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Abstract
Consistency-based diagnosis utilizes models of
the system together with observations for com-
puting diagnosis candidates. Distinguishing these
candidates – if even possible – requires obtaining
new observations. In model-based diagnosis pro-
cedures for selecting the next best measurement
have been described and evaluated. In this pa-
per, we follow an alternative research direction
making use of different set of observations of a
system, and how they can be integrated into the
consistency-based diagnosis framework. Besides
extending basic definitions, we show how to rep-
resent the diagnosis problem utilizing formalisms
of answer set programming. In addition, we show
how spectrum-based fault localization can be in-
tegrated within the framework to allow utilizing
observations that do not lead to conflicts.

1 Introduction
Diagnosis, i.e., detecting failures, localizing faults, and re-
pair, is an important task in our daily live ranging from
maintaining engineered systems to the medical domain.
Since the beginnings of Artificial Intelligence, the automa-
tion of diagnosis have been of interest leading to model-
based diagnosis [1; 2], which come in two flavors, i.e.,
consistency-based diagnosis [3; 4] and abductive diagno-
sis [5]. Whereas consistency-based diagnosis relies on mod-
els of the correct behavior of system components, abductive
diagnosis utilizes knowledge about how systems behave in
case of faults to compute diagnosis candidates for identify-
ing root causes. There is work on integrating fault models
into consistency-based diagnosis (see e.g. [6]) and how to
integrate knowledge about the correct behavior into abduc-
tive reasoning (see for example [7]).

Although, originally model-based diagnosis mainly has
focused on fault detection and localization there has been
work on repair, e.g., [8; 9] and more recently [10], as well.
In addition, research include work on improving diagnostic
reasoning using physical impossibilities [11], distinguishing
diagnosis candidates utilizing additional measurements [4],
and diagnosis algorithms (see [12] for a comparison of the
runtime of different diagnosis algorithms). However, there
has been only little work on integrating multiple observation
sets. In most cases, the diagnosis problem comprises a di-
agnosis model, i.e., a formal description of the structure and
the behavior of components, and one set of observations.
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Figure 1: A digital full adder circuit.

Table 1: Expected behavior and observed behavior of a full
adder considering a stuck at 0 fault of component O1. Faulty
outputs are marked with *.

Input Exp. Behav. Obs.
# a b cin s cout s cout
1 0 0 0 0 0 0 0
2 0 0 1 1 0 1 0
3 0 1 0 1 0 1 0
4 0 1 1 0 1 0 0∗
5 1 0 0 1 0 1 0
6 1 0 1 0 1 0 0∗
7 1 1 0 0 1 0 0∗
8 1 1 1 1 1 1 0∗

This is an interesting observation because in other areas
like software debugging a lot of work have been published
dealing with identifying root causes of failures considering
the program executions for several test cases. Spectrum-
based fault localization [13; 14] extracts likelihood mea-
sures for each statement of being correct or faulty from sev-
eral executions taking care of knowledge regarding whether
an execution leads to a failure or not. Accordingly to [15],
spectrum-based fault localization can be considered as the
one having the largest share on publications in the area of
automated and algorithmic software debugging.

In this paper, we contribute to the use of multiple observa-
tion sets for diagnostic reasoning focusing on consistency-
based diagnosis. In particular, we are interested in show-



ing how multiple observation sets can be integrated into the
foundations behind consistency-based diagnosis as well as
how to compute diagnosis. The work, presented in this
paper, is similar to [16] but in contrast does not utilize
hitting set computation for obtaining diagnoses. Instead,
we make use of answer set programming [17] for diagno-
sis and follow previous work (e.g., see [18; 19]). Other
recent work, dealing with the integration of multiple ob-
servations include [20; 21]. The authors of [20] extended
the definitions of diagnosis to handle multiple observations
whereas we provide one general definition. In [21], the au-
thors distinguish different kinds of models handling strong
and weak fault models, and distinguishing intermittent and
non-intermittent faults. In this paper, we solely focus on
consistency-based diagnosis, i.e., considering weak fault
models.

