Diagnosing and Modelling Extra-Binomial Variation
 for Time-Dependent Counts

TECHNISCHE UNIVERSITAT DARMSTADT

Christian H. Weiß

Department of Mathematics,
Darmstadt University of Technology

Hee-Young Kim
Institute of Economics,
Korea University Seoul

Binomial AR(1) Processes

Definition \& Properties

Binomial AR(1) Processes

Aim:

Obtain counterpart of $\operatorname{AR}(1)$ model $X_{t}=\alpha \cdot X_{t-1}+\epsilon_{t}$, but for process of counts
with finite range $\{0, \ldots, n\}$.
Binomial thinning operator (Steutel \& van Harn, 1979):

$$
\alpha \circ X:=\sum_{i=1}^{X} Y_{i}, \quad \text { where } Y_{i} \text { are i.i.d. } \operatorname{Bin}(1, \alpha),
$$

i. e., $\alpha \circ X \sim \operatorname{Bin}(X, \alpha)$ and has range $\{0, \ldots, X\}$.
(\approx number of "survivors" from population of size X)

Christian H. Weiß — Darmstadt University of Technology

Binomial AR(1) Processes

Fix $n \in \mathbb{N}$.
Parameters $\pi \in(0 ; 1), \quad \rho \in\left(\max \left\{-\frac{\pi}{1-\pi},-\frac{1-\pi}{\pi}\right\} ; 1\right)$.
Define thinning probabilities $\beta:=\pi(1-\rho)$ and $\alpha:=\beta+\rho$.

Binomial AR(1) process $\left(X_{t}\right)_{\mathbb{N}_{0}}$ with range $\{0, \ldots, n\}$ defined by the recursion

$$
X_{t+1}=\underbrace{\alpha \circ X_{t}}_{\text {survivors }}+\underbrace{\beta \circ\left(n-X_{t}\right)}_{\text {newly occupied }} \quad \text { for } t \geq 0
$$

thinnings performed independently, independent of $\left(X_{s}\right)_{s<t}$.
(McKenzie, 1985)

Christian H. Weiß — Darmstadt University of Technology

Binomial AR(1) Processes

Well-known properties:

Ergodic Markov chain, transition probabilities
$\mathbb{P}\left(X_{t+1}=k \mid X_{t}=l\right)=$
$\sum_{m=\max \{0, k+l-n\}}^{\min \{k, l\}}\binom{l}{m}\binom{n-l}{k-m} \alpha^{m}(1-\alpha)^{l-m} \beta^{k-m}(1-\beta)^{n-l+m-k}$,
uniquely determined stationary distribution: $\operatorname{Bin}(n, \pi)$.
Autocorrelation function: $\rho_{X}(k)=\rho^{k}$ for $k \geq 0$.
Regression properties:

$$
\begin{aligned}
\mathbb{E}\left[X_{t+1} \mid X_{t}\right] & =\rho \cdot X_{t}+n \beta \\
\operatorname{Var}\left[X_{t+1} \mid X_{t}\right] & =\rho(1-\rho)(1-2 \pi) \cdot X_{t}+n \beta(1-\beta)
\end{aligned}
$$

Christian H. Weiß — Darmstadt University of Technology

Binomial AR(1) Processes

Weiß \& Pollett (2012):
h-step regression properties:
Define $\beta_{h}=\pi\left(1-\rho^{h}\right)$ and $\alpha_{h}=\beta_{h}+\rho^{h}$ for $h \geq 1$.
Then
$\mathbb{P}\left(X_{t+h}=k \mid X_{t}=l\right)=$
$\sum_{m=\max \{0, k+l-n\}}^{\min \{k, l\}}\binom{l}{m}\binom{n-l}{k-m} \alpha_{h}^{m}\left(1-\alpha_{h}\right)^{l-m} \beta_{h}^{k-m}\left(1-\beta_{h}\right)^{n-l+m-k}$,

$$
\begin{aligned}
\mathbb{E}\left[X_{t+h} \mid X_{t}\right] & =\rho^{h} \cdot X_{t}+n \beta_{h} \\
\operatorname{Var}\left[X_{t+h} \mid X_{t}\right] & =\rho^{h}\left(1-\rho^{h}\right)(1-2 \pi) \cdot X_{t}+n \beta_{h}\left(1-\beta_{h}\right)
\end{aligned}
$$

Christian H. Weiß — Darmstadt University of Technology

Binomial AR(1) Processes

Further recent results together with H.-Y. Kim:

