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Abstract

Existing methods for Automated Test Pattern
Generation (ATPG) for digital Integrated Circuits
(ICs) typically have two phases: (1) computation
of test-vectors for all faults and (2) compaction of
the test-vectors into a test-suite. The compaction
is needed, because, the main cost of testing is the
time necessary to apply all test-vectors one after
another. This paper proposes a novel encoding
that can calculate the whole ATPG test-suite in
one go, thus solving together both (1) and (2). To
the best of our knowledge, our method and en-
coding are the first to provide theoretical lower
bounds on the size of the test-suite. We exper-
iment extensively on the ISCAS-85 benchmark.
Our method solves circuits of non-trivial size. For
example, we find a test-suite of only 13 vectors
that tests all 942 stuck-at-0 and stuck-at-1 possible
faults for the c¢880 arithmetic-logic unit and con-
trol circuit. Similarly, all 2000 stuck-at-1 faults in
the ¢6288 16 x 16-bit multiplier can be covered by
only 3 vectors. Our method is capable of generat-
ing proofs showing that the generated test-suites
are of minimal size.

1 Introduction

Automated Test Pattern Generation (ATPG) for digital cir-
cuit is a well studied subject with an extensive application to
semiconductor manufacturing. More than 20 years ago, the
cost of testing of complex ICs was approaching 40-50% of
the total manufacturing cost [5, p. 42]. Semiconductor test-
ing costs are increasing as due to shrinking feature size [18]
defects are more likely and there are more transistors.

The end goal of the ATPG process is to generate a full
suite of test-vectors. A test-suite should cover every pos-
sible single-fault in the circuit model of the IC. Typically,
all stuck-at-0 and stuck-at-1 faults are tested because there
is statistical evidence that if there are some impurities in
the IC substrate or dust or other defects, they will manifest
themselves as stuck-at-O or stuck-at-1 faults. The biggest
cost of IC testing is not generating the test-suite but apply-
ing the test-suite to the newly made IC at test-time. That is
because each test vector is applied sequentially. As a result
the most important objective function in ATPG is to mini-
mize the number of test-vectors.

Existing approaches to practical ATPG first use random
inputs to cover for about 90% of all possible faults in an

IC [2]. The rest of the faults are considered “difficult” from
the viewpoint of combinatorics and they are generated with
SAT-based methods [3]. A difficult fault can be, for exam-
ple, on the carry path in a Carry-Lookahead Adder (CLA).
All regular input lines, in this case, must be fed ones, with-
out which it is impossible to test for stuck-at-0. Finally, once
all possible faults are covered by test-vectors, the test-suite
is compacted.

A shortcoming of most existing approaches is that they
solve separately the test-vector generation and the test-suite
compaction. Furthermore, random test-vectors are not very
good candidates for compaction. Consider, for example, a
16-bit multiplier. Significant percentage of the stuck-at-1
faults can be tested with a single test consisting of mostly
zeroes. A random input, on the other hand, would have ap-
proximately half of its input bits set to zero, hence it will not
compact easily with other test-vectors.

The reason of using random test-inputs is that ATPG was
developed [17] long before SAT solvers became power-
ful [1]. Nowadays, when SAT solvers can solve formulas
with thousands of variables, it is possible to combine both
ATPG generation and ATPG compaction into a single opti-
mization problem. This is what we achieve in this paper: we
provide a method that can generate a whole test-suite with
one call to a SAT solver.

2 Preliminaries

Digital ICs without flip-flops are modeled as circuits, and
that is our input representation. Definition 1 is directly
adopted from Vollmer [20].

Definition 1 (Boolean Circuit). Given a basis B, a Boolean
circuit G over B is defined as G = (V. E, «, 8, x,w), where
(V,E) is a finite directed acyclic graph, o : E — N is
an injective function, 8 :' V. — BU{x}, x : V —
{21,220, ., 2} U{x}h andw : V = {y1,y2, .- -, Ym} U
{*}. The following conditions must hold:

1. If v € V has an in-degree 0, then x(v) € {x1, =2,
.o, Zn} or B(v) is a 0-ary Boolean function (i.e., a
Boolean constant) in B;

2. Ifv € V has an in-degree k > 0, then 5(v) is a k-ary
Boolean function from B;

3. Foreveryi,1 < i < n, thereis exactly one node v € V
such that x(v) = x;;

4. Foreveryi,1 <1 < m, there is exactly one node v €
V such that w(v) = y;.



In this paper we use the standard basis: multi-input
AND, OR, NAND, and NOR gates; XOR and XNOR gates;
buffers an inverters. The encoding we present, however,
works with any other basis.

The function « determines the ordering of the edges that
go into a Boolean function when the ordering matters (such
as in implication). The function « is not necessary if B
consists of symmetric functions only.

