
Diagnosis of hidden faults in the RCLL

Marco De Bortoli
Stalin Muñoz Gutiérrez

Gerald Steinbauer
Autonomous Intelligent Systems Group

Institute of Software Technology
Graz University of Technology

Austria

Abstract

The importance of Artificial Intelligence and Flex-
ible Production is increasing in industry. Factories
are evolving from static automation to complex
autonomous systems to better cope with the chal-
lenges introduced by globalization. The RoboCup
Logistics League (RCLL) was created as a testbed
for flexible production of on-demand orders. In
such a flexible domain, reliable scheduling requires
execution monitoring of actions. In this paper we
propose, and experimentally evaluate, a diagnosis
to deal with execution faults in the RCLL. The
proposed solution is based on the monitoring of
the execution state of actions of a temporal plan.
Our approach consists of a simple fault model,
cascade-faults and a knowledge base, followed by
replanning. The experimental results support the
use of this principle to face the inconsistencies oc-
curring by a nonobservable fault during the exe-
cution of plans.

1 Introduction

In recent years, we have seen a growing inter-
est in AI and Industry 4.0, also known as Flex-
ible Production. It is driven by new demands
from industry as a result of several factors, such
as globalization, digital transformation, and the
ongoing boom in e-commerce and the Internet of
things. Within this context, existing logistics and
production lines need to evolve in order to face
the increasing challenges introduced by the in-
dustry. Because of the radical shift in perspec-
tive, Flexible Production constitutes a new pro-
duction paradigm. In contrast to the current
static production lines, production sites within
this paradigm swiftly adapt production settings
and processes to pursue dynamic goals in non-
static contexts. At the same time this must be
done efficiently while requiring minimal human in-
tervention.
The RoboCup Logistics League (RCLL) Competi-
tion [1, 2] within the RoboCup initiative [3] exists
to provide an appealing showcase for research and
teaching in the area of Flexible Production. As
motived in [4], for the RCLL benchmarking robot

planning and execution in a dynamic and uncer-
tain environment is of particular interest. Dur-
ing the competition, games are played by robots
that mimic production steps by means of com-
munication and physical interaction with produc-
tion stations of different types to fulfil a set of
on-demand product orders. Physical interactions
between robots and machines consist of delivering
or retrieving partially or fully assembled products.
Failures frequently occur during the interactions
despite the robust hardware and low-level control
of robots and stations. In particular, the control
software developed by the Graz Robust and In-
telligent Production System (GRIPS) team from
the Graz University of Technology is affected by
a problem involving delivery tasks. Often a robot
is not able to detect a delivery fault by means of
its sensors, i.e. the robot commits to release the
product being assembled at the expected delivery
place on the station, but instead it drops it to the
floor. A fault event like this will manifest later
as an inconsistency. In this paper, we propose
a proof of concept diagnosis system able to model
the problem and that performs a rational handling
of delayed faults.
The paper is organized as follows: in Section 2
we discuss the context of our work and related
research. In Section 3 the RCLL is introduced.
Section 4 presents the system developed by the
GRIPS team, used to test the diagnosis system.
Then, in Section 6 the rationale of the diagnosis
system is explained as well as how diagnosis are
used during plan execution. Finally, we present
results of a proof of concept implementation in
Section 7 and draw some conclusions in Section 8.

2 Related Work

Within the field of Robotics, execution monitor-
ing refers to the capability of a system to iden-
tify and classify anomalies. For robot planning, it
is fundamentally concerned with the assessment
process of the realization of expected relevant ef-
fects for every executed step of a plan. Execution
monitoring has been studied in industrial control.
Pettersson [5] identified four main sources of un-
certainties affecting robot behaviour: (1) missing

Figure 1: Simulation of the RCLL showing three robots of a single team. Various types of production
stations are randomly placed across the playing field. One of the robots is interacting with a production
station.

information, (2) unreliable resources, (3) stochas-
tic phenomena, and (4) inherently vague concepts.
In this work we designed a diagnosis system that
exhibits primarily uncertainty of the types 1 and
2, but to a lesser degree also the last two. Stud-
ies within the field of fault detection and isolation
(FDI) center on the state of the environment and
on the correct operation of the robot inner func-
tional components, however we focus exclusively
on high-level deliberation functions.
Chiang et al. [6] distinguished three approaches
to execution monitoring: (1) analytical, based
on mathematical dynamic equations; (2) data
driven, mostly rely on statistical methods; and (3)
knowledge-based, comprising expert systems and
logic inference based systems. Our approach can
be classified as knowledge-based. A recent sur-
vey on fault detection and isolation for robotics
systems by Khalastchi and Kalech [7] identify a
set of five robotic systems characteristics: (1) de-
pendency on exteroceptive sensor; (2) autonomous
control; (3) deliberation; (4) dynamic context of
operation; and (5) interaction with the environ-
ment. Robotic applications may have different
degrees of concerns regarding these characteris-
tics. Although for our application several concerns
are relevant, we will only address deliberation.
For plan execution applications it is common to
use model-based reasoning techniques where the
model is given by the planning domain definition
and the plan itself. This is exactly the context of
our work, as we address the dependable execution
of the plan to achieve the desired goal.

