Issue-Driven Features for Software Fault Prediction

Amir Elmishali and Meir Kalech
Software and Information Systems Engineering
Ben Gurion University of the Negev
e-mails: amir9979 @gmail.com , kalech@bgu.ac.il

Abstract

Nowadays, software systems are an essential
component of any modern industry. Unfortu-
nately, the more complex software gets, the
more likely it is to fail. A promising strat-
egy is to use fault prediction models to predict
which components may be faulty. Features are
key factors to the success of the prediction,
and thus extracting significant features can im-
prove the model’s accuracy. In the literature,
software metrics are used as features to con-
struct fault prediction models. A fault occurs
when the software behaves differently than it
is required to. However, software metrics are
designed to measure the developed code rather
than the requirements it meets. In this paper
we present a novel paradigm to construct fea-
tures that combine the software metrics as well
as the details of the requirements, we call it
Issue-Driven features. Evaluation, conducted
on 86 open source projects, shows that issue-
driven features are more accurate than state-
of-the-art features.

1 Introduction

Software’s significance, as well as its complexity, is
practically growing in almost every field of our lives.
The growing complexity of software leads to software
failures that are more difficult to resolve. Unfortunately,
software failures are common, and their impact can be
significant and costly. Early detection of faults may lead
to timely correction of these faults and delivery of main-
tainable software. Therefore, many studies in software
engineering and artificial intelligence have been focused
on approaches for finding faulty code in the early phases
of software development life cycle. In particular, one of
those approaches is fault prediction that implements pre-
diction models to estimate which software components
are faulty.

Software Fault Prediction (SFP) is very important and
essential to improve the software quality and reduce the
maintenance effort before the system is deployed. SFP
enables to classify software components as fault-prone
or healthy. SFP model is constructed using various soft-
ware metrics and fault information of previous releases
of the project system. In particular, a training set is gen-
erated by extracting a set of features from each software
component and assigning a target label to the compo-
nent indicating whether it is faulty or healthy. Then this
training set is fed to a machine learning algorithm, which
generates a classification model. This model is used to
predict whether or not the components in the next ver-
sion will be faulty. SFP models have been proved in the
literature to produce classifiers with a great predictive
performance [1] and to improve bug localization process

[2].

Selecting the features that best describe each compo-
nent has a great influence on the accuracy of the classifi-
cation model. Previous research in SFP proposed to use
software metrics as indicators for fault prediction task.
These metrics have been originally created to measure
various properties of the developed code such as code
size and complexity, object oriented metrics and process
metrics [3; 4]. However, measuring only the code prop-
erties to predict faults is not sufficient since a fault occurs
when a software component behaves unexpectedly. The
expected behaviour of a component is derived from the
requirements of the system. Therefore, the features for
SFP should represent the code properties alongside the
requirements properties of the component.

A modern software developers team uses a version
control system (such as GIT) to manage the modifica-
tions in the code and an issue tracking system (such as
Jira and Bugzilla) to record and maintain the requested
and planned tasks need to be done in the system, such as
reported bugs and new features. An issue in the system
is a report of a specific task, its status and other relevant
information.

We can map each given requirement to the software

components that fulfilled it by monitoring issues and
code changes.

The goal of this paper is to propose a novel paradigm
to construct features that combine the software metrics
and the issued task details, we call it Issue-Driven fea-
tures. These features are designed to overcome the gap
between the developed software metrics and the task it
expected to complete. We empirically study the impact
of issue-driven features on fault prediction models and
we compare our results with known feature sets used in
the literature.

