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Abstract
Reconfiguration is the automated recovery from a
fault in hybrid systems such as tank systems from
process engineering. Until today, many heuristics
for this purpose have been developed. However,
the reliability of these heuristics is not discussed
or approximated using artificial systems.
In this article, soundness and completeness prop-
erties are defined in the context of reconfiguration.
In addition, an algorithm based on the transforma-
tion of the reconfiguration problem to search and
a subsequent solution using Best-First Search is
presented. It is shown that this algorithm is sound
and complete for a class of hybrid systems.

1 Introduction
Inputs of hybrid systems, i.e. systems characterized con-
tinuous variables such as tank levels and temperatures and
discrete variables such as positions of switches, usually are
controlled by a program leading the system to a goal, spec-
ified by the operator. Faults in hybrid systems, like a stuck
pipe or a heating element failing, may lead to the control
program becoming invalid, such that the system goal is no
longer reached. Reconfiguration describes the automated
adaptation of the system configuration by setting inputs to
fixed values or exchanging faulty components [Balzereit and
Niggemann, 2021a].

Model-based diagnosis [Reiter, 1987], which is in the
scope of AI research for many years now, is a task closely
related to reconfiguration: Diagnosis is concerned with the
identification of the root cause of a fault. For this pur-
pose, as for reconfiguration, logic-based approaches are
used [Metodi et al., 2014].

Properties like soundness, i.e. the property of only re-
turning valid solutions, and completeness, i.e. the property
of handling all faults, have been extensively discussed in the
context of diagnosis [Feldman et al., 2010] and qualitative
reasoning [Travé-Massuyès et al., 2003]. For reconfigura-
tion, however, just few research exists. Until now, no dis-
cussion of central properties of reconfiguration algorithms
exists.

In this paper, two central research hypotheses concerning
reconfiguration for hybrid systems are discussed:

RH1: For a class of hybrid systems, a sound and complete
reconfiguration algorithm can be created.

Soundness guarantees that the outputs of the reconfig-
uration algorithm are only correct solutions. Complete-

ness guarantees that all faults can be handled. Soundness
and completeness are central properties of logic-based algo-
rithms [Kartha, 1993]. Thus, the strengths and limitations
of algorithms can be examined and statements about reli-
ability can be made [Travé-Massuyès et al., 2003]. How-
ever, soundness and completeness for hybrid systems can
only be shown with respect to the hybrid system model,
e.g. a hybrid automaton. Real-world systems act in a non-
deterministic environment such that it is not possible to pre-
dict every possible fault including a correct reconfiguration.
In this paper, it is examined for which hybrid systems sound-
ness and completeness can be guaranteed.

RH2: Search is suitable for formalizing and solving re-
configuration problems for a hybrid systems.

Search has been researched extensively in the area of Ar-
tificial Intelligence (AI) and been used successfully for solv-
ing various problems [Forbus and De Kleer, 1993]. We
show an abstraction of the reconfiguration problem for hy-
brid systems into a discrete, finite search space and discuss
the advantages and limitations of this approach.

The contribution of this article is threefold: (1) For the
first time, the terms soundness and completeness are defined
in the context of reconfiguration for hybrid systems. These
definitions are derived from the definition of soundness and
completeness for diagnosis algorithms. (2) A solution ap-
proach consisting of two steps is presented. First, the recon-
figuration problem for hybrid systems, described by a hybrid
system model, e.g. a hybrid automaton, is transformed into
a search problem. Second, the search problem is solved us-
ing a new algorithm which is based on Best-First Search. (3)
We proof soundness and completeness of the new algorithm
for a specific class of hybrid systems.

The paper is structured as follows: In Section 2, the re-
lated work is discussed. Then, reconfiguration for hybrid
systems is defined and formalized as search (Section 3). Af-
ter that, in Section 4 the logic-based solution algorithm is
presented. Decidability, soundness and completeness of the
algorithm are shown in Section 5. Finally, conclusion and
outlook are given (Section 7).

