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Institute of Automatic Control and Robotics, Warsaw University of Technology,

Boboli 8, 02-525 Warsaw, Poland
e-mails: jan.koscielny@pw.edu.pl; michal.bartys@pw.edu.pl

Abstract

The primary aim of this paper is the compar-
ative study of fault distinguishability properties
of model-based fault detection and isolation ap-
proaches. We reviewed and compared diagnostic
approaches based on the diagnostic signals-faults
relationship. Together, five different approaches
to diagnosing were examined based on the exam-
ple of a three-tank system. The paper also consid-
ers the problem of achievable fault distinguisha-
bility. The comparative study showed how three-
instead of bi-valued diagnostic signals allow for
increasing fault distinguishability figures. We also
show that so-called column-based diagnostic rea-
soning might exhibit higher fault distinguishabil-
ity than row-based reasoning. Finally, we for-
mulate some practical recommendations resulting
from the conducted study.

Index terms: fault isolation, bi-, and three-valued diagnos-
tic signals, row reasoning, column reasoning, fault distin-
guishability

1 Introduction
The paper aims to compare fault distinguishability achiev-
able with different inference methods applied to the same
diagnosed system. The paper concerns passive diagnostic
methods that do not require introducing any particular ex-
citations[1; 2; 3; 4]. The comparative study is performed
using two different approaches to diagnostic inference: col-
umn and row reasoning[5; 6; 7].

The study concerns the cases where models represent the
fault-free state of the diagnosed system. We assume bi-
and three-valued diagnostic signals resulting from a dis-
crete evaluation of residuals. The way of how the residuals
are evaluated is exhaustly explained in many publications,
i.e., [1; 3; 5; 8]. Moreover, we assume that the quantita-
tive knowledge of the sensitivity of residuals on faults is un-
known. Therefore, the relationship between the diagnostic
signals and the faults will be derived based on the expert’s
knowledge.

The fault inference methods referred to as column and
row approaches will be analyzed for binary and three-valued
diagnostic signals. In addition, all considerations will be
limited to the case of single faults only. The research will
not consider those methods that use, e.g., knowledge regard-
ing the sequence of symptoms[9; 10]. A comparative study

will be illustrated on an example of diagnosing a set of three
serially connected tanks.

The paper contributes to the methodology of applied sci-
ences. The contribution consists of reviewing five diagnos-
tic inference methods based on the bi-, and three-valued re-
lationship diagnostic signals - faults. In addition, we formu-
lated a set of practical recommendations based on the results
of conducted analysis.

The structure of the paper is as follows: Section 2 dis-
cusses the forms of notation of the fault-diagnostic signals
relationship for the bi- and three-valued diagnostic signals.
Section 3 describes the principles of diagnosing based on
columns and rows in case of binary and three-valued resid-
uals. The diagnosed case study and five diagnostic ap-
proaches are briefly presented in Section 4. The results of
fault distinguishability study of the various diagnostic ap-
proaches are given in Section 5. Finally, Section 6 summa-
rizes the study.

2 Fault–diagnostic signals relation
Fault isolation is a process of determining the possible faults
in the diagnosed system. The fault isolation can be based
on the knowledge of the valuessj ∈ S of diagnostic signals
and the mapping of diagnostic signals - faults. This mapping
is determined by the Cartesian productS × F of the set of
diagnostic signals

S = {sj : j = 1, 2, . . . , J} , (1)

and the set of faults

F = {fk : k = 1, 2, . . . ,K} . (2)

This mapping is most often represented in a matrix like
structure whose rows correspond to diagnostic signals and
columns to faults. The form of this structure depends on the
representation of diagnostic signals:

• When using a binary evaluation of absolute values of
residuals, the structure has the form of the Fault Sig-
nature Matrix (FSM)[5; 6; 7]. This form of represen-
tation of fault-symptoms relationship is also referred
to as: structure of residual sets[1], Boolean decision
table [2], coding set[11; 12], effect of the faults on
residuals[4] or binary diagnostic matrix (BDM)[13;
3].

• When a three-valued residual evaluation is used, the
structure takes the form of Fault Isolation System (FIS)
[3; 14].

An example ofFSM is shown in Tab. 1 andFIS in Tab. 2.



Table 1: An example of a fault signaturematrix.