Let us describe the multiple observations diagnosis prob-
lem using a small example. In Figure 1, we depict the
schematics of a digital full adder comprising two exclusive-
or gates X1 and X2, two and-gates A1 and A2, and one
or-gate O1. In Table 1 we see the expected as well as the
observed behavior of the full adder assuming a stuck at 0
fault of O1. In practice, we may not observe all the different
input-output as given in the table but only a subset of these,
e.g., line 1, 2, 4, 6, 7, 8. The question is how to combine
these observations in order to come up with a single diag-
nosis for the full adder and all given observation sets? One
way of dealing with this problem is to compute all hitting
sets for each observation set and to make use of them to
come up with a final hitting set graph like outlined in [16].
In this case, all conflicts contribute to the computation of di-
agnosis. In this paper, we follow a different solution where
we compute diagnoses directly from the model without the
need for computing conflicts. The open question is, how to
integrate multiple observation set in such a setup?

In addition, we may be interested in answering how to
integrate observations not leading to contradictions, into di-
agnostic reasoning. In the classical setup of consistency-
based diagnosis (and discussed in detail in this paper as
well), such observations do not contribute to diagnosis in
general. Hence, we have to discuss whether there are cer-
tain assumptions under which we are able to integrate such
observations, or alternative approaches for utilizing infor-
mation from non-conflicting observations.

We organize the paper as follows: First, we discuss the
basic foundations when dealing with multiple observation
sets. We further show how such diagnosis problems can be
represented as answer set programs. Afterwards, we dis-
cuss the computation of diagnoses re-examining appropri-
ate algorithms. Furthermore, we investigate the problem of
integrating observation sets not leading to contradictions.
Finally, we conclude the paper and outline open research
questions.

2 Foundations
In the following, we briefly outline the underlying formal
definitions behind consistency-based diagnosis following
Reiter [3]. We slightly adapt the definition of diagnosis to
handle multiple observation sets. We first introduce the for-
mal representation of a system, i.e., a diagnosis system.

Definition 1 (Diagnosis system). A diagnosis system is a
tuple (SD,COMP) where SD is a formal description of the

system to be diagnosed, i.e., the model, capturing the cor-
rect behavior of components, and COMP is the set of com-
ponents.

It is worth noting that the model SD formalizes the correct
behavior of a component c ∈COMP only. For this purpose,
we introduce a predicate ab with a component as the only
parameter, stating that the component is abnormal, i.e., not
working as expected. In SD, we state the behavior of c using
an implication, i.e., ¬ab(c)→ (Behav), where Behav for-
malize the behavior of c. See [6] for more details on model-
ing and underlying principles (including how to handle fault
models, which we are ignoring in this paper). Using diag-
nosis systems together with a set of observation sets, we are
able to specify a diagnosis for all given different observation
sets.
Definition 2 (Diagnosis). Given a diagnosis system
(SD,COMP) a set {OBS1, . . . ,OBSk} where each OBSi (for
i = 1 . . .k) is a distinct set of observations. A set ∆ ⊆
COMP is a diagnosis, if and only if for all i ∈ {1, . . . ,k} the
logic sentence SD∪OBSi ∪{ab(C)|C ∈ ∆}∪{¬ab(C)|C ∈
COMP\∆} is consistent.

In Definition 2 we do not make any assumptions regard-
ing the observation sets OBSi. They may specify different
values for connections, signals, or any other observable en-
tity. Two observation sets may specify different output ob-
servations for the same inputs of a system as well. Such
a case may exist in case of intermittent faults. In contrast
to [21], we do not specifically focus on differentiating inter-
mittent behavior from non-intermittent one. The proposed
approach is still able to deliver diagnoses in this case. How-
ever, it would be of interest to investigate on the effect of
intermittent behavior to the diagnosis results.

In practice, we are interested not in all diagnoses but those
having specific properties, e.g., being minimal. This leads
to the definition of parsimonious diagnoses.
Definition 3 (Parsimonious diagnosis). A diagnosis ∆ of a
diagnosis systems is said to be parsimonious (or minimal)
if and only if there is not ∆′ ⊂ ∆ that is itself a diagnosis
accordingly to Definition 2.

