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Abstract
Combining physics-based approaches and ma-
chine learning (ML) to automatically generate
models of physical systems is of critical impor-
tance, given the limitations of either approach
alone. This article empirically compares state-of-
the-art parametric and non-parametric methods,
based on the availability of moderate amounts
of data for a benchmark process-control system.
We use a gold-standard ordinary differential equa-
tion (ODE) model as a benchmark, provide the
learning algorithms with equation fragments and
data simulated from the benchmark, and com-
pare the auto-generated models with the bench-
mark in terms of predictive accuracy, general-
izability and equational fidelity. We show that
the non-parametric approaches (in particular sym-
bolic regression) generate models that have high
test-accuracy, but consist of equations that dif-
fer significantly from the benchmark ODEs and
have poor generalizability. The parametric ap-
proaches that rely heavily on manually-generated
model fragments out-perform the non-parametric-
based models, but entail greater manual inputs.
We discuss the implications of these results on di-
agnostics modeling efforts for the future.

1 Introduction
A model is at the core of model-based diagnosis (MBD) in-
ference. Traditionally, an MBD model was assumed to be a
manually-generated model based on physical principles [1;
2; 3], and if often called a white-box model. Machine
Learning Models (MLMs), also called (black-box) models,
have been widely used, typically for applications involving
signal-processing [4]. Models that incorporate both physics-
based aspects and data-driven methods, i.e., grey-box mod-
els, as less common for MBD inference, but have been used
recently [5; 6; 7]. Grey-box models can make use of data
for improving inference, e.g., [8], but still suffer from lack
of interpretability of the black-box component.

Manually-generated models based on physical principles
are still the de facto gold standard for MBD, but this ap-
proach is manually intensive, and the models may not incor-
porate significant information that is not available to and/or
known by the persons generating the models. Model iden-
tification is widely used to tune models to data [9], but this
too has limitations.

MLMs identify multi-dimensional patterns in data, and
are agnostic to the underlying physical processes. However,
the model-free application of ML has met with limited suc-
cess in scientific domains due to a number of reasons [10]:
(i) while state-of-the-art MLMs can capture complex spatio-
temporal relationships, MLMs can have orders of magni-
tude more free parameters than physics-based models, and
hence training requires significant labeled data, which is
rarely available in real-world settings; (ii) MLMs often pro-
duce scientifically inconsistent results; and (iii) MLMs can
only capture relationships in the available training data, and
cannot generalize to out-of-sample scenarios (i.e., those not
represented in the training data). In addition to these draw-
backs, to be able to learn from the available data, MLMs
may also require dimensionality reduction and feature engi-
neering, the latter of which is problem-specific [11]. Purely
data-drive machine learning thus seems unlikely to bring
about high-accuracy diagnostics that are transferable to sit-
uations far beyond the available data, without any consider-
ation of physical processes.

Given data D, model generation can be defined as a type
of system identification [9]. Common system identification
techniques include methods such as (a) classical regression
(e.g., using L1, LASSO and L2 or ridge regression), or (b)
stepwise regression with statistical tests. These approaches
employ non-linear optimization to learn the set of coeffi-
cients that result in the best fit to the observations. For ad-
equate data, the system identification problem is relatively
robust [9], and together with model-size constraints can be
used to learn a parsimonious set of coefficients, especially
with stepwise regression.

In general, several other criteria beyond training-set ac-
curacy are necessary for generating MBD models. Criteria
that one can trade off during model construction include:
accuracy, size, explainability, and model scale. For exam-
ple, parsimony is central to identifying a well-defined set of
equations; the standard strategy to satisfy this requirement
is classical or stepwise regression. On another dimension,
[12] examines how multi-scale models can be learned.

This article explores the potential of using machine learn-
ing (ML) to integrate physical principles with measured data
in order to generate white-box MBD models. This approach
has been used for automatically generating models in fields
such as physics [13], climate modeling [14] and computa-
tional biology [15], but has not been adopted widely for
MBD. See [16; 17] for recent surveys of this approach.

