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Abstract

Data-driven leakage detection and localization in
Water Distribution Networks (WDN) is a chal-
lenging task. In this paper, the Leak Localiza-
tion by Distance (LLD) heuristic algorithm is
proposed, which considers limitations existing in
practice: it only uses the measurement data, and a
network simulator is unnecessary. The proposed
method is tested in simulation on two leak scenar-
ios.

1 Introduction
The problem of detecting and locating leakages in a water
distribution system is gaining in recent days more and more
economical and even strategic importance. Water leaks in
water distribution systems account for up to 27% of the to-
tal amount of water extracted [1]. The economic losses are
therefore very high. In addition, there is a risk of contam-
ination of the water with bacteria and a threat to the health
of drinking water recipients. However, the most important
is the strategic dimension related to the security of society’s
water supply, with a constantly growing population and in-
creasing water scarcity.

Methods that require the participation of operators and
specialized equipment have been used for a long time to
detect water leaks. This group includes: auscultation of
the network with the use of a stethoscope, the use of
acoustic loggers, hydrophones, ground-penetrating radar
(GPR), floating leak detection system, gas injection meth-
ods, and tests with the use of an in-line inspection device [2;
3]. These methods allow the most accurate identification of
the leak location, but the time needed to locate the failure is
very long, which results in significant water losses. More-
over, the costs of such studies with specialized teams are
high. They are often carried out at night, mainly due to the
most negligible influence of acoustic disturbances.

The disadvantages mentioned above resulted in the devel-
opment of WDN (Water Distribution Networks) monitoring
systems, especially automatic detection and location of wa-
ter leaks. Such a solution requires a permanent installation
of appropriate metering for the water supply network. Diag-
nostic activities aim to obtain early detection capability and
usually only rough fault localization. A coarse location, e.g.,
indicating a network node, close to which a leak has arisen,
significantly narrows the area to look for failures using the
methods with the participation of staff, discussed above.

The number of possible places for leakage is endless.
Therefore, to simplify the problem, it is assumed that the
leaks occur at the network’s nodes. The number of possi-
ble leak sites remains vast, but it is finite. It is permissible
for practical reasons to bring the leakage point closer to the
network node.

The difficulties in locating leaks result from the inability
to obtain accurate network models and insufficient meter-
ing of the water distribution network. The network model
is defined by a set of highly coupled nonlinear equations
without an unambiguous solution [4; 5]. The network simu-
lators used, mainly based on the EPANET package, require
calibration. The calibration results represent the state of the
system only in a short time due to the non-stationarity of
the water supply network. Water consumption in the water
supply system changes mainly in the daily, weekly, and sea-
sonal cycles. Moreover, the water supply network is sub-
ject to constant changes related to the technical condition
of devices, expansion, and modernization. Thus, it can be
concluded that the water supply network is a highly non-
stationary facility undergoing constant changes.

An accurate measurement system is essential for the func-
tioning of any diagnostic system. Water distribution systems
mainly use pressure measurements at various points in the
network and flow measurements at points supplying indi-
vidual DMA (District Metered Area) zones and at points
of water intake by large wholesale customers. A common
problem is an insufficient number of measuring devices in-
stalled in water networks. Recently, it has been systemati-
cally increased, but the number of measurement data is still
insufficient for the needs of automatic diagnostic.

The heuristic leak detection method Localization by Dis-
tance (LLD) proposed in this paper considers the limita-
tions existing in practice to ensure the possibility of a sim-
ple application. It only uses the existing measurement data.
A network simulator is not necessary. There is also no need
to know the sensitivity of residuals to leaks. The method
can be used in separate DMA zones and in networks where
division into zones is not used.

The paper is structured as follows: Section 2 introduces
the problem of leak location and known approaches, in Sec-
tion 3, the LLD algorithm for leak localization is introduced.
Section 4 describes the model used for residual generation.
In Section 5 results of numerical experiments using WDN
simulators are described, and Section 6 concludes the paper.



