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Abstract
In the software industry, it is common that
projects that are developed over time tend
to grow and become more convoluted, which
naturally serves as a fertile ground for bugs.
These bugs are solved by developers that work
on these projects. Efficient assigning bugs to
developers is a key factor in order to reduce
the average time to fix a bug. However, devis-
ing such assignment is non-trivial. The process
introduces many challenges such as time con-
sumption, optimizations in assignments, and
resource limitations. To address these chal-
lenges, we suggest an automated system for
assigning bugs to the developers who are most
likely to solve them. Our bug assignment
methods make the process of software main-
tenance easier and more reliable. We present
two algorithms to tackle this problem. The first
is inspired by Matrix Factorization, and the
second is Machine Learning based. We com-
pare the results of these algorithms to both
an oracle assignment and baseline assignment
methods. We evaluate the algorithms using
data from 137 Apache open-source projects
and show that our assignment methods well
outperform the baseline methods.

1 Introduction
In the software industry, projects that are developed for a
long period of time tend to grow in volume and become
convoluted. To create the best possible product it is best
to aspire to create code that is devoid of bugs. Since cre-
ating bug-free code is not possible, it is important to be
able to assign developers with the bugs that they are most
suited in solving.

Bug assignment is a process that entails many diffi-
culties. Before assigning bugs to developers a process of
bug triaging is needed. This process is time-consuming
and is better invested in the solving of the bug.

Many works study the issue of automating the pro-
cess of bug triaging as well as developers’ bugs assign-
ment. Some works [1; 2] suggest new methods to la-
bel bugs according to their required fields of expertise.
Other works [3; 4] propose automated tools to assign
bugs to developers based on previous bug reports. These
works collect information on both the developers and the
bugs from the bug reports. Using this method couples
the knowledge collected on the developers to the bugs.
Furthermore, this knowledge is project-specific and thus
might be limited.

In addition to the issues previously presented, most
previous works do not address the issue of workload.
They try to optimize the assignment according to the
developers’ skills and expertise while creating a bottle-
neck of specific developers that solve most of the avail-
able bugs.

To address the issues presented above, we propose
automated methods that assign bugs to developers. Our
goal is to create an algorithm that can predict as accu-
rately as possible the best developers group to assign a
bug to. We aspire to assign the bugs while considering
the workload and the size of the developers’ groups.

In this paper, we present two methods for matching
bugs to developers. Both methods use a clustering al-
gorithm to cluster developers into groups based on their
common skills and expertise. The first matching algo-
rithm (MATRON) uses a clustering algorithm to clus-
ter the bugs. In the second algorithm (MANGOLD) we
match the bugs to their respected developers’ group us-
ing a supervised machine learning classification algo-
rithm.

To test our algorithms, we use these matching meth-
ods to distribute the workload between the developers.
We tested our workload distribution algorithm on 137
Apache open-source projects with 8569 different devel-
opers. We trained our models on 40504 bugs and tested
the trained models on 2414 bugs1. We compared our re-
sults to baseline matchers as well as to an assignment

1the reports were extracted from Jira



that assigns each of the bugs to the actual developer that
was logged as the one that solved the bug, with the ac-
tual Jira logged time that took to solve it, i.e. an oracle
matcher.

2 Related Work
Bug assignment is a well-studied field. Some proposed
methods enable the developers to select bugs to solve
according to different approaches. [3] present a theoret-
ical method to assign bugs to developers where the de-
velopers rank their preferences and the system suggests
bugs that comply with their preferences. In another pa-
per by [4] the writers create a method based on auctions.
Developers that want to solve a certain bug bid on it and
the winner gets to solve it. Both of these methods reduce
the total amount of time that it takes to solve bugs since
developers are assigned to their preferred bugs, but both
of them do not provide methods to identify the workload
of the winners.

To solve the imbalance workload problem, [5] pro-
pose a method that distributes bugs to developers ac-
cording to similarities between bugs (according to the
bug report) and divides the bugs so that the workload
is balanced between the available developers. This pa-
per differs from our approach since it prefers a balanced
distribution of bugs over an expertise-based distribution.
Our method aspires to moderate the two approaches and
create a semi-optimized distribution where the develop-
ers’ expertise is taken into consideration.