2 Related Work
The related work to this topic can be separated into two main
areas: Qualitative Modeling and soundness and complete-
ness properties of algorithms. Reconfiguration needs to rea-
son about the causal coherences, i.e. the effects of changing
an input variable on the state variables of the system. Hence,
techniques from Qualitative Modeling are used. Due to the



reconfiguration being close to model-based diagnosis [Re-
iter, 1987], we mainly discuss the recent approaches from
that research area.

2.1 Modeling Hybrid Systems Qualitatively
Modeling hybrid systems in a qualitative way has been re-
searched for many years. De Kleer and Brown [1984] es-
tablished the field of Qualitative Physics. Hybrid systems
are abstracted such that quantitative values are no longer
needed, but only qualitative information is used.

Qualitative Simulation (QS) is concerned with model-
ing hybrid systems in terms of Qualitative Differential
Equations to predict future system behavior by discretizing
continuous variables using representative landmark values
[Kuipers, 2001]. Trave-Massuyes et al. [2003] discussed
QS and similar abstraction formalisms in terms of sound-
ness and completeness. For some classes of hybrid systems
and some abstraction formalism, the preservation of sound-
ness and completeness properties can be shown whilst for
other, no abstraction preserving soundness and complete-
ness exists. Provan [2009] presented an abstraction method
for hybrid systems preserving the completeness of diagno-
sis. The hybrid system is described in terms of propositional
logic, allowing for the diagnosis of faults.

Benazera et al. [2009] divided the state space of hybrid
systems into different regions to allow for drawing conclu-
sions about system properties.

Hybrid Bond Graphs have been used for modeling the
causal coherences necessary for diagnosis [Narasimhan and
Biswas, 2007]. In addition, continuous observations have
been integrated into the qualitative reasoning approach. The
approach has been extended to the usage of Hybrid Min-
imal Structurally Overdetermined Sets which indicate the
presence of a fault [Khorasgani and Biswas, 2017].

Stern et al. [2019] and Matei et al. [2020] presented
modeling approaches relying on a combination of a learning
method and information about the system topology. Thus,
structural information is used to represent the causal coher-
ences of the system.

Kong et al. [2015] showed an approach on the reacha-
bility analysis of hybrid systems. The approach operates
on logical formulae representing the hybrid system and safe
and unsafe areas. However, the modeling efforts of this ap-
proach are very high since hybrid systems are described in
a detailed way using DAE.

The representation of hybrid systems in a qualitative way
has been shown to be suitable for diagnosis. The choice of
the most suitable modeling formalism depends on the infor-
mation available. Our approach is compatible with all of
these modeling approaches since from all of these models,
a transformation to a search space can be done where our
approach operates on.

2.2 Soundness and Completeness
Soundness and completeness are key aspects of diagnosis al-
gorithms: Proving soundness and completeness guarantees
for finding exclusively all correct diagnoses [Feldman et al.,
2010]. Siddiqi et al. [2007] presented a hierarchical diag-
nosis algorithm based on qualitative reasoning and proved
its soundness and completeness. Feldman et al. [2010]
presented a sound and complete SAT-based algorithm for
model-based diagnosis. The search is accelerated by ran-
dom guesses and flipping of binary variables. Stern et al.
[2012] presented a conflict-directed search for model-based

diagnosis. Soundness and completeness of the SAT-based
algorithm is shown. Metodi et al. [2014] presented a SAT-
based approach to model-based diagnosis which is based on
splitting the system into cones. Also this approach is shown
to be sound and complete.

In this paper, we combine the idea of using qualitative
representations of hybrid systems with a BFS-based algo-
rithm to create a sound and complete algorithm for the re-
configuration of a class of hybrid systems. Therefore, we
transform the reconfiguration problem of hybrid systems
into a search problem to find an assignment to the input vari-
ables recovering a valid configuration.

3 Formalization of Reconfiguration
In the following, we use the established formalism of hybrid
automata to describe hybrid systems to derive a definition of
reconfiguration.

