

Christian H. Weiß

University of Würzburg

Institute of Mathematics

Department of Statistics

Some introductory words . . .

This talk is based on the paper

Weiß, C. H.:

A New Class of Autoregressive Models for Time Series of Binomial Counts.

Preprint 279, Mathematische Institute der Julius-Maximilians-Universität Würzburg, 2007.

All references mentioned in this talk correspond to the references in this article.

Binomial Thinning and the INAR(1) Model

Introduction

INAR(1) model for processes of counts:

Let $(\epsilon_t)_{\mathbb{N}}$ be i.i.d. process with range \mathbb{N}_0 , let $\alpha \in [0; 1]$. An INAR(1) process $(N_t)_{\mathbb{N}_0}$ follows the recursion

$$N_t = \alpha \circ N_{t-1} + \epsilon_t, \qquad t \ge 1.$$

McKenzie (1985), Al-Osh & Alzaid (1987, 1988)

Binomial thinning, due to Steutel & van Harn (1979):

N discrete random variable with range $\{0,\ldots,n\}$ or \mathbb{N}_0 . Define random variable

$$\alpha \circ N := \sum_{i=1}^{N} X_i,$$

where X_i are independent Bernoulli trials, $B(1,\alpha)$, also independent of $N \to counting$ series.

We say: $\alpha \circ N$ arises from N by binomial thinning ' \circ ' is called binomial thinning operator.

Interpretation of $\alpha \circ N$:

- ullet Population of size N at a certain time t.
- Later at time t+1: population shrinked, because some individuals died.
- ullet Assume that individuals die independently of each other with probability 1-lpha
 - \Rightarrow *Number of survivors* is given by $\alpha \circ N$.

The INAR(1) process . . .

- is easy to interpret,
- is well-suited for many popular count distributions: Poisson, negative binomial, generalized Poisson,
- applies well to typical tasks of SQC,
- can be controlled efficiently, . . .

For details, see

Weiß, C.H.: Controlling correlated processes of Poisson counts. QREI 23(6), pp. 741–754, 2007.

... but by definition

$$N_t = \alpha \circ N_{t-1} + \epsilon_t, \qquad t \ge 1.$$

of the INAR(1) process, the INAR(1) model can be applied to processes of counts with the infinite range \mathbb{N}_0 only!

Let $n \in \mathbb{N}$, $\pi \in (0; 1)$ and $\rho \in [\max(-\frac{\pi}{1-\pi}, -\frac{1-\pi}{\pi}); 1]$.

Define $\beta := \pi \cdot (1 - \rho)$ and $\alpha := \beta + \rho$.

The process $(X_t)_{\mathbb{N}_0}$ with

$$X_t = \alpha \circ X_{t-1} + \beta \circ (n - X_{t-1}), \quad t \ge 1, \qquad X_0 \sim B(n, \pi),$$

where all thinnings are performed independently of each other, and the thinnings at time t are independent of $(X_s)_{s < t}$, is called a **binomial AR(1) process**.

McKenzie (1985)

Interpretation of $X_t = \alpha \circ X_{t-1} + \beta \circ (n - X_{t-1})$:

System of n independent units, either in state 1 or state 0.

 X_{t-1} : number of units in state 1 at time t-1.

 $\alpha \circ X_{t-1}$: number of units still in state 1 at time t, with individual transition probability α .

 $\beta \circ (n - X_{t-1})$: number of units, which moved from state 0 to state 1 at time t, with individual transition probability β .

Examples: $X_t = \alpha \circ X_{t-1} + \beta \circ (n - X_{t-1})$

- Computer pool with n machines, either occupied (state 1) or not (state 0). Here, X_t is number of machines occupied at time t, consisting of machines occupied before, and machines newly occupied.
- ullet Hotel rooms in certain hotel being occupied at day t . . .
- Clerks in a counter room serving a customer . . .
- Telephones in a call centre being occupied, etc.

Let $(X_t)_{\mathbb{N}_0}$ be binomial AR(1) process.

- ullet $(X_t)_{\mathbb{N}_0}$ is a stationary Markov chain with marginal distribution $B(n,\pi)$
- transition probabilities

$$p_{k|l} := P(X_t = k \mid X_{t-1} = l) = \sum_{m=\max(0,k+l-n)}^{\min(k,l)} {n-l \choose m} {n-l \choose k-m} \alpha^m (1-\alpha)^{l-m} \beta^{k-m} (1-\beta)^{n-l+m-k}.$$

(...)

autocorrelation function

$$\rho(k) := Corr[X_t, X_{t-k}] = \rho^k, \qquad k \ge 0$$

conditional moments:

$$E[X_t \mid X_{t-1}] = \rho \cdot X_{t-1} + n\beta$$
, and $V[X_t \mid X_{t-1}] = \rho(1-\rho)(1-2\pi) \cdot X_{t-1} + n\beta(1-\beta)$.