A major difference between our approach and all of
the previously presented bug assignment approaches is
the fact that these methods rely solely on the data ac-
quired from the bug report as their source of knowl-
edge on the developers’ skills and expertise. On the other
hand, our approach collects data from the projects that
the developers had worked on, which is independent of
the information collected from the bug reports, and uses
this information as the knowledge base about the de-
velopers’ skills. This way, our approach is not project-
specific and the knowledge regarding the developers can
be applied to multiple projects at once. Using this ap-
proach, we can assign open-source developers to a vari-
ety of bugs without being limited to a single project.

3 Problem Description
In this section, we formalize the problem that this re-
search intends on solving. As introduced, this study
seeks to assign a bug to a group of developers. We ex-
pect the developers in the group to have the ability to
solve the bug assigned to them. We would, therefore, like
to define a developer by her development expertise and
skills. To this end, we present the following terminology
and entities.
Definition 1 (Developer). A DEVELOPER d is defined
by a set of development expertise and abilities d =

{pe1, pe2, ...pet} where pe is a specific expertise. A set
of developers is denoted by D = {d1, ..., dn}.

In reality, these development expertise and abilities
are not usually known in advance, or not explicitly given,
however, they could be inferred from past experiences
of the developer. In particular, in this work, we gath-
ered the development expertise and abilities by pars-
ing the README files and other documentation files of
the repositories that the developers had worked on. This
parsed data is then being transformed into topics, using
topic modeling ([6]).

When writing code and developing a program, devel-
opers often create and solve bugs. A bug indicates a fault
in the software. A bug is usually described in an issue
tracker tool like Jira, Bugzilla, and so on. It can be de-
fined as follows:

Definition 2 (Bug). A BUG is an entity that represents
characteristics of the software defect as can be seen in
the issue tracker. It contains features such as: priority,
comment count, description length, summary length and
project. We denote a bug b = {f1, ..., fk} is a set of
features. A set of bugs is denoted by B = {b1, ..., bm}.

Sometimes, we would like to get bugs that are
assigned to a group of developers. We denote
assigned(D′) as the function that returns the set of
bugs B′ that were assigned to the developers that be-
long to D′, i.e. assigned(D′) = {b ∈ B : ∃d ∈
D′ s.t. d is assigned to solve b}.

In this research, we assume that the more accurate the
matching between the expertise set of a developer d and
the information set of bug b, the faster the developer will
solve the bug. For example, a developer with expertise
in databases is more likely to solve a database typed bug
faster than a developer with front-end expertise. We es-
timate the time to solve a bug by the degree of matching
between the candidate bug and the candidate developer.

Determining the match between a bug and a devel-
oper is hard. Learning this matching process by using
historical bug assignments could be achieved by solving
a multi-class classification problem. In these problems,
each bug’s data is extracted to features and the class is
the developer (the assignee). Solving such a multi-class
classification problem, where the number of classes, i.e.
developers is very large, is very hard. Therefore, in
this research, we divide the developers into groups, by
grouping developers with similar development expertise
and abilities. In this way, we reduce the number of avail-
able classes (developer groups) and increase the number
of solved bugs (instances) for each group.

Next, we define the estimated time to solve a bug by
a group of developers, corresponding to the degree of
matching between the bug and the developer group.

Definition 3 (Bug solving time). BUG SOLVING TIME
t(b,D′) is the estimated time to solve bug b by a group of
developers D′ ⊆ D, and t(B′, D′) is the estimated time
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to solve a set of bugs B′ ⊆ B by a group of developers
D′ ⊆ D, which is:

t(B′, D′) =
∑
b∈B′

t(b,D′) (1)

In this research, we would like to divide the bugs and
the developers into disjoint subsets. Then, assign each
subset of bugs to its most matching developer subset so
that the total bugs solving time will be minimized.

Definition 4 (Workload distribution). Given a set of
developers D and a set of bugs B, WORKLOAD DIS-
TRIBUTION WD includes assignments of bug subsets to
developer subsets. We denote the pair 〈Di, Bi〉 to repre-
sent the subset of bugs Bi assigned to developer sub Di.
Given q disjoint subsets of D: WD = [〈Di, Bi〉|1 ≤
i ≤ q]

Note, that D is divided into subsets Di, and that bugs
from B are assigned to the different Di, and for that
reason there are exactly q developer subsets and q bug
subsets.

