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Abstract
The lack of a diagnostic model often prohibits us
from deploying diagnostic reasoning for reason-
ing about the root causes of encountered issues.
For overcoming this obstacle, we discuss in this
manuscript how to exploit active automata learn-
ing for learning deterministic and stochastic mod-
els from black-box reactive systems for diagnos-
tic purposes. On one hand, we can learn models
of faulty systems for being able to deploy model-
based reasoning. Furthermore, we will also show
how to exploit fault models in the learning pro-
cess, such as to derive a behavioral model de-
scribing the entire corresponding diagnosis search
space. In terms of applications, we will discuss
several concrete diagnosis scenarios and how our
models can be exploited accordingly, as well as
report first experiments and corresponding results.

1 Introduction
When a system does not behave as expected, model-based
diagnosis [1; 2; 3; 4; 5] has proven to be a well-structured
and complete approach to search for explanations, i.e., di-
agnoses in the form of component sets that can explain the
behavior—if we assume these components to be faulty. In
the reasoning process, we take a specific system model into
account and then reason towards the diagnoses by investi-
gating the effects of the components’ faults on the behavior.
In particular, this means assessing the effects of assuming
their malfunction, either with a weak fault model where we
do not restrict the faulty behavior of a component at all, or
with dedicated fault models like a stuck-at-1 for a logic gate
(see also Sec. 2). The motivation is to derive hypotheses
concerning diagnoses and assess whether fault assumptions
specified in a diagnosis hypothesis make the observed be-
havior consistent with our expectations from a system. Al-
gorithms like RC-Tree [4] allow us to conduct an efficient
and complete search in the diagnosis space while possibly
considering constraints, e.g., in terms of cardinality.

Often, we lack the required model though, so that con-
cepts where we create knowledge bases concerning the ef-
fects of faults in terms of observable symptoms and then
abductively reason from observed symptoms towards di-
agnoses [6] can be very valuable. There we do not con-
sider consistency but look for sets of faults that entail the
observed symptoms in their union. Creating and main-
taining corresponding knowledge-bases manually is a com-

plex procedure, but this task can also be tackled using au-
tomated approaches based on simulation and fault injec-
tion/mutation [7]. Spectrum-based fault localization [8;
9] where we only need execution data about which com-
ponent was involved in which (failing or correct) behavior,
i.e. a spectrum, is another (and light-weight) alternative.
There we consider similarity coefficients [8] between the
individual behaviors’ failing/correctness and a component’s
involvement in the respective behavior in order to establish a
ranking of the likelihoods of a system’s components to be at
fault—in contrast to computing diagnoses as explanations.

In our work, while we assume a black box scenario, we
neither create an abductive knowledge base, nor focus on
execution data in the form of spectra. Rather, we focus
on actively learning a formal model from a system, with
the only requirement being that during the learning process
we need to be able to interact with the system or a simula-
tion. That is, during learning we provide stimuli and need
to be able to observe a system’s reactions. In particular,
we focus on learning formal models in a minimal teacher
environment that allows us to deploy model-based diagnos-
tic reasoning. Such an environment was initially proposed
in [10] for regular language inference. Over the years, sev-
eral extensions have been proposed. With AALPY [11], our
automata learning library, we developed, designed, and im-
proved algorithms to extend the learning to deterministic,
non-deterministic and stochastic models. Learning such for-
mal models then allows us to deploy formal reasoning in
corresponding scenarios for black-box systems.

In this manuscript, we discuss how to principally exploit
learned models, and the learning process itself in a diagnos-
tic context. So, first we show how active automata learn-
ing can be used to (a) learn the language of faults/property
violations, (b) learn the deterministic and stochastic fault
models, and (c) learn the models suitable for diagnostic rea-
soning. Furthermore, we reason about the applicability of
active automata learning in a diagnostic setting and provide
several examples to demonstrate the presented concepts.

2 Preliminaries
When talking about model-based diagnosis, we refer to the
consistency-oriented reasoning characterized in [3] or [1]
for single scenarios (see [5] for diagnoses for multiple
scenarios). In this reasoning, a system model SD de-
scribes a system’s behavior in sentences of the form hi →
nominal behavior of ci. In principle, we state that under the
assumption that some component ci is correct (encoded in
a health state variable hi ∈ H), we know how ci behaves.



