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Abstract
Defect prediction is a technique introduced to op-
timize the testing phase of the software develop-
ment pipeline by predicting which components in
the software may contain defects. Its methodol-
ogy trains a classifier with data regarding a set
of features measured on each component from
the target software project to predict whether the
component may be defective or not. However,
suppose the defective information is not available
in the training set. In that case, we need to rely
on an alternate approach that uses the training set
of external projects to train the classifier. This ap-
proached is called cross-project defect prediction.
Bad code smells are a category of features that
have been previously explored in defect predic-
tion, and have been shown to be a good predic-
tor of defects. Code smells are patterns of poor
development in the code and indicate flaws in its
design and implementation. Although they have
been previously studied in the context of defect
prediction, they have not been studied as features
for cross-project defect prediction. In our exper-
iment, we train defect prediction models for 100
projects to evaluate the predictive performance of
the bad code smells. We implemented four cross-
project approaches known in the literature and
compared the performance of 37 smells with 56
code metrics, commonly used for defect predic-
tion. The results show that the cross-project de-
fect prediction models trained with code smells
significantly improved 6.50% on the ROC AUC
compared against the code metrics.
The source code and the data sets are re-
spectively available at https://github.
com/Bruno81930/smells and https://
zenodo.org/record/4697491.

1 Introduction
In the software development process, assuring software

quality is a crucial requirement to accommodate today’s ex-
pectations of software delivery. Within the proposed tech-
niques to optimize the delivery time of software while main-
taining its quality, defect prediction was shown to be a
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promising approach, considering its application to test case
prioritization and selection (Paterson et al., 2019). Defect
prediction uses the historical information of software, such
as the source code in its previous versions and the defective
information through the reported bugs, to make predictions
about the location of bugs in the code. This is made using
classification algorithms, which, when given a training set,
learn to label each software component as defective or not.
This is called within-project defect prediction.

Beyond the traditional application of defect prediction,
which assumes natural access to the past information of
the software, in a practical industrial scenario, this informa-
tion may not be available. It is common for companies not
to maintain a clear historical data record of defects or not
contain sufficient data from previous versions of a project
(Kitchenham et al., 2007). In addition, historical data is
not available for new projects. This limits the creation of
a training set capable of building a classifier fit to predict
which components in the software may be defective. There-
fore, research accommodated this problem by introducing
a variant approach to defect prediction, called cross-project
defect prediction, that builds the training set from external
sources to the project (Goel et al., 2017).

Several studies were proposed, introducing new ap-
proaches for cross-project defect prediction. They lever-
age the training set from other projects, for instance, by ei-
ther homogenizing the respective training set or target set
(Watanabe et al., 2008), or selecting the training instances
closest to the target project (Turhan et al., 2009). More-
over, the categories of metrics used to build the cross-project
models were based on source code metrics, commonly stud-
ied in the classical problem of within-project defect predic-
tion (Herbold et al., 2018).

A particular category of code metrics are bad code smells,
which are patterns of bad code design and implementation
that increase the technical debt of software; thus, they lead
to defects and high-cost maintenance tasks (Suryanarayana
et al., 2015). Although there is a considerable study on the
application of cross-project defect prediction for code met-
rics, the respective evaluation for bad code smells has not
been deeply explored. Therefore, the goal of this study
is to evaluate the impact of bad code smells for cross-
project defect prediction, compared with the code metrics
already studied in the literature in this context.

For evaluation, we implemented four cross-project defect
prediction approaches and built cross-project models using
those approaches on five classifiers. Then, we trained them
using bad code smells and code metrics as the features ex-
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tracted from five versions of 100 projects. All projects were
used as target projects, as well as training projects for the
other respective projects. We examine whether the perfor-
mance of both sets of features – bad code smells and code
metrics – when used together to build the models improves
the performance of the cross-project defect prediction.