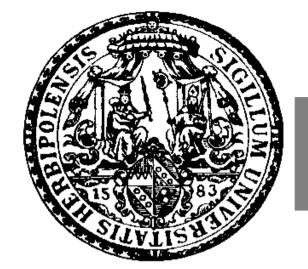
In a nutshell:

The binomial AR(1) model . . .

- is easy to interpret,
- applies well to typical tasks of SQC,
- essential properties are explicitly known,

but it is only able to model first order dependence, which is too restrictive for practice!

Therefore . . .



The New Family of Binomial AR(p) Models

Aim: Extension of the Binomial AR(1) Model to full pth order autoregressive model.

Basic idea:

Adapt multinomial decisions of Lawrance & Lewis (1980):

$$\mathbf{D} = (D_1, \dots, D_p) \sim MULT(1; \phi_1, \dots, \phi_p)$$

$$X := \sum_{k=1}^{p} D_k \cdot Z_k \Rightarrow$$

X identical to Z_1 with probability $\phi_1, \ldots,$

X identical to Z_p with probability ϕ_p

Definition: As before: $n \in \mathbb{N}$, $\pi \in (0; 1)$,

$$\rho \in [\max(-\frac{\pi}{1-\pi}, -\frac{1-\pi}{\pi}); 1], \ \beta := \pi \cdot (1-\rho), \ \alpha := \beta + \rho.$$

 $(\boldsymbol{D}_t)_{\mathbb{Z}}$ i.i.d. 'decision' variables:

$$\mathbf{D}_t = (D_{t,1}, \dots, D_{t,p}) \sim MULT(1; \phi_1, \dots, \phi_p).$$

Binomial AR(p**) process** $(X_t)_{\mathbb{Z}}$ with range $\{0,\ldots,n\}$:

$$X_t = \sum_{i=1}^p D_{t,i} \cdot (\alpha \circ_t X_{t-i} + \beta \circ_t (n - X_{t-i})),$$

plus necessary independence assumptions concerning D_t , X_s , $\alpha \circ_{s+j} X_s + \beta \circ_{s+j} (n-X_s)$ with s < t, $j = 1, \ldots, p$.

Equivalently:

$$X_{t} = \begin{cases} \alpha \circ_{t} X_{t-1} + \beta \circ_{t} (n - X_{t-1}) & \text{with prob. } \phi_{1}, \\ \vdots & \vdots \\ \alpha \circ_{t} X_{t-p} + \beta \circ_{t} (n - X_{t-p}) & \text{with prob. } \phi_{p}. \end{cases}$$

Binomial AR(p) Model \approx probabilistic mixture of lagged binomial AR(1) models.

Case of stationarity: Marginal distribution $B(n,\pi)$.

Equivalently:

$$X_{t} = \begin{cases} \alpha \circ_{t} X_{t-1} + \beta \circ_{t} (n - X_{t-1}) & \text{with prob. } \phi_{1}, \\ \vdots & \vdots \\ \alpha \circ_{t} X_{t-p} + \beta \circ_{t} (n - X_{t-p}) & \text{with prob. } \phi_{p}. \end{cases}$$

Binomial AR(p) Model not uniquely determined by above definition: Time index t below thinning ' \circ_t ' indicates that each X_s is involved in thinnings at times $s+1,\ldots,s+p$.

Corresponding joint distribution has to be specified!

General Result on Autocovariance Structure:

Let $(X_t)_{\mathbb{Z}}$ be stationary binomial $\mathsf{AR}(p)$ process with marginal distribution $B(n,\pi)$.

Let $\gamma(k) := Cov[X_t, X_{t-k}]$ denote the **autocovariance** function.

Define for $i, k \geq 1$

$$\mu(i,k) := E[(\alpha \circ_t X_{t-i} + \beta \circ_t (n - X_{t-i})) \cdot X_{t-k}] - \rho \cdot E[X_{t-i} \cdot X_{t-k}] - (1 - \rho) \cdot \mu_X^2.$$

. . .