We compare and contrast several well-known model gen-
eration methods, including polynomial regression, Sym-



bolic Regression (SR) and linearization. We use the well-
known three-tank system as our benchmark model, from
which we generate data D and automatically learn models.

Our contributions are as follows.
• We use a gold-standard ordinary differential equation

(ODE) model as a benchmark, provide the learning al-
gorithms with equation fragments and data simulated
from the benchmark, and compare the auto-generated
models with the benchmark in terms of predictive ac-
curacy, generalizability and equational fidelity.

• We show that the non-parametric approaches (in par-
ticular symbolic regression) generate models that have
high test-accuracy, but consist of equations that differ
significantly from the benchmark ODEs and have poor
generalizability. The parametric approaches that rely
heavily on manually-generated model fragments out-
perform the non-parametric-based models, but entail
greater manual inputs.

• We discuss the implications of these results on diag-
nostics modeling efforts for the future.

2 Preliminaries
This section describes the technical background for our ap-
proach.

2.1 Notation
Definition 1 (Symbolic Model). A symbolic model Φ is
a functional representation over a set X = {x1, ..., xm}
of independent variables and a set Y = {y1, ..., yq} of
dependent variables, together with parameters θ: {yj =
f(xi, θ) : xi ∈ X , yj ∈ Y}j=1,..q .

This definition of model covers many model types, such
as ODE, PDE, symbolic (temporal) logic, etc. In particular,
we focus on non-linear ODE state-space models Φ, where
the first equation is the process model, and the second equa-
tion the observation model:
Definition 2 (ODE Physics-based Model). An ODE PBM is
an ODE of the form

ẋ = f(x, u)

y = g(x, u),

where the variables x, y have explicit semantic correspon-
dence to physical entities.

There are many issues associated with the notion of level
of model, in the terminology of multi-level models. For fluid
flow models, one could model at the level of flow regimes
(e.g., laminar vs. turbulent), or at a more abstract level
where only steady-state conditions are assumed. We do not
address those issues in this article.

2.2 Running Example: Three-Tank Benchmark
The system consists of three interconnected tanks, which
can have different inflow and outflow stream settings. In this
work, we base our analysis based on the system represented
in Figure 1. The specific configuration of these settings al-
low to configure a specific non - linear systems that are nor-
mally modeled by PBM approaches. We model this system
using a set of ordinary differential equations (ODEs) that
represent the dynamics of the content of the fluids within
the tanks. Different assumptions over the system (e.g. con-
stant density, no friction, etc.) can be used to derive simpler

Figure 1: Three tank system.

equations that are useful for simpler system representation,
e.g., linear models (see section 4.2).

We represent the model Φ in the state-space form ḣ =
f(h,u), as defined over variables h,u, and parameters
g,B, az1_0, az1_2, az2_3.

dh1

dt
=

1

A
(u1Q1 −Q1_2 −Q1_0) (1)

dh2

dt
=

1

A
(Q1_2 −Q2_3 −Q2_0) (2)

dh3

dt
=

1

A
(u2Q2 +Q2_3 −Q3_0), (3)

where

Qi_j = azi_jB
√

2g|hi − hj |σ(hi − hj) (4)

Qi_0 = azi_0

√
2ghi (5)

We use σ(·) to denote the sign function of (·). The manip-
ulated variables, ui, correspond to the valve settings, whose
values can be set between 0 and 1.

3 Method
This section describes the methods we use for our experi-
ments.

3.1 System Architecture and Inference
Figure 2 shows the top-level architecture that we adopt for
the training phase of our experiments. All experiments make
use of a model library, that consists of ODE equations for
components, such as a valve, tank, pipe, etc. We use the
gold-standard model Φ to generate the data from which we
learn the model Φ̂.

Figure 3 shows the top-level architecture that we adopt
for the testing phase of our experiments. Here, we compare
the performance of the gold-standard model (Φ) and learned
model Φ̂.

We performed inference in three main phases, which we
detail in the following sections.

1. Simulation-Based Data Generation
2. Model Learning
3. Comparison of Models on Test Data

3.2 Performance Metrics
We evaluated model performance using metrics for model
size and accuracy, as well as combined metrics.



