Continuously Monitoring Categorical Processes

TECHNISCHE UNIVERSITÄT DARMSTADT

Christian H. Weiß

Department of Mathematics,

Darmstadt University of Technology

This talk is based on the paper

Weiß (2010):

Continuously Monitoring Categorical Processes.

Accepted for publication in

Quality Technology & Quantitative Management.

All references mentioned in this talk correspond to the references in this article.

Categorical Time Series Analysis

Categorical process:

 $(X_t)_{\mathbb{N}}$ with $\mathbb{N} = \{1, 2, ...\}$, where each X_t takes one of **finite** number of **unordered** categories.

Categorical time series:

Realizations $(x_t)_{t=1,...,T}$ from $(X_t)_{\mathbb{N}}$.

To simplify notations:

Range of $(X_t)_{\mathbb{N}}$ is coded as $\mathcal{V} = \{1, \ldots, m, m+1\}$,

i. e.,
$$P(X_t = m + 1) = 1 - \sum_{j=1}^m P(X_t = j)$$
.

Definitions according to Weiß (2009a), Section 7.1.1: $(X_t)_{\mathbb{N}}$ said to be

• marginally stationary

if marginal distribution invariant in t;

• bivariately stationary or weakly stationary

if pairwise joint distribution of (X_t, X_{t-k}) independent of t for each $k \in \mathbb{N}_0$;

• (strictly) stationary if joint distribution of (X_t, \ldots, X_{t+k}) independent of t for all $k \in \mathbb{N}_0$.

Notations for time-invariant probabilities:

- If $(X_t)_{\mathbb{N}}$ marginally stationary: marginal probabilities $p_i := P(X_t = i) \in (0; 1)$. $p := (p_1, \dots, p_{m+1})^{\top}$, and $s_k(p) := \sum_{j=1}^{m+1} p_j^k$ for $k \in \mathbb{N}$; obviously $s_1(p) = 1$.
- If $(X_t)_{\mathbb{N}}$ weakly stationary: bivariate probabilities $p_{ij}(k) := P(X_t = i, X_{t-k} = j)$, conditional probabilities $p_{i|j}(k) := P(X_t = i \mid X_{t-k} = j)$.

Let $(X_t)_{\mathbb{N}}$ be marginally stationary.

Measures of location:

only **mode** of X_t in use, i. e., value $i \in \mathcal{V}$ such that $p_i \ge p_j$ for all $j \in \mathcal{V}$.

Often not uniquely determined (e.g., uniform distribution).

Measures of dispersion:

dispersion \approx quantity of uncertainty, two extremes: maximal dispersion if all p_j equal (**uniform distribution**), minimal disp. if $p_j = 1$ for one $j \in \mathcal{V}$ (**one-point distrib.**).

Most simple measure of dispersion: Gini index of X_t ,

$$\nu_{\mathsf{G}}(X_t) := \frac{m+1}{m} \cdot \left(1 - \sum_{j=1}^{m+1} p_j^2\right) = \frac{m+1}{m} \cdot \left(1 - s_2(p)\right).$$

- continuous and symmetric function of p_1, \ldots, p_{m+1} ,
- range [0; 1],
- maximal value 1 iff uniform distribution,
- minimal value 0 iff one-point distribution.

Alternative measures of disp.: Section 6.1 of Weiß (2009a). Empirical counterparts, asymptotic properties: Weiß (2009b).

Weiß & Göb (2008): signed serial dependence.

Weakly stationary categorical process $(X_t)_{\mathbb{N}}$ said to be

- perfectly serially dependent at lag $k \in \mathbb{N}$ if for any $j \in \mathcal{V}$, conditional distribution $p_{i|j}(k)$ is onepoint distribution;
- serially independent at lag $k \in \mathbb{N}$ if $p_{i|j}(k) = p_i$ (i. e., $p_{ij}(k) = p_i p_j$) for any $i, j \in \mathcal{V}$. (\dots)

(...)

In case of perfect serial dependence at lag $k \in \mathbb{N}$:

• perfect **positive dependence**

if $p_{i|j}(k) = 1$ iff i = j for all $i, j \in \mathcal{V}$;

• perfect negative dependence if all $p_{i|i}(k) = 0$.