We conclude that cross-project defect prediction models
trained with code smells outperform the models trained with
code metrics, with an average improvement of 6.50% on
the ROC AUC. Therefore, by evaluating the improvement
of each individual project, we observed that in 76% of the
projects, there was an improvement for the code smells com-
pared with code metrics. Moreover, we observed that the
combination of both sets of features does not produce higher
predictive models than the models trained with only code
smells.

2 Related Work
This section discusses the related work for within and cross-
project defect prediction and its application using bad code
smells as features.

Defect prediction is an active research topic in software
engineering. It is commonly used to select and prioritize test
cases to optimize the software testing phase while maintain-
ing its quality. As shown by Paterson et al. (2019), to pro-
duce good results when the test cases are prioritized using
within-project defect prediction, i.e. the defect prediction
model is trained using resources from the same project.

Several studies were published for within-project defect
prediction that thoroughly evaluate the impact of different
metrics as predictors for defects classification (Li et al.,
2018); for instance, code and process metrics. Code met-
rics are measured directly from the source code, e.g., size or
complexity, and process metrics are extracted from the his-
torical information of the software repositories (Radjenović
et al., 2013).

A different set of metrics that has also been thoroughly
studied in the literature is the set of bad code smells. Pi-
otrowski and Madeyski (2020) did a systematic literature
review of 27 papers from 2006 to 2019 that analyze the re-
lationship between smells and defects and their impact on
defect prediction. In the end, they identify an overall posi-
tive correlation between code smells and defects; hence bad
code smells are a good indicator of defect prediction.

However, these studies only focus on models for within-
project defect prediction. When we remove the assump-
tion that the project contains a clear historical record of de-
fect data or enough information from its previous versions,
we do not have enough information to build models with
enough capability to perform defect prediction (Kitchenham
et al., 2007).

Therefore, a new class of defect prediction models was
created that uses information from other projects to comple-
ment the missing information of the target project. Porto
et al. (2019) perform a systematic review, and experimen-
tal comparison of 31 CPDP methods of cross-project de-
fect prediction, and Herbold et al. (2018) propose a bench-
mark for cross-project defect prediction; thus replicating
24 approaches and experimentally comparing their perfor-
mance. They observed that the standardization approaches
performed significantly well, particularly the ones proposed
by Cruz and Ochimizu (2009) and Watanabe et al. (2008).
Moreover, Turhan et al. (2009) propose an approach that

also reports good performances; it builds the training set by
selecting the instances from the cross-projects that are closer
to each instance of the target project.

Due to their good performance, these were the ap-
proaches we applied to evaluate the impact of bad code
smells as predictors for cross-project defect prediction. Fur-
thermore, we also considered one approach proposed by
Guo et al. (2016), called best-of-breed, that uses the training
set of the project with higher F2-score classification when
evaluated with the target project. We also considered the ap-
proach from Bal (2018), that introduces an extreme learning
approach to train the cross-project defect prediction model.

Beyond the use of code metrics for cross-project defect
prediction, only one project studied the application of bad
code smells as predictors for classification. Taba et al.
(2013) proposed metrics based on code smells to study the
effect of code smells on the density of defects in files and
study the impact of those metrics on traditional defect pre-
diction models. This study was the only one we identified
that uses code smells as predictors for cross-project defect
prediction. They used a straightforward approach of train-
ing the model with the other cross-projects and then testing
with the target project. Although Taba et al. (2013) eval-
uate the performance of smells, it is limited to evaluating
only four metrics based on the frequency and entropy of
smells, which, by no means, equates to the metrics used
in our study. Moreover, we apply, in addition to the ap-
proach used by the authors, three cross-project approaches,
thus providing additional robustness for the results from the
cross-project defect prediction evaluation.

3 Problem Definition Methodology
In this section, we introduce the application of bad code
smells as predictors for cross-project defect prediction. We
start by formally defining defect prediction and its process,
from the extraction and construction of the datasets to the
training and evaluation of the defect prediction classifiers
(Section 3.1). Then, we extend the definition to accom-
modate the cross-project use case; thus, in Section 3.2 we
define the problem that motivates the cross-project defect
prediction approach and the approaches we applied in our
study. Last, we describe the bad code smells and their con-
tribution to the cross-project defect prediction (Section 3.3).