Figure 2: Model generation (training phase). The gold-
standard model Φ generates training data from which we
learn the model Φ̂

Figure 3: Model analysis (testing phase)

Model Size/Complexity
Measuring model size/complexity is complex, as it entails
metrics over the number of variables, model order (e.g., lin-
ear vs. higher-order polynomial), and equation complexity.
We adopt two measures, which are used widely in evaluating
model “quality". First, we use the number n of model vari-
ables, which is used for metics like AIC, BIC, etc. Second,
we use a measure of equation complexity based on the ab-
stract syntax tree (AST) underlying the equation. For exam-
ple, Figure 4 shows the AST for the solution to the quadratic
formula:

x =
b±
√
b2 − 4ac

2a
.

Figure 4: AST for solution to a quadratic formula

We use a measure that captures the number of operators
and variables in an AST.

Model Accuracy
We evaluated model performance using several well-known
accuracy metrics, which are based on (1) the residuals be-
tween the gold-standard and MLM-generated simulation re-
sults, and (2) the modeling technique used in the evaluation.
We used the Mean Square Error (MSE, Equation 6), Mean
Absolute Error (MAE, Equation 7), the Akaike Informa-
tion Criterion (AIC, Equation 8), an AIC extension (named
full, 9) that includes the number of variables considered in
the final mathematical expression, and a coefficient of de-
termination dependent value (1/R2). In equations 6 to 10,
ne is the number of points considered in the evaluation, k is
the number of predictors, and yi and ŷi are the yth real and
predicted values of the dependent variables i.

MSEi = = 1/ne

n∑
i=1

(ŷi − yi)2 (6)

MAEi = = 1/ne

n∑
i=1

|ŷi − yi| (7)

AICi = ne + ne ln 2π + ne lnRSSi/ne + 2k (8)

full = AICi + nEvars,i (9)

Rbase,i = TSSi/(TSSi −RSSi) (10)

We estimate the performance metrics over individual
ODEs, and use the agglomerated values (average) for algo-
rithmic purposes (e.g. symbolic regression fitness uses the
agglomerated values for individual selection).

4 Automated Model Generation
This section introduces the generic model generation task,
and the specific generation algorithms on which we focus.

4.1 Model Generation Task
We define a model generation task as fitting a state-space
model Φ to data D.
Definition 3. Given observational data D in terms of inde-
pendent variables, xi ∈ Rd, and dependent variables (func-
tion values), zi ∈ R, for i = 1, · · · , ne, model generation
aims to find a that model Φ that maps the x-values to the
z-values by solving the following optimization problem:

β̂ = arg min
β

1

2
‖ z − f(x, β) ‖22 +

αλ ‖ g(x,β) ‖1 + (1− α)λ ‖ g(x,β) ‖1,
where 0 ≤ λ, α ≤ 1 are regularization parameters, and

g(x,β) is some measure of model complexity.
The first term describes model fitting, and the latter two

terms are regularization terms that enable us to control the
model complexity. Regularization techniques rely on solv-
ing convex continuous optimization problems where the ob-
jective is the familiar bias/variance trade-off (between error
on the training set, and the magnitude of the regression co-
efficients). Several loss functions involving general norms
are also possible and, in general, Equation 11 denotes an
infinite-dimensional optimization problem.

In particular, the parameter α determines the trade-off be-
tween the `1 penalty and the `2 penalty. If α = 1, then equa-
tion 11 is equivalent to the lasso problem [18], and will facil-
itate subset selection as the `1 penalty will drive regression



coefficients toward zero. If α = 0, the problem is equiva-
lent to ridge regression [19]. For any value 0 ≤ α ≤ 1, the
problem is termed elastic net regression. Although regular-
ization does facilitate subset selection, models generated by
Equation 11 are not equivalent to the problem of best subset
selection.

In the case of linear models, where the function
f(x, β) = xβ and g(x,β) = β, there is a long history of
using regularization techniques to address overfitting; even
when regression coefficients are driven to zero, model se-
lection is possible [18].

However, unlike traditional system identification, we aim
to constrain the process using physics, and there are sev-
eral approaches that have been adopted. We described the
approaches that we adopt in the following sections.

