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INAR(1) Processes

Popular for real-valued stationary processes:

AR(1) model Xt = α ·Xt−1 + εt.

Not applicable to count data processes N1, N2, . . .,

because generally, α ·N ̸∈ N0.

Idea: avoid “multiplication problem” by using

binomial thinning operator (Steutel & van Harn, 1979):

α ◦N :=
N∑

i=1
Yi, where Yi are i.i.d. Bin(1, α),

i. e., α ◦N ∼ Bin(N,α) and has range {0, . . . , N}.
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INAR(1) Processes

Let innovations ϵt’s be i.i.d. with range N0 = {0,1, . . .},

let α ∈ (0; 1).

Process of Nt’s referred to as INAR(1) process if

Nt = α ◦Nt−1 + ϵt for t = 1,2, . . . ,

together with appropriate independence assumptions.

(McKenzie, 1985)

Poisson INAR(1) model:

ϵt ∼ Pois
(
µ(1− α)

)
and N0 ∼ Pois(µ).
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Poisson INAR(1) Processes

• Stationary Markov chain with Pois(µ)-marginals,

• transition probabilities

p(k|l) := P (Nt = k | Nt−1 = l) =∑min (k,l)
j=0

(l
j

)
αj(1− α)l−j · e−µ(1−α)(µ(1−α))k−j

(k−j)! ,

• autocorrelation ρ(k) := Corr[Nt, Nt−k] = αk,

• conditional mean E[Nt | Nt−1] = α ·Nt−1 + µ(1− α).

Estimation from time series N1, . . . , NT :

µ̂ :=
1

T
·

T∑
t=1

Nt, α̂ =
∑T
t=2(Nt − N̄T)(Nt−1 − N̄T)∑T

t=1(Nt − N̄T)2
.
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Poisson INAR(1) Processes

CUSUM Monitoring of Poisson INAR(1) processes:

One-sided CUSUM chart by Weiß & Testik (2009,2011):

C0 = c0, Ct = max (0; Nt − k + Ct−1) for t = 1,2, . . .

Reference value k ≥ µ0, starting value c0 := 0,

control limit h > 0 such that certain ARL performance,

ARLs computed with Markov chain approach.

Weiß & Testik (2009): Above CUSUM chart

particularly well-suited to detect mean increases.
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Poisson INAR(1) Processes

CUSUM Monitoring of Poisson INAR(1) processes:

But how to detect changes in α

or violation of Poissonian equidispersion?

Common approach: derive CUSUM from log-likelihood-ratio,

e. g., see Weiß & Testik (2012) for INARCH(1) model.

But: complex formulae for Poisson INAR(1) model.

⇒ Idea: CUSUM monitoring based on specialized residuals!
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Residuals for Poisson INAR(1) Models

Specialized residuals studied by

Freeland & McCabe (2004) and Park & Kim (2012):

R0;t = Nt − E0[Nt | Nt−1] = Nt − α0 ·Nt−1 − µ0(1− α0),

R1;t = E0[α ◦Nt−1 | Nt, Nt−1, . . .] − α0 ·Nt−1,

R2;t = E0[ϵt | Nt, Nt−1, . . .] − µ0(1− α0).

Computation of residuals (Freeland & McCabe, 2004):

R0;t = R1;t + R2;t,

R1;t =

p(Nt − 1|Nt−1 − 1)

p(Nt|Nt−1)
− 1

 · α0 ·Nt−1,

R2;t =

p(Nt − 1|Nt−1)

p(Nt|Nt−1)
− 1

 · µ0(1− α0),

Christian H. Weiß — Darmstadt University of Technology



Residuals for Poisson INAR(1) Models

Properties of residuals:
R0;t, R1;t, R2;t have mean 0 in in-control case.

R0;t, R1;t, R2;t are functions of (Nt−1, Nt).

Now . . . , Nt−1, Nt from general stationary INAR(1) process

with true mean µ, true variance σ2, true α.