Reasoning about faults can be handled with the
use of history-based diagnosis (HBD), a technique
that builds on Situation Calculus [8]. In HBD,
action variations can relate to what henceforth
we refer as fault modes, a description of the pos-
sible manners an action can be unaccomplished,
i.e. where the nominal effects of an action are not
fully present after execution. In [9], Gspandl et
al. show the effectiveness of history-based diag-
nosis for the development of a belief management
system implemented in IndiGolog. However, as
reported by the authors the computational com-
plexity of the approach is high. Additionally the
knowledge base is implicit in the FOL representa-
tion, making it difficult the separation of concerns
at the design phase of a monitoring system. Our
exploration is preliminary and aims to find a per-
formant solution that exhibits the soundness of
their approach and from which further improve-
ments can derive.

3 RCLL

The RCLL as part of the RoboCup initiative aims
to stimulate the development of Robotics and Ar-
tificial Intelligence by means of robotics compe-
titions. Researchers have access to highly stan-
dardized complex challenges, where they can eval-
uate their systems. This helps to bridge the gap
between academy and industry, compelling aca-
demics to acknowledge and take into consideration
the complexity of real world applications. In this

league the goal of each team of robots is to coop-
erate with a set of production machines to assem-
ble and deliver goods on demand. Two competing
teams share a common factory floor of 14m×8m in
size. Figure 1 shows a visualization of a game us-
ing the robot simulator Gazebo [10]. Each team is
comprised of up to 3 autonomous robots and owns
7 machines, emulated by Modular Production Sys-
tems (MPS®) provided by Festo [11]. There are
different types of machines that resemble differ-
ent production steps like fetching raw material,
assembling parts, or delivering finished products.
The main task of a team is to develop methods
that coordinate their mobile robots and static ma-
chines. Robots and machines communicate using
WiFi. Robots within the same team need to inter-
act physically with their machines, e.g. fetching
parts from a dispenser machine or providing in-
termediate products to the machines that refine
the products. Usually teams recourse to a central
team server that collects information from the pro-
duction management system, the machines, and
the robots, and at the same time, coordinates
the tasks executed by the robots. The products
are mimicked by stacks of bases, rings, and caps.
More specifically, each product features one base,
one cap, and from 0 to 3 intermediate rings. The
amount of rings determines the complexity of the
product. The complexity is labeled with the letter
C followed by a number, from C0 to C3, where the
number specifies the quantity of requested rings.
In general, several refining steps of intermediate
products by different machines are needed to ob-
tain a product. A central agent randomly gen-
erates product orders with varying configurations
and delivery time windows. These orders are com-
municated to the teams’ server that needs to de-
rive a production schedule and to distribute the
tasks among the robots and machines. Teams are
primarily awarded points for successfully deliver-
ing finished products. Products of higher com-
plexity are awarded more points than products
with lower complexity. As a reference, for assem-
bling a C3 product the execution of up to 10 dif-
ferent intermediate steps is necessary. Some of the
intermediate steps allow concurrent execution or
can be reschedule in real time in order to optimize
the awarded points. Teams attempt strategies
that maximize the awarded points in a production
phase that lasts 17 minutes. Delivery time win-
dows are considered as soft constraints and teams
delivering a product outside its required time win-
dow are awarded partial points for the achieve-
ment. Points are also awarded for each success-
fully accomplished intermediate assembling step,
independently of whether or not the robot delivers
the finished product.

Referee BoxReferee Box Shell Machines

HIGH-LEVEL
Scheduler Planner

Team Server

MID-LEVEL

Executive

MID-LEVEL

Executive

LOW-LEVEL

Behaviour
and Control

LOW-LEVEL

Behaviour
and Control

...

Robot 1 Robot n

GRIPS

RCLL tools

Figure 2: GRIPS distributed software architec-
ture.

