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Categorical Time Series Analysis

Categorical process:

(Xt)N with N = {1,2, . . .}, where each Xt takes one of finite

number of unordered categories.

Categorical time series:

Realizations (xt)t=1,...,T from (Xt)N.

To simplify notations:

Range of (Xt)N is coded as V = {1, . . . ,m,m+1},

i. e., P (Xt = m+1) = 1− ∑m
j=1P (Xt = j).
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Categorical Time Series Analysis

Definitions according to Weiß (2009a), Section 7.1.1:

(Xt)N said to be

• marginally stationary

if marginal distribution invariant in t;

• bivariately stationary or weakly stationary

if pairwise joint distribution of (Xt, Xt−k) independent

of t for each k ∈ N0;

• (strictly) stationary if joint distribution of (Xt, . . . , Xt+k)

independent of t for all k ∈ N0.
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Categorical Time Series Analysis

Notations for time-invariant probabilities:

• If (Xt)N marginally stationary:

marginal probabilities pi := P (Xt = i) ∈ (0; 1).

p := (p1, . . . , pm+1)
⊤, and

sk(p) :=
∑m+1
j=1 pkj for k ∈ N; obviously s1(p) = 1.

• If (Xt)N weakly stationary:

bivariate probabilities pij(k) := P (Xt = i,Xt−k = j),

conditional probabilities pi|j(k) := P (Xt = i | Xt−k = j).

Christian H. Weiß — Darmstadt University of Technology



Categorical Time Series Analysis

Let (Xt)N be marginally stationary.

Measures of location:

only mode of Xt in use, i. e., value i ∈ V such that pi ≥ pj

for all j ∈ V.

Often not uniquely determined (e. g., uniform distribution).

Measures of dispersion:

dispersion ≈ quantity of uncertainty, two extremes:

maximal dispersion if all pj equal (uniform distribution),

minimal disp. if pj = 1 for one j ∈ V (one-point distrib.).
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Categorical Time Series Analysis

Most simple measure of dispersion: Gini index of Xt,

νG(Xt) := m+1
m ·

(
1− ∑m+1

j=1 p2j
)

= m+1
m ·

(
1− s2(p)

)
.

• continuous and symmetric function of p1, . . . , pm+1,

• range [0; 1],

• maximal value 1 iff uniform distribution,

• minimal value 0 iff one-point distribution.

Alternative measures of disp.: Section 6.1 of Weiß (2009a).

Empirical counterparts, asymptotic properties: Weiß (2009b).
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Categorical Time Series Analysis

Weiß & Göb (2008): signed serial dependence.

Weakly stationary categorical process (Xt)N said to be

• perfectly serially dependent at lag k ∈ N

if for any j ∈ V, conditional distribution pi|j(k) is one-

point distribution;

• serially independent at lag k ∈ N

if pi|j(k) = pi (i. e., pij(k) = pipj) for any i, j ∈ V.

(. . . )
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Categorical Time Series Analysis

(. . . )

In case of perfect serial dependence at lag k ∈ N:

• perfect positive dependence

if pi|j(k) = 1 iff i = j for all i, j ∈ V;

• perfect negative dependence if all pi|i(k) = 0.
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Categorical Time Series Analysis

Weiß & Göb (2008): Cohen’s κ,

κ(k) =

∑m+1
j=1

(
pjj(k)− p2j

)
1− ∑m+1

j=1 p2j
= 1 −

1− ∑m+1
j=1 pjj(k)

1− s2(p)︸ ︷︷ ︸
≈Gini index

.

• range [− s2(p)
1−s2(p)

; 1],

• κ(k) = 1 iff perfect positive dependence at lag k,

• κ(k) = 0 if serial independence,

• κ(k) = − s2(p)
1−s2(p)

if perfect negative dependence.

Empirical counterparts, asymptotic properties: Weiß (2009b).

Alternative measure, modified κ: Weiß (2009a,b).
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Categorical Time Series Analysis

Basic models for categorical time series

Bernoulli process: i.i.d. random variables.

Stationary distribution determined by p. (m parameters)

Markov chain: first order Markov process.

Stationary distribution determined by transition probabilities

pi|j = P (Xt = i | Xt−1 = j). (m(m+1) parameters)

If P = (pi|j)i,j=1,...,m+1 denotes transition matrix, then

stationary marginal distribution p has to satisfy Pp = p.
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Categorical Time Series Analysis

Reduce number of parameters, m(m+1):

DAR(1) model (Jacobs & Lewis, 1983),

pi|j = pi · (1− ϕ) + δij · ϕ with ϕ ∈ [0; 1).(m+1 parameters)

Stationary marginal distribution: p. κ(k) = ϕk.

Negative Markov model (Weiß, 2009b):

π ∈ (0; 1)m+1 probability vector, α ∈ (0; 1] and βj :=
1−απj
1−πj

.

Define

pi|j :=

 α · πj if i = j,
βj · πi if i ̸= j.