Note that Definition 2 directly extends the original def-
inition of diagnosis from [3] to be able handling multiple
observations. This is different from other previous work,
i.e., [20], where the authors come up with additional defi-
nitions for the same purpose. As a consequence, we do not
need to introduce different concepts for handling minimal-
ity, i.e., minimal diagnosis (for the case of a single observa-
tion) and redundant diagnosis (when multiple observations
are present). Furthermore, we do not need to combine all
diagnosis from the observations and rule out redundant di-
agnoses afterwards. Instead we are able to compute parsi-
monious diagnoses for all observations at once.

It is worth noting that in practice we focus not only on ob-
taining parsimonious diagnosis but also limit diagnosis size,
i.e., |∆| to pre-defined values, e.g., 1, 2 or 3. The motivation
behind this restriction is that a higher cardinality diagnosis
is less likely to occur. Moreover, parsimonious diagnoses
characterize all diagnoses in consistency-based diagnosis.
The following theorem states this:
Theorem 1. Given a diagnosis system (SD,COMP and a
set of observation sets {OBS1, . . . ,OBSk}. Any diagnosis is
either a parsimonious diagnosis or a superset of a parsimo-
nious diagnosis.



Theorem 1 states that all diagnoses are supersets of par-
simonious diagnoses. Hence, the set of all parsimonious di-
agnoses characterizes all diagnoses for a given system and
set of observation sets. The theorem follows almost directly
from Definition 2 and the way the correct behavior stated in
SD is formalized. If we set more components to ab, we can
only derive the same or less predicates. Hence, we are not
able to come up with a conflict in this case and a superset of
a parsimonious diagnosis must be a diagnosis too.

Note that there is the underlying assumption behind Def-
inition 2 that the system from which we obtain the different
sets of observations does not change. Hence, there is neither
an internal nor an external mechanism that adapt the system
after any observation. Hence, all observation sets obtained
correspond to one and only one health state of a system. It is
worth noting, that we may have different faults in the system
and that two observation sets reveal one or the other fault but
not necessarily both. This underlying assumption is in line
with the definitions of [20].

3 Modeling for diagnosis
In this section, we discuss modeling for diagnosis using an-
swer set programming [17]. In particular, we make use the
input language used by the answer set programming tool
clingo [22; 23], which relies on Prolog [24] syntax and in-
cludes extensions. Hence, we first state the diagnosis model
capturing the behavior of components and their intercon-
nections using Prolog syntax before making use of specific
ASP features allowing us to compute diagnosis candidates
directly using clingo. The advantages of using ASP for
diagnosis are: (i) the expressivity of the provided language
for specifying models in logic, and (ii) the availability of
fast solvers allowing to compute diagnoses for even larger
systems (see [19]).

In order to capture components, connections, and values,
we introduce predicates comp\1, conn\2, and val\3 re-
spectively. A component has a unique name and is from a
particular type like an and-gate. Hence, we make use of a
predicate type\2 to set the type of a component. Ports
of components are stated as functions with the name of the
component as parameter. Connections are assumed to con-
nect two ports of not necessarily different components. The
values are for a port and belong two exactly one observation
set.

Let us first, introduce a model for a digital inverter using
the mentioned predicates:

val(Tc,out(C),Z) :- type(C,T), val(Tc,
in(C),Y), tuple(T,Y,Z), nab(C).

val(Tc,in(C),Y) :- type(C,T), val(Tc,
out(C),Z), tuple(T,Y,Z), nab(C).

tuple(inv,0,1).
tuple(inv,1,0).

The first two lines state the behavior of any component C
of type T comprising two ports in and out. In particular it
states that if the component C is not abnormal, i.e., nab(C)
is true, there is a value for the input (output) given, which is
determined using the predicate tuple, we are able to con-
clude the value of the output (input) of C. These two lines
can also be used to state the behavior of a buffer component.
We only need to add information regarding the expected in-
put and output pairs like follows:

tuple(buff,0,1).
tuple(buff,1,0).

Using this definitions, we can specify a particu-
lar inverter I1, using the predicate type as follows:
type(inv,i1). Note that we follow Prolog syntax here
and formalize constants like I1 as strings starting with a
lowercase letter. What is missing is how to define connec-
tions? This can be done in a similar way, stating that con-
nected ports share the same values:

val(Tc,X,V) :- conn(X,Y), val(Tc,Y,V).
val(Tc,Y,V) :- conn(X,Y), val(Tc,X,V).