Given the research goal, we mined 86 software reposi-
tories and extracted the issue-driven features for the SFP
problem, as well as other features sets used in the liter-
ature. We evaluate the performance of SFP model gen-
erated with each set and show that issue-driven features
outperform all other features sets. In addition, we show
that issue-driven features are the most important fea-
tures, in terms of Gini importance

2 Related Work

Software fault prediction (SFP) is one of the most ac-
tively researched areas in software engineering. SFP is
the process of developing models that can be used by
the developers teams to detect faulty components such
as methods or classes in the early phases of software
development life cycle. The prediction model perfor-
mance is influenced by modeling techniques and met-
rics. The choice of which modeling technique to use
has lesser impact on the model accuracy. On the other
hand, the choice of which software metric set to use has
greater impact on the model accuracy. Several literature
reviews analyzed and categorized the software metrics
used for SFP. [3] divided software metrics into three cat-
egories based on the goal of the metrics and the time
there been proposed. First, traditional metrics are met-
rics that aimed to measure the size and complexity of
a code. Second, object oriented metrics are metrics that
aim to capture the object oriented properties such as co-
hesion, coupling and inheritance. Third, are process met-
rics that measure the quality of the development process
such as number of changes and number of bugs. Rathore
et. al. [4] categorized the metrics into two classes ac-
cording to the way they are extracted. First are product
metrics computed on a finally developed software prod-
uct and includes the traditional, object oriented and dy-
namic metrics. Second are process metrics that are col-
lected across the software development life cycle. We
explain the features sets deeply in Section 4. Based on
the literature reviews of Kumar et. al. and Radjenovic [5;
3], the most commonly used software metrics suites are:
Chidamber and Kemerer, Abreu MOOD metrics suite,
Bieman and Kang, Briand et al., Halstead, Lorenz and
Kidd and McCabe [6; 7; 8; 9].

3 Problem Definition and Methodology
3.1 Problem Definition

Fault prediction is a classification problem. Given a
component, the goal is to determine its class, healthy or
faulty. Software fault prediction is described as the task
of predicting which components in the next version of
the software contain a defect. Supervised machine learn-
ing algorithms are commonly used to solve classification
problems. They receive as input a training set, which is
fed into a classification algorithm. This set is composed
by a set of instances, in our domain these are software
components, and their correct labeling, i.e., the correct
class - healthy or faulty - for each instance. Then, they
output a classification model, which maps a new instance
to a class.

3.2 Generating a Fault Prediction Model

To build a fault prediction model we require a training
set. In our case, the training set is composed of compo-
nents from previous versions of the software under anal-
ysis. Version control systems, like Git and Mercurial,
track modifications done to the source files and record
the state of every released version. Therefore, by ana-
lyzing version control systems, we can train a fault pre-
diction model using components from previous versions,
and evaluate the prediction model with the components
from the next version.

The label of an instance is whether the file is faulty
or not. Issue tracking systems such as Jira and Bugzilla,
record all reported bugs and track changes in their sta-
tus, including when a bug gets fixed. A key feature in
modern issue tracking and version control systems is that
they enable to track which modifications in the source
were performed in order to fix a specific bug. Formally,
given abug X we ®(X) is a function that returns a set of
source files in the version control system that were mod-
ified to fix bug X . To implement function ®(.X), we start
by extracting closed bug reports that refer to the version
under analysis from the issue tracking system. Then, we
map each bug to the commit that fixed it. To this end, we
use the id of the bug issue, and search the correspond-
ing issue id in all of the commit messages of the version
under analyzing. After matching each bug issue to the re-
spective bug fixing commit, we label the changed files in
the commit as defective if they were changed in that par-
ticular fixing commit. Consequently, for each version,
the files labeled as defective are the ones that were pre-
viously changed at least once in a fixing commit.

4 Feature Extraction

One of the key requirements to achieve good perfor-
mance while predicting the target state is to choose
meaningful features. Many possible features were pro-
posed in the literature for software fault prediction task.
In particular, software metrics are well known features

to be used for this task. Software metrics have been in-
troduced to estimate the quality of the software artifacts
currently under development for an effective and effi-
cient software quality assurance process, By using met-
rics, a software project can be quantitatively analyzed
and its quality can be evaluated. Generally, each soft-
ware metric is related to some functional properties of
the software project such as coupling, cohesion, inheri-
tance, code change, etc., and is used to indicate an ex-
ternal quality attribute such as reliability, testability, and
fault-proneness.

