Diagnosing and Modelling Extra-Binomial Variation for Time-Dependent Counts

Christian H. Weiß

Department of Mathematics,

Darmstadt University of Technology

Hee-Young Kim

Institute of Economics,

Korea University Seoul

Definition & Properties

Aim:

Obtain counterpart of AR(1) model $X_t = \alpha \cdot X_{t-1} + \epsilon_t$, but for process of counts with finite range $\{0, \ldots, n\}$.

Binomial thinning operator (Steutel & van Harn, 1979):

$$\alpha \circ X := \sum_{i=1}^{X} Y_i$$
, where Y_i are i.i.d. $Bin(1, \alpha)$,

i. e., $\alpha \circ X \sim \text{Bin}(X, \alpha)$ and has range $\{0, \dots, X\}$.

(\approx number of "survivors" from population of size X)

Fix $n \in \mathbb{N}$.

Parameters $\pi \in (0; 1)$, $\rho \in (\max \{-\frac{\pi}{1-\pi}, -\frac{1-\pi}{\pi}\}; 1)$. Define thinning probabilities $\beta := \pi (1-\rho)$ and $\alpha := \beta + \rho$.

Binomial AR(1) process $(X_t)_{\mathbb{N}_0}$ with range $\{0,\ldots,n\}$ defined by the recursion

$$X_{t+1} = \underbrace{\alpha \circ X_t}_{\text{survivors}} + \underbrace{\beta \circ (n - X_t)}_{\text{newly occupied}}$$
 for $t \ge 0$,

thinnings performed independently, independent of $(X_s)_{s < t}$. (McKenzie, 1985)

Well-known properties:

Ergodic Markov chain, transition probabilities

$$\mathbb{P}(X_{t+1} = k \mid X_t = l) =$$

$$\sum_{m=\max\{0,k+l-n\}}^{\min\{k,l\}} {n \choose m} {n-l \choose k-m} \alpha^m (1-\alpha)^{l-m} \beta^{k-m} (1-\beta)^{n-l+m-k},$$

uniquely determined stationary distribution: Bin (n, π) .

Autocorrelation function: $\rho_X(k) = \rho^k$ for $k \ge 0$.

Regression properties:

$$\mathbb{E}[X_{t+1} \mid X_t] = \rho \cdot X_t + n\beta,$$

$$Var[X_{t+1} \mid X_t] = \rho(1-\rho)(1-2\pi) \cdot X_t + n\beta(1-\beta).$$

Weiß & Pollett (2012):

h-step regression properties:

Define $\beta_h = \pi(1 - \rho^h)$ and $\alpha_h = \beta_h + \rho^h$ for $h \ge 1$.

Then

$$\mathbb{P}(X_{t+h} = k \mid X_t = l) = \sum_{m=\max\{0,k+l-n\}}^{\min\{k,l\}} {n \choose m} {n-l \choose k-m} \alpha_h^m (1-\alpha_h)^{l-m} \beta_h^{k-m} (1-\beta_h)^{n-l+m-k},$$

$$\mathbb{E}[X_{t+h} \mid X_t] = \rho^h \cdot X_t + n\beta_h,$$

$$Var[X_{t+h} \mid X_t] = \rho^h (1 - \rho^h) (1 - 2\pi) \cdot X_t + n\beta_h (1 - \beta_h).$$

Further recent results together with H.-Y. Kim:

- ullet closed-form expressions for $\mu(s_1,\dots,s_{r-1})$ for $r\leq 4$; (Weiß & Kim, 2011)
- asymptotics of YW-, CLS-, SD- and ML-estimator,
 finite-sample performance,
 effect of jackknife. (Weiß & Kim, 2011, 2012)

Motivation & Approaches

Motivation: Relation between variance and mean of $B(n,\pi)$ -distribution determined by

$$I_{\rm d}=1, \qquad {\rm where}\ I_{\rm d}:=rac{n\sigma^2}{\mu(n-\mu)}.$$

 $I_{\rm d}$ referred to as binomial index of dispersion.

If $I_d > 1 \rightarrow$ extra-binomial variation (overdispersion).

How to diagnose extra-binomial variation?

How to diagnose extra-binomial variation?

Empirical binomial index of dispersion:

$$\widehat{I}_{d} := \frac{1}{T} \cdot \sum_{t=1}^{T} \frac{n (X_{t} - \bar{X})^{2}}{\bar{X} (n - \bar{X})} = \frac{n (\frac{1}{T} \sum_{t=1}^{T} X_{t}^{2} - \bar{X}^{2})}{\bar{X} (n - \bar{X})}.$$

How to diagnose extra-binomial variation?