Autocovariance Structure (continued):

... Then

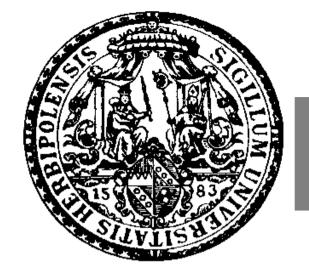
$$\gamma(k) = \rho \cdot \sum_{i=1}^{p} \phi_i \cdot \gamma(|k-i|) + \sum_{i=k+1}^{p} \phi_i \cdot \mu(i,k),$$

where $\mu(i,k) = 0$ for $i \leq k$, and otherwise

$$\mu(i,k) = \phi_{i-k} \cdot Cov[\alpha \circ_t X_{t-i} + \beta \circ_t (n - X_{t-i}),$$

$$\alpha \circ_{t-k} X_{t-i} + \beta \circ_{t-k} (n - X_{t-i})]$$

$$-\phi_{i-k}\cdot\rho^2\sigma_X^2 + \rho\cdot\sum_{r=k+1}^{i-1}\phi_{r-k}\cdot\mu(i,r).$$



First Special Case: Binomial AR(p) – Identical Thinnings

Binomial AR(p) – Identical Thinnings

Idea:

Quite intuitive approach is to assume that all thinnings applied to X_t are identical, i. e., each X_t is thinned only once:

$$\alpha \circ_{t+1} X_t + \beta \circ_{t+1} (n - X_t) = \dots$$

$$\alpha \circ_{t+p} X_t + \beta \circ_{t+p} (n - X_t) = \alpha \circ X_t + \beta \circ (n - X_t)$$

Resulting model refered to as Identical Thinnings model.

Binomial AR(p) – Identical Thinnings

Then

$$Cov[\alpha \circ_t X_{t-i} + \beta \circ_t (n - X_{t-i}),$$

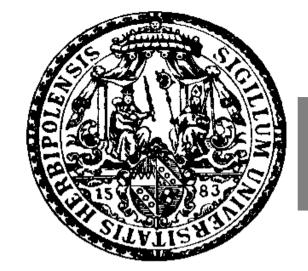
$$\alpha \circ_{t-k} X_{t-i} + \beta \circ_{t-k} (n - X_{t-i})] = \sigma_X^2.$$

Recursion for $\mu(i,k)$, i>k, simplifies to

$$\mu(i,k) = \phi_{i-k} \cdot (1-\rho^2) \cdot \sigma_X^2 + \rho \cdot \sum_{r=k+1}^{i-1} \phi_{r-k} \cdot \mu(i,r).$$

Nevertheless, still autocorrelation structure similar to that of an $\mathsf{ARMA}(p, p-1)$ model.

Restricted practical use!



Second Special Case: Binomial AR(p) – Independent Thinnings

Idea:

All thinnings are performed independently of each other, i. e., at each time t+j, $j=1,\ldots,p$, X_t is newly involved in thinning operations, disregarding the result of previous thinnings.

Consequence: All thinnings $\alpha \circ_{t+j} X_t + \beta \circ_{t+j} (n - X_t)$ conditionally independent, conditioned on X_t . Resulting model referred to as **Independent Thinnings** model.

Then

$$Cov[\alpha \circ_t X_{t-i} + \beta \circ_t (n - X_{t-i}),$$

$$\alpha \circ_{t-k} X_{t-i} + \beta \circ_{t-k} (n - X_{t-i})] = \rho^2 \cdot \sigma_X^2.$$

Recursion for $\mu(i,k)$, i>k, results in $\mu(i,k)=0$ for all i>k. Therefore,

$$\rho(k) = \rho \cdot \sum_{i=1}^{p} \phi_i \cdot \rho(|k-i|).$$

Hence, this type of binomial AR(p) model has an AR(p)like autocorrelation structure!

Attractive properties:

Model order p via partial autocorrelation function.

Conditional distribution:

$$P(X_{t} = x \mid X_{t-1} = x_{t-1}, X_{t-2} = x_{t-2}, \dots)$$

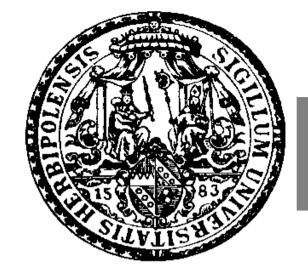
$$= \sum_{i=1}^{p} \phi_{i} \cdot \sum_{y=0}^{x} {x_{t-i} \choose y} \alpha^{y} (1 - \alpha)^{x_{t-i} - y} \cdot {n-x_{t-i} \choose x-y} \beta^{x-y} (1 - \beta)^{n-x_{t-i} - x + y}.$$

Conditional expectation:

$$E[X_t \mid X_{t-1}, X_{t-2}, \ldots] = \mu_X \cdot (1 - \rho) + \rho \cdot \sum_{i=1}^p \phi_i \cdot X_{t-i}.$$

Application for model estimation:

- Yule-Walker estimation.
- Conditional least squares estimation.
- Conditioned maximum likelihood estimation.