Rathore et. al.[4] survey the software metrics used
by existing software fault prediction models and divide
them into product features and process features. Prod-
uct features aim to measure the final developed product
and can be categorized into three feature sets: traditional,
Object-Oriented and dynamic features. Process metrics
aim to measure the quality of the development process
and software life cycle.

* Product features - product metrics are calculated
using various features of finally developed software
product. These metrics are generally used to check
whether a software product confirms certain norms
or code conventions. Broadly, product metrics can
be classified as traditional metrics, object-oriented
metrics, and dynamic metrics.

— Traditional features - These features, designed
during the initial days of emergence of soft-
ware engineering, are known as traditional
metrics. they mainly include size and com-
plexity metrics such as number lines of code
and number of functions.

— Object oriented features - These features are
software complexity metrics that are specifi-
cally designed for object oriented programs.
They include metrics like cohesion and cou-
pling levels and depth of inheritance.

— Dynamic features - Dynamic metrics refer
to the set of metrics which depend on the
features gathered from a program execution.
These metrics reveal the behavior of the soft-
ware components during execution, and are
used to measure specific run time properties
of programs, components, and systems. On
the contrary to the static metrics that are cal-
culated from static non-executing models, the
dynamic metrics are used to identify the ob-
jects that are the most coupled and/or complex
during run-time. These metrics provide differ-
ent indication on the quality of the design.

e Process features - Process features refer to the set of
metrics that depend on the features collected across
the software development life cycle. For instance,
the number of times a component has been mod-
ified, the time passed from the last modification,

etc. In contrast to product metrics, process features
were designed to measure the quality of the devel-
opment process instead of the final product. They
help to provide a set of process measures that lead
to long-term software process improvement.

It is not clear from the literature which combination
of features yields the most accurate fault predictions.
Therefore, in our experiments we use features from all
the sets.

5 Issues Driven Features

Nowadays, software development teams manage their
day-to-day tasks using issue tracking system like Jira,
Bugzilla etc. Issue tracking systems record issues that
should be implemented in the system such as bugs to be
fixed and new features to develop. An issue details the
status of the task, the type of the task, a literal explana-
tion of the task and the task priority. To resolve an issue,
a developer adds a commit that completes the issue task.
Software bugs occur when the code does not perform
the issued task correctly. Most of the software metrics
measure the quality based on the code properties solely
rather than the desired tasks they seek to accomplish. We
suggest combining issues and code properties to calcu-
late code metrics as a function of the issues properties
that they address. We call these new features 'issue-
driven features'. An issue can be represented by its:
(1) type (bug fix, improvement or new feature), (2) pri-
ority (major, minor, trivial), and (3) severity (blocker,
normal, enhancement). Note that we can easily extract
these fields from the issue tracking system. Then, we
map the issue to the developed component by analyz-
ing the changes in the GIT commits that the developer
added to resolve this issue. Figure 1 shows an example
of an issue report CAMEL-12078 (upper) and a commit
that resolved it (lower). As a result, for each issue we
have the changes have been done to resolve it. For exam-
ple, one of the features that we propose is to measure the
added complexity of a change for different issues type.
As shown in Figure 1, we can analyze the changed file
and mark the added "else" statement as increase of the
code complexity that fixed the bug. To demonstrate the
effectiveness of the issue-driven features, we show how
to empower the known features, process and product, by
adding the issue information.

* Process features: The process features are calcu-
lated as an aggregation of the change metrics on the
relevant commits e.g. the number of line insertions
for a file. In order to add the issue’s information, we
extract the issue that was resolved by each commit
and record the changes have been done in the com-
mit to solve the issue. For example, we calculate the
number of line insertions that fixed a bug.

