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Ung' Some introductory words . ..

This talk is based on the paper

Weils, C. H.:

A New C(Class of Autoregressive Models for Time Series of
Binomial Counts.

Preprint 279, Mathematische Institute der
Julius-Maximilians-Universitat Wurzburg, 2007.

All references mentioned in this talk correspond to the
references in this article.
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Binomial Thinning
and the
INAR(1) Model

Introduction



WO Motivation

INAR(1) model for processes of counts:

Let (e)y be i.i.d. process with range Ng, let a € [0; 1]. An
INAR(1) process (Nt)y, follows the recursion

Ny = aoNy_1 + €, t>1.

McKenzie (1985), Al-Osh & Alzaid (1987, 1988)
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WO Motivation

Binomial thinning, due to Steutel & van Harn (1979):

N discrete random variable with range {0,...,n} or Np.
Define random variable

N
aoN = Z Xia
1=1

where X, are independent Bernoulli trials, B(1,«), also
independent of N — counting series.

We say: v o N arises from N by binomial thinning

o' is called binomial thinning operator.
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WO Motivation

Interpretation of oo IV:
e Population of size N at a certain time t.

e Later at time ¢t + 1: population shrinked, because some

individuals died.

e Assume that individuals die independently of each other

with probability 1 — «

= Number of survivors is given by a«o N.
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WO Motivation

The INAR(1) process ...

e IS easy to interpret,

e iS well-suited for many popular count distributions:
Poisson, negative binomial, generalized Poisson,

e applies well to typical tasks of SQC,

e can be controlled efficiently, ...

For details, see
Weils, C.H.: Controlling correlated processes of Poisson

counts. QREI 23(6), pp. 741-754, 2007.
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WO Motivation

but by definition

Nty = aoNy_1 + €, t>1.

of the INAR(1) process, the INAR(1) model can be applied

to processes of counts with the infinite range Ny only!
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Definition & Properties



Wi Binomial AR(1) Model

T 1—m7

Let n €N, € (0;1) and p € [max(—y——,—=—"); 1].
Define 8:=n-(1 —p) and a := 8+ p.

The process (Xt)y, wWith

Xt = OéOXt_]_ + ﬁO(’I’L—Xt_]_), t > 1, XONB(’I’L,TF),

where all thinnings are performed independently of each
other, and the thinnings at time t are independent of

(Xs)s<t, is called a binomial AR(1) process.
McKenzie (1985)
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Wi Binomial AR(1) Model

Interpretation of X; = aoX;_q Bo(n—Xi_1):
System of n independent units, either in state 1 or state O.
X¢_1: number of units in state 1 at time ¢t — 1.

a o X;_1: number of units still in state 1 at time ¢, with

individual transition probability «.

Bo(n— Xy_1): number of units, which moved from state O

to state 1 at time ¢, with individual transition probability G.
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WO Binomial AR(1) Model
Examples: Xt = aoX;1 + Bo(n—Xi_q1)
e Computer pool with n machines, either occupied
(state 1) or not (state 0). Here, X; is number of

machines occupied at time t, consisting of machines

occupied before, and machines newly occupied.
e Hotel rooms in certain hotel being occupied at day ¢t . ..
e Clerks in a counter room serving a customer ...

e Telephones in a call centre being occupied, etc.
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UNI
WU

Binomial AR(1) Model

Let (X¢)n, be binomial AR(1) process.

e (Xt)y, is a stationary Markov chain with marginal
distribution B(n, )

e transition probabilities

. _ _ . min (k,l
ppp = P(Xi =k | X411 =1) = Zm:&ag(o,kﬂ_n)

( l ) (n — ) o™ (1 — Q{)l—m ﬁk_m(l . ﬁ)n—l—l—m—k.

m’/ \k —m
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Wi Binomial AR(1) Model

e autocorrelation function

p(k) := Corr[Xy, X; 4] = p" k>0

e conditional moments:
E[X: | X-1] p-Xi—1 + np, and
VIX: | X1l p(L—p)(1 —27m) - X3 nB(1 — B).
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Wi Binomial AR(1) Model

In a nutshell:

The binomial AR(1) model ...

e IS easy to interpret,
e applies well to typical tasks of SQC,
e essential properties are explicitly known,

but it is only able to model first order dependence, which
IS too restrictive for practice!