4 System Architecture

In this section we describe the software architec-
ture developed by the GRIPS team to contend at
the RCLL. Figure 2 summarizes the two types
of components within the architecture: (1) the
RCLL tools provided by the organizers, and (2)
the main architectural subsystems comprising the
GRIPS software stack. As can be seen in the
diagram, the architecture is distributed: each of
the three robot modules, as well as the Team
Server (TS), are deployed across different com-
puters. The Referee Box (RefBox) is responsible
for the automated product orders generation and
for awarding points to the teams.
The GRIPS software stack resembles an abstrac-
tion pyramid and is divided into three main lay-
ers. The high-level layer includes the Scheduler
and the Planner. It also serves as a coordination
hub between the three mobile robots and other
agents like the RefBox. The implementation of
this layer is based on Java technologies [12]. The
middle-layer is responsible for reactive behaviour
of each robot and is deployed onboard. It receives
task goals from the Scheduler, and it refines them
into subtasks with smaller granularity using the
procedural reasoning system OpenPRS [13]. The
low-level layer consists of the robot platform, i.e.
sensing, low-level monitoring and low-level control
of actuators as well as basic skills such as localiza-
tion and navigation. It is implemented in C++.
The architecture of the high-level is depicted in
Figure 3. The Central Management and Monitor-
ing Module (CMMM) decides what other modules

Figure 3: GRIPS high-level layer

to invoke depending on the current situation, and
the feedback it receives from the Plan Dispatcher
(PD) or the Refbox. The situation is kept in the
Knowledge Base (KB) using a set of Atoms.
The architecture is designed to be flexible and
modular so that strategies for decision making can
be easily changed without modifying the entire
structure. A key decision to make by the CMMM,
is choosing when to call the external planner to re-
compute a new plan based on a planning model.
A planning model is specified in two parts: 1)
a planning domain, and 2) a planning problem,
both expressed using Planning Domain Definition
Language (PDDL) [14, 15]. For our experiments,
we use a external planner, see [16] , although
any other PDDL-compatible stand-alone planner
can be used. Another important decision con-
sists of selecting which goals to pursue. The Goal
Reasoner (GR) selects the most promising goals.
Once the goals are generated, a PDDL problem file
is created dynamically according to the goals and
the current KB. At this point, the external planner
is invoked using as inputs a static PDDL domain
file (writen by a human at design time), and the
dynamically generated PDDL problem file. If the
problem is solvable, a temporal plan is returned by
the planner. The temporal plan is then executed
by the PD. The PD also represents the connec-
tion point with the instances of the Middle-Level
Executive (EX) of the general architecture. EX

instances, one for each physical robot, are imple-
mented in OpenPRS. Each EX accept two types of
abstract tasks: (1) GET tasks and (2) DELIVER
tasks. Tasks have parameters, for example the
production station responsible for the assembly or
the type and color of a requested piece. The PD
assigns tasks to the specific robot using its unique
identifier and gets feedback on the success or fail-
ure of the executed task from the point of view of
the robot. This observation is important, as there
are situations in which the robot is not able to de-
tect a failed execution due to its partial knowledge
of the situation or due to limited sensing capabil-
ities. In particular, it may happen that the robot
does not succeed in delivering a piece to a station
and the piece drops on the floor. As there are no
sensors able to detect it, the robot is not aware of
the issue. If such failed actions are not detected
they may lead to an inconsistency between the
state of the environment and its internal repre-
sentation. Our strategy is a preliminary approach
towards giving the robots the capability of diag-
nosis of chains of faults for knowledge base repair
and better decision making. Every time an incon-
sistency or a problem is detected, this module tries
to repair the KB. If not possible, a replan is called
by the central module. The repairing strategy is
designed as an independent module, increasing the
flexibility of the software architecture.
The PD, which is the most complex module, up-
dates the KB accordingly to action executions.
Thus, if the planner is called again, it relies on a
up-to-date description of the current state of the
environment. Logic inconsistencies in the KB are
also detected. This has proven helpful when a
problem happens during dispatching.

5 Simulated assembly of a simple
product

We will describe and test our diagnosis and KB re-
pair module using the simulated assembly of a C1
product. Products of complexity type C1 consist
only of a base, a ring, and a cap. Figure 4 il-
lustrate the dependency graph for high-level tasks
required to assemble a C1 product. We consider
here only the two high-level tasks: GET and DE-
LIVER. Robots need to handle resources, as well
as partial or finished products, generically called
items. All machines operate in various modes,
meaning that for many operations each machine
should be appropriately prepared before physi-
cally interacting with it. The GET task acquires
an item from a specific machine. It requires the
robot to move to the machine where the item is lo-
cated, align to the correct side of the machine and
grasp the item. The DELIVER task will transport
the item that has been grasped to a destination