Providing such sentences for all components, and comple-
menting them with connections and background knowledge,
we can define a system model for diagnostic purposes. In
this simple form, we make no assumptions about how the
components behave in case of a fault and thus implement
a weak fault model. Given some observations OBS about
the system’s actual behavior, we can reason now with SD
whether OBS is consistent with the expected behavior (de-
scribed in SD) under the assumption that all components
work as expected (such that SD ∪ OBS ∪ {hi|hi ∈ H}
is consistent or satisfiable). If this is not the case, we can
furthermore define and verify weak fault model hypotheses
∆ ⊆ H concerning faulty components (a diagnosis hypoth-
esis)—verifiable via checking SD∪OBS∪{hi|hi ∈ H \∆}.
This is exploited also in a structured exploration of the di-
agnosis search space like in RC-Tree[4].

Definition 1. A diagnosis for a diagnosis problem
(SD, H,OBS) is a subset-minimal set ∆ ⊆ H such that
SD ∪ OBS ∪ {hi|hi ∈ H \∆} is consistent (satisfiable).

Alternatively to using a weak fault model, we can de-
scribe also faulty behavior (like a stuck-at-one fault for an
AND-gate) so that hi becomes in principle a selector vari-
able for selecting between some well-defined behavioral
variants. Such a strong fault model (SFM) approach as de-
fined in [12] has the advantage that diagnoses become more
specific since a diagnosis ∆ defines a specific behavior also
for each faulty component (and not only the correct ones). It
also entails the issue of the diagnosis search space growing
from 2|H| to O(m|H|) though (with m being the maximum
number of possible modes for any hi ∈ H). While we often
assume faults to be persistent, there is also work on inter-
mittent faults, e.g., [13].

Automata Learning. We apply Angluin’s L∗ algorithm
and variations thereof [10] to mine finite-state models. L∗
is an active automata learning algorithm in the minimally
adequate teacher (MAT) framework. Such learning al-
gorithms infer automata by interacting with the teacher
through queries. For illustrating L∗-based learning, let us
assume that we aim to learn a deterministic finite automa-
ton (DFA) accepting an unknown regular language L over
alphabet Σ. The learner starts by posing automatically con-
structed membership queries to the teacher. A member-
ship query checks whether a word over Σ is in L. Once
the learner has sufficient membership information and thus
creates a hypothesis DFA H , it performs an equivalence
query. Such a query checks whether H accepts exactly L.
In case of a positive response from the MAT, learning can be
stopped with H as result. Otherwise, the teacher provides a
counterexample to equivalence, which is a word in the sym-
metric difference between L and the language accepted by
H . In that case, the learner then integrates the counterexam-
ple into its knowledge and starts a new learning round.
L∗ has been extended to various types of automata, gen-

erally with underlying regular languages. In this paper, we
learn DFAs, Mealy machines [14], and Moore machines us-
ing L∗. The latter two produce input-output traces that form
regular languages Lio ⊆ (I × O)∗ for an input alphabet I
and an output alphabet O. These machines are determinis-
tic, i.e., for every input sequence i ∈ I∗ there is exactly one
output sequence o ∈ O∗ of equal length s.t. their pair-wise
combination is in Lio. This changes membership and equiv-
alence queries: a membership query takes an input sequence
i as input and returns the output sequence s that should be

produced in response in accordance with Lio. A counterex-
ample to equivalence is an input sequence such that the hy-
pothesis disagrees with Lio.

Test-Based Automata Learning. In theory, a teacher needs
perfect knowledge of L in order to answer equivalence
queries. However, in a black-box approach this assumption
does not hold. The absence of exact equivalence queries is
commonly approached by simulating such queries by ran-
domly sampling words and asking membership queries [10;
15]. We take a test-based view of black-box automata learn-
ing, where we implement membership queries and equiv-
alence queries through testing of the system under learn-
ing (SUL), i.e., the system from which we want to learn a
model. This is a common approach in automata-learning-
based testing and verification [16]. Rather than sampling
words completely randomly for equivalence queries, we use
conformance-testing techniques to select words (a single
word w refers basically to a test case). To perform a mem-
bership query for w, we provide w to the SUL, and an
equivalence query is implemented by a series of member-
ship queries.