A subgroup of developers is capable to solve a certain
number of bugs. We define this constraint in the follow-
ing definition:

Definition 5 (Load constraint function). Given a set
of developers D′ ⊆ D, Load is a function that limits
the number of bugs that could be assigned to a set of
developers: Load : 2D → N.

This constraint limits the possibility of overloading a
certain group of developers with many bugs.

Our goal is to optimize the workload distribution so
that we can minimize the total amount of time it takes
to solve a set of bugs.

Definition 6 (Workload distribution optimization
problem). Given a set of developers D, a set of
bugs B and a load constraint function Load :
2D → N, a WORKLOAD DISTRIBUTION OPTIMIZA-
TION PROBLEM is the problem of computing an op-
timal Workload distribution, as follows: WD∗ =
argminWD

∑
1≤i≤q t(assigned(D

i), Di)s.t.∀i : 1 ≤
i ≤ q, |assigned(Di)| ≤ Load(Di)

An optimal solution of the ‘Workload Distribution
Optimization Problem‘ can infer an optimal bug solv-
ing time. To achieve this, we formalize the following re-
search question:

RQ: Which algorithm for assigning bugs to developer
groups minimizes the value of WD?

In the next section we present algorithms to address
the optimization problem.

4 Method Description
As described in Definition 6, the optimized workload
distribution depends on the estimated time a candidate
bug could be solved by a candidate developer. This time

depends on the accuracy of the matching between the
candidate bug and the candidate developer. Therefore, to
compute the optimized workload distribution, we should
first match between the bugs and developers who will
potentially solve them. To this end, we use two differ-
ent approaches. The first is inspired by Matrix Factor-
ization [7] and the second is Machine Learning based.

Both approaches group the developers into subsets.
The grouping mechanism is based on creating clusters
that aggregate developers with similar expertise and abil-
ities together. In the next section, we present the devel-
opers clustering method.

4.1 Developers Clustering
As a preliminary step, we gathered the development ex-
pertise and abilities of the developers by parsing the
README files and other documentation files of the
repositories that the developers had worked on. To divide
the developers into clusters, we used a natural language
processing algorithm - topic modeling. The algorithm
extracts frequent development expertise for the devel-
opers, such as common knowledge in databases or De-
vOps. The repositories’ descriptions, gathered from their
README file and official website description, contain
the main technologies and methods that the repositories
have as well as the required expertise and abilities that a
developer needs to be able to contribute to them.

The topic modeling algorithm in which we used to ex-
tract the expertise and abilities of the developers is La-
tent Dirichlet Allocation (LDA) [6]. We denote T as a
topic that was created by the LDA algorithm. We define
the distribution of the topics among the different reposi-
tories as follows:

Definition 7 (Repository topic distribution). Given a
set of repositories R and a topic T , for each repository
r ∈ R, we define REPOSITORY TOPIC DISTRIBUTION
Tr to be the proportional part that is represented by the
topic T in the repository r.

The method in which we acquire the value Tr is by
generating the topics across all of the ‘documents‘, i.e.
the repositories description and README data. Then
we use the algorithm to backtrack and calculate the pro-
portional value that each of the repositories had con-
tributed to the creation of the topic.

Each developer d contributes to repository r by sub-
mitting commits. The number of commits the devel-
oper had submitted is denoted as #commitsd(r) where
the total number of commits that all of the contrib-
utors of the repository had submitted is denoted by
#commits(r). For each developer, we also denote
Rd ⊆ R as the set of repositories that developer d had
submitted commits to. Using the above definitions we
define the topic contribution of a developer.

Developer’s contribution is the proportional part of
the contribution of the developer to the repository, which
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is in direct correlation to the number of commits the de-
veloper submits. We denote Cd,r as the contribution of
the developer d to the repository r as follows:

Cd,r =
#commitsd(r)

#commit(r)
(2)

Definition 8 (Developer’s topic contribution). Given
developer d and REPOSITORY TOPIC DISTRIBUTION
Tr, we denote the DEVELOPER TOPIC CONTRIBUTION
of d as TCd, and define it by the following equation:
TCd =

∑
r∈Rd

Tr · Cd,r

After acquiring the developers’ topics, the developers
are clustered using the K-Means clustering algorithm,
which enables the creation of developer groups where
each group has its own specific required expertise and
abilities, as defined in Definition 1. We denote the cre-
ated i′th developer cluster as Cdev[i] ⊆ D (note that the
following holds:

⋃
Cdev[i] = D and

⋂
Cdev[i] = ∅).