:- val(Tc,X,0), val(Tc,X,1).

In the last line, we state that a connection can only take
one Boolean value at a time. Hence, the port’s value of X is
maybe true (1) or false (0) but never both.

Using the model we are now able to define two inverters
and connect them:

type(inv,i1).
type(inv,i2).
conn(out(i1),in(i2)).

Before discussing other digital components, we further
define the relationship between components and their types.
Every component X has a type T, which we formalize as
follows:

comp(X) :- type(X,T).

For components with two inputs in1, in2, and one out-
put out, we come up with similar Prolog rules for stating
the behavior. However, there are differences because in the
backward direction (i.e., from the output to the inputs), we
sometimes cannot uniquely come up with a value. Hence,
we have to find such scenarios and represent them in a way
avoiding different values to be assigned to a port, which
would lead to inconsistencies.

val(Tc,out(C),Z) :- type(C,T), val(Tc,
in1(C),V), val(Tc,in2(C),W), tuple(T
,V,W,Z), nab(C).

val(Tc,in1(C),1) :- type(C,and), val(Tc
,out(C),1), nab(C).

val(Tc,in2(C),1) :- type(C,and), val(Tc
,out(C),1), nab(C).

val(Tc,in1(C),0) :- type(C,and), val(Tc
,out(C),0), val(Tc,in2(C),1), nab(C)
.

val(Tc,in2(C),0) :- type(C,and), val(Tc
,out(C),0), val(Tc,in1(C),1), nab(C)
.

val(Tc,in1(C),0) :- type(C,or), val(Tc,
out(C),0), nab(C).

val(Tc,in2(C),0) :- type(C,or), val(Tc,
out(C),0), nab(C).

val(Tc,in1(C),1) :- type(C,or), val(Tc,
out(C),1), val(Tc,in2(C),0), nab(C).

val(Tc,in2(C),1) :- type(C,or), val(Tc,
out(C),1), val(Tc,in1(C),0), nab(C).



val(Tc,in1(C),V) :- type(C,xor), val(Tc
,out(C),Z), val(Tc,in2(C),W), tuple(
xor,V,W,Z), nab(C).

val(Tc,in2(C),W) :- type(C,xor), val(Tc
,out(C),Z), val(Tc,in1(C),V), tuple(
xor,V,W,Z), nab(C).

tuple(and,0,0,0).
tuple(and,1,0,0).
tuple(and,0,1,0).
tuple(and,1,1,1).

tuple(or,0,0,0).
tuple(or,1,0,1).
tuple(or,0,1,1).
tuple(or,1,1,1).

tuple(xor,0,0,0).
tuple(xor,1,0,1).
tuple(xor,0,1,1).
tuple(xor,1,1,0).

The first line represents the case of reasoning from the
inputs to the output that generally holds for all components
regardless of their type (assuming that in this direction, we
always implement a function using the tuple predicate).
The other lines are specifically for the different component
types and, or, and xor. Similarly, other digital gates like
nand, nor, or xnor, can be formalized using Prolog syntax.

Using the described model of digital components and
their connections, we can easily represent the full adder de-
picted in Figure 1 in Prolog:

type(x1,xor).
type(x2,xor).
type(a1,and).
type(a2,and).
type(o1,or).

conn(a,in1(x1)).
conn(b,in2(x1)).
conn(out(x1),in1(x2)).
conn(cin,in2(x2)).
conn(out(x2),sum).
conn(cin,in1(a1)).
conn(out(x1),in2(a1)).
conn(a,in1(a2)).
conn(b,in2(a2)).
conn(out(a2),in2(o1)).
conn(out(a1),in1(o1)).
conn(out(o1),cout).

In this model, we also have constants for the inputs a, b,
cin, s, and cout for which we are specifying the observa-
tions. Let us assume that we have observations for lines 1, 2,
4, 6, 7, 8 of the tuples given in Table 1. The observation sets
oi of any line i can be represented using the val predicate
as follows:

val(o1,a,0).
val(o1,b,0).
val(o1,cin,0).
val(o1,sum,0).
val(o1,cout,0).

....
val(o8,a,1).
val(o8,b,1).
val(o8,cin,1).
val(o8,sum,1).
val(o8,cout,0).