- closed-form expressions for $\mu\left(s_{1}, \ldots, s_{r-1}\right)$ for $r \leq 4$; (Weiß \& Kim, 2011)
- asymptotics of YW-, CLS-, SD- and ML-estimator, finite-sample performance, effect of jackknife.
(Weiß \& Kim, 2011, 2012)

Christian H. Weiß — Darmstadt University of Technology

Diagnosing Extra-Binomial Variation

Diagnosing Extra-Binomial Variation

Motivation: Relation between variance and mean of $\mathrm{B}(n, \pi)$-distribution determined by

$$
I_{\mathrm{d}}=1, \quad \text { where } I_{\mathrm{d}}:=\frac{n \sigma^{2}}{\mu(n-\mu)}
$$

I_{d} referred to as binomial index of dispersion.
If $I_{\mathrm{d}}>1 \rightarrow$ extra-binomial variation (overdispersion).
How to diagnose extra-binomial variation?

Diagnosing Extra-Binomial Variation

How to diagnose extra-binomial variation?
Empirical binomial index of dispersion:

$$
\widehat{I}_{\mathrm{d}}:=\frac{1}{T} \cdot \sum_{t=1}^{T} \frac{n\left(X_{t}-\bar{X}\right)^{2}}{\bar{X}(n-\bar{X})}=\frac{n\left(\frac{1}{T} \sum_{t=1}^{T} X_{t}^{2}-\bar{X}^{2}\right)}{\bar{X}(n-\bar{X})} .
$$

Diagnosing Extra-Binomial Variation

How to diagnose extra-binomial variation?
Empirical binomial index of dispersion:

$$
\widehat{I}_{\mathrm{d}}:=\frac{1}{T} \cdot \sum_{t=1}^{T} \frac{n\left(X_{t}-\bar{X}\right)^{2}}{\bar{X}(n-\bar{X})}=\frac{n\left(\frac{1}{T} \sum_{t=1}^{T} X_{t}^{2}-\bar{X}^{2}\right)}{\bar{X}(n-\bar{X})} .
$$

Derive asymptotics by using

- $\left(X_{t}\right)_{\mathbb{Z}}$ is φ-mixing with geometrically decreasing weights (Billingsley, 1968, p. 167f);
- central limit theorem (Billingsley, 1968, p. 177);
- expressions for $\mu\left(s_{1}, \ldots, s_{r-1}\right)$ (Weiß \& Kim, 2011)

Christian H. Weiß — Darmstadt University of Technology

Diagnosing Extra-Binomial Variation

How to diagnose extra-binomial variation?

Theorem:

If X_{1}, \ldots, X_{T} stem from stationary binomial $\operatorname{AR}(1)$ model, then

$$
\sqrt{T}\left(\hat{I}_{\mathrm{d}}-1\right) \xrightarrow{\mathrm{D}} \mathrm{~N}\left(0,2\left(1-\frac{1}{n}\right) \frac{1+\rho^{2}}{1-\rho^{2}}\right) .
$$

\Rightarrow Critical value for test based on \widehat{I}_{d} :

$$
1+z_{1-\beta} \cdot \sqrt{\frac{2}{T}\left(1-\frac{1}{n}\right) \frac{1+\rho^{2}}{1-\rho^{2}}}
$$

where $z_{1-\beta}:(1-\beta)$-quantile of $N(0,1)$-distribution.
Christian H. Weiß - Darmstadt University of Technology

Diagnosing Extra-Binomial Variation

Real-data application:

European Union (EU): changes in consumer prices measured via Harmonised Index of Consumer Prices (HICP).

Price stability in Euro area: annual rates of change in HICP (inflation rates) should be below 2%.

2009: Euro area with $n=17$ member states ("EA17").
Question: How many EA17 countries have stable prices?
From monthly inflation rates (Eurostat, Jan. 2000 - ...), we computed corresponding counts x_{t} for each month t.

Christian H. Weiß - Darmstadt University of Technology

Diagnosing Extra-Binomial Variation

Real-data application:
We first restrict to Jan. 2000 to Dec. 2006
\Rightarrow time series x_{1}, \ldots, x_{T} of length $T=84$.

Data look stationary but serially dependent $(\hat{\rho}(1) \approx 0.658)$,
$\bar{x} / n \approx 0.251$, i. e.:
about 25 \% of the EA17-countries show stable prizes.
Christian H. Weiß - Darmstadt University of Technology

Diagnosing Extra-Binomial Variation

Real-data application:
ACF and PACF of the price stability counts:

$A R(1)$-like autocorrelation structure, so binomial $A R(1)$ model appropriate?