Weiß & Göb (2008): **Cohen's** κ,

$$\kappa(k) = \frac{\sum_{j=1}^{m+1} \left(p_{jj}(k) - p_j^2 \right)}{1 - \sum_{j=1}^{m+1} p_j^2} = 1 - \frac{1 - \sum_{j=1}^{m+1} p_{jj}(k)}{\underbrace{1 - s_2(p)}_{\approx \text{Gini index}}}.$$

Frange $\left[-\frac{s_2(p)}{1 - s_2(p)} ; 1 \right],$

- $\kappa(k) = 1$ iff perfect positive dependence at lag k,
- $\kappa(k) = 0$ if serial independence,
- $\kappa(k) = -\frac{s_2(p)}{1-s_2(p)}$ if perfect negative dependence.

Empirical counterparts, asymptotic properties: Weiß (2009b). Alternative measure, modified κ : Weiß (2009a,b).

Basic models for categorical time series

Bernoulli process: i.i.d. random variables.

Stationary distribution determined by p. (*m* parameters)

Markov chain: first order Markov process.

Stationary distribution determined by transition probabilities $p_{i|j} = P(X_t = i \mid X_{t-1} = j).$ (m(m+1) parameters)

If $\mathbf{P} = (p_{i|j})_{i,j=1,...,m+1}$ denotes **transition matrix**, then stationary marginal distribution p has to satisfy $\mathbf{P}p = p$.

Reduce number of parameters, m(m+1):

DAR(1) model (Jacobs & Lewis, 1983),

 $p_{i|j} = p_i \cdot (1 - \phi) + \delta_{ij} \cdot \phi$ with $\phi \in [0; 1).(m + 1 \text{ parameters})$ Stationary marginal distribution: $p. \kappa(k) = \phi^k$.

Negative Markov model (Weiß, 2009b):

 $\pi \in (0; 1)^{m+1}$ probability vector, $\alpha \in (0; 1]$ and $\beta_j := \frac{1 - \alpha \pi_j}{1 - \pi_j}$. Define

 $p_{i|j} := \left\{ \begin{array}{ll} \alpha \cdot \pi_j & \text{if } i = j, \\ \beta_j \cdot \pi_i & \text{if } i \neq j. \end{array} \right\} \Rightarrow \text{ negative dependence}$

Ergodic Markov chain, invariant distribution $p_j = \frac{\pi_j/\beta_j}{\sum_{i=1}^{m+1} \pi_i/\beta_i}$.

Continuously Monitoring Categorical Processes

Examples for categorical time series from diverse fields: biological sequence analysis, speech recognition, part-ofspeech tagging, network monitoring, ... (Weiß, 2009a).

SPC: X_t = result of **inspection of item**, with $X_t = i$ for i = 1, ..., m iff item has nonconformity type i, $X_t = m + 1$ iff conforming.

Mukhopadhyay (2008): m = 6 paint defects of ceiling fan cover ('poor covering', 'bubbles', etc.).

Overall defect category = most predominant defect.

Ye et al. (2002) monitor network traffic data (284 different types of audit events) for intrusion detection.

Already some work about monitoring of 'multi-attribute processes' or 'multinomial processes', **but** not always ...

- about **mutually exclusive** categories (\rightarrow multivariate approaches),
- about **unordered** categories (not ordinal!),
- about **probabilistic** approaches (e. g., fuzzy theory),
- about continuously monitoring (i. e., 100 % inspection, not samples).

From now on, we assume $(X_t)_{\mathbb{N}}$ to be stationary.

In-control state: $(X_t)_{\mathbb{N}}$ serially independent, i. e., altogether i.i.d., where $p = p_0$ for known p_0 .

Aim: detect both violations of independence assumption and changes in p compared to p_0 .

Example of categorical quality characteristics:

states $1, \ldots, m$ as different nonconformity categories,

m + 1 represents conforming item.

We expect that $p_{0,m+1} \gg p_{0,1}, ..., p_{0,m}$,

relation between p_{m+1} and p_1, \ldots, p_m particularly relevant.

Control Charts based on a Comparative Statistic

General strategy:

At each t, compute statistic, which summarizes characteristic properties of **true** marginal distribution p.

Then compares these properties to ones expected from incontrol marginal distribution p_0 .

Plot resulting real-valued process of **comparative statistics** on appropriately designed control chart.