3.1 Defect Prediction
The goal of defect prediction is to predict the location of de-
fects in the succeeding version of a specific project. Viewed
formally, given a software repository with n versions V =
{v1, ..., vn}, each composed by a discrete number of com-
ponents defined in our study by every file fj in a partic-
ular version vk; the classification problem is to determine
whether the state of that particular component fj is defec-
tive or not. This state is described as a label assigned to
each instance of the dataset. Moreover, it is dependent on
the features extracted from the source code, which are used
to train the classifier. Thereupon, the selection of the fea-
tures is a crucial step for achieving good performance while
predicting the target state (Moser et al., 2008).

Product and process metrics are the categories of metrics
most widely studied in defect prediction; thus, they have
generally shown positive results (Li et al., 2018). The prod-
uct metrics measure the design and behavior of the current



state of the software, for example, the CK metrics (Chi-
damber and Kemerer, 1994) and McCabe’s cyclomatic com-
plexity (McCabe, 1976). The process metrics measure the
historical information stored in the software repositories, us-
ing both version control systems and issue tracking systems.
For example, the churn metrics (Nagappan and Ball, 2005)
and entropy metrics (Hassan, 2009).

The usual approach for defect prediction classification is
the application of supervised machine learning algorithms
on the data. It starts with the generation of data sets ac-
crued from the features extracted in each component of the
versions in the software repository; additionally attached
with the label describing whether the component is defec-
tive. Then, the data set is processed. It deals with missing
values, scales abnormalities, and splits the data into training
and testing sets. The training set is used as input to a learn-
ing algorithm that outputs a classification model capable of
predicting whether a new unlabeled instance is defective.
The testing set is used to measure the model’s performance
by comparing the predicted classification with the true clas-
sification to evaluate the output model. Altogether, the goal
of the classification model is to define a mapping between
the feature and target label.

Approach

Standard Taba et al. (2013)
KNN Turhan et al. (2009)
ELM Bal (2018)
Best Of Breed Guo et al. (2016)

Table 1: Cross-project defect prediction approaches applied
in this study.

3.2 Cross-Project Defect Prediction
From the definition of defect prediction, the dependent vari-
able, i.e., the target label we aim to predict, has a critical
role in the learning process. To such a degree that learning
is only possible if the defective data is available. However,
in a practical scenario, it is not guaranteed that the histori-
cal defective data is correctly maintained, and it is available
from the project history (Kitchenham et al., 2007). A solu-
tion is to build the training set from features extracted from
external projects with known defect information to handle
this adversity. This approach is called cross-project defect
prediction, and it solves the lack of historical defective data.
Nevertheless, it introduces heterogeneity on the data, lead-
ing to a decrease in the efficiency of the defect prediction
models (Zimmermann et al., 2009). However, we accounted
for this in our methodology and we selected four approaches
that were reported to produce good results (Herbold et al.,
2018; Porto et al., 2019; Bal, 2018; Taba et al., 2013). In
Table 1, we list the approaches applied in this study.

The trivial approach to cross-project defect prediction
is the direct application of the cross-project (i.e., external
project) data set as the training set for the target project
(i.e., the project that is missing the defective information).
Therefore, it is a simple variation of the process described
in the Defect Prediction definition (Section 3.1), where the
data set generation is accrued from an external project. We
designated this approach the Standard Approach. Another
approach is the Best-Of-Breed Approach. Instead of being

manually attributed to a specific cross-project, it applies a
majority voting on a set of candidate cross-projects, select-
ing the project with the highest F2-score (Guo et al., 2016).
This approach aims to identify the projects with the highest
similarity to the target project. Then, Turhan et al. (2009)
proposed the KNN Approach which, also from a set of can-
didate cross-projects, selects the instances from all projects
that are most similar to each instance from the data set of
the target project. This approach uses the K-nearest neigh-
bors algorithm to identify the K closest cross-project in-
stances to each instance of the target project. Last, the ELM
Approach is a variant of the Standard Approach, where in-
stead of using common classifiers used in defect prediction,
it uses extreme learning machines (Bal, 2018). These are
feed-forward networks reported to produce good generaliza-
tion performances and learn thousands of times faster than
back-propagation networks (Huang et al., 2006).