The described model together with the observation can
be used for diagnosis and any theorem prover that is able to
check consistency of Prolog programs accordingly to Defi-
nition 2. We only need to set nab predicates of components
to true, i.e., adding them as fact, that are assume to work
correctly. However, we can use clingo directly for com-
puting diagnosis of a given size as being discussed in the
next section.

4 Computing diagnoses
Computing diagnosis using answer set programming and
in particular clingo has already been described previ-
ously [19]. To be self-contained we briefly recapitulate how
to encode diagnosis using clingo. Given a propositional
theory (i.e., a logic program), an answer set is a satisfiable
set of propositions that can be derived from the answer set
program in an acyclic way. For example, the clingo pro-
gram:

a :- b.
b.

has the one answer set a, b because both propositions can
be derived from the program. However, the program

a :- b.
b :- a.

has an empty answer set, because neither a nor b can be
derived in an acyclic way. Let us consider now the following
program:

a :- not b.
b :- not a.

When assuming a (b) to be true, its negation is false, and
b (a) cannot be derived. Hence, we have two answer sets
for this program, i.e., a and the other one only comprising
b. This example, can be directly used for diagnosis because
it enables the answer set program solver to decide either a or
b. In case of diagnosis, we come up with the following two
rules establishing the relationship between the predicates ab
and nab defined for a certain component:

nab(X) :- comp(X), not ab(X).
ab(X) :- comp(X), not nab(X).

When adding these rules to the model, clingo can de-
cide on the health state of components to make the program
comprising the logic model together with the given observa-
tions consistent. Hence, all obtained answer sets are diag-
noses. In order to improve this process, we further want to
formalize that we are interested of all diagnoses of a particu-
lar pre-defined size. For this we use the extensions clingo
offers.

numABs(N) :- N = #count { C : ab(C) }.
:- not numABs(Ds).



Algorithm 1 ASPDiag(M,n)

Input: An ASP diagnosis model M, and the desired
cardinality n
Output: All minimal diagnoses up to n

1: Let DS be {}
2: Let M f be M.
3: for i = 0 to n do
4: M′f = M f ∪{ :- not numABs(i). }
5: S = F

(
ASPSolver(M′f )

)
6: if i is 0 and S is {{}} then
7: return S
8: end if
9: Let DS be DS∪S.

10: for ∆ in S do
11: Let C = AB(∆) be the set {c1, . . . ,ci}
12: M f = M f ∪{ :- ab(c1), . . ., ab(ci). }.
13: end for
14: end for
15: return DS

In the first line, we count the number of abnormal predi-
cates obtained when search for an answer set, and store the
result in predicate numABs\1. In the second line, we state
that we are only interested in diagnoses of size Ds. During
computation of diagnosis, we set Ds to one value starting
from 0 to the maximum boundary. Note that when setting
Ds to 1, clingo returns single fault diagnosis. It is also
worth noting that for a general diagnosis algorithm, we have
to further assure that no supersets of diagnoses are generated
when increasing the value of Ds. This can be assured by
adding constraints stating that certain ab predicates should
not be set to true.

Algorithm 1 ASPDiag (taken from [19]) implements the
computation of diagnoses described before, making use of
clingo as the ASPSolver solver. It is worth noting that
the first parameter of the ASPDiag algorithm, i.e., model
M, comprises all rules described before except the rule for
stating the size of diagnoses to be computed. This informa-
tion is updated during the execution of ASPDiag.

It is easy to see that ASPDiag terminates computing all
parsimonious diagnoses for a given model, which comprises
the coding already described in a previous section for the
system and the set of observation sets. When using this
model together with clingo for the full adder, we ob-
tain one answer set nab(x1), nab(x2), nab(a1),
nab(a2), ab(o1) requiring a neglectable amount of
time (less than 1/100 seconds). It is worth noting that if
we only use the set of observations o8, we receive two
answer set: One is the same than before and the other
one is nab(x1), nab(x2), nab(a1), ab(a2),
nab(o1). Hence, we see that considering multiple obser-
vation sets may allow to reduce the number of diagnoses.

