Dispersion – A Review

Common standardized measures of dispersion:

Gini index: νG(X) :=
m

m− 1
(1 −

m∑

j=1
p2
j ).

Entropy: νE(X) := − 1

lnm

m∑

j=1
pj ln pj.

Chebycheff dispersion: νC(X) :=
m

m− 1
(1 − max

j
pj).
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Measuring Categorical Dispersion – A Review

Important properties of these measures:

• continuous and symmetric functions

of distribution pi = P(X = xi),

• range [0; 1],

• maximum value 1 in case of uniform distribution,

• minimal value 0 in case of one-point distribution,

• inequality: m
m−1 (1 − min

j
pj) ≥ νG(X) ≥ νC(X).
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Measures of Dependence – Desirable Properties

Some notational remarks:

• X, Y categorical random variables with range

Vx = {x1, . . . , xmx} resp. Vy = {y1, . . . , ymy}.
• marginal distributions:

P(X = xi) = px,i, P(Y = yj) = py,j.

• Ranges chosen such that px,i, py,j > 0.

• pij = P(X = xi, Y = yj) joint probability,

pi|j = P(X = xi|Y = yj) =
pij
py,j

conditional probability.
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Measures of Dependence – Desirable Properties

Extreme cases:

• X, Y (stochastically) independent iff pij = px,i · py,j.

• X perfectly depends on Y iff for every j = 1, . . . , my:

conditional distribution of X, conditioned on Y = yj,

is a one-point distribution.
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Measures of Dependence – Desirable Properties

Properties of Perfect Dependence:

• If X depends perfectly on Y , then mx ≤ my.

• Let mx = my. If X depends perfectly on Y , then Y

depends perfectly on X.

Perfect dependence is in general a non-symmetric relation.
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Measures of Dependence – Desirable Properties

Essential properties of measure A(X, Y ) of dependence:

• A(X, Y ) only depends on mx, my and px,i, py,j, pij,

continuous function thereof.

• X, Y are independent ⇒
⇐ A(X, Y ) = 0.

• Fixed mx, my and px,i, py,j: A(X, Y ) has range [0; a].

• X depends perfectly on Y
⇒
⇐ A(X, Y ) = a.

• The measure is symmetric in X and Y .
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Measures of Dependence – Reduction of Variation

Concept: Aν(X|Y ) := ν(X)−E[ν(X|Y )]
ν(X) = 1− E[ν(X|Y )]

ν(X) .

• Goodman and Kruskal’s τ based on the Gini index:

A(τ)
ν (X|Y ) =

∑mx
i=1

∑my
j=1

(pij − px,i py,j)
2

py,j

1− ∑mx
i=1 p2

x,i

.

• The uncertainty coefficient based on entropy:

A(u)
ν (X|Y ) = −

∑mx
i=1

∑my
j=1 pij ln (

pij
px,ipy,j

)
∑mx

i=1 px,i ln px,i
.
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Measures of Dependence – Reduction of Variation

Properties:

• A(X, Y ) only depends on mx, my and px,i, py,j, pij,

continuous function thereof.

• X, Y are independent ⇔ A(X, Y ) = 0.

• Fixed mx, my and px,i, py,j: A(X, Y ) has range [0; 1].

• X depends perfectly on Y ⇔ A(X, Y ) = 1.

• The measure is not symmetric in X and Y .
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Measures of Dependence – Reduction of Variation

• Goodman and Kruskal’s λ based on Chebycheff disp.:

A(λ)
ν (X|Y ) =

∑my
j=1 maxi pij −maxi px,i

1−maxi px,i
.

Properties: Like above, but:

• X, Y are independent ⇒ A(X, Y ) = 0.

The inverse is not true!
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Measures of Dependence – Sample Statistics

Popular examples:

• Pearsons’s χ2-statistic: m := min (mx, my).

X2
n(X, Y ) = n

mx∑

i=1

my∑

j=1

(pij − px,ipy,j)
2

px,ipy,j
.

• Φ2 measure: Φ2(X, Y ) = X2
n(X,Y )

n .

• Sakoda’s measure: p∗(X, Y ) =
√

m
m−1 ·

(
1− 1

1+Φ2(X,Y )

)
.

• Cramér’s v: v(X, Y ) := Φ(X,Y )√
m−1

.
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Measures of Dependence – Sample Statistics

Properties:

• A(X, Y ) only depends on mx, my and px,i, py,j, pij,

continuous function thereof.

• X, Y are independent ⇔ A(X, Y ) = 0.

• Fixed mx, my and px,i, py,j: A(X, Y ) has range [0; a].

• X depends perfectly on Y ⇔ A(X, Y ) = a.

• The measure is symmetric in X and Y .

Sakoda’s measure, Cramér’s v: a = 1.
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Measures of Dependence – Signed Dependence

Motivation:
Cardinal case: Positive and negative correlation.

Definition:

• X, Y with identical range {z1, . . . , zm}.
• X, Y perfectly positively dependent,

if they are perfectly dependent and

if pi|i = 1 for all i.