2 Approaches applied to automatic leak
location

There are two types of methods and the corresponding mea-
suring devices used for network diagnostics. One solution is
acoustic methods and measurements [3]. The second is us-
ing mathematical models and flows and pressures measure-
ments in the water supply network. This paper will consider
only the latter approach.

One of the easiest ways to detect and roughly locate leaks
is to balance the water sold and pumped into the network.
This method consists of dividing the network into zones and
sub-areas. The amount of injected water, the amount of wa-
ter discharged, and the consumption by consumers is mea-
sured. The difference between the volume of water injected
into the network and the volume of water consumed by con-
sumers is a measure of the size of the leakage/leakages. The
water balance is charged with many errors. However, the
regular balancing allows to detect emerging anomalies and
roughly estimate the size of the leak while locating the leak
with accuracy to a given zone.

The basic concept of real-time leakage diagnostics in wa-
ter networks compares data from metering devices with data
generated by a well-calibrated, up-to-date hydraulic net-
work model in a leak-free condition. By analyzing the dif-
ference between the two datasets, unusual events can be
detected, such as lesions [4; 5; 6]. The above method is
based primarily on pressure measurements, which are much
cheaper than flow measurements and are easy to install and
maintain.

The papers [4; 5; 7] propose a method based on pres-
sure measurements and leakage sensitivity analysis. The
proposed methodology is based on the study of the resid-
uals (the difference between the measurements and their
estimation) using a hydraulic network model. In the first
two works, the classical binary approach was used to locate
leaks, in which the problem was selecting thresholds when
assessing the residues. The work [7] proposes improving
the localization method using residual sensitivity analysis
for fault detection. The methodology was implemented and
tested in one DMA zone in Barcelona.

An alternative solution is to use models based on his-
torical measurement data from pressure and/or flow sen-
sors. Among the methods for leakages diagnosing in dis-
tribution networks, based on the exploration of measure-
ment data, one can distinguish methods using artificial
intelligence models and statistical methods. Neural net-
works are widely used. They are used for modelling flows
[8] and pressures, for detection [9; 10] and leak local-
ization [11], forecasting the demand for water [12], wa-
ter quality monitoring, [13] and contamination detection
[14]. Fuzzy and neural-fuzzy models are also used [15;
8]. SVM (Support Vector Machines) models are also used
to predict the inflow to the network and compare it with the
actual inflow [8] and for localization of leakages [16].

Among the statistical methods for detecting anomalies,
the most frequently used method is PCA (Principal Com-
ponent Analysis) and its derivatives [17]. There are also
used: linear discriminant analysis (LDA), Gaussian Pro-
cess Regression (GPR) [18], and data-driven classifiers [19;
6].

In addition, there are reports on applications of Bayesian
models [20; 21] and the Fourier series [22] for leakage di-
agnostics.

3 Leak Localization by Distance (LLD)
This paper proposes a heuristic leakage localization method
called Leak Localization by Distance (LLD).

The method was developed under the following assump-
tions:

1. Topology of a water distribution network is known, in
particular the distances between nodes.

2. Leak detection consists of generating the residuals for
measurement signals calculated as differences between
the modelled value and the measured value.

3. Only pressure and flow measurements are used.

4. The leaks manifest themselves by the deviation of
residuals from zero. The larger the leakage, the more
residual values for this leakage deviate from zero, and
the range of its detection increases.

5. For flows: the residual is calculated as the modelled
value yM minus the measured value y. Signs of the
residuals in the presence of leaks should be negative.

6. For pressures: the residual is calculated as the mea-
sured value y minus the modelled value yM . Signs of
the residuals in the presence of leaks should be nega-
tive.

7. The opposite residual sign indicates a sensor fault or
a modelling error (or can be caused by the action of
control systems, confront results in Section 5.5).

8. The sensitivity of the calculated residuals to leakage
decreases linearly with increasing distance from the
node with a leak.