The method of creating the developers’ clusters, is the
first building block in the process of creating an algo-
rithm that is able to properly assign bugs to developers.
Next, we present two methods to match bugs to develop-
ers’ clusters.

4.2 Matrix Factorization Based Matching
Algorithm (MATRON)

MATRON uses the developers clusters presented in the
previous section, as well as the bug clusters. To create
the bug clusters we use the K-Means clustering algo-
rithm where the features for the clustering algorithm are
the ones presented in Section 2. The created i′th bug
cluster is denoted as Cbugs[i] ⊆ B, and we note that the
following holds:

⋃
Cbugs[i] = B and

⋂
Cbugs[i] = ∅.

Recall that the developers are clustered into devel-
oper clusters, the next step is to define the connection
between the assignee of a bug (i.e. the developer that
solved the bug) and its cluster. We use the assignment
table Tabassigned to represent this mapping:

Tabassigned[i, j] = 1⇐⇒ bj ∈ assigned(Cdev[i])

Table 1 shows an example for such assignments.
After both the developers and the bugs are divided

into clusters, we start the matching process. The method
we use in order to match the developers to the bugs is
inspired by the co-clustering matrix factorization algo-
rithm. To this end, we define the Matching Truth Table:

Definition 9 (Matching truth table). Given a set of
bugs, divided into clusters Cbugs, and a set of develop-
ers divided into clusters Cdev , MATCHING TRUTH TA-
BLE (Matches) is a table that contains the sum of the
‘true‘ assignments of bugs from a specific bug cluster, to
developers from a specific developers cluster.

The matching truth table is generated by accumulat-
ing the assigned bugs according to a task management

tool. For each cell [i, j] in Matches the value of a cell
is defined as follows:

Matches[i, j] =
∑

d∈Cdev [i],b∈Cbugs[j]

Tabassigned[i, j]

(3)
Table 2 shows an illustration of the MATCHING TRUTH
TABLE.

In Definition 3 we defined the bug solving time as the
estimated time that is needed for a set of developers to
solve a set of bugs. To be able to solve the workload
distribution optimization problem as defined in Defini-
tion 6, we can compute the probability of a bug to be
assigned to a developer using the matching truth table.
Definition 10 (Probabilities table). Given a set of bug
clusters Cbugs and developer clusters Cdev , PROBABIL-
ITIES TABLE (Probs) is a table that contains the prob-
ability of bug b ∈ Cbugs[i] to be assigned to developer
d ∈ Cdev[j]. Each cell in the table is calculated using the
MATCHING TRUTH TABLE Matches as follows:

Probs[i, j] = P (b ∈ assigned(Cdev[i])|b ∈ Cbugs[j]))

=
Matches[i, j]∑|Cdev|

k=1 Matches[k, j]
(4)

Table 3 shows an illustration of the PROBABILITIES
TABLE. The probabilities are calculated by normalizing
the values in Matches by the sum of the cell’s column.

Using Probs, we can calculate the assignment proba-
bility of bug bi and developers cluster k as: P (bi, k) =
Probs[k, j], s.t. bi ∈ Cbugs[j]

Given a bug bi, we can use the above equation, to cal-
culate for each developers’ cluster, the probability of the
bug being assigned to it. predictionMATRON (bi) rep-
resents a set of these probabilities.

predictionMATRON (bi) = {P (bi, cd)|cd ∈ Cdev}
(5)

4.3 Machine Learning Based Matching
Algorithm (MANGOLD)

A second approach to assign bugs to developers’ clusters
that are best suited for solving them, is using machine
learning techniques. Specifically, classification. Classifi-
cation algorithms aim to classify an instance to the most
suitable target. Generating a classification model is done
by training a model with a training set that includes in-
stances composed of features that characterize the in-
stance, and a label (class) that characterizes the target. In
our case, the instances of the training set are bugs. For
each bug, we extract features, where the label of the bug
is the cluster of the developer assigned to solve it. This
training set is used to train a prediction model. Given a
new bug, this model could recommend the best-suited
developer cluster.
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b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16
Cdevs[1] 1 1 1 1 1
Cdevs[2] 1 1 1 1 1
Cdevs[3] 1 1 1 1 1 1

Table 1: An assignment table. All bugs marked by 1 in a row are assigned to developers in a cluster that corresponds
to that row.