* Product features: A product feature is extracted by
analyzing the source lines of the component. For

Camel /' CAMEL-12078

4

DataSource twice

v Details
Type: [Bug
Priority: = Minor
Affects Version/s: 2.20.1

MIME-Mutipart DataFormat reads attachment

v CAMEL-12078: camel-mail - Fix MIME-Mutipart DataFormat reads

attachme...

.nt DataSource twice. Thanks to Tim Dudgeon for test case.

}3 master

Showing 2 changed files with 70 additions and 1 deletion.

Status: [RESOLVED |

Resolution: Fixed

Fix Version/s: 3.10.0
Browse files
Unified Split

...ail/src/main/java/org/apache/camel/dataformat/mime/multipart/MimeMultipartDataFormat.java 5

..... @@ -119,6 +119,8 @@ public void marshal(Exchange exchange, Object graph, OutputStream stream’

part.setHeader(CONTENT_TYPE, ct);

if (lcontentType.match("text/*") && binaryContent) {

part.setHeader (CONTENT_TRANSFER_ENCODING, "binary");

+ } else {

+ setContentTransferEncoding(part, contentType);

Figure 1: A screenshot of a bug report number CAMEL-12078 (upper) and the commit that resolved it (lower). We
can see that a new ’else’ statement added in order to resolve the bug.

example, the number of function calls in a compo-
nent. In order to add the issue’s information for the
product features, we annotate for each source line
the latest commit that modified it. Then, we use our
mapping in order to find the issue that has been re-
solved by the commit. Finally, we calculate each
product metric separately for the different values
of the issue type, priority and severity. For exam-
ple, to get the number of function calls in for is-
sue type "bug" we sum up the number of calls only
for source line that have been modified in commits
mapped to issue of type "bug".

Next we demonstrate the issue-driven features extrac-
tion with the product metric lines of source code (LOC).
First we map each source line to the issue that has been
resolved by the last commit that changed the line. Fig-
ure 2 shows a screenshot of function createMixedMulti-
partAttachments from Apache Camel project. For each
source line we mention the issue that mapped to the line

and the type of each issue (bug/improvement/new fea-
ture). The LOC of bug issues is 5, LOC of improvement
issues is 4 and LOC of new features is 2.

To demonstrate a issue-driven process feature ex-
traction, we focus on the total number of modification
(MOD) of the commit. Here we derive the MOD per is-
sue type. For simplicity, we focus only on the three com-
mits in the square. There is a vertical line next to each
commit, that marks the source lines that have been mod-
ified by the commit. We can see that the MOD value
is 11 and the MOD of the bug issues, improvement is-
sues and new feature issues, are 5, 4, and 2 respectively.
In the experiment section we thoroughly explain which
features we extracted.

6 Evaluation

Our research goal is to present the effectiveness of
the issue-driven features for software fault prediction.
Therefore, we designed our study to empirically com-

D BugCAMEL-1645 private MimeMultipart createMixedMultipartAttachments(MailConfiguration configuration, Exchange exchange)

Imp CAMEL-14578

// fill the body with text

D BugCAMEL-1506

throws MessagingException, IOException {

MimeMultipart multipart = new MimeMultipart();

E3New CAMEL-385 multipart.setSubType("mixed");

O Bug CAMEL-1645

ImpCAMEL—14578—‘ AttachmentsContentTransferEncodingResolver contentTransferEncodingResolver

addBodyToMultipart(configuration, multipart, exchange);

String partDisposition = configuration.isUseInlineAttachments() ? Part.INLINE :

= configuration.getAttachmentsContentTransferEncodingResolver();

Part.ATTACHMENT;

Imp CAMEL-13678
EINewCAMEL-7536
}

3 Bug CAMEL-1506 return multipart;

if (exchange.getIn(AttachmentMessage.class).hasAttachments()) {

addAttachmentsToMultipart(multipart, partDisposition, contentTransferEncodingResolver, exchange);