3.3 Bad Code Smells
Bad Code Smells are patterns in the code that indicate un-
derlying problems in the design and implementation of a
system (Fowler and Beck, 1999). The process of code
smells detection is based on the violation of fundamental
design principles that undermine the quality of a system.
Therefore, they draw out weaknesses in the system’s design
and implementation to which, although not technically in-
correct, may cause a slower development and increase the
likeliness of introducing defects. Consequently, it leads to
an accumulation of technical debt, which may cause a tech-
nical bankruptcy of the project, rendering it unmaintainable;
therefore, having to be abandoned at the end (Suryanarayana
et al., 2015).

The set of code smells commonly studied as predictors for
defect prediction are the ones proposed by Fowler and Beck
(1999) and Brown (1998). As identified in the literature re-
view published by Piotrowski and Madeyski (2020), the au-
thors collect published studies relating bad code smells as
predictors for defect prediction and draw conclusions to the
correlation between code smells and defects. Most of the
reviewed studies featured the code smells proposed by the
two previously cited sources. Fowler and Beck (1999) in-
troduce the notion of code smells and define them as the
trigger to the application of code refactoring. One example
is the Shotgun Surgery smell which occurs when a single
change leads to several minor changes on different compo-
nents. This hinders the software development and mainte-
nance tasks, as the locations of the new changes are hard to
keep track of. Moreover, Brown (1998) define a list of anti-
patterns that are the source of development roadblocks and
categorize them for the different roles of software develop-
ment: management, architectural, and development. For ex-
ample, the Swiss Army Knife is a management anti-pattern
that describes the over-design of interfaces. It is detected
when objects with numerous methods attempt to anticipate
every possible need, thus causing the construction of de-
signs that are hard to comprehend, use, and debug.

Beyond these code smells another set of smells pro-
posed by Suryanarayana et al. (2015) tackle code issues
in the perspective of four fundamental design principles
of object-oriented programming introduced by Booch and
Booch (2007): abstraction, encapsulation, modularity, and
hierarchy. These smells were formulated from the gener-
alization of smells proposed in the literature. In particular,
to a framework that follows the violation of those design



Code Smells

Imperative Abstraction Multifaceted Abstraction
Unnecessary Abstraction Unutilized Abstraction
Deficient Encapsulation Unexploited Encapsulation
Broken Modularization Cyclic-Dependent Modul.
Insufficient Modularization Hub-like Modularization
Broken Hierarchy Cyclic Hierarchy
Deep Hierarchy Missing Hierarchy
Multi-path Hierarchy Rebellious Hierarchy
Wide Hierarchy God Class
Class Data Should Be Private Complex Class
Lazy Class Refused Bequest
Spaghetti Code Speculative Generality
Data Class Brain Class
Large Class Swiss Army Knife
Anti Singleton Feature Envy
Long Method Long Parameter List
Message Chain Dispersed Coupling
Intensive Coupling Shotgun Surgery
Brain Method

Table 2: Listing of the bad code smells utilized in this study.

principles. One example of these smells is Deficient En-
capsulation. It occurs when the accessibility of one or more
members of an abstraction is more permissive than required,
for instance, a class that sets its fields as public.

In our study, we evaluate the impact of bad code smells
for cross-project defect prediction. We used 37 code smells,
from the three different-sources: Fowler and Beck (1999),
Brown (1998), and Suryanarayana et al. (2015). Moreover,
to evaluate the performance of the cross-project models, we
compared the smell-based models with cross-project defect
prediction models trained with product metrics which from
now on we will designate as code metrics. Henceforth, we
used 56 code metrics. In Table 2 we list the bad code smells
evaluated in this study, and in Table 3 we list the code met-
rics we used to compare our cross-project models.