Conformance testing usually takes a specification model
of a software system and generates test cases from this
model to reveal non-conformance between model and sys-
tem [17]. Here, we take a hypothesis model H and gen-
erate test cases to reveal non-equivalence between H and
the SUL. In other words, we want to find words where H
disagrees with the SUL. Please note that we use equiva-
lence as conformance relation. When implementing equiv-
alence queries via testing, automata learning may not find
the true, correct automaton underlying the SUL due to the
inherent incompleteness of testing. Instead, learning will
halt upon finding a hypothesis that is deemed to conform
to the SUL. An important property of L∗-based learning is
that the learned hypothesis is the minimal automaton, in
terms of the number of states, that is consistent with the
queried information [10]. This means that additional in-
formation (counterexamples) adds states. Hence, we can
compare equivalence-query implementations based on the
size of learned models. A larger model means that the cor-
responding equivalence-query implementation is better and
found more counterexamples.

When learning Mealy or Moore machines, the basic ap-
proach remains the same. The test cases are input sequences
and our goal is to find an input sequence, where the output
sequence produced by hypothesis disagrees with the output
sequence produced by the SUL.

3 Enabling Model-Based Reasoning With
Automata Learning

In this section, we will show how automata learning can en-
able model-based reasoning trough model learning. Learned
models are suitable for debugging, strategy synthesis, mon-
itoring, and diagnostic reasoning. For the methods out-
lined in Sect. 3.1, we assume that the system under learn-
ing is intrinsically faulty. On the other hand, we outline
in Sect. 3.2 how one can mine models to be used for diag-
nostic reasoning via automata learning and fault injection—
following a similar motivation as behind approaches for au-
tomatically creating knowledge-bases for abductive diagno-
sis [7] as mentioned in the introduction.



3.1 Assessment and Recovery in Faulty Systems

In the remainder of this section, we consider a faulty system,
i.e., a system with an inherent fault. Faults are cases of non-
conformance between the system behavior and its specifica-
tion, where such faults can manifest themselves determin-
istically or stochastically. In a deterministic setting, faults
are found upon an execution of an input sequence that al-
ways reveals the violation of the specification. On the other
hand, an input sequence may or may not lead to a fault in
a stochastic setting. In particular, we have that inputs in
a stochastic setting/automaton lead to a set of new states,
where we reach those from the current state with specific
probabilities.

For a deterministic setting, Kunze et al. [18] outlined how
one can use automata learning to generate/learn failure mod-
els. Building on their high-level approach, Khoo et al. [19]
showed how fault models of cyber-physical systems could
be learned with automata learning. Finally, Chockler et
al. [20] applied active automata learning to learn a language
of software errors.

All listed approaches follow the same high-level approach
that assumes the existence of an oracle. An oracle con-
siders some property defined by the specification and re-
turns a Boolean verdict indicating whether said property
has been violated. With such knowledge, one can learn a
DFA whose accepting states are the ones causing a prop-
erty violation. This DFA can be seen as a language of faults
and can be used to construct many new, previously unseen,
test cases/scenarios that lead to the property violation. Note
that [18] formalized learned automata as Mealy machines,
but outputs were consistent with the Boolean verdict indi-
cating whether the fault occurred (ok, fail), therefore mak-
ing them structurally identical to DFAs. For completeness,
we show how such models can be learned in Sect. 4.2.

We propose a generalization of this approach. Whereas
previously mentioned approaches only learn a subset of the
system’s behavior (constrained to a property/fault), we sur-
pass this limitation by learning the system’s whole input-
output behavior. Instead of using an oracle that provides an
output whether a property violation has occurred, we con-
sider the system’s outputs. By doing so, our model is a (de-
terministic or stochastic) finite-state transducer instead of a
DFA. To make learning feasible, we use a mapper [21] to
form abstract equivalence classes over concrete inputs and
outputs. Elements of the abstract equivalence class are char-
acterized by the same future input-output behavior on the
SUL. Depending on the system, an oracle might be used
during learning as part of the mapper component [21] as-
signing fault labels to property violations. Corresponding
automated oracles, e.g., for FLTL properties [22] sometimes
also feature diagnostic support for isolating the parts of a
property triggering the violation [23] which gives more in-
sight into the failing behavior. In principle, we can also di-
agnose the resulting automaton similar to an approach used
for diagnosing specifications, i.e., where the authors cre-
ated a symbolic automaton from the specification for that
purpose [24]. An open question would be though where to
introduce the health state variables for achieving a balance
between the size of the search space on one hand, and rep-
resentative and effective feedback given by a diagnosis on
the other hand. In particular, in the current setting we can-
not draw on the focus of a specification’s subformulae, but
consider directly the automaton. Thus the placement of the
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Figure 1: Fault-free behavior of the coffee machine.