Definition 1 (Hybrid Automaton (according to [McIlraith et
al., 1999; Lygeros et al., 1999])). A hybrid automaton H is
a tuple (X, I,x0,F ,Σ,Φ) with

• I being a set of input variables. I consists of discrete
ID and continuous IC variables I = ID ∪ IC . i(t)
refers to an input at time t, iD(t) refers to a discrete
input at time t, iC(t) refers to a continuous input at
time t. Every combination of discrete inputs iD defines
a mode µ ∈M.

• X ⊂ Rn with n ∈ N denoting state variables. x(t)
refers to a state describing the continuous behavior at
time t. x(t = 0) = x0 are initial states,

• F is a finite set of functions {fµ1
,fµ2

, ...} with fµi
:

X ×R× IC → X describing the continuous behavior
in mode µi over time t ∈ R,

• Σ is a finite set of discrete events {σ1,σ2, ...} with
σi : ID → ID which transition the system between
modes,

• Φ : Σ ×M× X → M× X is a transition function
mapping an action, a mode and a state into a new mode
and initial state.

If all functions fµi
are independent from t, so fµi

: X ×
IC → X ∀µi ∈M , the automaton is called time-invariant.
Otherwise, it is called time-variant. The set of output vari-
ablesOP is defined by the observable states, op(t) refers to
an output at time t.

For better readability, variables depending on t are short-
ened to the variable itself, e.g. i instead of i(t).

Definition 2 (Configuration). Given a state x and an input
i, the tuple (x, i) is called a configuration of the hybrid sys-
tem. C = X × I denotes the set of all configurations of a
system.

The input variables I of a hybrid systems usually are con-
trolled by a program P , e.g. a control unit or a production
plan. Usually, to define the system goal, reference values on
output variables are specified by human operators. Then, the
program controls the system by a sequence of input changes
which establish the wanted reference values [Blanke et al.,
2006].

Definition 3 (Reference Value). A reference value r ∈ R
on an output variable defines the requirement that needs to
be met such that the system goal is reached.



Figure 1: Reconfiguration masks some inputs of the hybrid
system such that a control program can reach the system
goal.

Definition 4 ((Control) Program). Given a reference value
r ∈ R and outputs op, a program is a function P : R ×
OP → I assigning values to the input variables I to reach a
user-specified system goal G. The set of all programs P for
a system is described by P .

There are configurations, from that a given system goalG
cannot be reached by a program P , e.g. after a fault led to
the program becoming invalid. Nowadays, at most known
faults are handled by P while often no fault handling is
done at all. Hence, when a fault occurs, reconfiguration be-
comes necessary to alter the current configuration to a new
configuration from that the system goal becomes reachable
again. Usually, the areas from that control programs of hy-
brid systems can reach a system goal are described by multi-
dimensional polytopes [Maı̈ga et al., 2015].
Definition 5 (Fault). A fault changes the system such that
the program P no longer reaches the system goal [Blanke et
al., 2006].

Please note that this definition limits the term faults to
deviations leading the system to no longer reach the system
goal, i.e. deviating configuration (see Definition 2). Devia-
tions that are mitigated by control are not within the scope
of this article.

To recover a system from a fault, two steps are done (see
Figure 1). First, reconfiguration changes the system to a
new configuration by masking some inputs, i.e. applying a
function fR on a subset of the inputs IR ⊂ I that may no
longer be changed by the control program. The new con-
figuration shall enable that a - possibly adapted - production
program P ′ can reach the system goal [Balzereit and Nigge-
mann, 2020]. Second, an adapted program P ′ is identified
which works on the remaining inputs I \ IR that are not
masked and controls the system to reach the system goal.
The identification of an adapted program P ′ (step II) can
be done using well-known control methods. However, the
identification of adequate reconfiguration operations is still
an open research topic [Blanke et al., 2006].
Definition 6 (Validity). Given a system goal G, a config-
uration (x, i) is valid iff G can be reached by at least one
program P ∈ P . Otherwise, the configuration is invalid. Cv
denotes the set of valid configurations, Ci = C \Cv denotes
the set of invalid configurations.
Definition 7 (Reconfiguration). Given an invalid configura-
tion (x, i) ∈ Ci, reconfiguration is a function fR : IR →
IR with IR ⊂ I such that (x,fR(i)) ∈ Cv . Thus, a
valid configuration is recovered and the system goal can be
reached by a program P ′ ∈ P .