4 Evaluation Methodology
Our research goal is to evaluate the impact of bad code
smells as predictors for cross-project defect prediction. We
set up our study to empirically compare cross-project defect
prediction classifiers’ performance with bad code smells
against those trained with code metrics, commonly used
in cross-project defect prediction research (Herbold et al.,
2018). Therefore, we compare the performance of the bad
code smells to the performance of code metrics. We reason
to whether the combination of both features’ sets improves
the cross-project models’ performance. With this in mind,
we defined the following research questions.

RQ.1: Do bad code smells outperform code met-
rics for cross-project defect prediction?
RQ.2: Does combining bad code smells and code
metrics improve the performance of cross-project
defect prediction?

Code Metrics

# Of Fields # Of Public Fields
# Of Methods # Of Public Methods
# Of Children Depth Of Inheritance
LOC Class LOC Method
LCOM Fan-In
Fan-Out Total # Of Operators
# Of Distinct Operators Length
Vocabulary Volume
Difficulty Effort
NCSS For This File Nested If Else Depth
Boolean Expr. Complexity Cyclomatic Complexity
NCSS Method NCSS Class
N Path Complexity # of Throws
# of Executable Statement Method Length
File Length # Of Methods
# Of Public Methods RFC
CBO CDAC
Returns # Of Variables
# Of Parameters # Of Loops
# Of Comparisons # Of Try Catch
# Of Parenthesized Expressions # Of String Literals
# Of #s # Of Assignments
# Of Math Operations Max # Of Nested Blocks
# Of Anonymous Classes # Of Inner Classes
# Of Lambdas # Of Unique Words
# Of Modifiers # Of Log Statements

Table 3: Listing of the product code metrics utilized in this
study.

The remainder of this section is organized following the
approach to generate the data sets, build the models and
evaluate them. We start by measuring the code smells and
the metrics, and we gather the defective information from
the source code, thus constructing the data sets. Then, we
process the data sets and use them for training the classi-
fiers on each approach and building the cross-project mod-
els. Last, we evaluate the models, comparing the sets of
each category of features. Figure 1 shows an overview of
the methodology applied in this study.

4.1 Data Sets Construction
The goal of the first step of our approach is to obtain the
data sets required for the classification. It is composed of a
data collection step, followed by the extraction of the fea-
tures and the defects. Lastly, it pre-processes the data sets
for training, thus accounting for missing information, data
inconsistencies, and data imbalance.

Data Collection. We considered 100 Apache projects
written in Java whose repository have Git as the version con-
trol system and Jira as the issue tracking system. Moreover,
for each project, we manually selected five versions whose
percentage of defects fall within 10%−30% and contain the
highest amount of components, i.e., files. Since it composes
a good representation of defects, the ratio is high enough
that reduces the class imbalance and is low enough not to



Figure 1: Overview of the methodology applied in this study.

select outlier versions (e.g., a version that was created only
to fix issues).

Features Extraction. In this step we go over each file
of the selected versions and extract the features into the re-
spective sets: code smells, code metrics, and code smells +
metrics. The first one contains the 37 bad code smells that
we considered for this study. We collected the design smells
proposed by Suryanarayana et al. (2015) using Designite
(Sharma, 2018). In addition, the Fowler and Beck (1999)
and Brown (1998) smells were extracted using a variant of
the Organic tool (Cedrim and Sousa, 2018), extended by the
authors of this manuscript. The second set contains 56 code
metrics, which we use to compare the smells. We extract
metrics using the Designite metrics extractor functionality
and Checkstyle (Ivanov et al., 2021). Moreover, we used
a tool developed by the authors of this manuscript to col-
lect the CK (Chidamber and Kemerer, 1994), Mood (Brito e
Abreu and Carapuça, 1994), and Halstead (Halstead, 1977)
metrics from the source code. The last set contains the com-
bination of all features, consisting of 93 features.