Christian H. Weiß - Darmstadt University of Technology

Diagnosing Extra-Binomial Variation

Real-data application:

Value of \hat{I}_{d} about $1.521>1$,
approximate critical value about 1.392,
(significance level 5 \%,
computed by plugging-in $\hat{\rho} \approx 0.658$)
so significant extra-binomial variation!
Plausible: EA17 countries economically heterogeneous,
so perhaps no unique π for price stability.
So how to model the price stability counts?
Christian H. Weiß — Darmstadt University of Technology

Beta-Binomial AR(1) Processes

Motivation \& Properties

Beta-Binomial AR(1) Processes

Motivation: Relation between variance and mean of $\mathrm{B}(n, \pi)$-distribution determined by

$$
I_{\mathrm{d}}=1, \quad \text { where } I_{\mathrm{d}}:=\frac{n \sigma^{2}}{\mu(n-\mu)}
$$

I_{d} referred to as binomial index of dispersion.
If $I_{\mathrm{d}}>1 \rightarrow$ extra-binomial variation (overdispersion).
How to diagnose extra-binomial variation?
Popular approach for extra-binomial variation:

beta-binomial distribution.

How to adapt this approach to time-dependent counts?
Christian H. Weiß - Darmstadt University of Technology

Beta-Binomial AR(1) Processes

How to adapt beta-binomial approach to dependent counts?
Let X have range \mathbb{N}_{0}.
Let α_{ϕ} be random variable independent of X, which follows distribution BETA $\left(\frac{1-\phi}{\phi} \cdot \alpha, \frac{1-\phi}{\phi} \cdot(1-\alpha)\right)$, where $\alpha, \phi \in(0 ; 1)$.
$\alpha_{\phi} \circ X$ obtained from X by beta-binomial thinning
if operator 'o' is binomial thinning operator, performed independently of X and α_{ϕ}.

Beta-Binomial AR(1) Processes

How to adapt beta-binomial approach to dependent counts?
Fix $n \in \mathbb{N}$. Parameters $\phi \in(0 ; 1), \pi \in(0 ; 1)$,
and $\rho \in\left(\max \left\{-\frac{\pi}{1-\pi},-\frac{1-\pi}{\pi}\right\} ; 1\right)$.
Define $\beta:=\pi(1-\rho)$ and $\alpha:=\beta+\rho$.

Beta-binomial $\mathbf{A R}(1)$ process $\left(X_{t}\right)_{\mathbb{N}_{0}}$ with range $\{0, \ldots, n\}$:

$$
X_{t+1}=\alpha_{\phi} \circ X_{t}+\beta_{\phi} \circ\left(n-X_{t}\right) \quad \text { for } t \geq 0
$$

$\alpha_{\phi}, \beta_{\phi}$ and thinnings performed independently, and independent of $\left(X_{s}\right)_{s<t}$.

Christian H. Weiß - Darmstadt University of Technology

Beta-Binomial AR(1) Processes

We derived the following properties:
Primitive and hence ergodic Markov chain, with

$$
\begin{aligned}
& \mathbb{P}\left(X_{t}=k \mid X_{t-1}=l\right)=\sum_{m=\max \{0, k+l-n\}}^{\min \{k, l\}}\binom{l}{m}\binom{n-l}{k-m} \\
& \cdot \frac{B\left(m+\frac{1-\phi}{\phi} \cdot \alpha, l-m+\frac{1-\phi}{\phi} \cdot(1-\alpha)\right)}{B\left(\frac{1-\phi}{\phi} \cdot \alpha, \frac{1-\phi}{\phi} \cdot(1-\alpha)\right)} \frac{B\left(k-m+\frac{1-\phi}{\phi} \cdot \beta, n-l-k+m+\frac{1-\phi}{\phi} \cdot(1-\beta)\right)}{B\left(\frac{1-\phi}{\phi} \cdot \beta, \frac{1-\phi}{\phi} \cdot(1-\beta)\right)} .
\end{aligned}
$$