S/F f1 f2 f3 f4

s1 1 1 0 0
s2 0 1 1 0
s3 1 0 1 1

Table 2: An example of a fault isolationsystem.

S/F f1 f2 f3 f4 Vj

s1 1 0 1 0 {0,1}
s2 0 −1 −1, +1 +1 {0,−1, +1}
s3 −1 −1, +1 0 −1 {0,−1, +1}

TheFSM andFIS differs in:

• Diagnostic signalssj in FSM are exclusively bi-
valued i.e.,Vj = {0, 1}, while in FIS they can be
multivalued. In addition, each diagnostic signalsj in
FIS can have its own individual set of valuesVj (in
which a value of 0 always indicates absence of a fault
symptom). In this work we will limit our consider-
ations only to bi- and three-valued diagnostic signals
i.e.,Vj = {0, 1} or Vj = {0,−1, +1}.

• EachFSM entry corresponding to the pair〈sj , fk〉
takes only one value, while anyFIS entry can be a
subset of the valuesV k

j ⊂ Vj .

• Fault signatures inFSM corresponding to columns of
Tabs. 1, 2 are referred to as simple signatures:

VFSM (fk) =
[
vk
1 , . . . , vk

j , . . . , vk
J

]T
. (3)

In turn, in the case ofFIS, the signatures which en-
tries are subsets of the values of diagnostic signals are
referred to as complex signatures.

VFIS(fk) =
[
V k

1 , . . . , V k
j , . . . , V k

J

]T
. (4)

Diagnostic inference ofkth fault can be conducted
based on the analysis of the degree of conformity of
fault-specific signature with the vector of the current
values of diagnostic signals (observations). If the prin-
ciple of complete compliance is adopted, the reasoning
of faults may take the form of rules (5, 6). For example,
in theFSM case, the rules for faults are:

if
(
s1 = vk

1

)
∙ ∙ ∙ ∧ . . .

(
sJ = vk

J

)
then fk, (5)

while in the case ofFIS, the rules are as follows:

if
(
s1 ∈ V k

1

)
∙ ∙ ∙ ∧ . . .

(
sJ ∈ V k

J

)
then fk, (6)

• In theFSM , eachjth row of the matrix is a transposed
vector of the faults to which the diagnostic signalsj is
sensitive. The diagnostic inference determines a subset
of potential faults if a diagnostic signal of fault takes
the value of 1, i.e.,sj = 1. This method of inference
can be presented in the form of a set ofJ rules:

if(sj = 1) then fj ∈ F (sj = 1), ∀j ∈ {1..J} . (7)

SymbolF (sj = 1) denotes the set of faults to which
the signalsj is sensitive. In the case ofFIS, by three-
valued diagnostic signal values, the diagnosis consists
of two subsets of faults, associated with any non-zero
value of the fault symptom. In this case, the inference
rules are:

if(sj = −1) then fj ∈ F (sj = −1), (8)

if(sj = +1) then fj ∈ F (sj = +1), (9)

where: F (sj = −1) andF (sj = +1) are subsets of
faults that are indicated by a symptomsj = −1 or
sj = +1 respectively.

All other forms of the relationship between binary or mul-
tivalued diagnostic signals and faults are secondary to the
FSM or FIS. Therefore, diagnostic inference methods,
i.e., based on if-then rules and logical implications or fault
trees, can be derived fromFSM or FIS [9].

3 Diagnosing with columns and rows
The two principally different approaches of diagnosing can
be distinguished:

• Column Reasoning, also referred to as signature-based
inference[1; 5; 7], or parallel inference[3];

• Row Reasoning, also referred to as symptom based in-
ference or serial inference[3].

Columns or rows refer to a tabular form of notion of the rela-
tionship diagnostic signals - faults (see Tabs. 1, 2). Knowl-
edge of this relationship is necessary for the isolation of
faults. Column-based and row-based diagnostic inference
approaches can be applied both for binary and three-valued
diagnostic signals.

The practical usability of these approaches is because
they are based on the models representing the fault-free state
of the diagnosed system. It is unnecessary to know the quan-
titative impact of faults on residuals, i.e., it is unnecessary
to know residuals in the inner form (Gertler, 1998). In the
FSM , only the knowledge of the sensitivity of diagnostic
signals to faults is necessary. Optionally, theFIS makes
use of the knowledge regarding the sign of the diagnostic
signal too.