For residual R0;t, stochastic properties easily derived:

E[R0;t] = (µ− µ0)(1− α0),

V [R0;t] = σ2
(
1− α2

0 − 2α0(α− α0)
)
.

Mean of R0;t only affected by change of µ,

while σ2 > µ0 (overdispersion) increases only variance of R0;t.

Christian H. Weiß — Darmstadt University of Technology



Residuals for Poisson INAR(1) Models

Simulated mean, standard deviation and correlation

for the residuals statistics:

µ0 = 5 in-control out-of-control
α0 = 0.5 µ = 7.5 > µ0 α = 0.75 > α0 δo = 1

E[R0;t] 0 1.25 0 0
E[R1;t] 0 0.46 0.09 -0.05
E[R2;t] 0 0.79 -0.09 0.05

s.d.(R0;t) 1.94 2.37 1.58 2.50
s.d.(R1;t) 0.69 0.91 0.56 0.81
s.d.(R2;t) 1.31 1.55 1.06 1.82

Corr[R1;t, R2;t] 0.85 0.85 0.90 0.77

Here: δo := σ2ϵ−µϵ
µϵ

(relative overdispersion).
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Residuals for Poisson INAR(1) Models

How did we generate the INAR(1) overdispersion?

σ2N
µN

=

σ2ϵ
µϵ

+ α

1+ α
,

i. e., observ. Nt overdispersed iff innov. ϵt overdispersed.

Idea: ϵ ∼ Pois(M), where M lognormal LN(a, b).

So ϵ Poisson lognormal PLN(a, b) (Reid, 1981),

with relative overdispersion

δo :=
σ2ϵ − µϵ

µϵ
= exp (a+

b2

2
) · (eb

2
− 1).
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Residuals for Poisson INAR(1) Models

Upper-sided CUSUM chart for residuals Rq;t

with q = 0,1,2, for t = 1,2, . . .:

Cq;0 = c0, Cq;t = max (0; Rq;t − k + Cq;t−1).

Performance via simulations with 1,000,000 replications,

zero-state in-control ARL metric: ARL0 ≈ 500,

steady-state out-of-control ARL performance.

Out-of-control shift scenarios:

increase in mean µ, or in autocorr. α, or overdispersion.
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Residuals for Poisson INAR(1) Models

Brief summary of findings (details in article):

Shifts in mean µ:

All charts sensitive, benchmark CUSUM Ct best for small to

moderate shifts, residuals CUSUM C2;t best for large shifts.

Shifts in autocorrelation α:

Residuals CUSUM C1;t overally best, benchmark CUSUM Ct

second best, residuals CUSUM C2;t becomes ARL-biased.

Overdispersion:

Residuals CUSUM C2;t overally best,

residuals CUSUM C0;t second best.
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Data Example: Emergency Counts

Emergency department of children’s hospital,

data from February 13, 2009, to August 13, 2009.

Capacity utilization of examination room per day

(between 08:00:00 to 23:59:59),

number of patients between call for examination

and first treatment (5-min intervals).

At day d: time series nd;1, nd;2, . . . , nd;192 of length 192.

Data from February, 2009, as Phase I data,

in-control model:

Poisson INAR(1) with µ0 = 2.1, α0 = 0.78.
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Data Example: Emergency Counts

All CUSUMs applied to remaining time series.

On each day, any chart started anew.

Two unusual days for illustration:
March 28, 2009:
n̄ ≈ 2.32, ρ̂(1) ≈ 0.82 (close to in-control),

but variance-mean ratio increased to 1.31 (overdispersion)

⇒ CUSUM C2;t alarm at 50, other CUSUMs not before 170.

June 25, 2009:
increased mean (n̄ ≈ 3.47), underdispersion (s2/n̄ ≈ 0.65)

⇒ signaled by C1;t (t = 12), by Ct (t = 17), by C0;t (t = 20),

no alarm by C2;t.
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