< πj
> πi

 ⇒ negative dependence

Ergodic Markov chain, invariant distribution pj =
πj/βj∑m+1

i=1 πi/βi
.
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Continuously Monitoring Categorical Processes

Examples for categorical time series from diverse fields:

biological sequence analysis, speech recognition, part-of-

speech tagging, network monitoring, . . . (Weiß, 2009a).

SPC: Xt = result of inspection of item, with

Xt = i for i = 1, . . . ,m iff item has nonconformity type i,

Xt = m+1 iff conforming.

Mukhopadhyay (2008): m = 6 paint defects of ceiling fan

cover (‘poor covering’, ‘bubbles’, etc.).

Overall defect category = most predominant defect.

Ye et al. (2002) monitor network traffic data (284 diffe-

rent types of audit events) for intrusion detection.
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Continuously Monitoring Categorical Processes

Already some work about monitoring of ‘multi-attribute pro-

cesses’ or ‘multinomial processes’, but not always . . .

• about mutually exclusive categories (→ multivariate

approaches),

• about unordered categories (not ordinal!),

• about probabilistic approaches (e. g., fuzzy theory),

• about continuously monitoring (i. e., 100% inspection,

not samples).
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Continuously Monitoring Categorical Processes

From now on, we assume (Xt)N to be stationary.

In-control state: (Xt)N serially independent, i. e., alto-

gether i.i.d., where p = p0 for known p0.

Aim: detect both violations of independence assumption

and changes in p compared to p0.

Example of categorical quality characteristics:

states 1, . . . ,m as different nonconformity categories,

m+1 represents conforming item.

We expect that p0,m+1 ≫ p0,1, . . . , p0,m,

relation between pm+1 and p1, . . . , pm particularly relevant.
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Control Charts – Comparative Statistic

General strategy:

At each t, compute statistic, which summarizes characteri-

stic properties of true marginal distribution p.

Then compares these properties to ones expected from in-

control marginal distribution p0.

Plot resulting real-valued process of comparative stati-

stics on appropriately designed control chart.
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Control Charts – Comparative Statistic

We restrict to moving average (MA) estimator p̂(w)
t :

Define binarization (Xt)N via Xt,i = 1 iff Xt = i and 0

otherwise.

We consider p̂(w)
t := 1

w · ∑w−1
r=0 Xt−r for t ≥ w.

Let Tp0 : [0; 1]m+1 → R be comparative function with

respect to in-control marginal distribution p0.

Compute comparative statistics Tt := Tp0(p̂t
(w)) based on

estimated marginal distribution.

Plot statistics Tt on control chart with appropriately chosen

control limits LCL,UCL.
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Control Charts – Comparative Statistic

Performance evaluation: Average run length (ARL) counts

plotted statistics Tt until alarm.

⇒ misleading, since first w original observations X1, . . . , Xw

necessary before first statistic Tw.

⇒ Average number of events (ANE) counts the original

observations, in our case: ANE = ARL+ w − 1.

Obviously, always ANE ≥ w, i. e., large w avoids quick de-

tection of process changes.

But components p̂
(w)
t,i multiples of 1

w ⇒ w sufficiently large

to express smallest probability among p0,i.
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Control Charts – Comparative Statistic

1st approach: Pearson’s χ2-statistic for goodness of fit.

Tp0(p̂
(w)
t ) :=

∑m
j=0

(p̂(w)
t,j −p0,j)

2

p0,j
for t ≥ w.

Plot Tt := Tp0(p̂t
(w)) on one-sided chart with UCL > 0.

If (Xt)N i.i.d. with p0, then w · Tt ∼
approx

χ2
m. ⇒ UCL

Rough approx. for small w, (Tt)t≥w of MA(w − 1) type.

Tt discrete, finite range ⇒ ANE target not met exactly.

Tt measures any type of change in p with respect to p0.

Already mean E[Tt] sensitive to (positive) serial dependence.
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Control Charts – Comparative Statistic

2nd approach: empirical Gini index.

Tp0(p̂
(w)
t ) :=

1− s2(p̂t
(w))

1− s2(p0)
− 1.

Plot Tt := Tp0(p̂t
(w)) on two-sided chart, LCL < 0 < UCL.

Detect those changes in p, which result in changed disper-

sion with respect to p0 (counterexample: permutation).

Useful for finding LCL,UCL, see Weiß (2009b):

E[Tt] = −
1

w
, V [Tt] ≈

4

w
·
s3(p0)− s22(p0)

(1− s2(p0))
2

.

Tt discrete with a finite range.
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Control Charts – Runs

(k, r)-run: finished after k successive observations
of either ‘1’ or ‘2’ or . . . or ‘r’, i. e., after observing
one of (1, . . . ,1), (2, . . . ,2), . . . , (r, . . . , r) of length k each.

(k, r)th run lengths (Y (k,r)
n )N determined as

Y
(k,r)
1 := No. obs. until first occurrence of k-tuple of ‘1’s or . . . ‘r’s,

Y
(k,r)
n := No. obs. after (n− 1)th occurrence of k-tuple of ‘1’s or . . . ‘r’s

until nth occurrence of k-tuple of ‘1’s or . . . ‘r’s, for n ≥ 2.