Hence, three central questions of reconfiguration are:
(Q1) How are the sets Cv and Ci determined? Cv defines
the area of configurations allowing for a program P ∈ P

reaching the system goal. Depending on the available pro-
grams P , this area varies. (Q2) How is IR, i.e. the set of
input variables that is affected by reconfiguration, deter-
mined? To minimize the intervention into the system and
maximize the remaining control options, the set IR shall be
chosen as small as possible. (Q3) How is fR determined? In
many cases, setting input variables to fixed values may al-
ready allow for reaching the system goal. However, in some
cases more complex functions for fR might be necessary.

Definition 8 (Cardinality). The cardinality of a reconfigu-
ration fR : IR → IR is defined by |IR|.
Definition 9 (Minimal Reconfiguration). A reconfiguration
fR is called minimal if no reconfiguration ĨR ⊂ IR exists,
such that a function f̃R : ĨR → ĨR exists, that is also a
reconfiguration.

Definition 10 (Minimal-Cardinality Reconfiguration). A
reconfiguration r is of minimal-cardinality if no reconfig-
uration f̃R exists, such that |ĨR| < |IR|.
Definition 11 (Soundness). A reconfiguration algorithm is
sound if every output of the algorithm is a reconfiguration
according to Definition 7.

Definition 12 (Completeness). A reconfiguration algorithm
is complete if for every invalid configuration a reconfigura-
tion is found.

4 Solution Algorithm
The solution algorithm contains three steps: First (step I),
reconfiguration is formalized as search. Second (step II), the
transformation to search from a hybrid automaton is shown
as an example. Last (step III), the search for a reconfigura-
tion is solved using an adaptation of BFS.

We address the questions (Q1) - (Q3) as follows: Q1: The
sets Cv and Ci can take arbitrarily nonlinear shapes. How-
ever, in practical applications, the set from that a control
reaches the system goal can be approximated using linear
restrictions on state variables [Vännman and Albing, 2007;
IEC, 2017]. In the following, we discuss assumptions suit-
able for real-world applications. Q2: Our approach is lim-
ited to hybrid systems where control works exclusively on
continuous IC and reconfiguration works exclusively on dis-
crete input variables ID. Thus, the controlled system behav-
ior for each mode µ ∈ M is described by the functions fµ.
Without this limitation, the reconfiguration algorithm would
also need to take the interdependencies of masking continu-
ous variables on the functions fµ into account. The recon-
figuration algorithm takes the current discrete input iD into
account and minimizes the number of discrete input vari-
ables that are masked. Q3: Since our approach works ex-
clusively on discrete input variables, input variables are set
to fixed, discrete values. WLOG we assume the discrete
input variables to be binary. Non-binary discrete variables
with finite value ranges are transformed to binary represen-
tations. b denotes the binarized inputs iD. B denotes the set
of these. Σ̃ = {σ̃1, σ̃2, ...} with σ̃i : B → B denotes the set
of events on the binarized inputs.

In addition, we make the following assumption:

Assumption 1. We assume that for every configuration
(x, b) at least one reconfiguraton exists, e.g. by defining
safety configurations that can always be reached (total shut-
down or similar).



(a) Piping and Instrumentation
Diagram

(b) Hybrid Automaton HR with
iD = (b1)

T , iC = (iv)
T , x =

(x1)
T .

Figure 2: Running Example

Running Example The system in Figure 2a serves as run-
ning example. It consists of a pump p1 delivering water to
a tank T1. The binary variable b1 describes if the pump is
turned on or off. T1 has an outflowing valve which opening
degree is described by iv . It is controlled by a PID controller
and delivers water to a consumer.