Empirical binomial index of dispersion:

$$\widehat{I}_{d} := \frac{1}{T} \cdot \sum_{t=1}^{T} \frac{n (X_{t} - \bar{X})^{2}}{\bar{X} (n - \bar{X})} = \frac{n (\frac{1}{T} \sum_{t=1}^{T} X_{t}^{2} - \bar{X}^{2})}{\bar{X} (n - \bar{X})}.$$

Derive asymptotics by using

- $(X_t)_{\mathbb{Z}}$ is φ -mixing with geometrically decreasing weights (Billingsley, 1968, p. 167f);
- central limit theorem (Billingsley, 1968, p. 177);
- ullet expressions for $\mu(s_1,\ldots,s_{r-1})$ (Weiß & Kim, 2011)

How to diagnose extra-binomial variation?

Theorem:

If X_1, \ldots, X_T stem from stationary binomial AR(1) model, then

$$\sqrt{T}\left(\widehat{I}_{\mathsf{d}}-1\right) \stackrel{\mathsf{D}}{\to} \mathsf{N}\left(0,\ 2(1-\frac{1}{n})\frac{1+\rho^2}{1-\rho^2}\right).$$

 \Rightarrow Critical value for test based on \widehat{I}_d :

$$1 + z_{1-\beta} \cdot \sqrt{\frac{2}{T} (1 - \frac{1}{n}) \frac{1 + \rho^2}{1 - \rho^2}},$$

where $z_{1-\beta}$: $(1-\beta)$ -quantile of N(0,1)-distribution.

Real-data application:

European Union (EU): changes in consumer prices measured via Harmonised Index of Consumer Prices (HICP).

Price stability in Euro area: annual rates of change in HICP (inflation rates) should be below 2%.

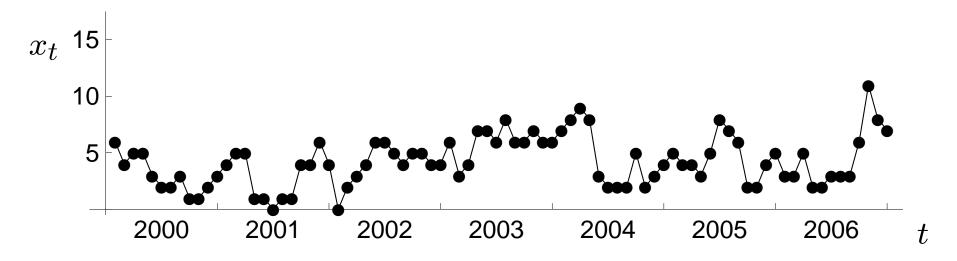
2009: Euro area with n = 17 member states ("EA17").

Question: How many EA17 countries have stable prices?

From monthly inflation rates (Eurostat, Jan. 2000 $- \dots$), we computed corresponding counts x_t for each month t.

Real-data application:

We first restrict to Jan. 2000 to Dec. 2006 \Rightarrow time series x_1, \ldots, x_T of length T = 84.

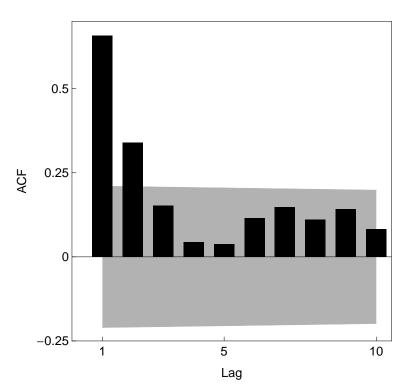


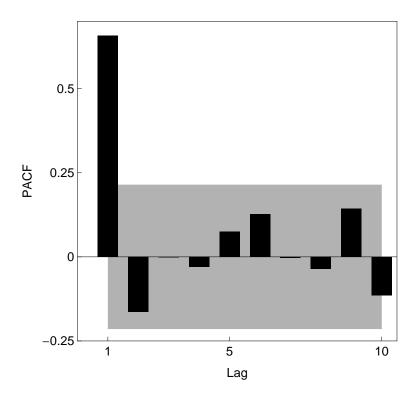
Data look stationary but serially dependent $(\hat{\rho}(1) \approx 0.658)$, $\bar{x}/n \approx 0.251$, i. e.:

about 25 % of the EA17-countries show stable prizes.

Real-data application:

ACF and PACF of the price stability counts:





AR(1)-like autocorrelation structure, so binomial AR(1) model appropriate?

Real-data application:

Value of \hat{I}_{d} about 1.521 > 1,

approximate critical value about 1.392,

(significance level 5 %,

computed by plugging-in $\hat{\rho} \approx 0.658$)

so **significant** extra-binomial variation!