9. Single faults are assumed.

Standardisation of residuals values
The standardization of the residual activation values is ap-
plied using the function:

θj = sgn(rj)
(rj/τ)

4

1 + (rj/τ)4
(1)

where: rj residual value in node j, τ threshold value, θj ∈
[−1,+1] - standardised residual value.

Leakage localization algorithm
The motivation behind the algorithm is as follows: the lo-
calization algorithm is carried after the leak was detected,
i.e., the residuals have large enough values. The leak node is
probably localized near the nodes where the largest residuals
occur, but it can be a node without a measurement (without
a calculated residual value). Therefore we select for anal-
ysis the set R∗ of a few largest residuals. Furthermore, we
assume that the leak only affects nodes located not further
than the analysis range L and that the effect of the leak on
the residual value decreases with the distance to the leak
node. We estimate analysis range L as the largest distance
between two nodes with large residual values, i.e., the ap-
proximate radius of the part of the network that is visibly
affected by the leak. The final leak possibility function Wvn

for each network node is a sum of contributions from the
largest residuals weighted by their distances to the consid-
ered node (shorter distance means more important contribu-
tion).

LLD algorithm consist of the following steps:



1. The computed residuals form the set:
R = rj : j = 1, , J, (2)

where J denotes the number of residuals. We assume
that residuals are calculated for every measurement.
Residuals for all flow measurements are calculated ac-
cording to:

rj = yM − y (3)
and for all pressure measurements according to:

rj = y − yM , (4)
where: y measurement value, yM modelled value.
This method of calculating the residual values leads to
negative residual values in the case of leakage. A posi-
tive value may indicate sensor fault.

2. The residual values are standardized according to
Eq. (1).

3. In the localization algorithm only the set of largest
residuals is considered. A subset of residuals with the
cardinality N (N = 3 − 5) with the largest values is
determined:
R∗ = {rj : j = 1, , N :

∧
rj∈R∗∧ri ̸∈R∗

|θj | ≥ |θi|}.

(5)
If there are residuals with the same value as the small-
est residue in the set R∗, the set R∗ is extended by these
residuals.

4. The distances {lik : ri ∈ R∗, rk ∈ R∗} between mea-
surement nodes, in which the residuals from the set R∗

are calculated, are determined. lik is the shortest path
in the network between nodes vi and vk, where residu-
als ri and rk corresponds respectively to the difference
of measurements and modelled values in nodes vi and
vk.

5. The L parameter is calculated as the range of the net-
work analysis being conducted:

L = Kmax({lik}), (6)
where we assume that K is selected from the range:
K ∈ [1, 1− 1, 5].

6. For each network node vn, the value of the leakage pos-
sibility function is calculated according to:

Wvn = Σj:rj∈R∗ |θj | · yj(l), (7)
where yj(l) is a function of the distance l of a given
network node vn from the node where jth residual is
computed:

yj(l) = 1− l

L
(8)

Then nodes of the network in the specified search area
are covered with the calculated Wvn values indicating
the possibility of a leak. The highest values of the Wvn

function indicate the nodes where a leak is most likely
(probable).

LLD properties
The proposed heuristic leakage localization method has the
following properties:

• A network simulator is not required. If available, it can
be used to determine residual thresholds.

• It is not necessary to know the sensitivity of residuals
to faults.

• In the diagnosis phase, the method uses only data from
the measurements.

4 Residual generation
For a residual generation, we use Holt Winter’s model. It is
one of the methods for predicting time series with a seasonal
(periodic) component. It uses triple exponential smoothing
and was proposed in [23; 24]. Exponential smoothing is a
method calculating a weighted average of current and past
samples (more recent signal values have greater weights
than the older values). The weight values decrease expo-
nentially. With triple smoothing, exponential smoothing is
applied to the base value, trend, and seasonal component.