Modelling Access Counts

An Example

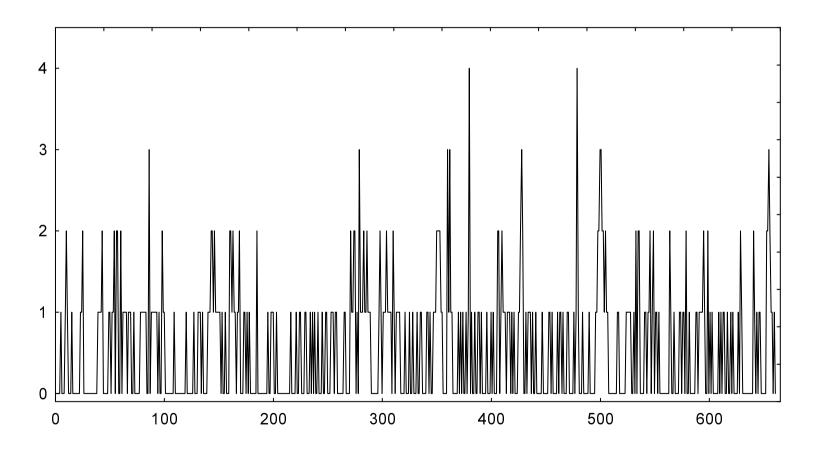
Log data of server of Department of Statistics, University of Würzburg.

From this data, we computed X_t : number of six different staff members, whose home directory was accessed in minute t.

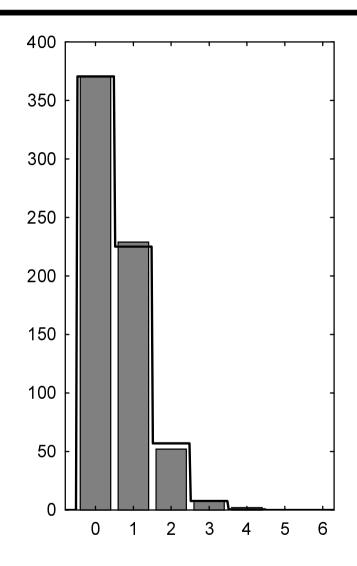
Obviously, X_t has range $\{0, \ldots, 6\}$.

A binomial $B(6,\pi)$ distribution may be appropriate to model the marginal process distribution.

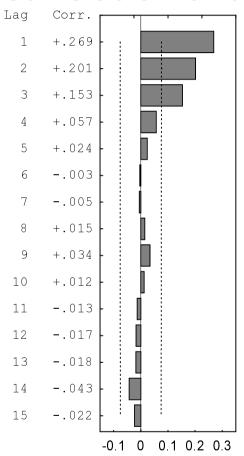
Example: time series collected on November 29th, 2005, between 10 a.m. and 9 p.m., time series of length 661.

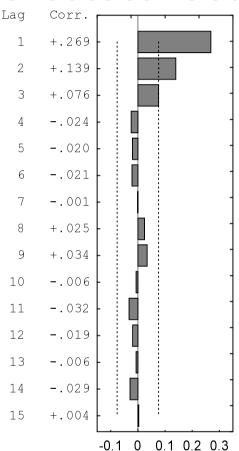


Histogram of the data with $\hat{\pi}:=\bar{X}_T/6=0.09203$, i. e., binomial B(6,0.092) distribution.



Autocorrelation and partial autocorrelation function:





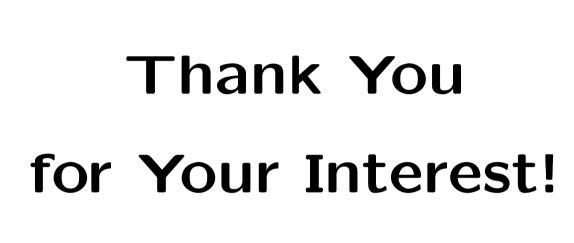
Autocorrelation structure is similar to that of a usual AR(p) model, with model order $p \le 3$.

 \Rightarrow Try to fit binomial AR(p) – Independent Thinnings model of order p < 3.

p	Method	$\mid \widehat{\pi} \mid$	$\widehat{ ho}$	$\widehat{\phi}_{\mathtt{1}}$	$\widehat{\phi}_2$	AIC	BIC
1	YW	0.09203	0.2685				
	CLS	0.09217	0.2687				
	ML	0.09245	0.2598			1232	1241
2	YW	0.09203	0.3705	0.6237			
	CLS	0.09237	0.3701	0.6226			
	ML	0.09261	0.3406	0.6372		1224	1238
3	YW	0.09203	0.4186	0.5266	0.2910		
	CLS	0.09254	0.4175	0.5254	0.2904		
	ML	0.09318	0.3912	0.5229	0.2793	1223	1241

Conclusion

- A new family of autoregressive models for time series of binomial counts.
- Analyzed autocorrelation structure in general and of two special cases.
- Promising from practical point of view: Binomial AR(p)
 - Independent Thinnings model, close to standard AR(p) models. Usefulness of this model demonstrated by example of access counts.



Christian H. Weiß

University of Würzburg

Institute of Mathematics

Department of Statistics