The column-based reasoning of faults is commonly used
in theFDI community, while row-based diagnostic infer-
ence approaches within theDX community. There are also
known works[13; 15] in which row-based inference ap-
proaches are used that are different from these proposed by
Reiter[16].

Derivative and mixed approaches based on diagnostic
matrices referred to as dynamic, such asMUFIA [17], and
MFI [18] are also known. As shown in a comparative stud-
ies[18; 19], MFI andMUFIA have a superior computa-
tional effectiveness.

Bartýs in [20] introduced the alternative and dominant
signatures that allow generalizing the rule-based inference
of faults. The reasoning scheme was presented in equivalent
conditional statements referring to the introduced concepts
of alternative, dominant and mixed premises.

In this study, we analyze the properties of two classes of
diagnostic inference by the assumption of single fault occur-
rence. We also assume that all symptoms of faults persist
throughout the fault isolation process[5; 6; 21].

In the case of column-based inference, a zero value of di-
agnostic signal value means that none of the faults occurs



to which this particular signal is sensitive[13]. This inter-
pretation is known as exoneration assumption[5]. We also
assume that all symptoms of a fault must occur (complete-
ness of symptoms). Column-based inference indicates faults
whose signatures match vectors of current diagnostic signal
values.

In the case of row-based reasoning, we assume that the
appearance of a symptom (a non-zero diagnostic signal
value) indicates the fault to which the diagnostic signal is
sensitive. Thus, when assuming single faults, row-based in-
ference results in pointing out all subsets of faultsF (sj 6=
0) ∀j ∈ {1..J}. All row- and column-based reasoning as-
sumptions are thoroughly discussed in[5; 7].

In this paper we discuss the fault distinguishability ob-
tainable by the five following inference methods:

a) CB (Column-Binary) - based on columns and binary
diagnostic signals. This approach is commonly used in
the FDI community. Examples ofCB are given in
Gertler‘s works, e.g.,[1]. Signatures of the shape as
in (3) are used in the rule-based diagnostic inference
according to rules (5). The diagnosis takes the form
(10).

DGNCB =
{
fk : ∨j(sj = vk

j )
}

. (10)

b) CT (Column-Three-valued) is the inference based on
columns and three-valued diagnostic signals. The in-
ference algorithm was studied in[3]. Here, the infer-
ence of faults is based on complex signatures (4) cor-
responding to theFIS columns. The inference rules
have the form as in (6).

DGNCT =
{
fk : ∨j(sj ∈ V k

j )
}

. (11)

c) RB (Row-Binary) isFSM row-based reasoning with
binary diagnostic signals. This approach is referred to
as symptom-based reasoning[22]. Rules (7) are used
for inference. The diagnosis indicates a set of faults
that is a product of all subsetsF (sj = 1) for which
symptoms of faults have occurred.

DGNRB = {fk : ∩Fj(sj = 1)} . (12)

d) RT (Row-Three-valued) is row-based reasoning in
FIS with three-valued diagnostic signals. The rules
(8) and (9) corresponding to the rows of theFIS are
used for inferring.

DGNRT = {fk : ∩F (sj 6= 0)} (13)

e) DTS is the row-based inference inFSM with bi-
nary diagnostic signals without exoneration assump-
tion. The approach was presented in[13]. The diagno-
sis is performed only after the values of all diagnostic
signalssj ∈ S settle. Its form is as follows:

DGNDTS = {fk : ∩F (sj = 1)\ ∩ F (sj = 0)} . (14)

All of the above approaches are also usable in the case of
inference assuming single and double faults. In this paper,
the study will be limited only to single faults. It is one of
the reasons why theDX methods[16; 23; 24; 25] are not
considered in this study.DX diagnoses are hitting sets of
all minimal conflict sets that are observed. They indicate
single and multiple faults. It is a significant advantage of
this approach. By reducing the considered fault multiplicity
in potential diagnoses, theDX reasoning indicates faults of
all conflict sets. It is equivalent to diagnosesDGNRB (12).

4 Case study
A comparison of the fault distinguishability with the use
of the approaches of diagnostic inference characterized in
Sec. 3 will be carried out on the example of diagnosing a
set of three serially connected buffer tanks. A control valve
throttles the liquid inflow supplying the first tank. The third
tank provides free liquid outflow (Fig. 1). The systems of
serially connected tanks are commonly used to exemplify
developed diagnostic approaches of dynamic systems due
to the ease of understanding the principles of their oper-
ation and a sufficient degree of complexity resulting from
the feedback loops in the diagnosed system.[26; 27; 28;
29].