When using the full adder model algorithm ASPDiag de-
livers the following 3 parsimonious diagnoses:

• one single fault diagnosis {o1},
• one double fault diagnosis {a1,a2}, and
• one triple fault diagnosis {x1,x2,a2}.
In the next section, we discuss properties and limitations

of the presented consistency-diagnosis approach integrating

multiple observation sets.

5 Discussion
In this section, we discuss properties of the presented foun-
dations, answer the question regarding the influence of par-
ticular observation sets to the computed diagnoses, and
present a solution for integrating observations not leading
to conflicts into the framework. Obviously, corresponding
theorems from [3] still hold in the context of this paper.
This is due to the fact, that the way of handling multiple
observations can be represented as conjunction of system
models for each observation set like done in our answer set
programming representation. Therefore, we can safely state
that a diagnosis exists if and only if SD∪OBSi is consistent
for all given observation sets OBS1, . . . ,OBSk.

Furthermore, by construction there is a relationship be-
tween diagnoses obtained for each OBSi and the overall di-
agnoses for all observation sets, which we summarize in the
following theorem:

Theorem 2. Any parsimonious diagnosis ∆ for the diag-
nosis system (SD,COMP) and the set of observation sets
{OBS1, . . . ,OBSk}, is also a diagnosis for (SD,COMP) and
the set {OBSi} for i = 1 . . .k, but not vice versa.

We argue as follows: All diagnoses for any OBSi must
contribute to the overall diagnoses. It might be the case that
such a diagnosis is not in the result of diagnosis considering
all observations. However, a superset of this diagnosis must
be present. This is due to the fact that otherwise, the corre-
sponding overall diagnosis can never be consistent. Because
of the fact that every superset of a diagnosis is itself a diag-
nosis (Theorem 1), we can conclude that every diagnosis for
all observation sets must be a diagnosis when considering
only one particular observation set. The opposite is not true.
For this purpose, we only need to consider the full adder
example. There are observations leading to the empty set
being a diagnosis. However, the empty set is not a diagnosis
for the overall set of observation sets.

Taken the last paragraph into account it seems that not
every observation set OBSi is important to further constraint
the computation of diagnoses. OBSi leading to an empty
diagnosis are not used to further restrict the search space,
which is the case in other methods like spectrum-based fault
localization mentioned in the introduction. Let us partition
the set of observation sets into those leading to the empty
diagnosis and the others. Similarly in system testing used
test cases can be characterized as passing or failing. In the
following definition, we adopt this concept and apply it to
observation sets.

Definition 4 (Failing/passing observations). Given a diag-
nosis system (SD,COMP). An observation OBS is said to
be failing (passing) if and only if SD∪OBS∪{¬ab(C)|C ∈
COMP} is inconsistent (consistent)

From any set of observation sets O we can obtain the set
of failing and passing observations as follows:

FAIL(O)=

{
OBS

∣∣∣∣OBS ∈ O∧
(

SD∪OBS∪
{¬ab(C)|C ∈COMP} |=⊥

)}

PASS(O) = O\FAIL(O)



We use these definitions of passing and failing observa-
tion sets in the next theorem stating that only failing obser-
vation sets lead to (non-empty) diagnoses we are interested
in.

Theorem 3. Let D∆ be the set of all parsimonious diag-
noses obtain using the diagnosis system (SD,COMP) and
the set {OBS1, . . . ,OBSk} of observation sets. D∆ is equiv-
alent to the set of all parsimonious diagnoses obtain for the
same diagnosis system when considering failing observa-
tions FAIL({OBS1, . . . ,OBSk}) only.

The theorem holds because all observation sets in PASS(.)
deliver the empty diagnosis where all of its supersets can be
diagnoses.

An immediate consequence of Theorem 3 is that we can
safely ignore passing observation sets when computing di-
agnoses and focus only on failing one. This may potentially
reduce the time required for diagnosis. On the downside, a
direct use of passing observation sets in consistency-based
diagnosis is not possible. However, the question remains,
whether it is still possible to utilize passing observation sets
for reducing the number of diagnosis candidates. We are
going to (at least partially) answer this question in the fol-
lowing section.