Figure 2: A screenshot of the function createMixedMultipartAttachments from Apache Camel project. For each source
line we show the issue resolved by the last commit that changed the line. Also, we add the issue type of each issue,
where "Bug", "Iml" and "New" represent a bug fix, improvement and new feature, respectively. The highlighted square
shows the lines that were modified by each commit. First, CAMEL-385s commit added 5 lines, then, CAMEL-1645"s
commit modified 4 and finally, CAMEL-14578°s commit modified the last two.

pare the performance of fault prediction models trained
with the issue-driven features against other feature sets
proposed in the literature. We report an experimental
study designed to address the following research ques-
tions.

RQ1. Do issue-driven product features perform bet-
ter than other product features proposed in the litera-
ture?

RQ2. Do issue-driven process features perform better
than other process features proposed in the literature?

RQ3. Which features influence the most on the accu-
racy of the fault prediction model?

6.1 Experimental Setup

We start by collecting the data from repositories, which
includes metrics and defects information. Then, we ap-
ply feature extraction whose purpose is to extract the fea-
tures and organize them in sets. Next, we train classifi-
cation models to predict defects based on several algo-
rithms and optimise them with hyper-parameterization.
Last, we cross-validate the models and evaluate them
using different classification metrics. Each step is rep-
resented in the following subsections.

Data Collection The first step of our approach is to
collect the data and to generate the datasets required for
training and testing of the classifiers. We evaluate our
approach 86 projects from the open source organizations

Apache ! and Spring 2 written in Java that managed their
source code using Git version control system and an is-
sue tracking system (JIRA or BUGZILLA). We filtered
the projects as follows. First, we filtered out projects
without reported resolved bugs or less than 5 released
versions. Then we iterated the resolved bugs and mapped
them to the commits that resolved them. Next, for each
version we labeled the faulty files in the version if they
changed in a commit in the version that resolved a bug.
Finally, for each project, we filtered out versions with
faulty files’ ratio lower than 5% and higher than 30%,
since it composes a good representation of bugs that re-
duces the class imbalance, that is produced by the low
number of defects, and it is not an outlier, for instance,
a version that was created just to fix issues. For each
project we selected 4 version as a training set and a later
version as a test set.

Feature Extraction It is not clear from the literature
which combination of features return the best fault pre-
diction model. Therefore, we extracted commonly used
feature sets from the literature [4; 3], consist of both pro-
cess and product features. We implemented 122 features
including the following product features sets:

1. Chidamber and Kemerer metrics suite [6] (CK),
2. Halstead complexity metrics [8] (HALSTEAD),

"https://www.apache.org/
“https://spring.io/

3. Lorenz and Kidd OO features [9] (LK),
4. MOOD features [7] (MOOD).

In addition, we implemented 17 process features includ-
ing the following:

1. code delta and change metrics (such as number of
changes and type of changes) [10],

2. Time difference between commits [11; 12]

3. developer based features [11; 13].

Training Classifiers Several learning algorithms were
considered to generate the fault prediction model: Ran-
dom Forest, XGB Classifier and Gradient Boosting Clas-
sifier. Preliminary comparison found that the Random
Forest learning algorithm with 1000 estimators performs
best with our datasets. The depth of the trees was limited
to five and the function to measure the quality of a split
was set to Gini. We used 10 fold cross validation Ran-
dom Forest for the rest of the experiments.

6.2 Data Analysis and Metrics

To evaluate the fault prediction models, we followed
Rathore et al. [4] literature review that recommends to
use precision, recall and the area under the ROC curve
(AUC) as evaluation metrics. Moreover, they recom-
mend AUC as a primary indicator. We describe the met-
rics in the rest of this section. Precision and recall mea-
sure the relationships between specific parameters in the
confusion matrix:

TP TP

P:TP—i—FP R:TP+FN M

where,

e TP is the number of classes containing fault that
were correctly predicted as faulty;