The hybrid automaton HR describing the running exam-
ple consists of two modes M = {µ1, µ2} is shown in
Figure 2b. Let p ∈ R be the amount of water p1 deliv-
ers, flowin be a constant inflow, and c(x) be the control
function for the PID-controller of the output valve. Then
fµ1

(x) = 1/A · (flowin + p − c(x) describes the change
of water level when the pump is running and fµ2

(x) =
1/A · (flowin − c(x)) describes the change of water level
when the pump is not running. HR is time-invariant. The
goal of the system is to deliver a specific amount of water
via the valve, which can be reached by the controller while
the tank level is in between 0.2 and 0.6m.

4.1 Step I: Reconfiguration as Search
The main benefits of transformation reconfiguration into
search problem are the following [Balzereit and Nigge-
mann, 2021b]: (i) The reconfiguration algorithm becomes
independent from modeling formalisms of hybrid systems.
These formalisms may vary with the use case due to varia-
tion in available information. (ii) Research on algorithms to
solve search problem has come to a sophisticated level. Our
approach is based on a simple adaptation of BFS. However,
it is compatible with more matured algorithms like A∗ or
similar.

Definition 13 (Search Space). A search space is a tuple
(S,O) where S = {s1, s2, ...} is a set of search nodes and
O = {ol : sj → sk, l ∈ N} with sj , sk ∈ S is a set of
operations, which change the search nodes [Pearl and Korf,
1987].

Search Nodes
For reconfiguration, the search nodes si ∈ S represent con-
figurations (x, b). In this article, we are concerned with
time-invariant systems. Hence, the timed behavior of the
system is modeled in the state variables since states store
the past system behavior. For time-variant systems, time
needs to be represented explicitly in the search space.

Operations
The operations ol ∈ O represent the possible changes to the
configuration, i.e. the changes to the input variables I . In the
following, discrete reconfiguration for operations working
on binarized input variables is defined. Hence, an operation
ol ∈ O describes the change of the values of binary input
variables B.

Discrete Reconfiguration
Definition 14 (Discrete Reconfiguration). Given a search
space (S,O) with sj = (x, b) being configurations, an
initial node s0, and operations OB = B × B changing
the binary input variables, discrete reconfiguration is a se-
quence of operations R in OB that recovers a valid search
node, so the search node after applying the operations s∗ =
ol(...o1(s0)), o1, ...ol ∈ R is valid. Hence, discrete recon-
figuration is defined by a sequence of operations through the
search space, starting from an invalid node and ending at a
a valid one.

A discrete reconfiguration can be mapped to a reconfigu-
ration as in Definition 7: The set IR is given by the binary
variables B which are affected by an operation oB ∈ OR.
The function fR then is given by the values to which the
variables are set.

The dimension of the search space depends (1) on the di-
mension of state variables |X| and (2) on the dimension of
the discrete input variables |B|. For each state and each bi-
nary input, one search node is created. Then, the number of
search nodes is given by 2|B| · |X|. Since the states are con-
tinuous, the dimension is infinite. By default, in each node
|B| operations, one for each change of a binary variable, can
be applied. Then, the search space contains 2|B| operations
for each search node.

Definition 15 (Path). A path P in the search space (S,O)
is a sequence of operations P = (s0 → s1), ...(sk−1 → sk)
with si, i ∈ {1, 2, ...k} being pairwise disjoint. For better
readability, in the following the search nodes in a path are
separated by a comma.

Theorem 1. Let R be a sequence of operations R =
(s0, s1), (s1, s2), ...(sk−1, sk) with s0, s1, ...sk−1 being in-
valid and sk being valid. Then R is a minimal reconfigura-
tion if and only if R is a path.

Proof. if-part: Proof via contradiction. Assume R is a path
but R is not a minimal reconfiguration. Since R leads from
an invalid node s0 to a valid node sk, R is a reconfiguration.
So, R must not be minimal. Thus, ∃R̃ which is a recon-
figuration from s0 to sk containing only operations that are
in R. As a consequence, R must contain cycles which is a
contradiction to Definition 15.

only-if-part: Proof via contradiction. AssumeR is a min-
imal reconfiguration but R is not a path. Then R contains
at least one node twice, WLOG this node is sj . So, R =
((s0, s1), ..., (sj−1, sj), (sj , sj+1), ...(sj+o, sj), (sj , sm)...(sk−1, sk)).
Then ∃R̃ = ((s0, s1), ..., (sl, sj), (sj , sm)...(sk−1, sk))

leading to a reconfiguration R̃ containing less operations
than R, but only operations which are also in R, which
contradicts the minimality of R.