Therefore . ..
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The New Family of
Binomial AR(p) Models

Definition & Properties



Wi Binomial AR(p) Models

Aim: Extension of the Binomial AR(1) Model

to full pth order autoregressive model.

Basic idea:
Adapt multinomial decisions of Lawrance & Lewis (1980):

D:(Dl,...,Dp)NMULT(1;¢1,...,¢p)
X = Y,_1 D2y =

X lidentical to Z1 with probability ¢4, ...,
X identical to Zp with probability ¢p
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Wi Binomial AR(p) Models

Definition: As before:neN, = € (0;1),

p € [max(—7Z.,—1=7);1], B:=m- (1 —p), a:= B+ p.
(D¢)7 i.i.d. ‘decision’ variables:

Dy = (Dy1,...,Dtp) ~ MULT(1; ¢1,. .., bp).

Binomial AR(p) process (X:)7 with range {0O,...,n}:
Xe = 01 Dyi-(or Xp—j+ Bor(n— X)),

plus necessary independence assumptions concerning Dy,
Xs, a0 Xs + Bogpj(n—Xs) with s<t, j=1,...,p.
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Wi Binomial AR(p) Models

Equivalently:

(ao; Xy 1+ Bor(n—Xs_1) with prob. ¢q,
Xy = A

aop Xi—p+ Bot(n— Xi—p) with prob. ¢p.

\

Binomial AR(p) Model ~

probabilistic mixture of lagged binomial AR(1) models.

Case of stationarity: Marginal distribution B(n, ).
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Wi Binomial AR(p) Models

Equivalently:

(ao; Xy 1+ Bor(n—Xs_1) with prob. ¢q,
Xy = A '

aop Xi—p+ Bot(n— Xi—p) with prob. ¢p.

\

Binomial AR(p) Model not uniquely determined by above
definition: Time index t below thinning ‘o;’ indicates that

each X; is involved in thinnings at times s+ 1,...,s5 4 p.

Corresponding joint distribution has to be specified!
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Wi Binomial AR(p) Models

General Result on Autocovariance Structure:
Let (X:)y be stationary binomial AR(p) process with

marginal distribution B(n, ).

Let (k) = Cov[Xy, X;_] denote the autocovariance
function.
Define for 1,k > 1

p(i k) = El(aos Xi—y + Bor(n— X)) Xyl

—p ElXp—i- Xp gl — (1—p)-p%
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Wi Binomial AR(p) Models

Autocovariance Structure (continued):
. T hen

v(k) = p- —1 Pi- v(lk —1]) + Z —k41 ¢; - (i, k),

where u(i,k) = 0 for i < k, and otherwise

p(i, k) = ¢;_p-Covlaoy X4y + Bor(n— Xi_;),
aos . Xey + Borp(n— X )l

— Pi—k P UX + p- Zr k—l—l Gr_; - (2, 7).
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First Special Case:
Binomial AR(p) —
Identical Thinnings

Definition & Properties



UNI

WU Binomial AR(p) — Identical Thinnings

Idea:

Quite intuitive approach is to assume that all thinnings
applied to X; are identical, i. e., each X; is thinned only
once:

aopyq Xy + Bopyy (n—Xy)

oo X Bo(n— X¢)

aoi, Xy + Bopy,(n—Xy)

Resulting model refered to as Identical T hinnings model.
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WO Binomial AR(p) — Identical Thinnings

Then
Cov|laot Xy—; + Bot(n—X;—;),
aop p Xiy + Bopp(n—X4_)] = o%.

Recursion for u(i, k), i > k, simplifies to

pi, k) = ¢ (1—,02) UX + p- ZT k—l—l O - (2, 7).

Nevertheless, still autocorrelation structure similar to that
of an ARMA(p,p — 1) model.