health state variables (abnormal predicates) for an efficient
and effective diagnosis process is an open question.

To the best of our knowledge, related work only consid-
ered deterministic faults and system behavior. We postu-
late that this assumption can be a limiting factor in practice.
Consequently, we extend the active learning of fault mod-
els to stochastic reactive systems [25]. More concretely, we
learn the system’s input-output behavior and represent it as
Markov Decision Process (MDP) or as a Stochastic Mealy
Machine (SMM). Learned stochastic fault models can be
used for debugging, model checking, and strategy synthe-
sis. For example, one can synthesize a strategy that com-
pletely avoids faults or minimizes the probability of a fault
occurring. However, the faults might be unavoidable due to
the stochastic nature of the system. In that scenario, knowl-
edge about the consequences of the fault can be exploited to
compute a fault mitigation/compensation strategy.

In Sect. 4.2, we show how one can learn the models of
faulty reactive systems and reason about the practical appli-
cation of these models.

3.2 Learning-Based Monitoring and Diagnosis of
Reactive Systems

Section 3.1 outlined how we can use active automata learn-
ing to mine models of faulty reactive systems. Those mod-
els can be used for model-checking and strategy synthesis.
They can reveal input sequences that lead to a fault, but we
cannot use them to reason about the causes of said faults
easily. To mitigate this problem, we show how active au-
tomata learning and fault injection [26] can be used to mine
models suitable for model-based diagnosis. Availability of
the simulated behavior of faults is supported by standards
like ISO 26262-11, that suggest fault injection as a method
for ensuring safety in the automotive domain.

In the previous section, we assumed that the SUL is inher-
ently faulty and the input alphabet used for learning contains
all possible (abstract) inputs to the system. In this section,
however, we assume that the SUL behaves according to the
specification. We can further explicitly trigger faulty behav-
ior through fault-injection inputs. Once a fault is injected, a

1https://www.iso.org/standard/68383.html
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system’s future behavior may differ from the specification.
We therefore extend the input alphabet with abstract inputs
that correspond to fault injections.

This approach enables injecting different types of faults,
such as intermittent faults. In our experiments, fault injec-
tion during learning considers the current state, whose his-
tory defines previously injected faults. Based on such his-
tory, fault injection might be ignored, for instance, to limit
the number of simultaneously activated faults in a given
component. Allowing at most one fault per component can
be achieved, by ignoring faults if the corresponding compo-
nent is already in a faulty state. We generally limit the max-
imum number of injected faults, since the size of learned
models grows exponentially in the number of active faults.

Once a fault-injected model has been learned, we can
use it for monitoring and diagnostic reasoning. As the sys-
tem operates, we trace its behavior through the automaton.
When we detect a discrepancy between the expected system
behavior and the observed behavior for some trace t, we
simulate t on the fault-injected model to find a diagnosis. A
diagnosis in this setting is a sequence of pairs of inject faults
and the position in twhere the corresponding fault may have
been injected.

In line with approaches to diagnosis of discrete-event sys-
tems [27; 28], we partition the set of possible events and
use trace projections to discard events from traces. We con-
cretely partition the input alphabet Σ for learning into Σn

and Σf . The former contains all normal inputs, whereas the
latter contains input symbols representing faults being in-
jected. Suppose that Λ is the output alphabet of our system,
we observe traces in (Σn × Λ)∗. The traces of the fault-
injected learned model M are T (M) ⊆ (Σ × Λ ∪ {τ})∗,
where τ is produced by fault-injection inputs in Σf .