Plausible: EA17 countries economically heterogeneous, so perhaps no unique π for price stability.

So how to model the price stability counts?

Motivation & Properties

Motivation: Relation between variance and mean of $B(n,\pi)$ -distribution determined by

$$I_{\mathsf{d}} = 1, \qquad \text{where } I_{\mathsf{d}} := \frac{n\sigma^2}{\mu(n-\mu)}.$$

 $I_{\rm d}$ referred to as binomial index of dispersion.

If $I_d > 1 \rightarrow$ extra-binomial variation (overdispersion).

How to diagnose extra-binomial variation? \checkmark

Popular approach for extra-binomial variation:

beta-binomial distribution.

How to adapt this approach to time-dependent counts?

Christian H. Weiß — Darmstadt University of Technology

How to adapt beta-binomial approach to dependent counts?

Let X have range \mathbb{N}_0 .

Let α_{ϕ} be random variable independent of X, which follows distribution BETA $\left(\frac{1-\phi}{\phi}\cdot\alpha,\ \frac{1-\phi}{\phi}\cdot(1-\alpha)\right)$, where $\alpha,\phi\in(0;1)$.

 $\alpha_{\phi} \circ X$ obtained from X by **beta-binomial thinning** if operator 'o' is binomial thinning operator, performed independently of X and α_{ϕ} .

How to adapt beta-binomial approach to dependent counts?

Fix $n \in \mathbb{N}$. Parameters $\phi \in (0; 1)$, $\pi \in (0; 1)$, and $\rho \in \left(\max\left\{-\frac{\pi}{1-\pi}, -\frac{1-\pi}{\pi}\right\}; 1\right)$. Define $\beta := \pi \left(1-\rho\right)$ and $\alpha := \beta + \rho$.

Beta-binomial AR(1) process $(X_t)_{\mathbb{N}_0}$ with range $\{0,\ldots,n\}$:

$$X_{t+1} = \alpha_{\phi} \circ X_t + \beta_{\phi} \circ (n - X_t) \quad \text{for } t \ge 0,$$

 $\alpha_{\phi}, \beta_{\phi}$ and thinnings performed independently, and independent of $(X_s)_{s < t}$.

We derived the following properties:

Primitive and hence ergodic Markov chain, with

$$\mathbb{P}(X_t = k \mid X_{t-1} = l) = \sum_{m=\max\{0,k+l-n\}}^{\min\{k,l\}} {k \choose m} {n-l \choose k-m} \cdot \frac{B\left(m + \frac{1-\phi}{\phi} \cdot \alpha, \ l-m + \frac{1-\phi}{\phi} \cdot (1-\alpha)\right)}{B\left(\frac{1-\phi}{\phi} \cdot \alpha, \ \frac{1-\phi}{\phi} \cdot (1-\alpha)\right)} \frac{B\left(k - m + \frac{1-\phi}{\phi} \cdot \beta, \ n-l-k + m + \frac{1-\phi}{\phi} \cdot (1-\beta)\right)}{B\left(\frac{1-\phi}{\phi} \cdot \beta, \ \frac{1-\phi}{\phi} \cdot (1-\beta)\right)}.$$

Conditional variance not linear in X_{t-1} anymore:

$$\mathbb{E}[X_{t} \mid X_{t-1}] = \rho \cdot X_{t-1} + n\beta,$$

$$\text{Var}[X_{t} \mid X_{t-1}] = \phi \cdot (\alpha(1-\alpha) + \beta(1-\beta)) \cdot X_{t-1}^{2} + n\beta(1-\beta) \cdot (1+\phi(n-1)) + X_{t-1} \cdot (\rho(1-\rho)(1-2\pi) \cdot (1-\phi) - 2n\beta(1-\beta) \cdot \phi).$$

We derived the following properties:

If $(X_t)_{\mathbb{N}_0}$ stationary, then

$$\mu = n\pi, \qquad \rho_X(k) = \rho^k,$$

$$\sigma^2 = n\pi(1-\pi) \cdot \frac{(1-\phi)(1+\rho) + n\phi \cdot (1-2\pi(1-\pi)(1-\rho))}{(1-\phi)(1+\rho) + \phi \cdot (1-2\pi(1-\pi)(1-\rho))}.$$

In particular,

$$I_{\rm d} = 1 + \frac{(n-1)\cdot \left(1-2\pi(1-\pi)(1-\rho)\right)}{\left(\frac{1}{\phi}-1\right)(1+\rho)+\left(1-2\pi(1-\pi)(1-\rho)\right)}.$$