The function 8 determines the type of each node in the
circuit: a function in the basis B. The function y speci-
fies the set of input nodes {1, 2, ..., z,}. The function w
specifies the set of output nodes {y1,¥y2, ..., Yn}. A node v
is non-output, or computational, if x(v) = * and w(v) = *.

Figure 1 shows a simple and frequently used circuit that
is used for adding the two binary numbers ¢; and i and a
carry input bit ¢;. The output is found in the sum bit 3 and
in the carry output ¢,. The full-adder consists of two identi-
cal half-adders. Both half-adders are made of an AND-gate
and an XOR-gate. The AND-gates are marked as a; and
as, respectively. The XOR-gates are denoted as x; and zo,
respectively. Finally the two most-significant bits from the
half-adders (27 and z3) are combined by the OR-gate o into
the carry output c,.

P

Figure 1: A full adder

We use the standard ATPG definitions [5] of fault-
location, fault, stuck-at-O, and stuck-at-1. We convert cir-
cuits to Boolean formulas and, ultimately, to Conjunctive
Normal Forms (CNFs). This is achieved by adding a Tseitin
variable at the output of each gate. In an abuse of nota-
tion we sometime use interchangeably the terms circuit and
Boolean formula.

Definition 2 (Test-Vector). Given a circuit G with primary
inputs X, fault location set F, and a fault location f € F
a test-vector that tests f is an assignment X = x, such that
GX=x,[=0)#G(X =x,f=1).

Notice that a test-vector for an assumable f may not exist.
This does not change any of the algorithms we propose and
for the rest of the paper we assume that there always exists
at least one test vector for each assumable input.

Definition 3 (Test-Suite). Given a circuit G with a set of
fault locations F, a test-suite A is a set of test-vectors
{X1;X2y -+, Xn} such that for any f € F there is at-least
one test-vector x € A that tests f.

3 Encoding

Throughout this section we assume a fixed circuit G, which
is being tested. We develop an encoding of the compaction
problem for G and some fixed number of testing vectors k.

The top-down point of view of the encoding is as follows.
First encode the problem as a single circuit 7, whose inputs
represent the unknown testing vectors. This means that the
circuit 7 has k& x m inputs if the G has m inputs and it
evaluates to true if and only if it is fed k testing vectors
sensitizing all possible single-stuck-at-faults of G.

Once the circuit 7 is constructed, decide its satisfiabil-
ity by a single call to a SAT solver through standard means,
which involves introducing fresh (Tseitin) variables in or-
der to avoid exponential blowup when producing CNF in-
put [15,19]. If T is satisfiable, we have solved the original
problem—the satisfying inputs of 7 form the desired col-
lection of testing vectors. If the circuit 7 is unsatisfiable,
testing of G cannot be compacted into k vectors and a larger
value of k has to be considered.

We remark that it would be possible to directly encode
the problem into SAT but constructing a circuit first enables
us to avail of common structures and easily apply standards
simplifications, such as constant propagation.

We proceed by developing the different parts of the encod-
ing.

3.1 Single Fault

The first ingredient of the construction is the calculation of
a testing vector for a single fault. This means that we are
looking for a vector of input values under which the faulty
circuit differs from the original.

Conceptually, this means constructing two copies of the
circuit, the original circuit and the faulty one, and asserting a
disequality between them. Effectively, this is an equivalence
check between the original and the faulty circuit.

Outputs
Original Circuit

Outputs
~ Modified Circuit

Inputs Inputs

Figure 2: A classical single-fault miter

Figure 3 shows a single-fault miter based on the full-
adder running example from Sec. 2. There are two copies
of the full-adder: the original circuit made of gates a1, as,
1, X2, and o and the circuit with the fault that is made of
aly, ab, 2, x4, and o’. The fault that is being tested is on the
upper-input of x5, which is on a fanout branch. The three
PIs i1, i9, and ¢; are pair-wise joined together and the two
pairs of outputs ¥, 3, ¢,, and ¢/, are compared with the help
of a comparator. The latter consists of the two XOR-gates



c; and cy and the OR-gate c3. One can see that an input
assignment to the PIs such that the output of c¢3 is T is a
test-vector that differentiates the fault of interest.

Let Go—,, denote the circuit G where a component C' is
substituted by a fixed value v € {0, 1}. Let Dc—, (t) repre-
sent the circuit that evaluates to true if and only if the circuits
G and Go—,, differ, given the inputs ¢. The circuit Deo—, ()
is constructed as follows (see also 2).

1. Construct G connecting it to the inputs ¢.

2. Construct Go—,, connecting it to the inputs ¢, while
reusing common components constructed in step 1.

3. Connect the outputs of the circuits constructed in step 1
and step 2 into a miter.

The faulty and the original circuits act on the same set
of primary inputs and the faulty one is obtained by alter-
ing a single component. This enables us to reuse the com-
mon sub-circuits. In our implementation, in the faulty cir-
cuit Go—,, we only construct the part of the circuit that is
affected by the replacement of C' by the value v; the rest is
copied from the original circuit G. Constant propagation is
used to propagate the value v in the faulty circuit.