For diagnosis, we associate each t ∈ T (M) with a trace
in Σn by projecting it onto σ(t) ∈ (Σn×Λ)∗, i.e., removing
input-output pairs in Σf × {τ} from t. Let λ denote the
empty trace, then projection is defined by:

σ(λ) = λ

σ((i, o) · t) = t if i ∈ Σf

σ((i, o) · t) = (i, o) · σ(t) otherwise

To diagnose a faulty trace t ∈ (Σn × Λ)∗, we first de-
termine Td(t) = {td ∈ T (M) | σ(td) = t}. Each
td ∈ Td yields a different diagnosis that is a sequence of
pairs (fi , pos). The pair element fi is a fault injection in Σf

and pos is the index of the next normal input in td, where
fault-injection inputs are not counted, thus a diagnosis may
contain elements with the same pos .

We implement diagnosis by simulating t on the fault-
injected learned machine M and the non-fault injected ma-
chineMcorr , while treating fault-injection inputs as ε transi-
tions. By doing that, we compute all interleavings of normal
inputs and fault-injection inputs that are consistent with t.
To avoid diagnoses that are likely irrelevant, we may divide
the computation into two parts: (1) the first part computes
the longest prefix t′ of t that is only consistent with non-
faulty behavior – such a t′ reaches exactly one state in M
and is observable in Mcorr . (2) Only from the state reached
by t′, we then compute the interleavings of fault injection
and normal operation. The first part essentially avoids sub-
diagnoses related to intermittent faults that produce behav-
ior conforming to the specification.

3.3 Practical Considerations and Limitations
In this section, we reason about the efficiency of applying
automata learning for diagnostic model mining. We isolated
three challenges that could hinder the applicability of the
proposed approaches. Those are (a) non-regular behavior
of SUL, (b) high-dimensional input not suitable for abstrac-
tion, and (c) state-space explosion caused by fault injection.

In the context of this paper, automata learning is used to
learn regular languages. If the system’s behavior cannot be
captured by a regular language (e.g. the system’s behavior
is context-free), we cannot learn the complete model of the
system, since equivalence queries may find infinitely many
counterexamples. This limitation can be mitigated by in-
troducing a second stopping criterion in addition to positive
results from equivalence queries. One approach could be
limiting the scope of the equivalence oracle to specific parts
of the input space. For example, we could explore the con-
sequences of a fault up to the predefined depth. This is a
proposed solution if the fault introduces non-regular behav-
ior in the otherwise regular language describing the system’s
input-output behavior.

Abstraction over input and output alphabet was addressed
in the Sect. 3.1. However, abstraction as proposed by Aarts
et at. [21] is not suitable for high-dimensional inputs (i.e.,
if the inputs or outputs of the system are arrays of floating-
point values). In such scenarios, large input alphabets make
automata learning infeasible.

Construction of diagnostic models outlined in Sect. 3.2
suffers from state-space explosion. This can be mitigated
by limiting the number of injected faults or by assuming per-
sistent instead of intermittent faults. Furthermore, injecting
faults only in some states or parts of the automaton could
limit the increase in the learning complexity while provid-
ing models capturing the consequences of faults.

4 Examples
To evaluate our approach, we implemented several reactive
systems and learned them with AALPY. We will demon-
strate techniques outlined in this paper on several variants
of a coffee machine2. Modeling more complex systems in
modeling languages such as Modelica [29] are supported,
but for simplicity, we focus on this simple reactive system
that we developed in Python.

Figure 1 depicts the correct behavior of the coffee ma-
chine, where users can interact with the it by adding coins
or by pushing a button. A coffee machine can store up to
three coins, and all further coin insertions are ignored. Cof-
fee costs two coins. If a user has provided two or three coins,
he can push the button and get the desired coffee, consuming
two coins.

4.1 Learning a Language of Errors
The specification of the coffee machine described in Sect. 4
and depicted as Mealy Machine in Fig. 1 shows that the cost
of coffee should always be two coins. Therefore, a prop-
erty (num(coins) ≥ 2 ∧ action == button )→ output(coffee)
states that coffee should be obtained iff two or more coins
were inserted and the button was pressed.

