Residuals-based CUSUM Charts for Poisson INAR(1) Processes

TECHNISCHE UNIVERSITÄT DARMSTADT

Christian H. Weiß

Department of Mathematics,

Darmstadt University of Technology

Fachbereich Mathematik Murat Caner Testik

Industrial Engineering Department,

Hacettepe University Ankara

INAR(1) Model for Time Series of Counts

Motivation & Properties

Popular for **real-valued** stationary processes: **AR(1) model** $X_t = \alpha \cdot X_{t-1} + \varepsilon_t$.

Not applicable to count data processes N_1, N_2, \ldots , because generally, $\alpha \cdot N \notin \mathbb{N}_0$.

Idea: avoid "multiplication problem" by using

binomial thinning operator (Steutel & van Harn, 1979):

$$\alpha \circ N := \sum_{i=1}^{N} Y_i$$
, where Y_i are i.i.d. $Bin(1, \alpha)$,

i. e., $\alpha \circ N \sim Bin(N, \alpha)$ and has range $\{0, \ldots, N\}$.

Let innovations ϵ_t 's be i.i.d. with range $\mathbb{N}_0 = \{0, 1, ...\}$, let $\alpha \in (0; 1)$.

Process of N_t 's referred to as **INAR(1)** process if

$$N_t = \alpha \circ N_{t-1} + \epsilon_t$$
 for $t = 1, 2, \ldots$,

together with appropriate independence assumptions.

(McKenzie, 1985)

Poisson INAR(1) model:

$$\epsilon_t \sim Pois(\mu(1-\alpha)) \text{ and } N_0 \sim Pois(\mu).$$

- Stationary Markov chain with $Pois(\mu)$ -marginals,
- transition probabilities

$$p(k|l) := P(N_t = k \mid N_{t-1} = l) = \sum_{j=0}^{\min(k,l)} {l \choose j} \alpha^j (1-\alpha)^{l-j} \cdot e^{-\mu(1-\alpha)} \frac{(\mu(1-\alpha))^{k-j}}{(k-j)!},$$

- autocorrelation $\rho(k) := Corr[N_t, N_{t-k}] = \alpha^k$,
- conditional mean $E[N_t \mid N_{t-1}] = \alpha \cdot N_{t-1} + \mu(1-\alpha).$

Estimation from time series N_1, \ldots, N_T :

$$\widehat{\mu} := \frac{1}{T} \cdot \sum_{t=1}^{T} N_t, \qquad \widehat{\alpha} = \frac{\sum_{t=2}^{T} (N_t - \overline{N}_T) (N_{t-1} - \overline{N}_T)}{\sum_{t=1}^{T} (N_t - \overline{N}_T)^2}.$$

CUSUM Monitoring of Poisson INAR(1) processes:

One-sided **CUSUM chart** by Weiß & Testik (2009,2011):

$$C_0 = c_0,$$
 $C_t = \max(0; N_t - k + C_{t-1})$ for $t = 1, 2, ...$

Reference value $k \ge \mu_0$, starting value $c_0 := 0$, control limit h > 0 such that certain ARL performance, ARLs computed with Markov chain approach.

Weiß & Testik (2009): Above CUSUM chart particularly well-suited to detect mean increases.

CUSUM Monitoring of Poisson INAR(1) processes:

- But how to detect changes in α
- or violation of Poissonian equidispersion?
- Common approach: derive CUSUM from log-likelihood-ratio,
- e. g., see Weiß & Testik (2012) for INARCH(1) model.
- But: complex formulae for Poisson INAR(1) model.
- \Rightarrow **Idea:** CUSUM monitoring based on specialized residuals!

Residuals for Poisson INAR(1) Models

Properties & Monitoring

Specialized residuals studied by

Freeland & McCabe (2004) and Park & Kim (2012):

$$R_{0;t} = N_t - E_0[N_t \mid N_{t-1}] = N_t - \alpha_0 \cdot N_{t-1} - \mu_0(1 - \alpha_0),$$

$$R_{1;t} = E_0[\alpha \circ N_{t-1} \mid N_t, N_{t-1}, \dots] - \alpha_0 \cdot N_{t-1},$$

$$R_{2;t} = E_0[\epsilon_t \mid N_t, N_{t-1}, \ldots] - \mu_0(1 - \alpha_0).$$

Computation of residuals (Freeland & McCabe, 2004):

$$\begin{aligned} R_{0;t} &= R_{1;t} + R_{2;t}, \\ R_{1;t} &= \left(\frac{p(N_t - 1|N_{t-1} - 1)}{p(N_t|N_{t-1})} - 1 \right) \cdot \alpha_0 \cdot N_{t-1}, \\ R_{2;t} &= \left(\frac{p(N_t - 1|N_{t-1})}{p(N_t|N_{t-1})} - 1 \right) \cdot \mu_0(1 - \alpha_0), \end{aligned}$$

Properties of residuals:

 $R_{0;t}, R_{1;t}, R_{2;t}$ have mean 0 in in-control case. $R_{0;t}, R_{1;t}, R_{2;t}$ are functions of (N_{t-1}, N_t) .

Now ..., N_{t-1} , N_t from general stationary INAR(1) process with true mean μ , true variance σ^2 , true α .

For residual $R_{0;t}$, stochastic properties easily derived:

$$E[R_{0;t}] = (\mu - \mu_0)(1 - \alpha_0),$$

$$V[R_{0;t}] = \sigma^2 (1 - \alpha_0^2 - 2\alpha_0(\alpha - \alpha_0)).$$

Mean of $R_{0;t}$ only affected by change of μ , while $\sigma^2 > \mu_0$ (overdispersion) increases only variance of $R_{0;t}$.