Figure 1: Three-tank system

Tab. 3 presents a specification of measurement and con-
trol signals used for diagnostic purposes, while Tab. 4 pro-
vides a list of considered faults.

Table 3: The set of process variables.

Process value Tag

V alve control signal CV

Inflow rate of the liquid into the tank T1 F1

Level of the liquid in the tank T1 L1

Level of the liquid in the tank T2 L2

Level of the liquid in the tank T3 L3

Table 4: The set of considered faults.

F Tag

f1 sensor F1 fault

f2 sensor L1 fault

f3 sensor L2 fault

f4 sensor L3 fault
f5 the fault in the physical link of CV
f6 control valve fault
f7 pump fault (change in outflow rate)
f8 dry − run of the pump

f9 deposits in the pipe connecting T1 and T2

f10 deposits in the pipe connecting T2 and T3

f11 deposits in outlet pipe in tank T3

f12 leaky tank T1

f13 leaky tank T2

f14 leaky tank T3

Let us assume that the four nonlinear phenomenological
partial system models will be used for fault detection. The



models of the final control element and fluid flow balance
for the set of tanks are depicted in Tab. 5. Residuals, and
then bi- and three-valued diagnostic signals, are generated
based on these models.

Table 5: The diagnostictests.

S Residual equations

s1 r1 = F1 − F̂ = F1 − f(CV )
s2 r2 = F1 − α12S12

√
2g(L1 − L2) − A1

dL1
dt

s3 r3 = α12S12

√
2g(L1 − L2)+

−α23S23

√
2g(L2 − L3) − A2

dL2
dt

s4 r4 = α23S23

√
2g(L2 − L3)

−α3S3

√
2gL3 − A3

dL3
dt

Notion : αij − flow contraction coeff icient

between ithand jth tank ; Sij − cross − sectional

area of pipes connecting ith and jth tanks;

Ai − cross − sectional area of the ithtank.

Tabs. 6 and 7 show respectively theFSM andFIS for the
set of tanks. Both matrices were filled in based on expert
knowledge. For the transparency of presentation, the zero
values were omitted.

Table 6:FSM for four binary diagnosticsignals.

S/F f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

s1 1 1 1 1 1
s2 1 1 1 1 1
s3 1 1 1 1 1 1
s4 1 1 1 1 1

Table 7:FIS for four three-valued diagnosticsignals.

S/F f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

s1 +1 +1 +1
−1 −1 −1 −1 −1

s2 +1 +1 +1 +1
−1 −1 −1 −1

s3 +1 +1 +1 +1
−1 −1 −1 −1 −1

s4 +1 +1 +1
−1 −1 −1 −1

5 Study of fault distinguishability
In this study, we consider all approaches described in Sec-
tion 3. As a quantitative measure of fault distinguishability,
we introduce the index of theoretical diagnostic accuracy.
We define the theoretical accuracy of a single diagnosis as
the reciprocal of the number of faultsdi indicated in the di-
agnosis. The diagnostic accuracyD is the average accuracy

of single fault diagnoses:

D =
1
K

K∑

k=1

1
dk

. (15)

In the case of faults for which different diagnoses can be
obtained depending on the observed diagnostic signal val-
ues (this is typical by three-valued diagnostic signals), the
accuracy of diagnosing is the average accuracy of all physi-
cally plausible diagnoses obtained for all diagnostic signals.
Diagnoses are determined for all possible faults and all fault
isolation approaches considered in the paper. The uncer-
tainties of diagnostic signals, modeling errors, disturbances,
and measurement noises are neglected.

The obtained results of the diagnostic accuracy indices
are listed in Tab. 8. In turn, the diagnoses obtained with the
studied approaches are shown in Appendix A1.

Table 8: The fault isolation accuracies obtained for the
three-tanksystem.

CB RB DTS CT RT

D 0.571 0.352 0.571 0.696 0.408

Observation 1. Tab. 8 shows that the column-based rea-
soning of faults exhibits higher fault distinguishability than
row-based reasoning for the considered case study. This ob-
servation applies both to diagnosing based on binary and
three-valued signals. The exoneration assumption plays
here a primary role. It can be clearly seen, for example,
in case of theDTS approach, where row-based inference is
applied without exoneration of symptoms. In this particular
case, the value of the accuracy index of diagnosis is equal to
this obtained in the column-basedCB approach.