Restricted practical use!
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Second Special Case:
Binomial AR(p) —
Independent Thinnings

Definition & Properties



WO Binomial AR(p) — Independent Thinnings

Idea.
All thinnings are performed independently of each other,
. e., at each time t+ g4, g = 1,...,p, Xt IS newly involved

in thinning operations, disregarding the result of previous

thinnings.
Consequence: All thinnings a oy Xy + Bopp; (n — Xy)

conditionally independent, conditioned on X;. Resulting

model refered to as Independent Thinnings model.

Christian H. Weils — University of Wiurzburg



WO Binomial AR(p) — Independent Thinnings

Then
Covlacoy Xy—y + Bor(n—Xi—y),
ooy Xi—i + Bop_g (n —Xp—;)] = P2 ' 0?(-

O for all 2 > k.

Recursion for u(i, k), i > k, results in u(i, k)

T herefore,

p(k) = p-Si=y & p(lk —i]).

Hence, this type of binomial AR(p) model has an AR(p)-

like autocorrelation structure!
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WO Binomial AR(p) — Independent Thinnings

Attractive properties:
Model order p via partial autocorrelation function.

Conditional distribution:

P(Xi=z | Xy 1=2 1, X4 20=x4_2,...)

= Yiz1 ¢t Ty=o (7)1 — )Ty
(M) BEY(L — g T,
Conditional expectation:

BlX: | X4 1, X4 0,...] = pux-(L—p) + p-Sh_1 & Xiy.

Christian H. Weils — University of Wiurzburg



WO Binomial AR(p) — Independent Thinnings

Application for model estimation:

e Yule-Walker estimation.

e Conditional least squares estimation.

e Conditioned maximum likelihood estimation.
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Modelling
Access Counts

An Example



UNI Example: Access Counts

Log data of server of Department of Statistics, University

of Wiurzburg.

From this data, we computed X;: number of six different
staff members, whose home directory was accessed in
minute t.

Obviously, Xt has range {0,...,6}.

A binomial B(6,w) distribution may be appropriate to model

the marginal process distribution.
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WO Example: Access Counts

Example: time series collected on November 29“‘, 2005,
pbetween 10 a.m. and 9 p.m., time series of length 661.

LA A0

0 100 200 300 400 500 600
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Example: Access Counts

400

350

300

Histogram of the data

250

with 7 = Xp/6 =

0.09203, i. e., binomial *”]
B(6,0.092) 180 1
distribution. 100

50
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WO Example: Access Counts

Autocorrelation and partial autocorrelation function:

Lag Corr. Lag Corr. T
1 +.269 : 1 +.269 :
2 +.201 2 +.139
3 +.153 3 +.076
4 +.057 4 -.024
5 +.024 t 5 -.020 t
6 -.003 6 -.021 t
7 -.005 7 -.001
8 +.015 8 +.025
9 +.034 9 +.034
10 +.012 10 -.006 |
11 -.013 11 -.032 }
12 -.017 f 12 -.019 t
13 -.018 13 -.006 |
14 -.043 14 -.029
15 -.022 : 15 +.004 :

-01 0 01 02 03 -0.1 0 01 02 03
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WO Example: Access Counts

Autocorrelation structure is similar to that of a usual AR(p)

model, with model order p < 3.

= Try to fit binomial AR(p) —Independent Thinnings model
of order p < 3.
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UNI

Example: Access Counts

p Method |7

AIC

BIC

1

YW | 0.09203
CLS | 0.09217
ML | 0.09245

0.2685
0.2687
0.2598

1232

1241

2

YW | 0.09203
CLS | 0.09237
ML | 0.09261

0.3705
0.3701
0.3406

0.6237
0.6226
0.6372

1224

1238

3

YW | 0.09203
CLS | 0.09254
ML | 0.09318

0.4186
0.4175
0.3912

0.5266
0.5254
0.5229

0.2910
0.2904
0.2793

1223

1241
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UNI .
Wi Conclusion

e A new family of autoregressive models for time series of
binomial counts.

e Analyzed autocorrelation structure in general and of two
special cases.

e Promising from practical point of view: Binomial AR(p)
— Independent Thinnings model, close to standard
AR(p) models. Usefulness of this model demonstrated
by example of access counts.
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