• X, Y perfectly negatively dependent

if perf. dep. and pi|i = 0 for all i.
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Measures of Dependence – Signed Dependence

Essential properties of measure A(X, Y ) of dependence:

• A(X, Y ) only depends on mz and px,i, py,j, pij,

continuous function thereof.

• X, Y are independent ⇒
⇐ A(X, Y ) = 0.

• Fixed mz, px,i, py,j: A(X, Y ) has range [l;u], l < 0 < u.

• X, Y perfectly positively dependent ⇒
⇐ A(X, Y ) = u.

• X, Y perfectly negatively dependent ⇒
⇐ A(X, Y ) = l.

• The measure is symmetric in X and Y .
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Measures of Dependence – Signed Dependence

Cohen’s κ: κ(X, Y ) :=
∑m

j=1(pjj−px,jpy,j)
1−∑m

j=1 px,jpy,j
.

Properties:
• κ(X, Y ) only depends on mz and px,i, py,j, pij,

continuous function thereof.

• X, Y are independent ⇒ κ(X, Y ) = 0.

• Fixed mz, px,i, py,j: κ has range [−
∑m

j=1 px,jpy,j

1−∑m
j=1 px,jpy,j

; 1].

• X, Y perfectly positively dependent ⇔ κ(X, Y ) = 1.

• X, Y perfectly negatively dependent ⇒ κ minimal.

• The measure is symmetric in X and Y .

Christian H. Weiß — University of Würzburg



Serial Dependence
in Categorical
Time Series

Weak Stationarity



Serial Dependence – Weak Stationarity

• Previously defined measures all applicable to

categorical time series: A(Xt, Xt−k)

• Important simplification: Xt and Xt−k have same range

⇒ Perfect dependence is symmetric relation,

⇒ Signed perfect dependence defined.

• In general: A(Xt, Xt−k) depends on t.
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Serial Dependence – Weak Stationarity

Weak forms of stationarity for categorical processes:

• Marginal stationarity.

• Harris & McGee (2004): affects marginal distribution.

• Measure A stationarity: A(Xt, Xt−k) invariant in t.

But no standard measure exists.

• Bivariate stationarity: Joint distribution of Xt−k, Xt

invariant in t.

⇒ A(Xt, Xt−k) invariant in t for any A, i. e.,

‘Autodependence’: A(k) := A(Xt, Xt−k).
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Serial Dependence – Weak Stationarity

Bivariate stationarity ⇒ Simplifications:

• Goodman’s τ : A
(τ)
ν (k) =

∑m
i,j=1

pij(k)
2

pj
−∑m

i=1 p2
i

1−∑m
i=1 p2

i
.

• Pearson’s χ2-statistic: X2
n(k) = n

∑m
i,j=1

(pij(k)−pipj)
2

pipj
.

• Cramér’s v: v(k) = X2
n(k)√

n(m−1)
.

• Cohen’s κ: κ(k) =
∑m

j=1(pjj(k)−p2
j )

1−∑m
j=1 p2

j
.
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Serial Dependence – An Example

NDARMA model of Jacobs & Lewis (1983):

• (εt)Z i.i.d. with marginal by P(εt = xj) = πj.

• i.i.d. decision variables Dt = (α1,t, . . . , αp,t, β0,t, . . . , βq,t) ∼
MULT (1;φ1, . . . , φp, ϕ0, . . . , ϕq).

• Xt = α1,t Xt−1+. . .+αp,t Xt−p + β0,t εt+. . .+βq,t εt−q.

• P(Xt1 = xi1, Xt2 = xi2) =

πi1πi2

(
1−Corr[Xt1, Xt2]

)
+ δi1i2 πi1 Corr[Xt1, Xt2]

⇒ Positive dependence.
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Serial Dependence – An Example

Corr[Xt1, Xt2] always interpretable, and:

Corr[Xt1, Xt2] = κ(Xt1, Xt2)
= v(Xt1, Xt2)

=
√

A
(τ)
ν (Xt1, Xt2).

Under bivariate stationary:

Estimation of κ, v, A
(τ)
ν possible

⇒ Check for model adequacy.
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Serial Dependence – An Example

(Xt)Z bivariate stationary NDARMA(p, q) process,

with ‘autocorrelation’ ρ(k) = Corr[Xt, Xt−k].

Yule-Walker equations:

ρ(k) =
p∑

j=1
φj ρ(|k − j|) +

q−k∑
i=1

ϕi+k r(i),

⇒ Model estimation.

Also partial autocorrelation for identifying DAR(p) model.
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Serial Dependence – An Example

Bovine leukemia virus:

Lag k κ̂(k) v̂(k)

√
Â

(τ)
ν (k) ρ̂p(k)

1 0.0804 0.1134 0.1118 0.0804
2 0.0248 0.0445 0.0447 0.0185
3 0.0008 0.0281 0.0299 −0.0026
4 −0.0065 0.0222 0.0232 −0.0069
5 −0.0151 0.0294 0.0300 −0.0141

π̂a = 0.220, π̂c = 0.331, π̂g = 0.210, π̂t = 0.239.

DAR(2): ϕ̂0 = 0.903, φ̂1 = 0.079, φ̂2 = 0.019.
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