The length of a path P , so the number of operations in
P , is the cardinality of the corresponding reconfiguration.
Thus, the minimal-cardinality reconfiguration is defined by
the shortest path to a valid node.

4.2 Step II: Generation of Search Space from
Hybrid Automaton

The transformation of the reconfiguration problem for hy-
brid systems, described by a hybrid system model, e.g. a hy-
brid automaton, into the search problem plays an important
role when it comes to soundness and completeness. Hence,



as an example, we show the transformation for a hybrid sys-
tem modeled as a hybrid automaton [McIlraith et al., 1999].

The key aspect is the definition of valid and invalid con-
figurations, so if the system goal can be reached by a pro-
gram P (see Definition 6). The areas from where it is guar-
anteed that a program P reaches the system goal theoret-
ically can take every shape. However, in practice, often
simple linear restrictions are suitable [Vännman and Al-
bing, 2007; IEC, 2017]. Hence, the following assumption
is made:

Assumption 2. The area from that a program can reach the
system goal can be described using bound values on observ-
able state variables, so lbi ≤ xi ≤ ubi → ∃P ∈ P with
lbi,ubi being bound values for the state variable xi.

Thus, given a current state, it can be checked whether
the system goal can be reached. However, if the system
will recover to such a state in a reconfiguration time ∆t is
an open question. This question could be answered using
a simulation of the system. But such a simulation usually
is not available since not enough knowledge about the sys-
tem exists. Qualitative Simulation (QS) is concerned with
predicting future system states using reduced knowledge
[Kuipers, 2001]. Unfortunately, QS suffers from a explo-
sion of predictions such that even incorrect ones are gener-
ated [Kuipers, 1985].

Our approach predicts only the area of the system vari-
ables in the next step using quantitative information. We
discuss, for which class of hybrid automata the presented
reconfiguration algorithm is still sound and complete.

In the following, first a theorem on predicting future sys-
tem states is presented. Then, it is discussed, for which au-
tomata this is applicable.

The theorem uses functions fµ,τ describing the system
behavior in mode µ in the presence of the fault τ . These
function can either be learned if data about faults is avail-
able [Khoo et al., 2020], generated using temporal causal
graphs and fault signatures [Narasimhan and Biswas, 2007]
or modeled as additive and multiplicative faults, as usual in
Fault-Tolerant Control [Zhou and Frank, 1998].

Theorem 2. Given a hybrid automaton H with x(t) being
the current state and µ being the current mode, a fault τ ,
and a set of programs P satisfying Assumption 2. If

fµ,τ (x)i ·∆t+ 0.5ḟµ,τ (ξi) ·∆t2 ≥ lbi − xi, (1)

fµ,τ (x)i ·∆t+ 0.5ḟµ,τ (ξi) ·∆t2 ≤ ubi − xi (2)

with ξ ∈ [x(t),x(t + ∆t)] being the remainder value from
the Taylor approximation holds, then a program P ∈ P
exists that reaches the system goal.

Proof. Let xi < lbi. Using the Taylor approximation

xi(t+ ∆t) = xi(t) + ẋi(t) ·∆t+ 0.5ẍi(ν) ·∆t2 (3)

= xi(t) + fµ,τ (x)i ·∆t+ 0.5ḟµ,τ (ξ)i ·∆t2
(4)

with ν ∈ [t0, t0 + ∆t] and x(ν) = ξ follows. Then, from
(1)

xi(t+ ∆t) ≥ xi(t) + lbi − xi(t) = lbi (5)

follows (analogously for xi > ubi). Thus ∀xi ∈ X lbi ≤
xi(t + ∆t) ≤ ubi holds, such that the system goal can be
reached at time t+ ∆t due to Assumption 2.

