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Poisson INAR(1) Processes

Definition of Poisson INAR(1) process:

Let (ϵt)N be i.i.d. process with marginal distribution Po(µ(1−
α)), where µ > 0 and α ∈ (0; 1). Let N0 ∼ Po(µ).

If the process (Nt)N0
satisfies

Nt = α ◦Nt−1 + ϵt, t ≥ 1,

plus sufficient independence conditions, then it follows a

stationary Poisson INAR(1) model with marginal distributi-

on Po(µ).

McKenzie (1985), Al-Osh & Alzaid (1987, 1988)
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Poisson INAR(1) Processes

Binomial thinning, due to Steutel & van Harn (1979):

N discrete random variable with range {0, . . . , n} or N0.

Binomial thinning

α ◦N :=
N∑

i=1
Xi,

where Xi are independent Bernoulli trials ∼ B(1, α).

Guarantees that right-hand side always integer-valued:

Nt = α ◦Nt−1 + ϵt.

Interpretation: α ◦N is number of survivors.
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Poisson INAR(1) Processes

Basic properties of Poisson INAR(1) processes:

• Stationary Markov chain with Po(µ)-marginals and

pk|l := P (Nt = k | Nt−1 = l) =∑min (k,l)
j=0

(l
j

)
αj(1− α)l−j · e−µ(1−α)(µ(1−α))k−j

(k−j)! ,

• autocorrelation ρ(k) := Corr[Nt, Nt−k] = αk.

Estimation from time series N1, . . . , NT :

µ̂ :=
1

T
·

T∑
t=1

Nt, α̂ =
∑T
t=2(Nt − N̄T)(Nt−1 − N̄T)∑T

t=1(Nt − N̄T)2
.
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Poisson INAR(1) Processes

Interpretation of INAR(1) process:

Nt︸︷︷︸
Population at time t

= α ◦Nt−1︸ ︷︷ ︸
Survivors of time t− 1

+ ϵt.︸︷︷︸
Immigration

Interpretation applies well to many real-world problems, e. g.:

• Nt: number of users accessing web server, ϵt: number of

new users, α◦Nt−1: number of previous users still active.

• Nt: number of faults, ϵt: number of new faults, α ◦Nt−1:

number of previous faults not rectified yet.
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Poisson INAR(1) Processes

The Poisson INAR(1) model . . .

• is of simple structure,

• essential properties known explicitly,

• is easy to fit to data,

• is easy to interpret,

• applies well to real-world problems, . . .

In a nutshell: A simple model for autocorrelated counts,

which is well-suited for SPC!
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Controlling INAR(1) Processes – Concepts

Poisson INAR(1) model:

(Nt)N0
is stationary Poisson INAR(1) process with innova-

tions (ϵt)N ∼ Po(µ(1− α)). So Nt ∼ Po(µ).

State of statistical control: µ = µ0 and α = α0.
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Controlling INAR(1) Processes – Concepts

Weiß (2007) analyzed c-Chart for Poisson INAR(1):

+ exact ARLs via Markov chain approach,

+ easily designed and interpreted,

+ effective for very large shifts,

– but very insensitive otherwise!

Christian H. Weiß — Darmstadt University of Technology



Controlling INAR(1) Processes – Concepts

Weiß (2009) analyzed Combined EWMA Chart:

+ exact ARLs via Markov chain approach,

+ applicable for very different types of out-of-control si-

tuation,

– difficult to design, six design parameters!
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Controlling INAR(1) Processes – Concepts

In practice:

Often only interested in detecting increases in process

mean compared to in-control mean, e. g.,

• counts of defects in manufacturing industry,

• counts of complaints in service industry,

• number of certain infections in epidemiology.

In such situations, combined EWMA chart appears to be

overparametrized.
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Controlling INAR(1) Processes – Concepts

→ One-sided CUSUM chart of Weiß & Testik (2009)

attractive alternative:

+ exact ARLs via Markov chain approach,

+ easily designed (three design parameters),

+ very sensitive already to small mean shifts, etc.

⇒ benchmark chart in the following!

Simplified EWMA possible with similar performance?
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One-Sided Poisson INAR(1) EWMA Chart

One-sided EWMA chart for detecting positive shifts in µ:

Q0 = q0,

Qt = round
(
λ ·Nt + (1− λ) ·Qt−1

)
, t = 1,2, . . .

q0 ≥ 0: starting value, typically q0 = 0.

Fast Initial Response (FIR) feature if q0 > 0.

λ ∈ (0; 1]: smoothing parameter.

u > 0: upper control limit.

(Nt)N considered in control unless alarm Qt ≥ u triggered.
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One-Sided Poisson INAR(1) EWMA Chart

Properties: One-sided EWMA chart

coincides with combined EWMA chart of Weiß (2009)

if design parameters lc = le = 0 and uc = ∞.

⇒ All results of Weiß (2009) directly apply to one-sided

EWMA chart.

In particular, ARLs can be computed with MC approach

outlined there.
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Poisson INAR(1) EWMA – Example

Real-data example of Weiß & Testik (2009):

Time series of counts of IP addresses,

conjectured to stem from following in-control model:

Poisson INAR(1) with µ0 = 1.28 and α0 = 0.29.

Based on this model, Weiß & Testik (2009) designed

a c chart with UCL u = 6 and ARL0 ≈ 504.949, and

four CUSUM charts with ARL0s between 502.586 and 507.447.

Aim: Find EWMA chart design with ARL0 around 500.
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Poisson INAR(1) EWMA – Example

Considered control charts:

• (u, λ, q0) = (2,0.11,1) with ARL0 ≈ 504.949;

• (u, λ, q0) = (3,0.16,2) with ARL0 ≈ 504.949;

• (u, λ, q0) = (4,0.37,3) with ARL0 ≈ 592.584;

• (u, λ, q0) = (5,0.63,1) with ARL0 ≈ 464.239.