2All examples presented in the paper can be
found at: https://github.com/DES-Lab/
Automata-Learning-Based-Diagnosis

https://github.com/DES-Lab/Automata-Learning-Based-Diagnosis
https://github.com/DES-Lab/Automata-Learning-Based-Diagnosis


We now create a faulty coffee machine. If the number of
coins in the coffee machine is three (max. number of coins)
and a button is pressed, this coffee machine will return a
coffee, but at the cost of one coin.

Figure 2 shows a learned language in the form of a DFA
that violates said property. This language generates scenar-
ios where a user first inserts three coins and pushes a button,
reaching state s4. Upon pressing a button in state s4 coffee
is obtained at the cost of one coin reaching state s5. Exe-
cution of the input sequence (button, coin) from the state s4
will result in infinitely many coffees at the cost of one coin.

s0 button

s1

coin

button

s2

coin

button

s3

coin

coin

s4

button

coin

s5

buttoncoin

button

Figure 2: Learned language of a property violation.

4.2 Learning a Fault Model
The same faulty coffee machine can be modeled by learn-
ing its input/output behavior. Instead of focusing on one
specific property, we learn the entire behavior of the SUL.
This model can then later be manually analyzed or model
checked. We observe that the complete failure model de-
picted in Fig. 3 is smaller than the language of property vio-
lation shown in Fig. 2. Note that this is not the case in gen-
eral. The language a property violation will explore only
parts of the automaton that are related to the property. The
same can be achieved with input-output models by limiting
the scope of exploration in the equivalence oracle.

So far, we have considered only deterministic faults. Sup-
pose that the coffee machine has two stochastic faults. We
want to learn a model that encodes the consequences of said
faults and the probability of their occurrence. We can reason
about the faulty stochastic behavior of the coffee machine
with the help of the learned model shown in Fig. 4. Firstly,
if there are fewer than two coins in the coffee machine, a
user has a 2% chance of getting a coffee by pressing a but-
ton. Secondly, if the user inserts three coins and keeps in-
serting coins, there is a 20% chance that the coffee machine
will return all coins the user has inserted instead of just one.
Even on this trivial example we can see how a strategy can
be synthesized. To minimize the cost of coffee, one only has

s0 button/NoAction

s1

coin/CoinAdded

button/NoAction

s2

coin/CoinAdded

button/Coffee

s3

coin/CoinAdded button/Coffee

coin/CoinsFull

Figure 3: Learned deterministic fault model.

to press the button repeatedly until a free coffee is obtained
(with probability of 2%).

4.3 Learning a Diagnostic Model
Suppose we are given a coffee machine as our SUL. Its in-
puts are Σn = {coin, button}. In the fault-free behavior, the
coffee machine will return coffee if more than two coins are
inserted and NoAction otherwise. Let the possible faults be
button_no_effect and add_two_coins in Σf . The first fault
causes the button to have no effect, while the latter incre-
ments the internal counter as if two coins were inserted in-
stead of one. For simplicity, both faults are permanent once
triggered and only one fault can be triggered at any time.

In the fault-free behavior, the input sequence
is = (coin, coin, button) results in the output sequence
os = (coinAdded, coinAdded, coffee). Suppose that during
system monitoring, said input sequence produces the
output sequence os′ = (coinAdded, coinAdded, NoAction).
We observe that expected and actual observations dif-
fer and we are interested in the fault that caused this
difference. We compute the diagnosis as outlined in
Sect. 3.2 given the learned model shown in Fig. 5 (τ
is denoted True in the figure). In order to diagnose the
faulty trace t = is/os′, we compute Td(t). This set
includes, for example, the traces (button_no_effect, τ) ·
(coin, coinAdded) · (coin, coinAdded) · (button,NoAction)

s0
button/NoAction:0.98

button/Coffee:0.02

s1

coin/CoinAdded:1.0 button/Coffee:0.02

button/NoAction:0.98

s2

coin/CoinAdded:1.0

button/Coffee:1.0

s3

coin/CoinAdded:1.0

coin/ReturnCoins:0.2

button/Coffee:1.0

coin/CoinsFull:0.8

Figure 4: Learned stochastic fault model.