We restrict to moving average (MA) estimator $\hat{p}_t^{(w)}$: Define binarization $(X_t)_N$ via $X_{t,i} = 1$ iff $X_t = i$ and 0 otherwise.

We consider
$$\widehat{p}_t^{(w)} := \frac{1}{w} \cdot \sum_{r=0}^{w-1} X_{t-r}$$
 for $t \ge w$.

Let T_{p_0} : $[0;1]^{m+1} \rightarrow \mathbb{R}$ be **comparative function** with respect to in-control marginal distribution p_0 .

Compute **comparative statistics** $T_t := T_{p_0}(\hat{p}_t^{(w)})$ based on estimated marginal distribution.

Plot statistics T_t on control chart with appropriately chosen control limits LCL, UCL.

Performance evaluation: Average run length (ARL) counts **plotted statistics** T_t until alarm.

 \Rightarrow misleading, since first w original observations X_1, \ldots, X_w necessary before first statistic T_w .

 \Rightarrow Average number of events (*ANE*) counts the **original observations**, in our case: *ANE* = *ARL* + *w* - 1.

Obviously, always $ANE \ge w$, i. e., large w avoids quick detection of process changes.

But components $\hat{p}_{t,i}^{(w)}$ multiples of $\frac{1}{w} \Rightarrow w$ sufficiently large to express smallest probability among $p_{0,i}$.

1st approach: Pearson's χ^2 -statistic for goodness of fit.

$$T_{p_0}(\hat{p}_t^{(w)}) := \sum_{j=0}^m \frac{(\hat{p}_{t,j}^{(w)} - p_{0,j})^2}{p_{0,j}} \quad \text{for } t \ge w.$$

Plot $T_t := T_{p_0}(\hat{p}_t^{(w)})$ on one-sided chart with UCL > 0.

If $(X_t)_{\mathbb{N}}$ i.i.d. with p_0 , then $w \cdot T_t \underset{\text{approx}}{\sim} \chi_m^2 \Rightarrow UCL$ Rough approx. for small w, $(T_t)_{t \geq w}$ of MA(w-1) type.

 T_t discrete, finite range \Rightarrow ANE target not met exactly.

 T_t measures any type of change in p with respect to p_0 . Already mean $E[T_t]$ sensitive to (positive) serial dependence.

2nd approach: empirical Gini index.

$$T_{p_0}(\hat{p}_t^{(w)}) := \frac{1 - s_2(\hat{p}_t^{(w)})}{1 - s_2(p_0)} - 1.$$

Plot $T_t := T_{p_0}(\hat{p}_t^{(w)})$ on two-sided chart, LCL < 0 < UCL.

Detect those changes in p, which result in changed dispersion with respect to p_0 (counterexample: permutation).

Useful for finding *LCL*, *UCL*, see Weiß (2009b):

$$E[T_t] = -\frac{1}{w}, \qquad V[T_t] \approx \frac{4}{w} \cdot \frac{s_3(p_0) - s_2^2(p_0)}{(1 - s_2(p_0))^2}.$$

 T_t discrete with a finite range.

Control Charts based on Runs

(k, r)-run: finished after k successive observations of either '1' or '2' or ... or 'r', i. e., after observing one of (1, ..., 1), (2, ..., 2), ..., (r, ..., r) of length k each. (k, r)th run lengths $(Y_n^{(k,r)})_{\mathbb{N}}$ determined as $Y_1^{(k,r)} :=$ No. obs. until first occurrence of k-tuple of '1's or ... 'r's, $Y_n^{(k,r)} :=$ No. obs. after (n-1)th occurrence of k-tuple of '1's or ... 'r's, until nth occurrence of k-tuple of '1's or ... 'r's, for $n \ge 2$.

Example: m = 3 (i. e., $\mathcal{V} = \{1, 2, 3, 4\}$)

and (k,r) = (2,3), (fictive) time series:

$$\underbrace{124443422}_{9} \underbrace{43441411}_{8} \underbrace{11}_{2} \underbrace{342433}_{6} 23 \dots$$

 $(Y_n^{(k,r)})_{\mathbb{N}}$ plotted on chart with $k \leq LCL < UCL$.

