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Binomial AR(1) Processes
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Aim:
Obtain counterpart of AR(1) model X; = o X;_1 + €,
but for process of counts

with finite range {0O,...,n}.

Binomial thinning operator (Steutel & van Harn, 1979):
X
aoX = ) Y, where Y; are i.i.d. Bin(1, o),
i=1

i.e., aoX ~ Bin(X,a) and has range {0,..., X}.

(=~ number of “survivors” from population of size X)
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Binomial AR(1) Processes
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Fix n € N.
Parameters m € (0;1), p€ (max{—7%., -7} ; 1).

7

Define thinning probabilities 8 := 7 (1 — p) and a := 8 4+ p.

Binomial AR(1) process (X;)y, with range {0,...,n}
defined by the recursion

Xiy1 = aoXy + @o(nv—Xt)J for ¢t > 0,
sSurvivors newly occupied

thinnings performed independently, independent of (Xs)s<t.
(McKenzie, 1985)
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Binomial AR(1) Processes
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Well-known properties:

Ergodic Markov chain, transition probabilities
P(Xi+1=Fk | Xy =1) =

Zgiznéﬁke;i}{o,k—l—l—n} () (25) @™ (L—a)l=m gh=m(1—pgyn—ttm=k

uniquely determined stationary distribution: Bin(n, 7).
Autocorrelation function: px (k) = p* for k > 0.

Regression properties:

E[Xi41 | Xe] = p- Xt + npB,
Var[Xip1 | Xe] = p(1—p)(1 —=27) - Xy + nB(1 - 5).
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Binomial AR(1) Processes
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Weils & Pollett (2012):

h-step regression properties:
Define 8;, = (1 — p") and ay, = 85, + p/* for h > 1.

Then
P(Xpn =k | Xe=1) =
min {k,1} [\ (n—l I—m k- ltm—k
= max {0 ktln} (m) (o) Of (L —ap)' =™ B (1 = Byt Tk,

E[Xiyn | Xdd = o Xi + npp,

Var[X,yp, | Xi = p"(1—-p" (A —27) - Xy + nBL(1 - By).
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Binomial AR(1) Processes
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Further recent results together with H.-Y. Kim:

e closed-form expressions for u(sq1,...,s,_1) for r < 4;
(WeiR & Kim, 2011)

e asymptotics of YW-, CLS-, SD- and ML-estimator,
finite-sample performance,
effect of jackknife. (Weilk & Kim, 2011, 2012)
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Diagnosing Extra-Binomial Variation

Motivation: Relation between variance and mean

of B(n,w)-distribution determined by

’I’LO’2

p(n —p)

I4 referred to as binomial index of dispersion.

Id = 1, where Id L=

If I4 > 1 — extra-binomial variation (overdispersion).

How to diagnhose extra-binomial variation?
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Diagnosing Extra-Binomial Variation

How to diagnhose extra-binomial variation?

Empirical binomial index of dispersion:

- 1 L n(Xt—X)Q B n(%Zleth —XQ)

> —

i = 1 2 %tm-%) X(n—X)
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Diagnosing Extra-Binomial Variation
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How to diagnhose extra-binomial variation?

Empirical binomial index of dispersion:

- 1 L n(Xt—X)Q B n(%Zleth —XQ)

la = 7 2 Fm_x) — X (n— X)

Derive asymptotics by using
o (Xy)7 is p-mixing with geometrically decreasing weights
(Billingsley, 1968, p. 167f);

e central limit theorem (Billingsley, 1968, p. 177);

e expressions for u(sy,...,s,—1) (Weill & Kim, 2011)
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Diagnosing Extra-Binomial Variation

How to diagnhose extra-binomial variation?

T heorem:
If Xq,...,Xp stem from stationary binomial AR(1) model,

then

1+p>

VT (Iy-1) & N(O, 2(1—1) e

= Critical value for test based on Iy:

1+p
p

2
1+21—5‘\f(1 )

where z;_g: (1 — B)-quantile of N(O, 1)-distribution.
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Diagnosing Extra-Binomial Variation
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Real-data application:
European Union (EU): changes in consumer prices

measured via Harmonised Index of Consumer Prices (HICP).

Price stability in Euro area: annual rates of change in

HICP (inflation rates) should be below 2 %.
2009: Euro area with n = 17 member states (“EA17").
Question: How many EA17 countries have stable prices?

From monthly inflation rates (Eurostat, Jan. 2000 — .. .),

we computed corresponding counts x+ for each month t.
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Diagnosing Extra-Binomial Variation
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Real-data application:
We first restrict to Jan. 2000 to Dec. 2006
= time series x1,...,zp Of length T' = 84.

zy 157
10

5,

2000 2001 2002 2003 2004 2005 2006 t

Data look stationary but serially dependent (p(1) =~ 0.658),
x/n =~ 0.251, i. e.:
about 25 9% of the EA17-countries show stable prizes.
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Diagnosing Extra-Binomial Variation

Real-data application:
ACF and PACF of the price stability counts:

0.5- 0.5-

0.25}

A
PACF

-0.25 : : : -0.25 : : :
1 5 10 1 5 10
Lag Lag

AR(1)-like autocorrelation structure,
so binomial AR(1) model appropriate?
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Diagnosing Extra-Binomial Variation

Real-data application:
Value of Iy about 1.521 > 1,

approximate critical value about 1.392,
(significance level 5 %,

computed by plugging-in p ~ 0.658)
so significant extra-binomial variation!