4.2 Parametric Approaches
Model Reduction
Model order reduction (MOR) is the process of taking a
complex model whose computational properties preclude
efficient inference, and transforming it into a simpler model
that trades off some degree of inference accuracy, e.g., [20].
We focus on the process of data-driven model reduction,
given data D.

Both parametric [21] and non-parametric [22; 23] meth-
ods have been used; here, we employ a parametric approach,
as traditionally used in system identification.

Given a gold-standard model Φ(θ) and space of possi-
ble models Γ = {γi(θi)}, i = 1, · · · , q parameterized by
θi, MOR seeks to identify the model γ∗(θ∗) that trades off
accuracy for simplicity, where accuracy is the relative loss
‖ L(Φ)− L(γ∗) ‖:

γ∗ = arg min
γi∈Γ

‖ L(Φ)− L(γ∗) ‖ +

αλ ‖ g(γi) ‖1 + (1− α)λ ‖ g(γi) ‖1 .

Example: Linearization of Three-Tank Model:
We transform the non-linear model g(x, u.θNL) into

linear state-space form using linearization [?]. Here, we
fix the form of the model as ΦL(x, u.θL), given by ẋ =
Ax + Bu, and we need to find the matrix parameters that
best fit to the data, i.e., θL = [A,B]:

Φ∗ = arg min
θ

∑
di∈D

1

2
‖ g(x,u, θNL)− ΦL(x,u, θL) ‖22 .

We implement linearization by taking the gradient of the
nonlinear function g(·) with respect to all variables and cre-
ating a linear representation at an equilibrium point. Con-
sider a nonlinear differential equation model Φ that is de-
rived from balance equations with input u and output y.
Given the functional form dy

dt = f(y, u), we linearize the
right hand side by a Taylor series expansion, using only the
first two terms.

dy

dt
= f(y, u) ' f(ȳ, ū)+

∂f

∂y
|ȳ,ū(y− ȳ)+

∂f

∂u
|ȳ,ū (u− ū)

(11)
If the values of ū and ȳ are chosen at steady state condi-

tions then f(ȳ, ū) = 0 because the derivative term dy
du = 0

at steady state. To simplify the final linearized expression,
deviation variables are defined as y′ = yȳ and u′ = uū.

We obtain an equation of the form ḣ = Ah + Bu, where
the full equation is given by

ḣ1

ḣ2

ḣ3

 =

[−.963 .954 0
.954 −2.17 1.214

0 1.214 −1.22

][
h1

h2

h3

]
+

[
.0065 0

0 0
0 .0065

] [
u1

u2

]
In the experiments, we linearize ODE models using the

Matlab linearization toolbox, with an equilibrium point of
h1 = h2 = h3 = 0.1 [m] (for the state variables) and u1 = u2

= 0.1 (as the control variables). The same initial conditions
for the state variables and manipulated variables were used
for each simulation.

Even though ODE solvers would report the level of liquid
level in the tank systems (i.e. h1, h2, and h3), ODE sys-
tem identification evaluates the derivative terms (i.e. C =
dhi/dt). Derivative values were estimated by estimating
∆h/∆t after ODE-solver calculations.

Multivariate Polynomial Regression (MPR)
Multivariate polynomial regression(MPR) is a regression
technique in which the dependant variable is modelled as an
nth degree polynomial of the independent variables. MPR is
considered to be linear with respect to the unknown param-
eters, so is considered a special case of linear regressions.
We used a Matlab algorithm in our experiments ([24]).

Given observational data in terms of independent vari-
ables, xi ∈ Rd, and dependent variables (function values),
zi ∈ R, for i = 1, · · · , Nd, MPR finds the best functional
form that maps the x-values to the z-values by solving the
following optimization problem:

min
f∈F,βi

Nd∑
i=1

[‖ βif(xi)− zi ‖2 + λ ‖ g(xi) ‖, (12)

where F is the space of nth degree polynomial functions
from which f is chosen, βi is the parameter for f(xi),
0 ≤ λ ≤ 1 is a regularization parameter, and g(xi) is some
measure of model complexity.