Cbugs[1] Cbugs[2] Cbugs[3]
Cdevs[1] 3 2 2
Cdevs[2] 2 2 1
Cdevs[3] 1 3 2

Table 2: The matching truth table. Contains the sum of
all of the assigned bugs as mentioned in equation 3.

Cbugs[1] Cbugs[2] Cbugs[3]
Cdevs[1] 0.5 0.2857 0.4
Cdevs[2] 0.3333 0.2857 0.2
Cdevs[3] 0.1667 0.4285 0.4

Table 3: The probabilities table. The table contains the
probability of bugs from a specific bug cluster to be
solved by a developer from specific developer cluster,
as mentioned in equation 4.

The features we use, are divided into the following
groups:

1. Shallow numerical data: bug’s priority, comments
count, description length, summary length, and its
project index as defined in Definition 2.

2. Topic modeling based features: these features
were created using Latent Dirichlet Allocation
(LDA) algorithm [6], similarly to the way we ex-
tracted features for the developers. We extracted
topics from the description of the bugs and the com-
ments commented on each bug in Jira. Using trial
and error on a range of 3 to 11 topics, we picked
8 topics for the description topic modeling and 5
topics for the comments topic modeling.

For each one of the developers clusters (Cdev[i]), we
also consider the confidence value of the classification as
the likelihood of belonging to the cluster. For a bug bi,
we denote the algorithm’s predicted cluster assignment
probabilities as follows:
predictionMANGOLD(bi) = {P (bi, cd)|cd ∈ Cdev}

(6)

Where P (bi, cd) is the probability of the developer clus-
ter cd to solve the bug bi, returned by the classification
algorithm.

4.4 Workload Distribution Algorithm
To solve the workload distribution optimization prob-
lem (described in Definition 6), we propose a greedy

algorithm, inspired by the knapsack solver [8]. Our
greedy algorithm distributes the bugs across the devel-
opers’ clusters in a way that the total time it takes to
solve the bugs is minimized.

For each new bug that arrives, the algorithm in-
vokes the function prediction. This function is
defined as follows: prediction(matcher, bi) =
predictionmatcher(bi), where predictionmatcher(bi)
is defined in equations 5 and 6 for MATRON and
MANGOLD, correspondingly. This function returns the
probability of b to be assigned to each developer cluster,
organized in a set. From this set, we extract the maximal
probability from the algorithms’ predictions and the
index of the corresponding developer cluster that had
the maximal probability to solve the bug. If the load
function for the selected cluster is full, the algorithm
eliminates the highest probability, allowing the next
highest probability to be chosen. Contrarily, if the load
function is not full, the algorithm assigns the bug to the
developer cluster and proceeds to the next bug.

5 Evaluation
In this section, we describe the experimental setup used
to evaluate the matching algorithms as well as the work-
load distribution algorithm.

5.1 Data Collection
We used information that is accessible in Jira and
Github. We divided the data collection into two parts,
the data relevant to developers and the data relevant
to bugs. We used the information available from 137
Apache open-source projects2, in which 8569 develop-
ers work (some of them work on more than one project)
and 100K+ Jira issues.

Developers Data
We collected the developers’ data by fetching the infor-
mation of each repository in the following manner:

1. For each of the tested Apache repositories, the main
programming language was attached as a language
that the repository’s contributors know.

2. The repository’s README.md file was analyzed
and the data regarding the technologies that were
used to create the repository was aggregated as
well.

2https://issues.apache.org/jira
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3. In cases where the README.md data was insuffi-
cient, we collected the above information from the
repository’s website or attached info links.

The above data is accessible through Github’s REST
API and through manually going over the textual infor-
mation and validating its quality.

