
How to code it: A simple local search for the

Quadratic Assignment Problem

Martin Josef Geiger*

May 15, 2023

Abstract

The article describes a straight-forward implementation of a simple

local search for the Quadratic Assignment Problem. It's primary use

is educative: The concepts put forward are kept simple on purpose.

Note that the entire source code, written in C#, is available, also.

1 The Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) is a well-known optimization
problem with numerous applications in manufacturing, planning, and many
other areas.

It is best described by means of an application that stems from tactical
production planning: The assignment of machines to locations within a pro-
duction environment. In a more formal way, locations Si, i = 1, . . . , n are
given, to which machines Mk, k = 1, . . . ,m must be assigned, hence creat-
ing an assignment/ solution in the sense of placing the production resources
within a plant.

There are two aspects to consider: distances dij between the locations,
and material �ows fkl among the machines (transported quantities), and both
are typically given (data). As a common side constraint, each location may
only accommodate a single machine, and each machine must be assigned to
exactly one location. Moreover, it is assumed that m = n, therefore, we

*m.j.geiger@hsu-hh.de

1



consider Mk, k = 1, . . . , n. Note that in practical cases, where n > m, we
may ensure m = n by introducing additional n−m `dummy'-machines, and
extending the fkl-matrix by adding values of 0 from each machine Mk, k =
1, . . . ,m to the introduced `dummy' machines.

The overall objective is to minimize the total costs of transportation, ex-
pressed as the distance-weighted total transport volume, subject to a feasible
assignment. An assignment of a machine Mk to a location Si is represented
by introducing binary decision variables xik ∈ {0, 1}, and xik assumes 1 if
and only if machine Mk is assigned to location Si and 0 otherwise.

Hence, we obtain the following formal model.

min
∑
i

∑
j

∑
k

∑
l

dijfklxikxjl (1)

s. t.

∑
i

xik = 1 ∀k (2)∑
k

xik = 1 ∀i (3)

xik ∈ {0, 1} ∀i, k (4)

The aforementioned mathematical problem is quadratic in the sense of the
multiplication of the xik-variables. Note that there is an entire research area
devoted towards linearizations of such problems, with considerable progress
in past years. Further discussions on this matter are however omitted here.

2 Re�ections on the solution representation

While the aforementioned mathematical model of the QAP makes use of
binary decision variables, it is easy to see that, in a feasible assignment, most
of the values of those variables will be of value 0. More precisely, n variables
assume 1, while n ∗ n− n must be 0. It is therefore natural to think about a
way of `only' storing the actual assignments, not the `not'-assignments. This
can be achieved by introducing a permutation π: the permutation π, which is
of length n, stores, at each position i, the index of the machine assigned to the
location Si of the given position i. As an example, π = (3, 4, 1, 2, 5) represent
an assignment of machine M3 to location S1, machine M4 for location S2,

2



machine M1 to location S3, machine M2 to location 4, and machine M5 to
location S5, while the corresponding matrix of xik-variables is as follows:

xik =


0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

 ⇔ π = (3, 4, 1, 2, 5) (5)

On this basis, the objective function can be reformulated asmin
∑

i

∑
j dijfπi,πj

,
with πi representing the index of the machine at the position i in the permuta-
tion π. Note that by representing the assignments in this way, the complexity
of the model/ problem is left unchanged, we merely are adding up only the
relevant material �ows of the actual machine-location-assignments.

3 Problem instances

There is a good number of problem instances (data sets) available in the
literature. For the purpose of this paper, we refer to the QAPLIB, see https:
//www.opt.math.tugraz.at/qaplib/.

Technical remark: In the QAPLIB, the distance-matrix is referred to as
A, and the �ow-matrix as B.

4 A simple descent algorithm

4.1 Classes

The program is kept deliberately simple. Starting from the default-function
Main, a `solver'-object, derived from the class DescentSolver is created, and
the function RunSolver is executed. This function encapsulates the problem-
solving logic, i. e., the actual descent algorithm.

3



The data on the other hand is kept in a separate object, see the class
ModelInstance.

4.2 Reading the data

Reading the data from a �le comes as a �rst natural step. Unfortunately, in
case of the QAP and the data obtained from the QAPLIB, the formatting of
some instances is somewhat all over the place. Line breaks are not consistent,
there is a variable amount of blanks separating the numbers, and therefore,
reading the data for the distance- and the �ow-matrix is a bit of a challenge.
Fortunately, this can be resolved as follows.