Since showing property [(1), (7)] is not possible for com-
plex functions and unknown ξ we use an approximation
which holds for functions with a bounded derivative func-
tion 2α ≤ ḟµj

≤ 2β and adapt the constraints to

fµ,τ (x)i ·∆t+ α ·∆t2 ≥ lbi − xi, (6)

fµ,τ (x)i ·∆t+ β ·∆t2 ≤ ubi − xi. (7)

Theorem 3. Given a hybrid automaton H with states x,
mode µ and function fµ,τ with a bounded derivative 2α ≤
ḟµ,τ ≤ 2β, H satisfies [(1), (2)] if the constraints [(6), (7)]
are satisfied.

Proof. Trivial.

Using this property, the transformation for a hybrid au-
tomata with bounded functions fµ,τ is shown in Algorithm
1. First (l. 1), the search space is created from the cartesian
product of the state space X and the input space B. The
initial configuration is created from the initial state x0 and
the initial input b0 (l. 2).

The set of operations is initialized (l. 3), and then, for
each event (l. 4) and for each input (l. 5), the resulting input
from the event is identified (l. 6). From that, the search
nodes are identified (l. 7) and the operation is added to O (l.
8).

The set of valid search nodes is defined by the set of
search nodes that satisfy [(6), (7)].

The evaluation function which is used in Best-First
Search Algorithm is created from the reciprocal Hamming
distance of the binary input variables.

Please note that at this point, Sv and feval,s0 do not need
to be enumerated for all search nodes but can be evaluated
during the search.

The created search space and the additional information
is returned (l. 13).

Algorithm 1: HybridAutomatonToSearchSpace
Input: H = (X, I,x0,F ,Σ,Φ), b0
Output: (S,O), s0, Sv, feval,s0
// search nodes

1 S := X ×B
2 s0 := (x0, b0)
// operations

3 O = ∅
4 for σ̃i ∈ Σ̃ do
5 for bi ∈ B do
6 bo := σ̃i(bi)
7 o := (x, bi)→ (x, bo) ∀x, (x, bi), (x, bo) ∈

S
8 O := O ∪ {o}
9 end

10 end
// validity of search nodes

11 Sv := {si ∈ S|si satisfies [(6), (7)}
// evaluation function

12 feval,s0(si) := ‖bi ⊕ b0‖−11 where si = (xi, bi)
13 return (S,O), s0, Sv, feval,s0



4.3 Step III: Best-First Search to Identify
Solution

The solution algorithm is based on a BFS to identify a valid
configuration [Pearl, 1984]. BFS uses a evaluation function
feval,s0 which assigns each search node si a heuristic value
feval,s0(si) ∈ R rating the node.

To enable minimal-cardinality solutions, feval,s0 is de-
fined by the reciprocal distance of si = (xi, bi) to s0 =
(x0, b0) calculated by |bi ⊕ b0|−1.

Please note that due to [(1), (2)] the validity of a config-
uration (and thus of a search node) varies with the states x.
However, since the validity does not need to be known a-
priori but is evaluated in BFReconf, this does not pose any
problems.

The algorithm uses the functions PathTo, which identifies
a path from between two nodes using a list of parent nodes,
and Successors, which returns, given a node and the avail-
able operations, the connected nodes.

Algorithm 2: BFReconf
Input: (S,O), s0, Sv, feval,s0
Output: R = ((s0, ...), ...(..., s

∗))
1 OPEN = {s0}
2 POPEN = ∅
3 CLOSED = ∅
4 while OPEN 6= ∅ // start solving loop
5 do
6 s∗ := argmaxsi∈OPEN{feval,s0(si)} // find

best node
7 CLOSED := CLOSED ∪ s∗

// return if valid
8 if s∗ ∈ Sv then
9 R = PathTo(s0, s

∗,POPEN)
10 return R
11 end

// examine successors
12 for s̃ ∈ Successors(s∗, O) do
13 if s̃ /∈ CLOSED then
14 OPEN := OPEN ∪ s̃
15 POPEN := POPEN ∪ (s̃, s∗)
16 end
17 end
18 end