Defects Extraction. The following step is to attach a tar-
get label to each instance of the created data sets. In par-
ticular, to set whether each extracted file is defective or not.
Therefore, to extract the defects, we applied a variant of the
SZZ algorithm (Borg et al., 2019) that accounts for the vul-
nerabilities in the algorithm (Herbold et al., 2018). We col-
lected the issues assigned as closed bug reports for the se-
lected versions from the Jira Issue Tracker of each project.
Then, we applied a mapping between the collected issues
and the commits in that specific version, thus connecting
them by the issue id. Since Jira contains a unique ID of the
format <PROJECT>–<NUMBER>, the matching of the id
in the title and commit message becomes less ambiguous
than the id format of the Bugzilla (only a number), which is
a vulnerability reported by (Herbold et al., 2018). Then, we
associated each issue with the changes that fixed it and, by
pinpointing the files involved in the changing commit, we
collected the defective files. Another reported issue was the
absence of filtering for the files involved in the change and
consequently were responsible for the defect. Therefore, we
filtered the files in each commit to only account for Java files
that were not tests.

Data Sets Pre-Processing. The pre-processing step re-

solves the missing values in the data sets, handles the val-
ues inconsistencies and the data imbalance. Therefore, we
start by removing the instances with missing values from the
data sets. Then, we standardize the range of values of the
data sets by applying a min-max scaling to values between
0 and 1000. The goal was to have a consistent range, broad
enough to facilitate the calculations for the k-neighbors ap-
proach. Last, since there is a higher ratio of non-defective
files, which is a common occurrence in defect prediction,
we applied the Synthetic Minority Oversampling Technique
(SMOTE) to increase the ratio of defective instances in the
training sets (Chawla et al., 2002).

4.2 Cross-Project Defect Prediction Model
Training

Following the generation of the data sets, we trained the
defect prediction models based on the Cross-Project ap-
proaches we refer to in Section 3.2. For all the approaches,
except the Extreme Learning Approach, we build the mod-
els by training five classifiers commonly used in defect pre-
diction. We used the sci-kit learn tool (Pedregosa et al.,
2011) and set the parameters as the default ones for each
classifier. The classifiers are the following.

• Random Forest
• Support Vector Machine
• Multilayered Perceptron
• Decision Tree
• Gaussian Naive Bayes
Moreover, for the ELM approach, we used the extreme

learning machine classifier from the extended sci-kit learn
library (McGinnis, 2015).

The Standard Approach is the trivial approach for
Cross-Project defect prediction. The approach is used in
the single study that evaluates specific code smells in Cross-
Project defect prediction (Taba et al., 2013). We trained
the model for a specific target project using the data set
of one project from the remaining 99 projects. Then, we
tested the model using the data set of the target project.
In total, we evaluated the performance for the 100 target
projects. Therefore, using the Standard Approach, we eval-
uated 49,500 models (100 target projects× 99 train projects
× 5 classifiers).



The Best-of-Breed Approach applies a majority voting
to identify the best overall performing defect prediction
model. Considering a particular cross-project, the algorithm
trains 99 models using the remaining projects. For each
model, it then tests with the data sets of the 98 other projects
and evaluates the F2-score of each test. In the end, for each
of the 99 models, it calculates the average of the 98 eval-
uations; then, it selects the model with the higher average
F2-score.

The KNN Approach builds a training set from the in-
stances closest to each instance of the data set of the cross-
project. We iterate through all instances of the cross-
project’s data set and, to optimize the search, we first ap-
ply a Mini Batch K-Means clustering algorithm to reduce
the search space of the complete set of instances from the
99 projects. Then, within the cluster closest to the target
instance, we calculate the euclidean distance between each
vector of those instances and the vector of the target in-
stance. Thus, we select the k instances with the smallest dis-
tance. In our scenario, we selected the ten closest instances
from each target instance; therefore, if the cross-project has
100 instances, the training set will have 1000 (100 × 10)
instances.