6 Integrating non-conflicting observations
In order to deal with multiple observation sets, we adopt
ideas from spectrum-based fault localization [13; 14] where
a suspiciousness value is computed for each statement in
a program considering passing and failing runs of a pro-
gram. Instead of taking care of the semantics of statements,
only execution traces are used. The underlying motivation
is that statements never executed in failing test cases can be
considered as never causing wrong behavior, whereas state-
ments always executed in failing but never in passing runs
are more likely to be responsible for detected failures. Re-
garding statements that are both executed in some passing
and some failing runs we cannot classify them as being re-
sponsible or not for a faulty behavior. In spectrum-based
fault localization a similarity index is computed ranging be-
tween 0.0 and 1.0 indicating the degree of responsibility to
a failure.

In the context of digital circuits (but also other hardware),
we do not have statements that are executed or not executed
during computation. For the full adder every run causes the
components to compute output values given certain input
values. In order to cope with this issue, we make use of the
same ideas already used for spreadsheets where we have a
similar situation. In [25] the authors present a comparison
of 42 similarity coefficients applied to fault localization of
spreadsheets. To make use of spectrum-based fault local-
ization, the authors introduced the concepts of cones, i.e.,
components that lie on a path between a given output, and
the input of a given system. Hence, instead of the whole sys-
tem, we only consider the structure, for fault localization.

Note that the use of cones for spectrum-based fault local-
ization is different from original work, where the spectrum,
i.e., the executed and not executed statements for different
observations or test cases, is based on the control dependen-
cies of a program. In case of spreadsheets or hardware ex-
plicit control is not that often used. Hence, we have to rely
on data dependencies that are captured using the concept of
cones. It would also be possible to extend the application

of spectrum-based fault localization applied to program de-
bugging utilizing cones as well.

To adopt the ideas of [25], we assume that we know for
any component C ∈ COMP all other components where
their output is connected with an input of C. This informa-
tion is accessible using a function ρ , i.e., ρ(C) = {C′|C′ ∈
COMP, and the output of C′ is connected with an input of C}.
Using ρ we can easily obtain cones recursively:

cone(C) = {C}∪
⋃

C′∈ρ(C)

cone(C′)

Note that in the following we assume that each compo-
nent has only one output, so that we can identify the out-
put of the system by the last component connected with the
output. Hence, there is a 1:1 relationship between as sys-
tem output and one component. For our full adder example,
component x2 corresponds to the output s, and o1 to cout.
Therefore, we extend the definitions of cones to the outputs
as well, e.g.:

cone(s) = cone(x2) = {x1,x2}
cone(cout) = cone(o1) = {x1,a1,a2,o1}

In addition, to cones we also need to know whether an
output (or its corresponding component) is wrong, i.e., con-
tradicting a value stated in a set of observations OBSi con-
sidering, the given input values. Using this information, we
come up with a hit spectrum, where we have a column for
each output and set of observations, and a row for each com-
ponent, and a final row where we state whether the output
is erroneous or not. If there is an error in the output for an
observation, we mark the corresponding entry of the error
with • and leave it blank, otherwise. For the other entries,
we mark them with • if the corresponding component in the
row is element of cone of the output. When using this pro-
cess we obtain the hit spectrum given in Table 2 for our full
adder example.

Table 2 not only comprises information about whether a
component causes a certain output value, but also ni j values
on the right of the table. ni j is used to count the number of
• in a row under particular conditions:

n11. . . Number of • in the row for faulty output values.
n10. . . Number of • in the row for correct output values.
n01. . . Number of blanks in the row for faulty output val-

ues.
n00. . . Number of blanks in the row for correct output

values.
These ni j figures basically indicate whether a certain

component when being responsible or not, causes an error
or not. In spectrum-based fault localization these values are
used for computing similarity indices. One often used in-
dex, providing the one of the best rankings for components
in the case of program debugging is the Ochiai index defined
as follows:

cochiai =
n11√

(n11 +n10) · (n11 +n01)

In Table 2 we find the Ochiai coefficient for all compo-
nents of the full adder considering the 6 set of observation
sets. It is worth noting that for this example, the outcome of
the coefficient does not state any difference except for com-
ponent x1. Depending on the outcome of course these co-
efficient values vary. Note also that the presented approach



Table 2: Hit spectrum of the full adder together with .

s cout n11 n10 n01 n00 cochiai
o1 o2 o4 o6 o7 o8 o1 o2 o4 o6 o7 o8

x1 • • • • • • 0 6 4 2 0.00
x2 • • • • • • • • • • • • 4 8 0 0 0.58
a1 • • • • • • 4 2 4 2 0.58
a2 • • • • • • 4 2 4 2 0.58
o1 • • • • • • 4 2 4 2 0.58

error • • • •

extends the one described in [25] allowing to specify not
only one set of observations but sets of a set of observations.