Example: m = 3 (i. e., V = {1,2,3,4})
and (k, r) = (2,3), (fictive) time series:

1 2 4 4 4 3 4 2 2︸ ︷︷ ︸
9

4 3 4 4 1 4 1 1︸ ︷︷ ︸
8

1 1︸ ︷︷ ︸
2

3 4 2 4 3 3︸ ︷︷ ︸
6

2 3 . . .
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Control Charts – Runs

(Y (k,r)
n )N plotted on chart with k ≤ LCL < UCL.

Properties:

increase in p1, . . . , pr ⇒ reduced run lengths and vice versa,

i. e.,

violation of lower limit indicates increase in p1, . . . , pr.

segment length k increases ⇒ increasing run lengths

segment number r increases ⇒ decreasing run lengths
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Control Charts – Runs

(Y (k,r)
n )N i.i.d. process, range Nk := {k, k +1, . . .}.

Properties: (Chryssaphinou et al., 1994, Theorem 2.1

and Corollary 2.2)

Let ck,r(z) :=
r∑

i=1

(1− piz)(piz)
k

1− (piz)k
, then

E[Y (k,r)] =
1

ck,r(1)
, V [Y (k,r)] =

1+ ck,r(1)− 2c′k,r(1)

c2k,r(1)
,

probab. gen. funct. (pgf) p
Y (k,r)(z) =

ck,r(z)

1− z + ck,r(z)
.
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Control Charts – Runs

(Yn(k,r))N i.i.d. ⇒ ARLs of plotted statistics Yn(k,r):

ARL =
(
1− ∑UCL

y=LCLP (Y (k,r) = y)
)−1

.

Misleading: Yn(k,r) represents many observations from (Xt)N.

⇒ consider ANEs. Weiß (2010):

If (Xt)N be a stationary Markov chain, then

exact ANE computation with Markov chain approach.
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Control Charts – Performance

ANE comparison, simulations or MC approach.

Out-of-control situations:
pi = β · p0,i for i = 1, . . . ,m,

pm+1 = 1− β · (1− p0,m+1),
β ∈ [0; (1−p0,m+1)

−1].

β = 1: in-control situation,

β > 1: pm+1 decreased, other probabilities increased.

Violations of the independence assumption:

DAR(1) model with dependence parameter ϕ ∈ [0; 1)

negative Markov model with dependence par. α ∈ (0; 1]
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Control Charts – Performance

Few illustrative results for p0 = (0.09,0.12,0.25,0.54)⊤:

• runs: (k, r;LCL,UCL) = (2,2; 5,165), ANE0 ≈ 503,

• Gini: (w;LCL,UCL) = (25;−0.45,0.175), ANE0 ≈ 484,

• Gini: (w;LCL,UCL) = (50;−0.255,0.135), ANE0 ≈ 509,

• Pearson: (w;UCL) = (25; 0.4725), ANE0 ≈ 521,

• Pearson: (w;UCL) = (50; 0.2000), ANE0 ≈ 508,

• Pearson: (w;UCL) = (100; 0.0825), ANE0 ≈ 519.
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Control Charts – Performance

Negative Markov model, α0 = 1:

ANE

Linienplot für multiple Variablen: ANEs_0.090_0.120_0.250_0.540_NegMarkov.sta 9v*86c

0.20 0.40 0.60 0.80 1.00

25
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100
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750

 kRuns
 Gini-25
 Gini-50
 Pearson-25
 Pearson-50
 Pearson-100

α

⇒ only (k, r)-runs chart sensitive
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Control Charts – Performance

DAR(1) model, ϕ0 = 0:

ANE

Linienplot für multiple Variablen: ANEs_0.090_0.120_0.250_0.540_DAR1.sta 9v*100c

0.00 0.20 0.40 0.60 0.80 0.99

25

50

100

250

500

750

 kRuns
 Gini-25
 Gini-50
 Pearson-25
 Pearson-50
 Pearson-100

ϕ

⇒ (k, r)-runs chart best except large ϕ
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Control Charts – Performance

i.i.d. but changed p, β0 = 1:

ANE

Linienplot für multiple Variablen: ANEs_0.090_0.120_0.250_0.540_alpha.sta 9v*176c

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

25

50

100

250

500

750

 kRuns
 Gini-25
 Gini-50
 Pearson-25
 Pearson-50
 Pearson-100

β

⇒ Gini chart (two-sided!) nearly ANE-unbiased,

but sometimes insensitive, e. g.:

β = 2 ⇒ p = (0.18,0.24,0.50,0.08) ≈ permutation of p0.
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Conclusions

• Gini chart, Pearson chart:

chart design and evaluation based on simulations,

superior concerning changes in p,

Gini often preferable (exception: permutations).

• (k, r)-runs chart:

ANE computation by Markov chain approach,

superior concerning violations of serial independence,

worst concerning changes in p except:

low dispersion (e. g., high-quality process)

⇒ more sensitive concerning negative shifts in β.
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