Conditional variance not linear in X_{t-1} anymore:

$$
\begin{aligned}
& \mathbb{E}\left[X_{t} \mid X_{t-1}\right]=\rho \cdot X_{t-1}+n \beta \\
& \operatorname{Var}\left[X_{t} \mid X_{t-1}\right]=\phi \cdot(\alpha(1-\alpha)+\beta(1-\beta)) \cdot X_{t-1}^{2} \\
& \quad+n \beta(1-\beta) \cdot(1+\phi(n-1)) \\
& \quad+X_{t-1} \cdot(\rho(1-\rho)(1-2 \pi) \cdot(1-\phi)-2 n \beta(1-\beta) \cdot \phi)
\end{aligned}
$$

Christian H. Weiß - Darmstadt University of Technology

We derived the following properties:
If $\left(X_{t}\right)_{\mathbb{N}_{0}}$ stationary, then

$$
\begin{aligned}
\mu & =n \pi, \quad \rho_{X}(k)=\rho^{k} \\
\sigma^{2} & =n \pi(1-\pi) \cdot \frac{(1-\phi)(1+\rho)+n \phi \cdot(1-2 \pi(1-\pi)(1-\rho))}{(1-\phi)(1+\rho)+\phi \cdot(1-2 \pi(1-\pi)(1-\rho))}
\end{aligned}
$$

In particular,

$$
I_{\mathrm{d}}=1+\frac{(n-1) \cdot(1-2 \pi(1-\pi)(1-\rho))}{\left(\frac{1}{\phi}-1\right)(1+\rho)+(1-2 \pi(1-\pi)(1-\rho))}
$$

I_{d} strictly increasing in $\phi \in(0 ; 1)$,
I_{d} takes values in $(1 ; n)$, i. e., extra-binomial variation.
Christian H. Weiß - Darmstadt University of Technology

Beta-Binomial AR(1) Processes

Application 1:

Power analysis for test based on \widehat{I}_{d} :

Power decreases as π, ρ increase (but increases with n, T), little affected by plugging-in $\hat{\rho}$.

Christian H. Weiß — Darmstadt University of Technology

Application 2: Modelling price stability counts.
$\hat{\pi}_{\mathrm{ML}} \approx 0.255, \hat{\rho}_{\mathrm{ML}} \approx 0.621, \hat{\phi}_{\mathrm{ML}} \approx 0.037$.
ML estimates for α and β are 0.718 and 0.097, i. e.:
Country having stable prices in month t also stable prices in month $t+1$ with probability $\approx 72 \%$, while prob. for newly having stable prices $<10 \%$.

Price stability counts stationary (\approx beta-binomial $\operatorname{AR}(1)$) between Jan. 2000 and Dec. 2006, but what happened afterwards?

Christian H. Weiß — Darmstadt University of Technology

Beta-Binomial AR(1) Processes

Application 2: Modelling price stability counts.

\geq Sept. 2007: surging oil prices cause HICP inflation.
Then upcoming sub-prime crisis, point of culmination in Sept. 2008 ("Lehman")
\Rightarrow inflation decreases up to even negative values.
Then Euro area lapsed into severe sovereign debt crisis.
Christian H. Weiß - Darmstadt University of Technology

Beta-Binomial AR(1) Processes

Ideas for future research:

- Diagnostic tests for binomial $\operatorname{AR}(1)$ processes, e. g., goodness-of-fit, model order.
- Over- and underdispersion through density-dependent binomial $A R(1)$ models.
- Outliers in binomial $A R(1)$ processes.
- . . .

Christian H. Weiß - Darmstadt University of Technology

Thank You

for Your Interest!

Christian H. Weiß
Department of Mathematics
Darmstadt University of Technology
Fachbereich Mathematik

Literature

Billingsley (1968): Convergence of probab. measures. $1^{\text {st }}$ edition, Wiley.
McKenzie (1985): Some simple models for discrete variate time series. Water Resources Bulletin 21(4), 645-650.
Steutel \& van Harn (1979): Discrete analogues of self-decomposability and stability. Ann. Prob. 7(5), 893-899.
Weiß \& Kim (2011): Binomial AR(1) processes: moments, cumulants, and estimation. Statistics, to appear.
Weiß \& Kim (2012): Parameter estimation for binomial AR(1) models with applications in finance and industry. Statistical Papers, to appear.
Weiß \& Pollett (2012): Chain binomial models and binomial autoregressive processes. Biometrics 68(3), 815-824.

Data source: Eurostat,
http://appsso.eurostat.ec.europa.eu/nui/show.do?wai=true\&dataset=prchicp_manr
Background information: Annual Reports of the ECB,
http://www.ecb.int/pub/annual/html/index.en.html

Christian H. Weiß - Darmstadt University of Technology