Variable Fidelity Model Generation
Variable-fidelity modeling (VFM) [25; 26; 27] can be
viewed as a model-generation task in which we generate
an ensemble of k (simple) models, weighted by parame-
ters βi, i = 1, ..., k, to approximate a gold-standard model
Φ(θ). Similar to MOR, VFM aims to select from a space
of possible models Γ = {γi(θi)}, i = 1, · · · , q parameter-
ized by θi, a composite model γ∗(θ∗) =

∑
i βiγi(θi) that

optimizes accuracy with respect to Φ, where accuracy is the
relative loss ‖ L(Φ)− L(γ∗) ‖:

arg min
β,γi∈Γ

‖ L(
∑
i

βiγi)− L(Φ) ‖ (13)

We represent a system S using a high-fidelity model
(HFM), Φ. We assume that the system S can also be simu-
lated with lower-fidelity models (LFMs), each of which rep-
resents a simplification of the HFM. We represent a LFM
using ΦL: yL = ψ(xL). We also assume that the HFM
takes into account a larger number of variables, parameters
and processes describing the physical system S than does



any LFM; hence, inference using the HFM is likely to be
more computationally demanding than that with the LFMs.
More precisely, our assumption entails that the state vector
of a lower-fidelity model, xL, is a subset of the state vec-
tor of the HFM: xL ⊆ xH . We represent a collection of
lower-fidelity models using Y = {φL1 , · · · ,ΦLk}.

In the general case, we model the relationship between
the outputs from the HFM and from the lower-fidelity mod-
els using a mathematical function ξ, such that the output
from the HFM can be written as:

yH = ξ(Y, β) + ε (14)

where ξ is a mathematical function (denoted as a “linking
function"), β is a vector of unknown parameters of the link-
ing function, and ε is an error term. Equation 14 uses the
linking function as a surrogate model to “link" outputs from
models with different levels of fidelity. If we treat ξ(Y, β) as
a random process, then we can describe this task in terms of
a Gaussian Process [26]. In this article, we restrict our VFM
models to linear combinations, but more general forms are
possible.

4.3 Non-Parametric Approach: Symbolic
Regression

We use symbolic regression (SR) for our parametric ap-
proach since it has been shown to outperform other para-
metric models for small data sets [28]. Unlike traditional re-
gression, symbolic regression (SR) does not assume a fixed
functional form; instead, SR learns the functional relation-
ship and its constants [29]. Symbolic regression subsumes
linear regression, generalized linear regression, and gener-
alized additive models into a larger class of methods. Sym-
bolic regression minimizes a given loss function defined
over the functional form of a regression function and the as-
sociated parameters or coefficients. The functional form is
assumed to be anything that can be composed from a given
list of basic functions or operators applied to the indepen-
dent variables and arbitrary constants. For example, if the
operators are +, and ×, then the space of all possible func-
tions is the set of all polynomials of arbitrary degree.

A symbolic regression algorithm conducts a search over
the space of possible model data structures that represent
valid mathematical expressions. The data structure is an
AST: a rooted binary tree where each non-leaf node has an
associated binary or unary operator (+, ,×,

√
·, log, etc.),

and each leaf node has an associated constant or indepen-
dent variable. We also use operators denoting the absolute-
value | · | and sign σ(·). The search algorithm is typically
chosen to be a genetic algorithm, although several other
search methods are applicable.

Given data D, symbolic regression solves the following
optimization problem:

min
f∈F

Nd∑
i=1

[‖ f(xi)− zi ‖ + λ ‖ g(xi) ‖, (15)

where F is the space of functions from which f is chosen,
0 ≤ λ ≤ 1 is a regularization parameter, and g(xi) is some
measure of model complexity.

In this article, we use both physics-free and physics-based
kernels to populate F , in order to compare the impact of the
different kernels. Table 1 shows some of the kernels that we
have studied in equation generation. Kernel K1 is a kernel

Kernel Description
K1 ×, /,+,−, | · |,

√
ν, ν2, σ(·), sin, cos,

eν , log(ν)
K2 K1 ∪ E1
K3 K1 ∪ E2
K4 K1 ∪ E3

Table 1: Symbolic regression kernels used in equation gen-
eration, described using arbitrary variable ν for K1 and
physical model fragments E1, E2, E3

consisting only of mathematical operators (physics-free),
while the other kernels contain physical model equations.
The equation fragments, which are derived from Equation
4, are defined in Table 2.