* TN is the number of healthy classes that were pre-
dicted as healthy;

e FP is the number of classes where the classifier
failed to predict, by declaring healthy classes as
faulty;

¢ FN is the number of classes where the classifier
failed to predict, by declaring faulty classes as
healthy;

In addition, we use Area Under the Curve (AUC) of
the Receiver Operating Characteristic curve (ROC). The
ROC visualizes a trade-off between the number of cor-
rectly predicted faulty modules and the number of in-
correctly predicted non-faulty modules. As a result, the
closest it is to 1, the better the classifier’s ability to dis-
tinguish between classes that are or are not affected by
the fault.

feature set | AUC | Recall | precision || importance
issue-driven | 0.74 0.16 0.31 0.31
process
process 0.68 0.14 0.30 0.07
issue-driven | 0.75 0.16 0.33 0.40
product
product 0.62 0.11 0.27 0.22

Table 1: The fault prediction performance for different
feature sets. The first two rows compare between issue-
driven process features and common process features
used in the literature, and the next two rows compare be-
tween issue-driven product features and common prod-
uct features used in the literature. The highest value of
each metric is highlighted. The importance of a set is cal-
culated as the sum of the Gini importance of the features
in the set.

6.3 Results

In this section, we discuss the obtained results focusing
on the research questions we initially defined. As such,
we first analyse the results of the fault prediction models
trained with different feature sets, and then analyse the
importance of each feature set.

To address RQ.1 and RQ.2 we evaluated whether the
performance of our models, trained with issue-driven
features, outperform those trained with feature sets from
the literature. Table 1 shows the arithmetic mean for all
the scores representing the comparison between issue-
driven features and the known features. The first two
rows compare between issue-driven process features and
common process features used in the literature, and the
next two rows compare between issue-driven product
features and common product features. The precision
and especially recall results are fairly low. This is un-
derstandable, since the imbalance nature of the dataset
damage the TP score of the models [14].

Regarding RQ.1, we can observe that the issue-driven
features perform better in all metrics. This is most no-
ticeable in the primary indicator AUC. Furthermore, for
81% (70 out of 86) of the projects the issue-driven
features performed better than the other features. The
significance level of the results is p < 0.01. Regard-
ing RQ.2, we evaluate process features sets as listed
at Rathure et al. [4] such as code delta, code churn
and change metrics. We compare the results of a model
trained with those features to a model trained with issue-
driven variant of those features. Results among all met-
rics show that issue-driven features outperform the pro-
cess features used in the literature. Furthermore, for 86%
(74 out of 86) of the projects the issue-driven features
performed better than other features. The significance
level of the results is p < 0.01.

To address RQ.3 we evaluated which feature set influ-
ence the prediction model the most, when training with
all the feature sets together. To do so, we relied on the

importance score of the random forest classifier. The im-
portance of a feature is computed as the (normalized) to-
tal reduction of the criterion brought by that feature. It
is also known as the Gini importance. We computed the
importance of a feature set as the sum of the importance
of the features in the set. The column "importance” in
Table 1 shows the arithmetic means of the importance
score for each feature set. These results show that issue-
driven features are the most importance features in the
model.

7 Threats To Validity

For our study, we identified the following threats to va-
lidity. The projects we used for evaluation were limited
to open-source projects from Apache and Spring writ-
ten in Java. This is a threat to the generalization of our
results. However, several fault prediction studies have
used projects from open source projects as the software
archive [15] and, in addition, projects from Apache have
been integrated into the Promise data set. The use of the
issue tracking system is also a threat to validity towards
the result’s generalization. However, their use is cou-
pled with the issue tracking system of the open source
projects.