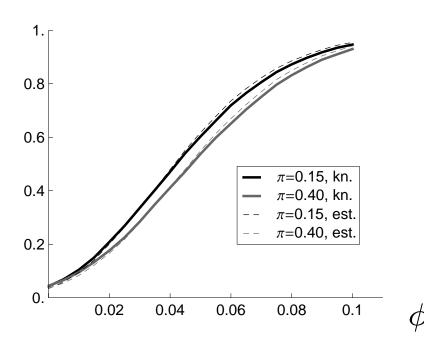
 I_{d} strictly increasing in $\phi \in (0;1)$,

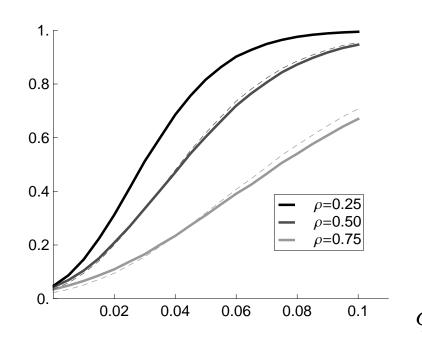
 I_d takes values in (1; n), i. e., extra-binomial variation.

Christian H. Weiß — Darmstadt University of Technology

Application 1:

Power analysis for test based on \widehat{I}_d :





Power decreases as π, ρ increase (but increases with n, T), little affected by plugging-in $\hat{\rho}$.

Application 2: Modelling price stability counts.

$$\widehat{\pi}_{\mathsf{ML}} \approx 0.255$$
, $\widehat{\rho}_{\mathsf{ML}} \approx 0.621$, $\widehat{\phi}_{\mathsf{ML}} \approx 0.037$.

ML estimates for α and β are 0.718 and 0.097, i. e.:

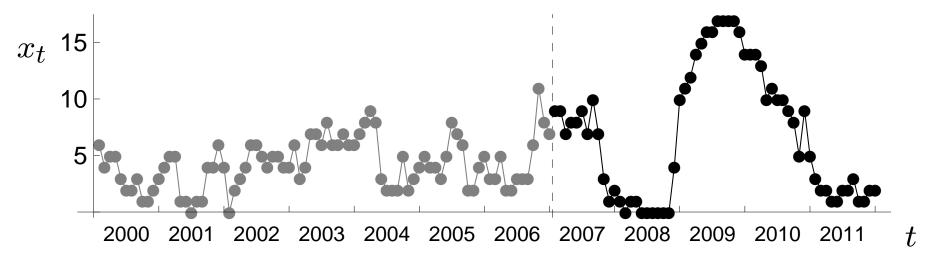
Country having stable prices in month t also stable prices in month t+1 with probability $\approx 72\%$,

while prob. for newly having stable prices < 10 %.

Price stability counts stationary (\approx beta-binomial AR(1)) between Jan. 2000 and Dec. 2006,

but what happened afterwards?

Application 2: Modelling price stability counts.



≥ Sept. 2007: surging oil prices cause HICP inflation.

Then upcoming sub-prime crisis, point of culmination in Sept. 2008 ("Lehman")

 \Rightarrow inflation decreases up to even negative values.

Then Euro area lapsed into severe sovereign debt crisis.

Christian H. Weiß — Darmstadt University of Technology

Ideas for future research:

- Diagnostic tests for binomial AR(1) processes,
 e. g., goodness-of-fit, model order.
- Over- and underdispersion through density-dependent binomial AR(1) models.
- Outliers in binomial AR(1) processes.

• . . .

Thank You for Your Interest!

Christian H. Weiß

Department of Mathematics

Darmstadt University of Technology

weiss@mathematik.tu-darmstadt.de

Literature

Billingsley (1968): Convergence of probab. measures. 1st edition, Wiley.

McKenzie (1985): Some simple models for discrete variate time series. Water Resources Bulletin 21(4), 645-650.

Steutel & van Harn (1979): Discrete analogues of self-decomposability and stability. Ann. Prob. 7(5), 893-899.

Weiß & Kim (2011): Binomial AR(1) processes: moments, cumulants, and estimation. Statistics, to appear.

Weiß & Kim (2012): Parameter estimation for binomial AR(1) models with applications in finance and industry. Statistical Papers, to appear.

Weiß & Pollett (2012): Chain binomial models and binomial autoregressive processes. Biometrics 68(3), 815-824.

Data source: Eurostat,

http://appsso.eurostat.ec.europa.eu/nui/show.do?wai=true&dataset=prc_hicp_manr

Background information: Annual Reports of the ECB,

http://www.ecb.int/pub/annual/html/index.en.html

Christian H. Weiß — Darmstadt University of Technology