� First, we read the entire set of numbers into a long list.

� Second, we check if the data read from the �le is reasonably consistent,
i. e., if we can assume that we have read the �le correctly.

� Finally, we assign the values to the matrices.

The following source code implements this concept.

1

2 class ModelInstance

3 {

4 public int n;

5 public int[,] D, F;

6

7 public void ReadDataFromFile(string file)

8 {

9 List <string > AllStrings = new List <string >();

10

11 System.IO.StreamReader sr = new

System.IO.StreamReader(file);

4



12 while (!sr.EndOfStream)

13 {

14 string line = sr.ReadLine ();

15 string [] splitrow = line.Split(new char[] { ' '

}, StringSplitOptions.RemoveEmptyEntries);

16 for (int i = 0; i < splitrow.Length; i++)

17 {

18 AllStrings.Add(splitrow[i]);

19 }

20 }

21 sr.Dispose ();

22

23 n = Convert.ToInt32(AllStrings.First());

24

25 if (AllStrings.Count != (1 + 2 * n * n))

26 {

27 Console.WriteLine("Error reading the file");

28 Environment.Exit (0);

29 }

30

31 D = new int[n, n];

32 F = new int[n, n];

33 int row = 0;

34 int column = 0;

35 for (int pos = 1; pos < (1 + 2 * n * n); pos ++)

36 {

37 if (row < n)

38 {

39 D[row , column] =

Convert.ToInt32(AllStrings[pos]);

40 }

41 else

42 {

43 F[row - n, column] =

Convert.ToInt32(AllStrings[pos]);

44 }

45 column ++;

46 if (column == n) { row ++; column = 0; }

47 }

48 }

49 }

Objects derived from the class ModelInstance have a single function
only: ReadDataFromFile for reading the data. The �lename must be passed
as a parameter to this function. Once the function is run, the actual values

5



of the instance are kept in the variable n and in the matrices D and F, both
of which are of size n × n. Contrary to the notation given in the QAPLIB,
we use D for the distance-matrix, and F for the �ow-matrix.

A StreamReader-object is employed to read the �le. We read the �le line
by line, and separate the acquired strings in line 15 of the source code. Note
that by using the split-parameter StringSplitOptions.RemoveEmtyEntries,
unnecessary blanks are automatically removed. Therefore, we only read the
actual data, and keep each value in a growing list of string variables, denoted
as AllStrings.

Lines 25�29 perform a quick check: Either the correct number of values
has been read (for an instance of size n, we must have 1 + 2 ∗ n ∗ n values),
or not. In the latter case, the program terminates.

The subsequent lines update the D- and the F-matrices. This is done by
two auxiliary variables, one the for column and one for the row in which
the current number should be placed. As the distance-matrix precedes the
�ow-matrix in the �les from the QAPLIB, the values are �rst allocated to D,
and then, following with row = n, to F. See the condition in line 37 on this.

4.3 The descent algorithm

In a nutshell, the descent algorithm presented here can be described as fol-
lows.

Algorithm 1 Simple Descent

1: generate �rst assignment
2: while improvement possible do
3: swap the assignment of two machines if this improves the objective

function value
4: end while

Starting with a �rst alternative, we try improving this current alternative
by swapping (exchanging) the positions of exactly two machines. This pro-
cedure is run until no further swaps are possible, i. e., until no improvements
are found on the basis of this move. In more detail, we describe the approach
in the following Algorithm 2.

The source code presented below in the class DescentSolver implements
this idea in a rather straight-forward way. There are, however, some dif-
ferences to the pseudo-code. While above (and also in the mathematical

6



Algorithm 2 Simple Descent � more detailed

1: generate �rst assignment:
2: for i = 1 to n do

3: assign machine Mi to location Si

4: end for

5: declare boolean (�ag) variable ImproventFound
6: repeat

7: ImprovementFound ← false

8: for i = 1 to n− 1 do
9: for j = i+ 1 to n do

10: if swapping the machine at Si and Sj improves the solution
then

11: make the swap
12: ImprovementFound ← true

13: end if

14: end for

15: end for

16: until ImprovementFound = false

model), we denote the indices of the locations and machines from 1 to n, the
program allocates arrays with an index starting at 0. See line 59: We declare
an array CurrentAlternative of n integer variables and subsequently assign
the indices of the machines, starting with machine 0 at position 0 (the �rst)
to machine n− 1 at position n− 1 (the last).