Bugs Data
We used information that is publicly available in Jira.
We focused on collecting information that best charac-
terizes and distinguishes bugs, as defined in Definition 2.
We gathered the information in two stages: First, we col-
lected shallow data of the bugs which can be acquired di-
rectly from the Jira API. This data includes information
about the bug’s priority and its description. We then col-
lected the comments for each bug in a second and more
exhaustive iteration. The types of data that we collected
are mostly categorical (such as bug priority, assignee,
project name, etc.) and textual (bug comments and bug
description). We also collected information about the
bugs’ creation and resolution dates.

5.2 Experimental Process

In the following section we show the process the above
data had to undergo in order to be used in our assignment
algorithms.

Developers Data Processing
To process the data of the developers, the textual
README, as well as the manually gathered repository
description, was inserted into a topic modeling algorithm
where it was distributed into topics. To select the num-
ber of topics, we used the coherence metric according to
the implementation of the method suggested in [9]. The
chosen amount of topics is the one that has the highest
value of coherence which is 6.

After the creation of the topics, for each developer and
each topic i we calculated the topic contribution TCi

(Definition 8) and normalized these values for each de-
veloper across all of their repositories. This normaliza-
tion process ensures that all of the developer’s topic con-
tributions are summed up to 1.

The primary programming language of most of the
projects used is Java. Therefore, we did not consider
the programming language as a feature. Furthermore, in
preliminary experiments, we noticed that using only the
TC values created a massive cluster that contains most
of the developers. To avoid this, we improved our fea-
tures by using Principal Component Analysis (PCA) al-
gorithm. With PCA, we managed to modify the features
in a way that created a better representation of the devel-
opers, i.e. better representing the inter-connections be-
tween the features and we succeeded to create relatively
well-distributed clusters.

Bugs Data Processing
For the MATRON algorithm, we had to cluster the bugs
into bug clusters. To this end, we created feature families
for each bug:

1. Shallow data as presented in Definition 2
2. Bug description features: topics extracted from the

description of the Jira issues by topic modeling al-
gorithm.

3. Bug comment features: topics extracted from the
issue comments by topic modeling algorithm.

We clustered the bugs using the feature families de-
scribed above and used the PCA technique to get 20 bal-
anced clusters.

5.3 Competitive Algorithms
To test the performance of our bug assignment algo-
rithm, we need to measure the degree of compatibility
between the bug and its assigned developer. Optimally
we would aspire that bugs would be solved by the de-
veloper that is most suited to the task. However, it is
impossible to acquire information about the best-suited
developer to solve a bug.

When viewing the bug reports, the assigned developer
for a specific bug might not have been the best selec-
tion for the task. Sometimes, an assignment is set, due to
manpower limitations rather than professional consider-
ations. Nonetheless, if we neglect foreign influences that
we could not consider anyway, we may assume that the
developers that were reported as the ones that solved the
bugs can be considered as an optimal assignment. Thus,
an ‘Oracle‘ assignment is the one that assigns each of
the bugs to the actual developer that was reported as the
one that solved the bug. The bug solving time of the Or-
acle assignment is the time that the developer logged as
the time to complete the Jira issue.

In addition to the Oracle assignment algorithm, we
define two baseline methods to compare our results to.
The first method uniformly distributes the bugs across
the clusters according to the bug’s index, i.e. the distri-
bution of the bugs was conducted in an ordinal fashion.

The second method is based on features reduction.
For this method, we used a set of features and dis-
tributed the bugs according to a predefined condition.
We have experimented on several features and com-
pared their performance and accuracy. The experimented
features were: priority, comments count, description
length, and summary length. We measured their per-
formance in terms of accuracy and selected the fea-
ture that had the best performance which was the bug’s
priority. In total there are 8 different priority values.
For each bug, the assigned developers’ cluster was se-
lected based on the modulo results of the priority, i.e.
selected cluster(bugi) = priority(mod|Cdev|)

Table 4 summarizes the evaluated algorithms - MA-
TRON, MANGOLD, and the baselines.
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Algorithm Name Description
MANGOLD Machine Learning based assignment algorithm
MATRON Matrix factorization based assignment algorithm
Priority Assignment based on the modulo value of the bug’s priority
Uniform Uniformly distributed bugs

Table 4: The different bug assignment algorithms.