The values are calculated according to [25]:
Base value:

l(k) = α(y(k)−s(k−S))+(1−α)(l(k−1)+b(k−1)) (9)

Trend:

b(k) = β(l(k)− l(k − 1)) + (1− β)b(k − 1) (10)

Seasonal component:

s(k) = γ(y(k)− l(k)) + (1− γ)s(k) (11)

Smoothed value:

yM (k) = l(k) + s(k − S), (12)

where: l smoothed value of the variable, after elimination of
seasonal changes, b rate of trend growth, k sample number,
α, β, γ - smoothing coefficients, with values in range (0, 1),
values closer to 1 mean a greater weight of the current data,
which results in better adaptation to the changes in condi-
tions, but worsens the model’s sensitivity to faults. Smooth-
ing coefficients can be selected minimizing the mean square
error for historical data; S season length (in the number
of samples), in the experiments, we use signals with 10
minutes sampling time and weekly seasonality, which gives
S = 6 ∗ 24 ∗ 7; y value of the measurement.

Initial values of trend and seasonal components should be
estimated using historical data. Equations 9-11 describe ad-
ditive version of the algorithm, alternatively multiplicative
version can be used.

As a modelled value, we use smoothed measurement
value.

Values of measured and modelled values in one of the
network nodes (denoted J28) of the exemplary network (see
description of the example in 5) are shown in Fig. 1. Red
line indicates the start of the leak.

It should be noted that LLD does not assume any specific
method for a residual generation. Therefore it is straightfor-
ward to apply with other modelling approaches.

5 Case study
5.1 WDN simulator
A hydraulic model of water distribution system is described,
in general, by nonlinear algebraic equations. A mathemati-
cal description results from the first and second Kirchhoffs
laws known from electrical engineering. The EPANET ap-
plication uses computational methods to solve the equations
of flow continuity and losses describing the hydraulic con-
dition of the network in a given time interval. An equa-
tion is solved using the hybrid node-loop iterative method.
Todini and Pilati [26], and later Salgado [27] called this
method the Gradient Method. The Todini approach was
used in the EPANET2 computing library. To simulate and
evaluate diagnostic algorithms the WNTR python package
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Figure 1: Pressures in node J28, measurement and model, with leak in node J29

was used. The Water Network Tool for Resilience (WNTR,
pronounced winter) is a Python package designed to simu-
late and analyse resilience of water distribution networks.
WNTR is based upon EPANET. Using WNTR it is pos-
sible to simulate network hydraulics and water quality us-
ing pressure dependent demand or demand-driven hydraulic
simulation, and the ability to introduce leakages in specific
network nodes.

The water supply network of the city of Walkerton was
proposed as an object enabling the verification of the devel-
oped diagnostic algorithms. Walkerton is a town of about
5,000 inhabitants situated in the Canadian province of On-
tario. In May 2000, the drinking water in Walkerton was
contaminated with the highly dangerous O157:H7 strain of
E.coli bacteria. The analysed network consists of: 310 junc-
tions (network nodes), 358 pipes, 3 reservoirs, 3 pumps, 3
valves and 2 tanks.

Figure 2 shows a diagram of the water supply network
of the town of Walkerton. The network has three water
reservoirs marked with the letter R and two equalizing tanks
marked with the letter Z. The pipes with a diameter of 250
mm and 300 mm, constituting the main line, are marked in
red. In order to test the developed diagnostic algorithms,
measurement points were placed on the water supply net-
work. At each point, it is possible to measure pressure and
flow. Blue shows the measurement points on the main bus,
while the yellow color marks the measurement points on the
distribution network. Of course, during the algorithm tests,
it is possible to take into account only selected measurement
points.

Leak simulation
Leaks were simulated using WNTR Simulator1 and are
modelled with equation [28]:

dleak = CdAp
α

√
2

ρ
, (13)

where dleak - leak demand [m3/s], Cd - discharge coeffi-
cient (unitless) (Cd = 0.75), A - area of the hole [m2], α
- exponent related to characteristics of the leak (unitless)
(α = 0.5 - large leaks out of steel pipes), p - gauge pressure
[Pa], ρ - density of the fluid [kg/m3].