The idea of component reuse is illustrated in Fig. 5 which
is a continuation of the full-adder running-example. The
fact that the fault only affects x5 allows the elimination of
the rest of the gates in the faulty circuit. As a result only one
PO (c,) has to be compared. This allows the good circuit
to also lose all gates that do not drive the other PO (X).
This is a substantial saving of 7 gates. The actual savings
depends on how close the fault is to a primary fault and on
the topology of the circuit.

3.2 Multiple Faults, Single Test Vector

The next step in the construction is to test for all the faults on
a single input vector. Let F be a set of all considered fault
pairs (C,v). We do not know upfront which faults will be
tested by a given input vector and therefore we construct | F|
disequality tests while initially not imposing any restrictions
on them.

The crucial observation here is that the original circuit
does not have to be constructed anew for each disequality.
This allows for further sub-circuit reuse by constructing | F|
miters in parallel, while reusing the original circuit G; see 4.

Conceptually, this part of the construction produces a se-
quence of circuits De—, () for each (C, v) € F, for a single
unknown vector of inputs ¢. The next step is to consider all
k unknown input vectors.

3.3 Multiple Faults, Multiple Test Vectors

Finally, by putting it all together, we test for all the faults
across all the unknown test vectors. For each test vector ¢;
and a fault f € F consider the circuit Dy (¢;). This results
in a matrix of circuits, where each row covers all the possi-
ble faults across the same unknown test vector, i.e., a single
column tells us which test vectors are testing the given fault;
see 6. We call this matrix the testing matrix.

Having constructed this matrix, enables us to express the
final condition of the problem, i.e., that each fault is cov-
ered by at least one test vector. Semantically this means that
at least one circuit D¢ (¢;) must be set to true in any given
column.

Observe that there is no sharing of sub-circuits between
different rows of the matrix because these act on different

sets of inputs However, each row shares the parts of the orig-
inal non-faulty circuit.

3.4 Symmetries

The presented encoding exhibits several symmetries. First,
we observe that the constructed testing matrix of circuits (6)
translates to a matrix of 0’s and 1’s once it is given the right
set of testing vectors. Hence, structurally it is similar to
graph incidence matrix, for which symmetries were heavily
studied [12].

A natural symmetry breaker is to impose lexicographic
order on the contents of the test vectors, or, on the contents
of the testing matrix. However, it is incorrect to break both
symmetries at the same time. We show that focusing on
the contents of the testing matrix is advantageous since it
naturally strengthens the encoding. This is done as follows.

Assume that we are already given the contents of the test-
ing input vectors, i.e., the testing matrix is filled in with 0/1
so that each column has at least one occurrence of 1. Since
there must be at least one testing vector testing the first fault,
we can reorder the rows of the matrix so that this vector is
on the first line. In another words, the matrix has 1 in the
top-left corner.

This idea may be generalized to other faults (columns).
The second fault has already been tested by the first vector,
or the vector that it is testing it can be swapped into the sec-
ond position. In other words, we add the symmetry breaker
that the second column must have at least one occurrence
of 1 in the first two rows. More generally, in the ¢-th col-
umn there must be at least one occurrence of 1 in the first ¢
rows; see 7. This reasoning affects the first £ x k rectangle
of the matrix—the restriction in the k-th column results in
the original because there only k rows in the matrix.

Since these restrictions are eventually encoded into
CNEF, this symmetry effectively shortens the corresponding
clauses. Indeed, the constrained that at least one test vec-
tor tests any given fault f translates to a disjunction of the
literals representing the respective encoding of the circuits
D¢(ti),i € 1,2,..., k. Due to the symmetry breaking, this
clause is shortened to the length j in the j-th column.

4 Experimental Evaluation

Table 1 shows the 14 combinational circuits from the 74xxx
and ISCAS-85 benchmarks [4,11].

Notice that there are more faults than components. In
ATPG for digital ICs, faults are placed both on input and
output wires of gates, as this delivers better statistical cov-
erage of physical faults [5]. Table 2 gives the number of
collapsed faults [5] for each circuit.

Before experimenting with the proposed encoding we had
to run single-fault ATPG as many circuits presented a small
number of untestable faults. This was done with the single-
fault miter shown in Figure 2 and it did not give difficulty to
the SAT solver.

The results in Table 3 show exact solutions and lower and
upper bounds for the size of the test-suite. The CPU time
spent in SAT-solving has been limited to 24 h. The UNSAT
calls become more difficult as the number of test-vectors
approaches the one necessary for having a SAT solution.