50 class DescentSolver

51 {

52 private ModelInstance MI;

53

54 public void RunSolver(string file)

55 {

56 MI = new ModelInstance ();

57 MI.ReadDataFromFile(file);

58

59 int[] CurrentAlternative = new int[MI.n];

60 for (int i = 0; i < MI.n; i++)

61 {

62 CurrentAlternative[i] = i;

63 }

64 int CurrentCosts = GetCosts(CurrentAlternative);

7



65 Console.WriteLine(CurrentCosts.ToString ());

66

67 bool improvement;

68 do

69 {

70 improvement = false;

71 for (int pos1 = 0; pos1 < MI.n - 1; pos1 ++)

72 {

73 for (int pos2 = pos1 + 1; pos2 < MI.n; pos2 ++)

74 {

75 int machine_at_pos1 =

CurrentAlternative[pos1];

76 int machine_at_pos2 =

CurrentAlternative[pos2];

77 CurrentAlternative[pos1] = machine_at_pos2;

78 CurrentAlternative[pos2] = machine_at_pos1;

79 int NewCosts =

GetCosts(CurrentAlternative);

80 if (NewCosts < CurrentCosts)

81 {

82 improvement = true;

83 CurrentCosts = NewCosts;

84 Console.WriteLine(CurrentCosts.ToString ());

85 }

86 else

87 {

88 CurrentAlternative[pos1] =

machine_at_pos1;

89 CurrentAlternative[pos2] =

machine_at_pos2;

90 }

91 }

92 }

93 }

94 while (improvement);

95 Console.WriteLine(GetPermutationString(CurrentAlternative));

96 }

97

98

99 private int GetCosts(int[] permut)

100 {

101 int c = 0;

102 for (int i = 0; i < permut.Length; i++)

103 {

104 for (int j = 0; j < permut.Length; j++)

8



105 {

106 int dst = MI.D[i, j];

107 int machine_at_i = permut[i];

108 int machine_at_j = permut[j];

109 int trnsprtvol = MI.F[machine_at_i ,

machine_at_j ];

110 c += dst * trnsprtvol;

111 }

112 }

113 return c;

114 }

115

116

117 private string GetPermutationString(int[] permut)

118 {

119 string ps = "(";

120 for (int pos = 0; pos < permut.Length - 1; pos ++)

121 {

122 ps += (permut[pos] + 1).ToString () + ",";

123 }

124 ps += (permut.Last() + 1).ToString () + ")";

125 return ps;

126 }

127 }

Evaluating the current permutation is done by means of function GetCosts,
see the code from line 99. This function evaluates the permutation passed
to it (see the parameter int[] permut) from scratch. It is �rst called after
creating the initial assignment of machines to locations, and then whenever
two machines swap their spots. The return values are kept in variables such
as CurrentCosts and NewCosts, respectively.

The functionality provided by the function GetPermutationString, see
the source code from line 117, is rather obvious. It performs a string con-
catenation and returns the assignment in a more readable form, i. e., a per-
mutation of the machine indices (by incrementing each internal number by
+1).

4.4 Re�ections on the algorithm and the implementa-

tion

The implementation above comes with some design choices that we should
re�ect upon.

9



� The creation of the initial alternative is somewhat simplistic. Clearly,
this procedure could be improved, e. g. by sorting the machines and
the locations. Besides, a randomization of this procedure could be
considered as otherwise, the algorithm always starts with the same
assignment.

� While the move � an exchange of the assignment of two machines �
is standard, it's evaluation is less so. In the current implementation,
we make the move (see lines 75�76) before evaluating it. Ion case the
modi�cation gets reject, it is undone, see lines 88�89. Contrary to
that, it is more common to �rst evaluate a move and then, in case
of acceptance, modify the current alternative. However, the current
implementation is only able to fully evaluate an alternative, and in
order to keep this (simple approach), the implementation is as such.

� Evaluating alternatives only from scratch is costly: O(n2). While we
are aware of faster implementations, those come with more complex
implementations � which we here avoid on purpose.

10