Observation 2. The second observation resulting from
the conducted study concerns the significant increase in the
value of the accuracy indexD by three-valued diagnostic
signals compared with binary signals. This observation con-
firms the expectations and results of previous studies[9;
27]. Clearly, the additional knowledge, if adequate, im-
proves the quality of fault isolation.

6 Final remarks
This paper aims to compare the distinguishability of faults
obtained by inference based on five different approaches to
diagnosing a three-tank system. It was shown in the exam-
ple that using three-valued diagnostic signals could improve
the accuracy of the diagnoses. Based on this observation, we
recommend using theFIS instead ofFSM to represent the
fault-diagnostic signals relationship anywhere it is possible.
Generally, the column-based inference provides higher dis-
tinguishability over row-based inference. However, in case
of column-based reasoning, the false diagnoses generated
by transients of diagnostic signals should be taken into con-
sideration. In turn, the row-based inference is devoided of
this disadvantage.
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Appendix A1

Table 9: List of diagnoses obtained by variousapproaches.

fk s1, .., s4 CB RB DTS CT RT s1, .., s4

binary (DX) three − val.

f1 1, 1, 0, 0 {f1} {f1} {f1} {f1} {f1} +1, +1, 0, 0
{f1} {f1} −1,−1, 0, 0

f2 0, 1, 1, 0 {f2, f9} {f2, f3, f9} {f2, f9} {f2} {f2, f3} 0,−1, +1, 0
{f2, f9} {f2, f3, f9} 0, +1,−1, 0

f3 0, 1, 1, 1 {f3} {f3} {f3} {f3} {f3} 0, +1,−1, +1
{f3} {f3} 0,−1, +1,−1

f4 0, 0, 1, 1 {f4, f10} {f3,f4, f10} {f4, f10} {f4, f10} {f3, f4, f10} 0, 0, +1,−1
{f4} {f4} 0, 0,−1, +1

f5 1, 0, 0, 0 {f5, f6, f7, f8} {f1,f5,f6, f7, f8} {f5, f6, f7, f8} {f5, f6} {f1, f5,f6} +1, 0, 0, 0
{f5, f6, f7, f8} {f1, f5, f6, f7, f8} −1, 0, 0, 0

f6 1, 0, 0, 0 {f5, f6, f7, f8} {f1,f5,f6, f7, f8} {f5, f6, f7, f8} {f5, f6} {f1, f5,f6} +1, 0, 0, 0
{f5, f6, f7, f8} {f1, f5, f6, f7, f8} −1, 0, 0, 0

f7 1, 0, 0, 0 {f5, f6, f7, f8} {f1,f5,f6, f7, f8} {f5, f6, f7, f8} {f5,f6, f7, f8} {f1,f5,f6, f7, f8} −1, 0, 0, 0
f8 1, 0, 0, 0 {f5, f6, f7, f8} {f1,f5,f6, f7, f8} {f5, f6, f7, f8} {f5,f6, f7, f8} {f1,f5,f6, f7, f8} −1, 0, 0, 0
f9 0, 1, 1, 0 {f2, f9} {f2, f3, f9} {f2, f9} {f2, f9} {f2, f3, f9} 0, +1,−1, 0
f10 0, 0, 1, 1 {f4, f10} {f3, f4, f10} {f4, f10} {f4, f10} {f3, f4, f10} 0, 0, +1,−1
f11 0, 0, 0, 1 {f11, f14} {f3, f4, f10, f11, f14} {f11, f14} {f11} {f3, f4, f11} 0, 0, 0, +1
f12 0, 1, 0, 0 {f12} {f1, f2, f3, f9, f12} {f12} {f12} {f1, f2, f3, f12} 0,−1, 0, 0
f13 0, 0, 1, 0 {f13} {f2, f3, f4, f9, f13} {f13} {f13} {f2, f3, f4, f9, f13} 0, 0,−1, 0
f14 0, 0, 0, 1 {f11, f14} {f3, f4, f10, f11, f14} {f11, f14} {f14} {f3, f4, f10, f14} 0, 0, 0,−1