What is missing is the integration of the similarity indices
into ordinary consistency-based diagnosis. In [4] the au-
thors state how to compute the probability of a given diag-
nosis using the fault probability of the components. For this
purpose, we only need to consider the probability that all
components in the diagnosis are faulty and all other compo-
nents are working as expected. When additionally assuming
that the health statuses of components are stochastically in-
dependent, we obtain the following equation:

p(∆) = ∏
C=∆

pF(C) · ∏
C∈COMP\∆

(1− pF(C))

For combining coefficients into this framework, we ar-
gue as follows: First, similarity coefficients have (similar
to probabilities) values ranging between 0 and 1. Second,
the similarity coefficients indicate suspiciousness of compo-
nents. Hence, similar to pF they are intended to be a mea-
sure of the degree of being faulty for components. There-
fore, we state that they estimate the fault probability of com-
ponents, i.e., pF(C)∼ c(C). Note that the fault probabilities
obtained using a similarity coefficient reflect the situation
once at least one failing observation is available. The fault
probabilities usually attached to hardware components are
usually based on the mean time to failure and have a more
predictive measure.

However, when estimating the fault probabilities using
similarity coefficients c directly, we may face anomalies. If
the similarity indices are larger than 0.5, larger diagnoses
become more likely, which is – in practice – not often the
case. To avoid such anomalies but do not change any rank-
ing imposed by the similarity coefficients, we define pF us-
ing c as follows:

pF(C) = 0.1 · c(C)

The introduction of the factor 0.1 is a pragmatic choice
and more research is required for clarifying limitations and
the impact of choices regarding the computation of pF using
c. This requires a sophisticated experimental evaluation.

Using the Ochiai coefficient for our full adder example,
we obtain the following probabilities for the three diag-
noses:

Diagnosis ∆ p(∆)
{o1} 0.04830
{a1,a2} 0.00296
{x1,x2,a2} 0.00000

For our running example, we are able to rule out one di-
agnosis, which is the largest one, and rank the other two,

making use of passing and failing observations. The pre-
sented approach – of course – is based on some assump-
tions, i.e., (i) knowing the inputs and outputs of components
and systems, (ii) being able to distinguish error prone from
correct outputs, and (iii) the pragmatic choice of stating the
relationship between the similarity coefficient and the fault
probability. Some of these assumptions may not be achiev-
able in certain applications.

7 Conclusions
In this paper, we discussed how multiple observation sets
(like multiple test cases in the context of software engineer-
ing) can be integrated within the consistency-based diagno-
sis framework. The presented solutions are strongly based
on previous research. Discussed extensions introduced in
this paper are: (i) formalizing diagnosis when having mul-
tiple observation sets, (ii) coding this extended diagnosis
problem using answer set programming, (iii) discussing lim-
itations, and (iv) at least outlining the use of passing ob-
servations within the framework. The latter relies on ear-
lier work on fault localization in spreadsheets. We provide
a necessary extension, i.e., the use of multiple observation
sets, and a link to the computation of diagnosis probabilities.

Future work has to include evaluating the approach within
an experimental setup both considering systems compris-
ing a larger set of components, and various observation sets.
The experimental analysis shall also evaluate the use of sim-
ilarity coefficients and their impact on the overall results.
Furthermore, there are other ideas of integrating passing ob-
servations into diagnosis. For example, in [26] the author
described the use of multiple observations to rule out diag-
noses based on the assumption that components shall im-
plement a function. Using this diagnosis and multiple ob-
servation sets, we may come up with an expect input output
behavior of a certain component that is not a function. As
a consequence, we may rule out this diagnosis. However,
this can only be done assuming that in a faulty case, we still
have a deterministic behavior of the involved components.
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