To generate the upper bounds shown in Table 3, we have
started the search from a guess for the number of test-vector,
k = 30. After that, we have checked for decreasing values
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Figure 3: A single-fault miter from the fault adder
£ ‘ £ ‘ ‘ = Name Description PIs POs Gates
\ \ \ 74182  4-bit CLA 9 5 19
N —— — 74L85  4-bit comparator 11 3 33
G G, Gt 74283  4-bit adder 9 5 36
— 74181  4-bit ALU 14 8 65
‘ c432 27-channel interrupt 36 7 160
g ) controller

c499 32-bit SEC circuit 41 32 202
Figure 4: A parallel miter that tests n single faults c880 S'blt. ALU L 60 26 383
cl355  32-bit SEC circuit 41 32 546
c1908  16-bit SEC/DEC 33 25 880
of k, until the SAT solver returned UNSAT or until the 24 h c2670  12-bit ALU 233 140 1193
timeout has been reached. c3540 8-bit ALU 50 22 1669
The most important factor for the SAT performance is the c¢5315  9-bit ALU 178 123 2307
number of faults. It is visible in Table 1 that most circuits c6288  32-bit multiplier 32 32 2416
have unequal number of S-A-0 and S-A-1 faults. This is due c7552  32-bit adder 207 108 3512

the equivalent fault collapsing and if the circuits are made
predominantly of OR-gates or AND-gates. Table 3 shows
that test-vectors that test for S-A-0 faults do not cover many
S-A-1 faults and vice versa (the bounds for all S-A-0 + S-
A-1 faults are close to the sum of S-A-0 and S-A-1).

It is visible that our methods “prefers” circuits of small
depth with multiple PIs and POs.

5 Related Work

SAT-based encodings have been used to generate test sets
covering multiple faults — such as [9,10], in which the ATPG
problem is formulated as a quantified boolean formula and
solved using incremental SAT. Our encoding is distinct in
that it does enforce minimality of generated test sets.
Several approaches to generate reduced test sets have
been proposed. Static compaction methods are typically ap-
plied as a post-processing step to reduce the size of test sets

Table 1: 74xxx and ISCAS-85 digital circuits

obtained with ATPG algorithms [6, 8, 14]. Since these static
compaction approaches reduce the size of a given test set by
eliminating redundant test patterns, decoupled from the pro-
cess of generating the test set, minimality is not guaranteed.

Dynamic compaction methods, on the other hand, are in-
tegrated into the ATPG process. They use different sets of
heuristics to increase fault detection coverage while the test
set is being constructed. In [16], close-to-minimal test sets
are generated by first grouping sets of faults based on shared
necessary assignments and then running the ATPG proce-
dure on each set of faults. In [7], the authors propose a sim-
ilar SAT-based approach to ours — insofar as to leverage the
fact that the correct circuit can be shared for multiple faults
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Figure 5: A compacted single-fault miter from the fault adder

Dfl (tl) Dfn (tl)
Dy, (t) - Dfn (tk)
y>1 Y >1

Figure 6: The encoding for generating an ATPG test-suite is
a matrix of circuits.

Dy, (t1) Dy, (t1) Dpy(ta) ... Dy, (t1)
>.21 Dy(t1) Dp(t1) ... Dy, (t1)
Z>1 'DfQ(Ifl) Dfn(tl)

Z >1
Figure 7: Symmetry breaking in the encoding.

— to be run after pruning the portion of faults that have good
random testability.

SAT has been used to decide equivalents of circuits with
a number of ingenious techniques [13]. In our encoding, ef-
fectively, we are looking for counterexamples to equivalents
between the faulty and the original circuit.

6 Conclusions

This paper proposes a method for computing minimal size
test-suites for digital ICs. This is achieved by combining the
two optimization problems: fault-test generation and test-
suite compaction into a single optimization problem. Early
empirical evaluation on ISCAS-85 circuits shows that prob-
lems of non-trivial size can be solved with modern SAT-
solvers.

We plan to extend our experiments to ISCAS-89 and to
invent encoding elements that can improve the performance
of the SAT-solving. Such elements are tuples of faults
that cannot be tested simultaneously and various extra con-
straints enforcing lower bounds.

Name Unused PIs S-A-0 S-A-1 S-A-0+ S-A-1
74182 0 31 52 83
74185 0 41 82 123
74283 0 52 76 128
74181 0 85 142 227
c432 0 170 354 524
c499 0 307 451 758
c880 0 331 611 942
c1355 0 299 1275 1574
c1908 0 412 1467 1879
c2670 76 748 1847 2595
c3540 0 1102 2326 3428
c5315 0 1617 3733 5350
c6288 0 5744 2000 7744
c7552 1 2163 5385 7548

Table 2: Number of faults in the ISCAS-85 circuits
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