8 Conclusions and Future Work

In this study we present a novel feature set for the
fault prediction problem, named issue-driven features.
We demonstrated how issue-driven features overcome
the limitation of traditional software metrics that are ag-
nostic to the requirements of the software. Next, we eval-
uated the impact of issue-driven features on 86 open
source projects from two organizations. We evaluated
the performance of issue-driven features against tra-
ditional features for both process and product feature
classes. Moreover, we investigated the importance of
the issue-driven features among all features. The results
show that issue-driven features are significantly better
than traditional features for both classes and achieve an
improvement of 6% to 13% in terms of AUC. In future
work we propose to improve Issue-Driven features us-
ing the relation between overlapping issues such as new
feature and its improvements. Moreover, in future work,
we plan to use the Issue-Driven feature to cross-project
software fault prediction task.

References

[1] S.Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking Classification Models for Software
Defect Prediction: A Proposed Framework and
Novel Findings. IEEE Transactions on Software
Engineering, 34(4):485-496, 2008.

[2] Amir Elmishali, Roni Stern, and Meir Kalech.
Data-augmented software diagnosis. In AAAI, vol-
ume 16, pages 4003—4009, 2016.

(3]

(5]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

Danijel Radjenovi¢, Marjan Hericko, Richard
Torkar, and Ales Zivkovi¢. Software fault predic-
tion metrics: A systematic literature review. Infor-
mation and software technology, 55(8):1397-1418,
2013.

Santosh S Rathore and Sandeep Kumar. A study
on software fault prediction techniques. Artificial
Intelligence Review, 51(2):255-327, 2019.

Lov Kumar, Sanjay Misra, and Santanu Ku Rath.
An empirical analysis of the effectiveness of soft-
ware metrics and fault prediction model for identi-
fying faulty classes. Computer standards & inter-
faces, 53:1-32, 2017.

Shyam R Chidamber and Chris F Kemerer. A met-
rics suite for object oriented design. IEEE Trans-
actions on software engineering, 20(6):476-493,
1994.

Fernando Brito Abreu and Rogério Carapuca.
Object-oriented software engineering: Measuring
and controlling the development process. In Pro-
ceedings of the 4th international conference on
software quality, volume 186, 1994.

Maurice H Halstead. Elements of software science.
1977.

Mark Lorenz and Jeff Kidd. Object-oriented soft-
ware metrics: a practical guide. Prentice-Hall,
Inc., 1994.

Nachiappan Nagappan, Andreas Zeller, Thomas
Zimmermann, Kim Herzig, and Brendan Murphy.
Change bursts as defect predictors. In 2010 IEEE
21st international symposium on software reliabil-
ity engineering, pages 309-318. IEEE, 2010.

Shinsuke Matsumoto, Yasutaka Kamei, Akito
Monden, Ken-ichi Matsumoto, and Masahide
Nakamura. An analysis of developer metrics for
fault prediction. In Proceedings of the 6th Inter-
national Conference on Predictive Models in Soft-
ware Engineering, pages 1-9, 2010.

Rajesh Choudhary, Sandeep Kumar,
Kuldeep Kumar, Alok Mishra, and Cagatay
Catal. Empirical analysis of change metrics for
software fault prediction. Computers & Electrical
Engineering, 67:15-24, 2018.

Dario Di Nucci, Fabio Palomba, Giuseppe
De Rosa, Gabriele Bavota, Rocco Oliveto, and
Andrea De Lucia. A developer centered bug
prediction model. IEEE Transactions on Software
Engineering, 44(1):5-24, 2017.

C Arun and C Lakshmi. Class imbalance in soft-
ware fault prediction data set. In Artificial Intel-
ligence and Evolutionary Computations in Engi-
neering Systems, pages 745—757. Springer, 2020.

Garvit

[15] Amir Elmishali, Roni Stern, and Meir Kalech. De-
bguer: A tool for bug prediction and diagnosis. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 9446-9451, 2019.

	Introduction
	Related Work
	Problem Definition and Methodology
	Problem Definition
	Generating a Fault Prediction Model

	Feature Extraction
	Issues Driven Features
	Evaluation
	Experimental Setup
	Data Analysis and Metrics
	Results

	Threats To Validity
	Conclusions and Future Work