Properties:

increase in $p_1, \ldots, p_r \Rightarrow$ reduced run lengths and vice versa, i. e.,

violation of lower limit indicates increase in p_1, \ldots, p_r .

segment length k increases \Rightarrow increasing run lengths

segment number r increases \Rightarrow decreasing run lengths

 $(Y_n^{(k,r)})_{\mathbb{N}}$ i.i.d. process, range $\mathbb{N}_k := \{k, k+1, ...\}.$

Properties: (Chryssaphinou et al., 1994, Theorem 2.1 and Corollary 2.2)

Let
$$c_{k,r}(z) := \sum_{i=1}^r \frac{(1-p_i z)(p_i z)^k}{1-(p_i z)^k}$$
, then

$$E[Y^{(k,r)}] = \frac{1}{c_{k,r}(1)}, \qquad V[Y^{(k,r)}] = \frac{1 + c_{k,r}(1) - 2c'_{k,r}(1)}{c_{k,r}^2(1)},$$

probab. gen. funct. (pgf) $p_{Y(k,r)}(z) = \frac{c_{k,r}(z)}{1-z+c_{k,r}(z)}$.

 $(Y_n^{(k,r)})_{\mathbb{N}}$ i.i.d. \Rightarrow ARLs of plotted statistics $Y_n^{(k,r)}$:

$$ARL = \left(1 - \sum_{y=LCL}^{UCL} P(Y^{(k,r)} = y)\right)^{-1}$$

Misleading: $Y_n^{(k,r)}$ represents many observations from $(X_t)_{\mathbb{N}}$.

 \Rightarrow consider *ANE*s. Weiß (2010):

If $(X_t)_{\mathbb{N}}$ be a stationary Markov chain, then exact ANE computation with Markov chain approach.

Performance of Control Charts

ANE comparison, simulations or MC approach.

Out-of-control situations:

$$p_i = \beta \cdot p_{0,i} \text{ for } i = 1, \dots, m, \qquad \beta \in [0; (1 - p_{0,m+1})^{-1}].$$

$$p_{m+1} = 1 - \beta \cdot (1 - p_{0,m+1}), \qquad \beta \in [0; (1 - p_{0,m+1})^{-1}].$$

 $\beta = 1$: in-control situation,

 $\beta > 1$: p_{m+1} decreased, other probabilities increased.

Violations of the independence assumption:

DAR(1) model with dependence parameter $\phi \in [0; 1)$

negative Markov model with dependence par. $\alpha \in (0; 1]$

Few illustrative results for $p_0 = (0.09, 0.12, 0.25, 0.54)^{\top}$:

- runs: $(k, r; LCL, UCL) = (2, 2; 5, 165), ANE_0 \approx 503,$
- Gini: (w; LCL, UCL) = (25; -0.45, 0.175), $ANE_0 \approx 484$,
- Gini: (w; LCL, UCL) = (50; -0.255, 0.135), $ANE_0 \approx 509$,
- Pearson: $(w; UCL) = (25; 0.4725), ANE_0 \approx 521,$
- Pearson: $(w; UCL) = (50; 0.2000), ANE_0 \approx 508,$
- Pearson: $(w; UCL) = (100; 0.0825), ANE_0 \approx 519.$

 \Rightarrow only (k, r)-runs chart sensitive

DAR(1) model, $\phi_0 = 0$:

 \Rightarrow (k,r)-runs chart best except large ϕ

i.i.d. but changed p, $\beta_0 = 1$:

 \Rightarrow Gini chart (two-sided!) nearly ANE-unbiased,

but sometimes insensitive, e. g.:

 $\beta = 2 \Rightarrow p = (0.18, 0.24, 0.50, 0.08) \approx \text{permutation of } p_0.$

• Gini chart, Pearson chart:

chart design and evaluation based on simulations, superior concerning changes in p, Gini often preferable (exception: permutations).

• (k, r)-runs chart:

ANE computation by Markov chain approach, superior concerning violations of serial independence, worst concerning changes in p except:

low dispersion (e. g., high-quality process)

 \Rightarrow more sensitive concerning negative shifts in β .

Thank You for Your Interest!

TECHNISCHE UNIVERSITÄT DARMSTADT Christian H. Weiß

Department of Mathematics

Darmstadt University of Technology

weiss@mathematik.tu-darmstadt.de