Plausible: EA17 countries economically heterogeneous,

SO perhaps no unique 7 for price stability.

So how to model the price stability counts?
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Beta-Binomial AR(1) Processes
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Motivation: Relation between variance and mean
of B(n,m)-distribution determined by

n02

p(n —p)
I4 referred to as binomial index of dispersion.

Iq = 1, where I4

If I4 > 1 — extra-binomial variation (overdispersion).
How to diaghose extra-binomial variation? \/

Popular approach for extra-binomial variation:
beta-binomial distribution.

How to adapt this approach to time-dependent counts?
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Beta-Binomial AR(1) Processes
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How to adapt beta-binomial approach to dependent counts?

Let X have range Np.

Let oy be random variable independent of X,

which follows distribution BETA(*32 -, 132 (1 — a)),
where o, ¢ € (0;1).

a¢oX obtained from X by beta-binomial thinning
if operator ‘o’ is binomial thinning operator,

performed independently of X and Q.

Christian H. Weils — Darmstadt University of Technology



\
{\‘\

Beta-Binomial AR(1) Processes

¢

How to adapt beta-binomial approach to dependent counts?
Fix n € N. Parameters ¢ € (0;1), = € (0;1),

and p € (max{—7%-,—1="} ; 1).

Define 8:=n (1 —p) and o := 5+ p.

Beta-binomial AR(1) process (X;)y, with range {0, ..., n}:
Xt—I—l = a¢oXt —+ 5¢O<H—Xt) for t > 0,

ay, By and thinnings performed independently,
and independent of (Xs)s<t.
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Beta-Binomial AR(1) Processes
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We derived the following properties:

Primitive and hence ergodic Markov chain, with

. . . min {k,l} l —1
P(Xe =k | Xp_1=1) = Zm:max{O,k—I—l—er} (m) (kn—m)

B(m+2a, I-m+52.(1-a)) B(k—m+152.8, n—l—k+m+152.(1-8))
 B(%%a, BA(1-w)) B(152:8, 152(1-5)) |

Conditional variance not linear in X;_1 anymore:

E[X¢ | Xp—1] = p-Xem1 + nfB,

Var[X¢ | Xi—1] = ¢ (a(l —a)+ (1 - ) - X7 4

+ nB(1 - B) - (1+ ¢(n - 1))

+ X1 (pP(L=p)(Q —2m) - (1 —¢) — 2nB(1—B) - ¢).
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Beta-Binomial AR(1) Processes
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We derived the following properties:

If (X¢)n, stationary, then

po=nm,  px(k)=p"

02 = pr(l—m). LT+ p) e (1 —27(1 —7)(1 - p))

1-A+p+¢ (1-2r(1-m)(1-p))

In particular,

(n—1)-(1—-27(1 —m)(1—p))
G-DA+p+(1-2r(1-m)(A-p))

I4 strictly increasing in ¢ € (0; 1),

Iy = 1 A

I4 takes values in (1;n), i. e., extra-binomial variation.
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Beta-Binomial AR(1) Processes

Application 1:

Power analysis for test based on Iy:

1.1 1.1

0.8F 0.8F
0.6 0.6+
7=0.15, kn.
0.4r —  7=0.40, kn. 0.4
-- 7=0.15, est.
-- 1w=0.40, est.
0.2r 0.2r
O | | | | | O | | | | |
0.02 0.04 0.06 0.08 0.1 qs 0.02 0.04 0.06 0.08 0.1 ¢

Power decreases as m, p increase (but increases with n,T),

little affected by plugging-in p.
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Beta-Binomial AR(1) Processes
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Application 2: Modelling price stability counts.
7/'(\'|\/||_ ~ 0255, :5|\/|L ~ 0621, $ML ~ 0.037.
ML estimates for « and g are 0.718 and 0.097, i. e.:

Country having stable prices in month ¢t also stable prices
in month ¢4+ 1 with probability =~ 72 %,

while prob. for newly having stable prices < 10 %.

Price stability counts stationary (=~ beta-binomial AR(1))
between Jan. 2000 and Dec. 2006,

but what happened afterwards?
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Beta-Binomial AR(1) Processes

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 t

> Sept. 2007: surging oil prices cause HICP inflation.

Then upcoming sub-prime crisis,
point of culmination in Sept. 2008 (“Lehman”)
= inflation decreases up to even negative values.

Then Euro area lapsed into severe sovereign debt crisis.
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Beta-Binomial AR(1) Processes

Ideas for future research:

e Diagnostic tests for binomial AR(1) processes,

e. g., goodness-of-fit, model order.

e Over- and underdispersion through

density-dependent binomial AR(1) models.

e Outliers in binomial AR(1) processes.
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