5.4 Experimental Parameters
To define a point of reference for our algorithm, we de-
note ACT (b) as the actual reported time needed to solve
bug b, i.e. the Oracle assignment’s bug solving time.
Since our algorithm tries to assign the bugs to the most
suited developers, we needed to find a method to penal-
ize the results in case of an error. The penalization for
the workload distribution generated by the assignment
method, is defined as the following function:
Definition 11 (Penalty function). PENALTY FUNC-
TION is a function that penalizes the algorithm in cor-
relation with the probability of the matching algorithm
to match the bug to one of the developers’ clusters. For
a given bug b that was solved by the developers’ cluster
Cdev[i] we denote:

Penalty(b, Cdev[i]) =
1

P (b, Cdev[i])
(7)

We denote the penalized time for the completion of
the bug solving task as: t(b, Cdev[i]) = ACT (b) ×
Penalty(b, Cdev[i])

Penalization strategies
In Definition 11 we defined the penalty function that is
used to penalize the workload distribution algorithm. We
denote two penalization methods:

1. ‘penalty miss‘ - penalizing upon miss-
classification. According to this penalization
method, for each miss-classification, the total
amount of time needed to solve a bug will be
multiplied by the penalty value.

2. ‘penalty all‘ - penalizing each classification re-
gardless of the correctness of the assignment. This
method is tested as well since there is an uncer-
tainty that the oracle solution is the actual optimal
solution. In this method, each assignment is mul-
tiplied by the penalty value.

Bounding the developers clusters
In Definition 5 we defined a load function constraint on
the number of bugs assigned to each developers’ cluster
(Load : 2D → N). We evaluate two methods of setting
this load function:

1. The number of bugs allowed for a given developer
cluster is bounded by the proportional size of that
developer cluster:

Load(Cdev[i]) =
|Cdev[i]|
|D|

· |B|

2. The number of bugs allowed for a given developer
cluster is not bounded: Load(Cdev[i]) =∞

5.5 Evaluation Metrics
To evaluate our algorithms, we measure their accuracy
and F1 scores. To that end, we measured the receiver
operating characteristics (TPR, FPR, TNR, and FNR)
scores.

We assume that an algorithm with higher accuracy and
F1 values will result (for the unbounded scenario) in a
lower bug solving time. To measure these results, we de-
note the difference in percentile from the total time of
the oracle algorithm for each algorithm A as diff(A).
diff(A) is calculated as follows:

diff(A) =

(∑
1≤i≤q t(B

i, Di)∑
1≤i≤q ACT (Bi)

)
(8)

Since our goal is to create an algorithm that optimizes
the workload distribution time, we aspire our results to
be the closest as possible to the Oracle assignment algo-
rithm. Due to this, we surmise that diff(A) is an ade-
quate measurement of the algorithm’s performance.

6 Results
In this section, we present the results of the workload
distribution algorithms. First, we focus on the machine
learning assignment algorithm (MANGOLD) and exam-
ine the algorithm that performs the best. Then we com-
pare this algorithm with the matrix factorization assign-
ment algorithm (MATRON) and the baselines.

6.1 Machine Learning Assignment Algorithms
We tested MANGOLD with two machine learning clas-
sifiers - XGBoost and AdaBoost. Table 5 shows the ac-
curacy and F1 score of these algorithms across the dif-
ferent feature sets. According to Table 5 the accuracy of
the XGBoost algorithm is much higher than that of the
AdaBoost algorithm.

Accuracy F1 Score
XGBoost - All Features 0.911 0.733
XGBoost - Shallow Data 0.920 0.761
XGBoost - Topics 0.773 0.320
AdaBoost - All Features 0.854 0.562
AdaBoost - Shallow Data 0.845 0.535
AdaBoost - Topics 0.768 0.303

Table 5: Accuracy and F1 score for XGBoost and Ad-
aBoost across the different feature groups.

Figure 1a shows a comparison between XGBoost
and AdaBoost in terms of diff(XGBoost) and
diff(AdaBoost) (Equation 8), for different sets of bug
features. The figure shows the results for Load function
Load(Cdev[i]) = ∞ (i.e. the unbounded scenario). We
can see that XGBoost significantly reduces the required
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time for every feature subset. These results are explained
by the high accuracy value (0.92) of XGBoost (Table 5).
Since the algorithm rarely misses its classification, the
aggregated time for each hit is identical to that of the
oracle algorithm.