s0 button/NoAction

s1

coin_double_value/True s5

coin/CoinAdded

s10

button_no_effect/True

button/NoAction

s2

coin/CoinAdded button/Coffee

s3

coin/CoinAdded

coin/CoinsFull

s4

button/Coffeecoin/CoinAdded

button/NoAction

coin_double_value/True

button/NoAction

s6

coin/CoinAdded

s11

button_no_effect/True

button/Coffee

coin_double_value/True

s7

coin/CoinAdded

s9

button_no_effect/True

coin_double_value/True

button/Coffee

coin/CoinsFull

s8

button_no_effect/True

coin/CoinsFull
button/NoAction

coin/CoinAdded

button/NoAction

button/NoAction

coin/CoinAdded

coin/CoinAdded

button/NoAction

Figure 5: Learned diagnostic model.

and (coin, coinAdded) · (coin, coinAdded) ·
(button_no_effect, τ) · (button,NoAction). Using one-based
indices, this yields the diagnoses (button_no_effect, 1) and
(button_no_effect, 3). Hence, the behavior may have been
caused by a faulty button.

4.4 More Advanced Examples
The coffee machine example and its variations served as a
proof of concept, and their small size made them suitable
for manual analysis and visualization.

To further assess the feasibility and applicability of the
proposed approaches, we implemented several simulated re-
active systems. This section will examine how the proposed
methods could be applied to those systems.

Gearbox and Clutch. A gearbox system where gears can
be changed and the clutch can be pressed and released. If the
gearbox is set to reverse twice from any gear (but the first)
the gearbox breaks. A fault language (40 state DFA) and
fault model (36 state Mealy Machine) of the gearbox sys-
tems were successfully learned. Both models can be used
to construct previously unseen scenarios that lead to fail-
ure/property violation.

Vending Machine. A simple vending machine where
the user can input three different coins. Once a sufficient
amount of coins have been inserted, users can select one
of the offered items from the vending machine. A spe-
cific combination of inputs invokes a fault in the vending-
machine logic. By learning a fault model (90 state Mealy
Machine), we successfully found the sequences that lead to
the fault. During learning, the structure of the intermedi-
ate hypotheses was exploited when performing equivalence
queries. A purely random equivalence oracle might not be
able to learn a complete model.

Crossroad with Traffic Lights and Pedestrians. A cross-
road where two traffic lights control the flow of traffic. The

traffic control units balances the number of queued cars in
each direction (north-south and east-west). Each direction
also has a pedestrian button. The pedestrian button increases
the priority of its respective lane. Each lane has a sensor that
tells the control unit how many cars are queued. A fault can
be injected into each sensor. If the sensor is faulty, it might
lead to a traffic jam, as the control unit may not adequately
react to newly arriving cars. Learning resulted in a 3807
state diagnostic model and took 150 seconds.

Differential Drive Robot. A simple robot with two
wheels. The difference in speed of both wheels determines
the direction of the robot. The maximum speed of each
wheel is ten units. The speed is capped, because placing no
limit on maximum speed results in a context-free language.
Each wheel can speed up, slow down, or keep its current
speed at each time step. What is more, each wheel can be in
one of three fault modes: spin faster, slower, or stuck.

MQTT and TCP protocols. Deterministic models of
MQTT and TCP protocols were successfully learned with
active automata learning [30; 31]. Stochastic faults were in-
jected in the deterministic models capturing the abstracted
input-output behavior of both protocols. Protocol fault
models of were successfully learned, resulting in 17-state
(MQTT) and 12-state (TCP) stochastic Mealy machine.

5 Conclusion
In this paper, we presented an active automata learning ap-
proach at model-based diagnosis. We have shown how au-
tomata learning can be used to learn three types of models:
the language of property violations as DFA, models captur-
ing a faulty system’s input-output behavior, and diagnostic
models. Learned models are suitable for debugging, verifi-
cation, test-case generation, and diagnostic reasoning.

While we showed principal viability via simple proof-



of-concept examples we will apply the proposed methods
to a real-world case study. If a live interaction with the
system under learning is not possible, as in safety-critical
systems that are already online, we might consider the au-
tomatic construction of diagnostic models via passive au-
tomata learning. Passive automata learning does not inter-
act with the system under learning but constructs models
consistent with previously observed system traces (logs).
Furthermore, we will develop methods that support feasi-
ble automata learning in complex, dynamic cyber-physical
systems. Another point of interest will be the development
of automated input-output abstraction methods.
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