The ELM Approach uses feed-forward neural networks
to apply several machine learning tasks, including classifica-
tion. We trained each cross-project model with the General
ELM classifier from the sklearn-extensions library (McGin-
nis, 2015). We used a feed-forward neural network with
100 hidden layers calculating the radial-based function with
a width of 0.1.

4.3 Data Analysis and Metrics
To evaluate the cross-project models and compare the im-
pact of the different features, we calculated metrics com-
monly used in defect prediction. The evaluation metrics
we calculated to measure the performance of each classi-
fier are ROC AUC, F1-Score, and PR AUC. These were
recommended as evaluation metrics by Rathore and Kumar
(2019), in particular the AUC, to which they recommend as
the primary indicator for evaluation. We discuss their ratio-
nale in this section.

We calculated the Area Under the Curve (AUC) of the
Receiver Operating Characteristic curve (ROC) and the
Precision-Recall curve (PR). AUC summarises the ability
of the classifier to discriminate between defective and non-
defective classes. As such, the closer the value is to 1, the
higher the classifier’s skill of discerning the classes affected
or not by the defect. Nevertheless, a score closer to 0.5 de-
scribes a classifier with lower accuracy, thus having a clas-
sification ability closer to a random classifier.

The ROC curve is based on the relationship between the
true positive rate (TPR) and the false positive rate (FPR).
True positive rate, also known as sensitivity, measures the
proportion of components predicted defective that were cor-
rectly identified. The false-positive rate measures the pro-
portion of non-defective components that were incorrectly
labeled as defective over the total number of actual non-
defective components. Both equations are represented as
follows:

TPR =
TP

TP + FN
FPR =

FP

FP + TN
(1)

The PR curve is based on the relationship between
the precision and the recall. Precision and recall are two

widely used metrics in defect prediction. They measure the
relationships between specific parameters in the confusion
matrix:

precision =
TP

TP + FP
recall =

TP

TP + TN
(2)

In both computations, TP is the number of classes con-
taining defects that were correctly predicted as defective.
TN describes the number of non-defective classes that were
predicted as defective. FN is the number of non-defective
classes that the classifier incorrectly predicts as defective.
FP is the number of classes where the classifier fails to pre-
dict defective classes by declaring defective classes as non-
defective.

Moreover, we calculated the F1-Score. It is the harmonic
mean of both precision and recall, defined as follows:

F1 = 2× precision× recall
precision+ recall

(3)

5 Results
To study the impact of cross-project defect prediction us-
ing code smells, we present and discuss the results obtained
according to each research question in this section.

In general, as observed in Figure 2, the results were con-
sistent among all classifiers. Therefore, to show the results
and discuss the research questions, we selected and used the
Decision Tree as the representative classifier.
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Figure 2: Comparison of the ROC AUC score between Clas-
sifiers, for the accumulated score of the three Data Sets.

The first goal of our research is to evaluate the impact
of code smells against code metrics as features for cross-
project defect prediction. Therefore, we measured the dif-
ference in performance between the models trained with
code smells for different Cross-Project approaches. Fig-
ure 3 displays the difference in performance between the
two categories of features for each of the cross-project de-
fect prediction approach and the statistical significance for
each approach. We observe a significant improvement of
the models when using code smells compared to the code
metrics. In particular, there was an average improvement
of 6.50% for all the approaches, with a significance level of
p < 0.01.

Despite the results obtained for the ROC AUC, the per-
formance measured by the F1-Score and the PR AUC were
generally not significant. However, the results obtained
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Figure 3: Comparison of the ROC-AUC score between the
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project defect prediction approach.
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Figure 4: Improvement for each project where there is an
improvement from code smells to code metrics.

for the Standard Approach were shown to be significant
(α < 0.01). They display an increase in performance for the
model trained with smells, compared with metrics (1.6% for
the F1-Score and 0.9% for the PR AUC).