Name Equations
E1 1

A (Q1x1 − az1_2Sσ(h1 − h2)(2g|h1 − h2|)0.5)
1
A (az1_2σ(h1 − h2)(2g|h1 − h2|)0.5)

E2 1
A (Q1x1 − az1_2Sσ(h1 − h2)(2g|h1 − h2|)0.5)

E3 1
A (Q1x1 − az1_2Sσ(h1 − h2)(2g|h1 − h2|)0.5)
1
A (az1_2Sσ(h1 − h2)(2g|h1 − h2|)0.5)
1
A (az2_3Sσ(h2 − h3)(2g|h2 − h3|)0.5)

Table 2: Physical model fragments E1, E2, E3 used in sym-
bolic regression experiments

We define for the size function g(x) the size χ of the AST
of the SR expression, by summing the number of operators
and symbols in the expression.

5 Diagnostic Evaluation
This section evaluates the ability of the generated models to
compute diagnoses for the benchmark model.

5.1 Diagnosis Model and Fault Simulation
We create a diagnosis model ΦD from a “simulation" model
Φ by adding fault parameters and fault behaviours to Φ. We
define a set ϕ of failure parameters to the model, as de-
scribed in Table 3. To define abnormal failure behaviours,
we add an equation describing the failure behaviour for each
ϕi, i = 1, · · · , 7. Equations 16 through 20 show the fault
model, with the fault parameters shown in red. For exam-
ple, an actuator fault corresponding to to inflow u1 is param-
eterized by ϕ1, which when set to a value below 1 indicates
a sub-normal input flow denoting the actuator is stuck par-
tially open.

dh1

dt
=

1

A
(ϕ1u1Q1 −Q1_2 −Q1_0) (16)

dh2

dt
=

1

A
(Q1_2 −Q2_3 −Q2_0) (17)

dh3

dt
=

1

A
(ϕ2u2Q2 +Q2_3 −Q3_0), (18)

where

Qi_j = ϕj+1azi_jB
√

2g|hi − hj |σ(hi − hj) (19)

Qi_0 = ϕi+5azi_0Sn
√

2ghi. (20)



Fault Fault Component fault
Type Parameter range
Actuator ϕ1 u1 [0− 0.8]

ϕ2 u2 [0− 0.8]
pipe ϕ3 P12 [0− 0.8]

ϕ4 P23 [0− 0.8]
leak ϕ5 T1 [0− 0.8]

ϕ6 T2 [0− 0.8]
ϕ7 T3 [0− 0.8]

Table 3: Fault parameters for diagnostics evaluation

Type Model Description R2

Parametric Linearized 4.2 0.998
MPR 4.2 0.9996
VFM 4.2 0.99

Non-Parametric SR 4.3 0.998

Table 4: Models adopted for experimental evaluation

We simulated data, denoted Dδ , using the diagnosis ver-
sion of the gold-standard model ΦD, and then used the diag-
nosis versions of the learned models for fault isolation. Ta-
ble 3 describes the fault scenarios that we used, comprising
single-faults to (1) the actuators governing inflow of fluid;
(2) pipes connecting tanks 1 to 2 and tanks 2 to 3; and (3)
leaks in tanks T1, T2, T3.

5.2 Experimental Design
We automatically generated four classes of models: 3 para-
metric models (linearized, MPR and VFM), and several ver-
sions of the non-parametric SR-derived model. For our
comparative analysis, we selected learned models that had
high R2 values on the training data. The MLMs adopted
are: (1) linearized model (as described in Section 4.2); (2)
Multivariate Polynomial Regression (MPR) model (as de-
scribed in Section 4.2); (3) variable fidelity model (VFM)
(as described in Section 4.2); (4) non-parametric. Table 4
summarizes the models we have generated.