Figure 1b shows the same experiment with a load
function Load(Cdev[i]) =

|Cdev[i]|
|D| ·|B| (i.e. the bounded

scenario). Contrary to the previous experiment, we can
see that the time that was calculated using XGBoost is
much higher than AdaBoost, whereas AdaBoost retains
its relatively low bug solving time. This assessment is
consistent for all of the feature sets we have tested. An
explanation for this result is that while using bounded
load function, XGBoost is forced to choose one of the
lower probability clusters and thus the resulting penalty
is exceptionally high. On the other hand, AdaBoost dis-
tributes the probabilities between the clusters in a some-
what evenly manner. This creates a scenario where even
if the algorithm is forced to make a wrong choice, i.e. not
choosing the predicted cluster, the resulting penalty re-
mains low. The results in Figures 2 are presented for the
different configurations with penalty miss. We got the
same trends for similar configurations for penalty all.

6.2 Comparison Between All Algorithms
In this section, we present a comparison between the dif-
ferent assignment algorithms. As a result of the experi-
ments shown in the previous section, we consider only
the best machine-learning algorithm in each configura-
tion. In particular:

1. XGBoost with ‘shallow data‘ features for the un-
bounded load function (Load(Cdev[i]) =∞).

2. AdaBoost with ‘all features‘ features for the
bounded load function (Load(Cdev[i]) =

|Cdev[i]|
|D| ·

|B|).
3. MATRON - matrix factorization based algorithm.

4. Priority - distributes bugs according to the values of
the priority of the bug.

5. Uniform - assigning bugs across the developers
clusters uniformly according to the index.

Accuracy F1
XGBoost - Shallow Data 0.920 0.761
AdaBoost - All Features 0.854 0.562
MATRON 0.774 0.324
Priority 0.736 0.208
Uniform 0.720 0.161

Table 6: Accuracy and F1 scores of the different bug as-
signment algorithms

Table 6 shows the performance results of the listed
algorithms in terms of accuracy and F1 score. The

machine-learning algorithms outperform the matrix-
factorization-based algorithm (MATRON), while MA-
TRON performs better than the priority and uniform al-
gorithms. Figures 2a, 2b show that XGBoost and Ad-
aBoost outperform the other algorithms when using the
unbounded and bounded load functions, respectively.
This happens, however, when the penalty function is ap-
plied only to missed assignments. When the penaliza-
tion strategy is penalty-all, and the number of assign-
ments is bounded, then MATRON outperforms the Ad-
aBoost algorithm as shown in Figure 3. The following
results present the following phenomenon: MATRON’s
accuracy is lower than the other algorithms, but its bug
solving time is lower in the scenario shown in figure
3. We deduce that this phenomenon is caused since
MATRON’s selected clusters have higher probabilities
which result in the penalty being lower.

7 Conclusions and Future Work
In this paper, we introduced the problem of work-
load distribution among developers. We presented two
bug assignment algorithms. The first algorithm, MA-
TRON, assigns bugs in a method inspired by the matrix-
factorization algorithm. The second, MANGOLD, as-
signs bugs using machine-learning algorithms that clas-
sify the correct developers’ cluster for each bug. The un-
derlying machine learning algorithms that were used are
XGBoost and AdaBoost.

We investigated 137 open-source projects that con-
tained 42,918 bugs tasks, and with a total of 8569 devel-
opers. Our experiments show that for unbounded load
function, XGBoost outperforms the other algorithms.
But for the bounded load function AdaBoost performs
the best when penalizing only on miss-classifications,
while when penalizing all the assignments MATRON
has the best performance.
In this work we regarded the developers as a uniform
group that can contribute to the projects on with zero
preparation time. This of-course, is a naive assumption
since developers that are unfamiliar with a project need
time to adjust themselves. As future work we intend to
rank the developers in the groups and adjust the penalty
based on the familiarity of the developers with the repos-
itory that the task belongs to. Another future work in-
cludes further investigation into the distribution of work
within the selected developers cluster, i.e. the selection
of the designated developer for the task.
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