Since the results display an overall improvement of the
cross-project models trained with code smells against tradi-
tional code metrics, it would be interesting to observe the
percentage of projects where there was an improvement and
visualize the individual improvement of each project for the
ROC AUC. We observed that, within the 100 projects con-
sidered in this experiment, 73% showed an improvement.
Therefore, in Figure 4 we display the individual improve-
ment of each project, represented by a point on both axes
of the Data Set, connected by a line. Moreover, we include
half of a violin plot for each data set, as it shows the scores’
distribution and the box plot, which describes the groups of
the scores in the data considering their quartiles.

The second goal of our research is to evaluate whether
both code smells and code metrics can be used in combina-
tion as features for cross-project defect prediction. There-
fore, we compared the performance of models trained with
features against the code smells set.

In Figure 5 we display the ROC AUC of both sets for each

approach, including the respective statistical significance.
We observe that both features’ categories, when used in
combination, do not build models with higher performance
than those trained with Smells. Moreover, we compared the
performance of the models trained with the combination of
the features with the models trained with only metrics. We
observed an improvement of 2% in the AUC ROC; however,
the results were not statistically significant. Furthermore,
the F1-Score and the PR AUC scores were not statistically
significant; therefore, we did not consider their results con-
clusively.
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Figure 5: Comparison of the ROC AUC score between
the combination of code smells + code metrics and the
code smells set, for each cross-project defect prediction ap-
proach.

In the end, we observed the following results concerning
the application of bad code smells to cross-project defect
prediction.

• Bad code smells outperform the performance of the
code metrics in all the evaluated approaches, with an
average difference of the ROC AUC score of 6.50%
(α < 0.01).

• Considering each project improvement, 73% of the
projects registered an improvement on the ROC AUC
score when trained with code smells compared against
the code metrics.

• When training the cross-project models with both code
smells + metrics, there was not an improvement in per-
formance compared against the code smells alone.

6 Threats to Validity
For our study, we identified the following threats to validity:

In our study, we constrained the comparison of code
smells to the code metrics. We do not compare the per-
formance of defect prediction to other extensions of metrics
such as process metrics. However, our study’s scope and re-
search goal only target the comparison of code smells with
code metrics for cross-project defect prediction.

All of the used projects are Java open-source Apache
projects. This is a threat to the generalization of our re-
sults. However, several defect prediction studies have used
projects from Apache as the software archive Hosseini et
al. (2019). Moreover, projects from Apache were also in-
tegrated into the Promise data set Jureczko and Madeyski



(2010). In addition, the use of Jira as the issue tracking
system is also a threat to validity towards the results’ gen-
eralization. However, it is coupled to the Apache project
management.

The authors of this study developed the implementations
of the cross-project defect prediction approaches by follow-
ing the methodologies proposed by the authors of each ap-
proach. Although unlikely, the approaches’ implementation
may contain defects. However, this manuscript includes the
entire source code and data sets used in our study; therefore,
we provide them open for external validation. Moreover,
this applies equally to the authors’ tools to extract the code
smells and the defects.

To extract the design code smells, we used the tool pro-
vided by the authors. This could be a threat to validity since
we assume the reliability of the tool.

7 Conclusion
In this study, we evaluated the impact of bad code smells
on cross-project defect prediction. Accordingly, we applied
four approaches of cross-project defect prediction on 100
projects; thus trained with three data sets, one with code
smells, one with code metrics and the last with both code
smells + metrics. In the end, we found that the cross-project
defect prediction models trained with bad code smells per-
formed the best compared against code metrics, with an av-
erage improvement of 6.50% for the ROC AUC. Moreover,
we observed an improvement on 76% of projects when com-
paring the differences individually for each project. About
the combination of both code smells + metrics to train
the cross-project models; we observed that the code smells
alone still perform better than the combination of both cate-
gories of features.

From these results, future work concerns a deeper anal-
ysis of the impact of each code smell and an application
of other cross-project approaches. Moreover, we want to
expand from defects to vulnerabilities, thus analyzing the
impact of code smells on cross-project vulnerability predic-
tion.
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