For each scenario, we compute a discrete probability dis-
tribution P (ϕ) over the discrete set of faults ϕ. We use for
our diagnosis correctness metric the KL divergence over the
true and computed distributions, denoted P ∗(ϕ) and Q(ϕ),
respectively. We define this metric as follows:

Definition 4 (KL divergence). For discrete probability dis-
tributions P ∗ and Q defined on the same probability space,
V , the relative entropy from Q to P ∗ is defined to be
DKL(P ∗ ‖ Q) =

∑
v∈V P

∗(v) log
(
P∗(v)
Q(v)

)
. Here Q(v) is

the approximation and P ∗(v) is the gold-standard distribu-
tion we’re interested in matching Q(v) to.1

5.3 Experimental Results
We learned a range of models for each of the parametric and
non-parametric classes. As an example of the output, Table
6 shows a selection of SR models generated for the first 10
of the scenarios we examined. Table 7 shows a two MPR

1Intuitively this measures the how much a given arbitrary dis-
tribution is away from the true distribution. If two distributions
perfectly match, DKL(P

∗ ‖ Q) = 0 otherwise it can take values
between 0 and ∞. The lower the KL divergence value, the better
we have matched the true distribution P ∗ with Q.

Model nominal actuator pipe blockage leak
fault fault fault

ΦGS 0.001 0.003 0.006 0.01
Linearized 0.08 0.09 0.16 0.25
VFM 0.07 0.08 0.11 0.18
MPR 0.24 21.7 27.5 31.2
SR∅ 0.31 87.2 101.6 129.9
SRK 0.21 76.1 82.1 103.4

Table 5: Experimental results for diagnostics evaluation

models generated for scenarios 32-33; no kernels are used
for this algorithm.

For each model generation method, we selected one of the
best-performing output models to perform diagnostics eval-
uation. We ran experiments for each of the failure-mode
types, and averaged the KL-divergence over that type. Ta-
ble 5 summarizes the results obtained, where the smaller
the value the better the performance. In the table, SR∅ and
SRK denote the SR equations generated using kernels K1

(no physics-based inputs), and K2 or K3 (physics-based in-
puts), respectively. We include diagnostics results from the
gold standard model ΦGS as a baseline for the other models,
since no diagnostics algorithms will perform perfectly.

Table 5 shows that the parametrics approaches that use
significant model information perform relatively well. The
linearized model uses a fixed model structure that incorpo-
rates all critical variables from the ODE model ΦGS . The
VFM model corresponds to a linear combination of (simpli-
fied) physics-based models, and its good performance mim-
ics the excellent performance demonstrated in ML for en-
sembles of simple classifiers [30].

Table 5 shows that the MPR and the SR (non-parametrics)
approaches perform significantly worse than the paramet-
rics approaches that use significant model information. Un-
like the linearized model, these approaches are not automat-
ically constrained to incorporate all critical variables from
the ODE model, and the lack of control variables in some of
these models hinders their performance, among other rea-
sons.

Also note that the generated equations (Tables 6 and 7)
show that the generated equations differ significantly from
the gold standard equations in ΦGS . Hence although the R2

performance measure on the training data is excellent, the
generalization performance for diagnostics is quite poor.

6 Summary and Discussion
6.1 Discussion of Results
This article has presented a critical comparison of paramet-
ric and non-parametric approaches to automated generation
of diagnostics models. The results indicate that the greater
the degree of physics-based information, the better the per-
formance of the resulting diagnostics models. In particular,
the VFM approach performed best, in that it uses an ensem-
ble of pre-defined physics-based models. We can call the
VFM and linearized methods strong physics-based models.

A second important outcome is that the approaches that
attempted to learn significant model information performed
much worse than the strong physics-based models. This can
be attributed to many reasons.