Simulated mean, standard deviation and correlation for the residuals statistics:

$\mu_0 = 5$	in-control	out-of-control		
$\alpha_0 = 0.5$		$\mu = 7.5 > \mu_0$	$\alpha = 0.75 > \alpha_0$	$\delta_0 = 1$
$E[R_{0;t}]$	0	1.25	0	0
$E[R_{1:t}]$	0	0.46	0.09	-0.05
$E[R_{2;t}]$	0	0.79	-0.09	0.05
s.d. $(R_{0;t})$	1.94	2.37	1.58	2.50
$s.d.(R_{1;t})$	0.69	0.91	0.56	0.81
$s.d.(R_{2;t})$	1.31	1.55	1.06	1.82
$Corr[R_{1;t}, R_{2;t}]$	0.85	0.85	0.90	0.77

Here: $\delta_0 := \frac{\sigma_{\epsilon}^2 - \mu_{\epsilon}}{\mu_{\epsilon}}$ (relative overdispersion).

How did we generate the **INAR(1)** overdispersion?

$$\frac{\sigma_N^2}{\mu_N} = \frac{\frac{\sigma_\epsilon^2}{\mu_\epsilon} + \alpha}{1 + \alpha},$$

i. e., observ. N_t overdispersed iff innov. ϵ_t overdispersed.

Idea: $\epsilon \sim Pois(M)$, where M lognormal LN(a, b).

So ϵ **Poisson lognormal** PLN(a, b) (Reid, 1981), with relative overdispersion

$$\delta_0 := \frac{\sigma_\epsilon^2 - \mu_\epsilon}{\mu_\epsilon} = \exp\left(a + \frac{b^2}{2}\right) \cdot (e^{b^2} - 1).$$

Upper-sided **CUSUM chart for residuals** $R_{q;t}$ with q = 0, 1, 2, for t = 1, 2, ...:

$$C_{q;0} = c_0, \qquad C_{q;t} = \max(0; R_{q;t} - k + C_{q;t-1}).$$

Performance via simulations with 1,000,000 replications, zero-state in-control ARL metric: $ARL_0 \approx 500$, steady-state out-of-control ARL performance.

Out-of-control shift scenarios:

increase in mean μ , or in autocorr. α , or overdispersion.

Brief summary of findings (details in article):

Shifts in mean μ :

All charts sensitive, benchmark CUSUM C_t best for small to moderate shifts, residuals CUSUM $C_{2;t}$ best for large shifts.

Shifts in autocorrelation α :

Residuals CUSUM $C_{1;t}$ overally best, benchmark CUSUM C_t second best, residuals CUSUM $C_{2;t}$ becomes ARL-biased.

Overdispersion:

Residuals CUSUM $C_{2;t}$ overally best,

residuals CUSUM $C_{0;t}$ second best.

Data Example: Emergency Counts

Monitoring Approaches

Emergency department of children's hospital, data from February 13, 2009, to August 13, 2009.

Capacity utilization of examination room per day (between 08:00:00 to 23:59:59),

number of patients between call for examination and first treatment (5-min intervals).

At day d: time series $n_{d;1}, n_{d;2}, \ldots, n_{d;192}$ of length 192.

Data from February, 2009, as Phase I data,

in-control model:

Poisson INAR(1) with $\mu_0 = 2.1$, $\alpha_0 = 0.78$.

All CUSUMs applied to remaining time series. On each day, any chart started anew.

Two unusual days for illustration:

March 28, 2009:

 $ar{n}pprox$ 2.32, $\widehat{
ho}(1)pprox$ 0.82 (close to in-control),

but variance-mean ratio increased to 1.31 (overdispersion)

 \Rightarrow CUSUM $C_{2;t}$ alarm at 50, other CUSUMs not before 170.

June 25, 2009:

increased mean ($\bar{n} \approx 3.47$), underdispersion ($s^2/\bar{n} \approx 0.65$) \Rightarrow signaled by $C_{1;t}$ (t = 12), by C_t (t = 17), by $C_{0;t}$ (t = 20), no alarm by $C_{2;t}$.

Thank You

for Your Interest!

TECHNISCHE UNIVERSITÄT DARMSTADT

Christian H. Weiß

Department of Mathematics

Darmstadt University of Technology

Fachbereich Mathematik

 $we {\tt iss @mathematik.tu-darmstadt.de}$

Literature

Freeland & McCabe (2004): Analysis of low count time series data by Poisson autoregression. J. Time Series Analysis 25(5), 701-722.

McKenzie (1985): Some simple models for discrete variate time series. Water Resources Bulletin 21(4), 645-650.

Park & Kim (2012): *Diagnostic checks for integer-valued autoregressive models using expected residuals*. Stat. Papers 53(4), 951-970.

Reid (1981): *The Poisson lognormal distribution and its use as a model* In: Statistical Distributions in Scientific Work, Reidel Publishing, 303-316.

Steutel & van Harn (1979): *Discrete analogues of self-decomposability and stability*. Ann. Prob. 7(5), 893-899.

Weiß (2008): *Thinning operations for modelling time series of counts – a survey*. Adv. in Stat. Analysis 92(3), 319-341.

Weiß & Testik (2009): CUSUM monitoring of first-order integer-valued autoregressive processes of Poisson counts. J. Quality Technology 41(4), 389-400.

Weiß & Testik (2011): The Poisson INAR(1) CUSUM chart under overdispersion and estimation error. IIE Transactions 43(11), 805-818.

Weiß & Testik (2012): Detection of abrupt changes in count data time series: cumulative sum derivations for INARCH(1) models. J. Quality Technology 44(3), 249-264.