The solution algorithm BFReconf is given the initial con-
figuration s0 = (x, b) and the evaluation function feval as
input and outputs a new configuration s∗ = (x, b∗). First,
the sets OPEN,POPEN,CLOSED, where POPEN stores
the parent nodes of the nodes in OPEN, are initialized (l. 1,
2, 3). In the solving loop (l. 4), first the node with the high-
est feval-value in OPEN is identified (l. 6) and added to
CLOSED (l. 7). If the identified node s∗ is valid (l. 8),
the function PathTo identifies a path from s0 towards s∗ us-
ing the list of parent nodes POPEN (l. 9) and returns it (l.
10). Otherwise, the successors of s∗ are examined (these
are given by the changes to the binary variables) (l. 12)
and added to OPEN (l. 14), if the node is not already in
CLOSED (l. 13). The information about the parent node s∗
is stored in POPEN (l. 15).

5 Theoretical Results
Theorem 4. Let (S,O) be the search space created from
Algorithm HybridAutomatonToSearchSpace from a time-
invariant hybrid automaton with bounded functions fµ,τ
and P be a set of programs which satisfies Assumption 2.
Then Algorithm BFReconf is sound.

Proof. BFReconf outputs an s∗ ∈ Cv for which one of two
things holds:

Either lbi ≤ xi ≤ ubi ∀xi ∈ X holds. Then, due to
Assumption 2, the system goal can be reached.

Otherwise the constraints [(6), (7)] hold such that due to
Theorems 3 and 2 the system goal can be reached.

Theorem 5. Given a time-invariant hybrid system and an
invalid configuration s0, BFReconf is complete.

Proof. Due to Assumption 1, for every configuration a re-
configuration, so a path to a valid configuration, exists.
Since BFReconf iterates over all connected nodes until a
valid node is found, BFReconf is complete.

6 Practical Application
The running example is used to show the practical applica-
tion of the presented method.

Let A = 1m2 be the area of the tank, p = 0.12m3/s
be the volume of the pump when activated and flowin =
0.08m3/s be, c((x)) = av · δc ·

√
2gx1 be the outflow

through the controlled valve with av = 0.05 being the area
of the valve, δc ∈ [0, 1] being the opening degree set by the
PID controller, and g = 9.81m/s2 being the gravitational
acceleration. The bound values are set to lb1 = 0.2,ub1 =
0.6, the reconfiguration time ∆t is set to 1s. For every
x1 ∈ [lb1,ub1] the configuration is valid.

The search space (S,O) consists of S = R × {0, 1} and
O = {ol : (x, b)→ (x,¬b)|x ∈ R, b ∈ {0, 1}}.

We consider the fault case of a leak in the tank τ . Then,
fµ1/2,τ (x) = fµ1/2

(x) − 1/A · (aτ
√

2gx) with aτ = 0.01
being the area of the leak. Given a configuration x1 =
0.15, b1 = ⊥, the configuration is labeled invalid since the
approximation (6)

fµ,τ (0.15) + α ≥ 0.05 (8)

with α = 0.006 being the lower bound of the derivative ḟµ,τ
is not satisfied. Then, BFReconf checks the configuration
x1 = 0.15, b1 = > which satisfies [(6),(7)] and returns the
operation oR = (0.15,⊥)→ (0.15,>) as reconfiguration.

The constraints [(6),(7)] perform a quadratic approxima-
tion using the bound values of ḟµ,τ and check, if both ap-
proximations lie between the bound values lb,ub. Figure 3
shows the approximation for the running example with acti-
vated pump. As can be seen, after the reconfiguration time
of 1s, both approximations lie between lb and ub such that
the configuration is valid.

7 Conclusion
In this article, for the first time, the terms soundness and
completeness are defined in the context of reconfiguration
for hybrid systems. A reconfiguration algorithm based on
the transformation to a search problem and subsequent solu-
tion using and adaptation of Best-First Search is presented.
Soundness and completeness are shown for a class of hy-
brid systems. In future work, an A∗ search algorithm will
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Figure 3: Lower and upper quadratic approximation of tank
level of Running Example.

be used such that not only a valid but the best reconfigura-
tion is identified.
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