Sample Complexity: We have explicitly investigated
methods that work with limited data. Even given the rep-



# Metric Kernel Equation generated R2 χ

1 full K1 4.776e−6x1 − 9.552e−6x2 − 4.776e−6σ(x2) 0.9902 38
+ 4.776e−6x

1/2
1 + 4.776e−6x1σ(x1 − x2) + 3.992e−5

2 full K1 1.192e−5(x1 − x2) + 2.383e−5σ(x1 − x2) + 1.192e−5σ(x1)− 6.984e−6 0.9817 33
3 AIC K1 1.214e−5x1 − 1.214e−5x2 + 2.427e−5σ(x1 − x2) + 1.214e−5σ(x1) 0.9856 41

− 1.214e−5x
1/2
1 + 2.836e−5

4 AIC K1 1.307e−5x1 − 1.307e−5x2 + 1.307e−5σ(x1 − x2) + 1.307e−5 sin(|(x1)1/2|) 0.98264 36
+ 1.307e−5 ∗ σ(x1)− 6.771e−6

5 MSE K1 1.148e−5x1 − 1.148e−5x2 + 1.148e−5|cos(x2)| − 1.148e−5 cos(x2) 0.97614 40
+ 1.148e−5σ(x1)− 1.623e−5x

1/2
2 + 3.727e−5

6 MSE K1 4.87e−5σ(h1 − h2)|h1 − h2|0.5 − 8.131e−20 1 19
7 MSE K1 1.214e−5x1 − 1.214e−5x2 − 1.214e−5x

1/2
2 + 4.015e−5 0.96865 19

8 MSE K1 4.87e−5σ(h1 − h2)|h1 − h2|0.5 − 8.131e−20 1 19
9 MSE K2 4.558e−5σ(x2)− 4.558e−5σ(x1) + 4.558e−5x

1/4
2 σ(x1 − x2) 0.9961 48

+ 4.558e−5x
1/2
1 − 4.558e−5x

1/2
2 + 1.116e−6

10 MSE K2 4.87e−5σ(h1 − h2)|h1 − h2|0.5 − 8.131e−20 1 19

Table 6: Symbolic Regression results for scenarios 1-10, with equations generated given R2 value and equation complexity
χ

# Metric Equation generated R2 χ

52 MSE 548.09h3 − 185.22h2 + 1777.945h2h3 + 567.359h1 − 15428.530h1h3 +−239771.9661h1h2 0.9996 27
+ 8.1236 + 124766.4943h2

1 + 119902.5816h2
2 + 9600.560h2

3

33 MSE 0.0011|x1 + x2 − 2x3|/(||x1 − u1 + x2
1| − |u2 + x2 − x0.5

3 ||)− 0.0060u1 + 0.0011|x1− 0.9999 68
h2|0.5/|[|h1 − u1 + x2

1| − |u2 + x2 − x0.5
3 |]|+ 0.0029σ(x1 − x2)|x1 − x2|0.5 − 5.9760e−4

Table 7: MPR results for scenarios 32-33, with equations generated given R2 value and equation complexity χ

utation for SR of generating good results with limited data
[28], our study indicates that for complex models (even for
a toy model like the 3-tank system), significantly more data
is required.

Data Adequacy: To date, non-parametric methods like
SR and deep learning have had success on very simple, con-
strained model fragments that correspond to trivial physical
models. In this process-control domain, such simple phys-
ical models may correspond to components like the valve,
actuator, pipe, etc. The data used is not of fine enough
granularity to enable non-parametric methods to learn good
models. However, in process control domains with faults,
it is unlikely that data of that nature is readily available, let
alone sufficient failure data, to meet such data adequacy re-
quirements.

Structure-Based/Causality Information: It appears as
if using model structure could also play a big role in im-
proving the performance of learning. This may also be re-
lated to causal information, e.g., abnormal flows are caused
by upstream pipe-blockage faults. In this example, structure
(upstream) is linked with fault causation. In these experi-
ments no information of this nature was used, beyond the
actual physical equations.

6.2 Next Steps

This work represents a preliminary study of model learn-
ing incorporating physics. By taking a different approach
to most prior work, i.e., studying the ability to generate
industrial-type models with typical industrial limitations of
data, we have opened a major avenue for future work. An
open question is whether non-parametric methods are in
fact limited to component-scale learning, in which case the
methods like VFM/linearization would play a big role into
the future. Incorporating notions of model structure and
causality also could be significant, especially for diagnostics
applications. We plan to examine such questions in future
work.
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