We expect design 4 to show too much false alarms, while

design 3 too robust.

Designs 1 and 2 exactly same ARL0 as c chart with UCL 6!
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Poisson INAR(1) EWMA – Example

In fact, it follows from definition of one-sided EWMA for

designs 1 and 2 that statistic Qt reaches its respective limit u

for first time iff Nt = 6 for first time.

⇒ Both charts lead to equivalent decision rule as c chart.

⇒ Both show same (bad) performance as c chart.

Qt

50 100 150 200

1
2
3
4

Onesided_EWMA_Bsp.nb 1

t
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Poisson INAR(1) EWMA – Example

⇒ Due to small value of λ and rounding operation of Qt,

data clearly oversmoothed.

Deficiencies of one-sided EWMA chart:

On one hand, sensitivity becomes better if λ decreases.

On other hand, effect of smoothing increases for decrea-

sing λ.

⇒ Not possible to choose λ as small as perhaps required to

reach certain sensitivity.
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s-EWMA Control Chart

Basic idea: New rounding operation!

Let s ∈ N, define Qs := {rs | r ∈ Z} as set of all rationals

with denominator s. (Note: Q1 = Z)

Define function s-round: R → Qs by

s-round(x) = z iff x ∈ [z −
1

2s
; z +

1

2s
).

So s-round maps x onto nearest fraction with denomina-

tor s.

Note that 1-round coincides with round.
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s-EWMA Control Chart

One-sided s-EWMA chart for detecting positive shifts in µ:

Q0 = q0,

Qt = s-round
(
λ ·Nt + (1− λ) ·Qt−1

)
, t = 1,2, . . .

(Nt)N considered in control unless alarm Qt ≥ u triggered.

u ∈ Q+
s : upper control limit.

q0 ∈ {0, . . . , u− 1
s}: starting value, typically q0 = 0.

Fast Initial Response (FIR) feature if q0 > 0.

λ ∈ (0; 1]: smoothing parameter.
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s-EWMA Control Chart

Weiß (2010) shows that still (Nt, Qt)N is homogeneous bi-

variate Markov chain.

⇒ Again MC approach for exact ARL computation.

However: Dimension of involved matrices increases with s.

⇒ Values like s ∈ {1,2,4} reasonable for practice.
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s-EWMA Control Chart

Design of One-Sided s-EWMA Chart:

1. Find best possible 1-EWMA design (u1, λ1) according to

Weiß (2009),

2. increase s and choose u ≤ u1 such that in-control ARL

below desired ARL0,

3. decrease λ ∈ (0;λ1] to adjust in-control ARL close to

desired ARL0,

4. use q0 ∈ {0, . . . , u− 1
s} for fine-tuning of in-control ARL.
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s-EWMA Control Chart – Example

Above real-data example: We find

• 2-EWMA chart with (u, λ, q0) = (72,0.295,3) and ARL0 ≈

518.459,

• 4-EWMA chart with (u, λ, q0) = (144 ,0.323,3) and ARL0 ≈

505.301.

Both charts have similar in-control performance like consi-

dered c chart and CUSUM charts.
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s-EWMA Control Chart – Example

Out-of-control performance of two s-EWMA charts c chart

and two most sensitive CUSUM charts

ARL
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0
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 c: (l,u)=(0,6)

(h,k,c0):
 (26/4,9/4,0)
 (27/4,9/4,21/4)

(s,u,λ,q0):
 (2,7/2,0.295,3)
 (4,14/4,0.323,3)

µ
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s-EWMA Control Chart – Example

Both EWMA charts noticeably better than c chart,

but outperformed by CUSUM chart with FIR.

4-EWMA chart applied to IP data detects the out-of-control

situation already at time t = 10, like FIR-CUSUM:

Qt
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Onesided_EWMA_Bsp.nb 1

t
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s-EWMA Control Chart – Performance

Extensive performance study in Weiß (2010):

• s-EWMA chart clearly outperforms c chart,

• best sensitivity for small λ although very large shifts often

better detected for large λ,

• choice of q0 > µ0 (FIR) slightly improves sensitivity con-

cerning very large shifts (≥ 100%),

• but CUSUM shows better performance for small shifts

(5% to 20 %); performance of s-EWMA relative to CU-

SUM better for increasing α0.
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s-EWMA Control Chart – Performance

In Weiß (2010), also robustness against model misspe-

cification analyzed:

s-EWMA chart based on assumption of INAR(1) process

with Poisson marginals.

Moderate departures may not be detected.

Most common misspecification: overdispersion.

Most popular approaches for modeling overdispersion:

negative binomial and generalized Poisson distribution.

Both are possible marginal distributions of INAR(1) model.
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s-EWMA Control Chart – Performance

In Weiß (2010), generalized Poisson considered.

s-EWMA chart affected by overdispersion:

in-control performance influenced most severely,

ooc performance for large shifts in µ nearly constant.

Robustness becomes better if λ decreased,

while additional FIR feature does not affect robustness.

For very small λ (λ ≈ 0.1), ARL performance reasonably

close to expected one even if up to 20 % overdispersion.
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Future Research

Work in progress together with Murat Testik:

Robustness of one-sided CUSUM.

It seems that

• one-sided CUSUM quite sensitive to overdispersion,

better robustness for large h, small k, without FIR;

• but a new Winsorized CUSUM

– allows approximate ARL comp. with MC approach,

– has nearly unaffected ooc performance

(Wins. CUSUM with FIR even improved ooc perf.),

– shows a clearly improved robustness.
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