1https://wntr.readthedocs.io/en/latest/
hydraulics.html

5.2 Metrics
The leak isolation algorithm calculates the value of a func-
tion Wvn for each node vn in the network. Nodes with
higher values of Wvn are more likely to be leak locations.
Node with the highest value of Wvn will be called localiza-
tion result node.

For numerical assessment of the quality of the proposed
algorithm, we use the following metrics (based on [29]):

1. MPD (minimum pipe distance (in meters)) - length of
the shortest path between the leak node and the local-
ization result node, measured in meters along pipes in
the network (it is larger or equal to geographical dis-
tance)

2. MND (minimum node distance) - length of the short-
est path between leak node and localization result node,
measured in number of nodes in the path

3. PR (probability ranking) - rank (position) of leak node
in values of Wvn sorted descending, divided by the
number of nodes in the network (i.e., if we search net-
work nodes in order of descending Wvn function, what
fraction of nodes needs to be checked before finding
real leak node)

5.3 Leak scenarios
We considered two leak scenarios - leak in node J29 and
J316. Both leaks were simulated with leak area A = 0.0005,
which corresponds to leak demand flow equal to dleak =
0.009[m3/s]. Noise with a standard deviation of 0.25 was
added to simulated pressures to make experimental condi-
tions more realistic. Simulated leakages start at midnight;
hours in all the following figures (Figs. 3 - 6) corresponds to
the time since the leak started.

The leak localization algorithm is carried out each hour
(residual values are calculated every 10 minutes and aver-
aged). The leak localization algorithm was carried out with
parameters: N = 3, K = 1.1, and τ = 1. Only pressure
measurements were used. Residuals were generated by the
Holt-Winters model. Exemplary results are shown in Figs.4-
6. The colour of nodes presents the value of the localization
function. Node with a leak is marked with a cross and local-
ization result node with a diamond.

It can be observed that the result of the localization al-
gorithm highly depends on the time of localization. Our
heuristic approach assumes that the value of pressure will
drop (compared to the normal state) in the presence of a
leak. However, it can be observed that this assumption not



Figure 2: Diagram of the water supply network of the town of Walkerton
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Figure 3: Time evaluation of quality metrics, hours with
mean value of residuals above 0 are marked with gray rect-
angles

always holds (due to the action of a control system in the
network) - Fig. 1 shows values of measurement and model
in a node J28 in the presence of a leak in near node J29.
Therefore, the localization algorithm gives reasonably good
results for hours when a leak causes pressure drop - it can be
observed in Fig. 4 and Fig. 6, where distances between the
actual leak node and the node selected by the algorithm are
respectively 105 m and 199.5 m (results may slightly vary
depending on noise). Time evolution of quality metrics was
presented in Fig. 3 (hours with the mean value of residuals
above 0 are marked with grey rectangles).

According to this observation, we propose to use time fil-
tering and carry out a localization algorithm only for hours
with mean values of all residuals below zero (for compari-
son with a version without filtering, see Section 5.5).

5.4 Implementation
All algorithms were implemented in Python, the WNTR
package was used for handling the water distribution net-
work and simulation, the NetworkX package for graph pro-
cessing algorithms. The Dijkstra algorithm was used for
shortest path calculations.

There are many possible cases to investigate (leaks in dif-
ferent locations, different leak sizes, 24 hours, two algo-
rithm parameters (K and N), noise, different sensor loca-
tions). Therefore we prepared Dash2 application3 to explore
different scenarios, and the reader is invited to check differ-
ent configurations.

5.5 Results
As a baseline for LLD, we use the algorithm proposed in
[7], where current residuals are correlated with the sensitiv-
ity matrix obtained from simulation with leaks. We calcu-
lated a separate sensitivity matrix for each hour of the day.
For more realistic conditions (i.e., a non-perfect simulator
calibration), we simulated leaks with leak area A = 0.0001
and run leak scenarios with leak area A = 0.0005. We fully
acknowledge that in the presence of a properly calibrated
simulator, it is preferable to use a method from [7].

Results for two leak scenarios are presented in Tab. 1
and Tab. 2. The heuristic method proposed in this paper
is denoted as LDD and method from [7] as Sensitivity Ma-
trix Correlation. We consider scenarios without noise and
with random noise drawn from normal distribution with
mean = 0 and standard deviation σ = 0.25. Noise is added
to residuals values. For noise scenarios, the presented re-
sults are averages from 10 runs. We also consider a version
with time filtering - the algorithm is only carried out for
hours with mean residual values below 0 (hours not marked
gray in Fig. 3). Presented results are averages for 24 hours
(or selected hours in version with time filtering).

It can be observed that in this set-up, our heuristic ap-
proach gives competitive results - in most cases, it is better
in terms of MPD and PR metrics and worse in terms of
MND. Time filtering improves the results of LDD signif-
icantly. Interestingly, some improvement with time filter-

2https://dash.plotly.com/
3https://leak-localization.herokuapp.com/ -

Please be patient, it can take few minutes to start up!
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Figure 6: Leak in node J316, 1 a.m.(13 hours from leak start)

ing can also be noted for a Sensitivity Matrix Correlation
method.

5.6 Relation to existing approaches
In this paper, we propose a leak localization method using
only existing pressure sensors and network structure. Most
of the existing approaches (see Section 2) require calibrated
simulator and/or data from faulty states. Therefore our goal
is to propose a method that can be applied when these are
unavailable.

An interesting approach with similar assumptions (only
current measurements and historical data from normal states

are needed) was described in [29]. This paper uses a
model based on physical equations with coefficients esti-
mated from historical data for residual generation and kring-
ing for taking into account nodes without measurements.
The network model assumes that all demand nodes follow
the same demand pattern. Our heuristic algorithm differs
from the method proposed in [29] in the following aspects:

• For a residual generation, we use a Holt-Winters
model, witch is computationally simpler and adaptive.

• We do not assume the same demand patterns in all con-
sumer nodes. On the other hand, we assume that de-



Table 1: Quality metrics, leak in node J29
method noise σ time filtering MPD [m] MND PR

LLD 0 no 1003 8.54 0.28
0.25 no 935 8.17 0.28

0 yes 621 4.38 0.061
0.25 yes 595 4.54 0.076

Sensitivity Matrix Correlation 0 no 1365 6.54 0.32
0.25 no 1470 7.96 0.35

0 yes 787 5.06 0.14
0.25 yes 957 7.11 0.18

Table 2: Quality metrics, leak in node J316
method noise σ time filtering MPD [m] MND PR

LLD 0 no 1042 11.5 0.28
0.25 no 972 11.1 0.28

0 yes 674 8.93 0.076
0.25 yes 630 8.27 0.086

Sensitivity Matrix Correlation 0 no 1287 8.71 0.29
0.25 no 1500 10.1 0.31

0 yes 453 5.66 0.10
0.25 yes 793 7.9 0.13

mand patterns are slowly changing in comparison to
the rate of change caused by leaks. Our model also
does not take into account quick changes in network
operating conditions.

• In LLD, there is no need to estimate pressures in nor-
mal working conditions in all network nodes.

6 Conclusions
This paper shows preliminary results for a leak localization
algorithm that uses only pressure (or flow) measurements
and network structure. A water distribution network simu-
lator is not needed. When tested in simulation our algorithm
gives promising results. In the further stage of the project,
we plan to test it with real data. Leak localization in the
case of limited measurement and lack of a properly cali-
brated simulator is a very challenging task. On the other
hand, there are real-life scenarios, where such an algorithm
is needed. Therefore we see further research directions:

• providing mechanism to cope with high time variabil-
ity of results,

• testing with real data,

• developing other localization algorithms with similar
assumptions,

• testing different residual generation methods.
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