GET
P RS

DELIVER
P RS

GET
P BS

DELIVER
P CS

GET
P CS

DELIVER
P DS

GET
R CS

DELIVER
R CS

GET
R CSshelf

DELIVER
R RS

Uncritical
Task

Resource
Task

Critical
Task

Figure 4: Dependency graph for tasks required
to build and deliver a C1 product order. Arrows
represent ordering constraints for the tasks as well
as enabling preconditions. Each tasks describe the
involved piece (P - product, R - resource), its type
and the used station (Base Station, Ring Station,
Cap Station or Delivery Station). The tasks with
the red border are the ones affected by the drop-
ping piece problem.

machine.

6 Solution Architecture

Deliberation functions for cognitive robot archi-
tectures provide a well established and tested
paradigm for designing robotic applications [17].
The diagnosis principle described in this section
was implemented in the high-level layer of the
GRIPS architecture. For completeness and con-
text of the presented solution, we briefly mention
some relevant aspects of the other layers.
Diagnosis at the robot platform level can ben-
efit from a broad range of diagnosis techniques
and algorithms. The diagnosis modules at this
level of abstraction are mostly concerned with
the correct detection and isolation of faulty hard-
ware and software components. We won’t address
this layer in the present work and will focus ex-
clusively on the EX and the deliberative levels.
The EX is implemented in OpenPRS which is
an open source version of the Procedural Reason-
ing System (PRS) [18, 19]. It receives the tasks
dispatched by the TD and executes them in an
episodic manner. The EX does not have context
of the plan ahead, nor explicit memory about past
actions. The design of the EX includes the re-
finement of the high-level tasks into a library of
procedures that orchestrates the request of com-
mands at the platform level. This orchestration
implements reactive behavior that add to depend-
ability by means of corrective strategies, such as
reattempts of failed subtasks and timeout moni-
toring. The procedural library of the EX considers
reactive behaviour that compensates for execution
errors of platform commands. We call this proce-

dures fail-safe actions. They can be considered as
conditional reattempts that check the state of the
execution and the outcome of commands.
We briefly explain here the internal representa-
tion of the plan, and refer the reader to [20] for
a formal presentation of the topic. Our external
planner is the temporal planner optic [16] which is
based in POPF [21]. Following the least commit-
ment principle, the solutions or plans provided by
these planners do not enforce a strict total-order
of the planned actions nor total concretization of
the parameters of such actions. These features
are highly valuable and ideal for the GRIPS ar-
chitecture where the EX reactions in response to
the environment give rise to high variability in ex-
ecution times. Our temporal plan has to satisfy
consistency of conditions and effects occurring at
the start, during, and at the end of the execu-
tion of an action. Families of solutions can be
represented as classical partial-order plans for ex-
ample by splitting each step of the plan into 3
different steps. Additional constraints are added
to satisfy group selection by the planner, see for
example [22]. In particular, for our planning do-
main we can simplify further the transformation
and work only with start and end conditions and
effects. Therefore we can think of the satisfying
temporal plan as a partial-order plan where each
temporal action is split into two actions. This con-
stitutes a simple temporal constraint network [23]
where vertices are the split temporal steps and
edges that connect them are labeled with tempo-
ral constraints. The GRIPS architecture is loosely
coupled between the TS and the three EX in-
stances running in each robot. The planner se-
lects a binding to a specific robot, as well as all
other parameter of the request, except for the spe-
cific time of dispatching. This keeps the plan flex-
ible and feasible even though the real execution
times will vary significantly. The time variance is
due to the uncertainty in the application domain,
the reactive behaviour of the executive trying to
achieve the task, as well as the specific state of
the world. The scheduler will decide on the next
task to execute. Then the task is dispatched. Af-
ter dispatching the tasks, a report message will be
send back by the EX after finalizing the execution
of the task. The report, for this experiments is
limited to a binary answer {success,¬success}, a
failed task won’t report any further diagnostic in-
formation.
Our fault-tolerant plan execution strategy is pre-
sented in Algorithm 1. The diagnosis is performed
based on the plan execution history X which is up-
dated in every iteration, the planning model M ,
the task that has failed, as well as the partial ob-
servations of the environment. The result of the
diagnosis is a new history that explains what has

Figure 5: Fault Modes for task GET.

happened. The new history of tasks is replayed
against the initial KB to progress it to the present
time. This constitutes a repair in the KB that is
consistent with the diagnosis.

Algorithm 1: Fault-tolerant plan execution

input : M : Planning Model,
P : Plan,
KB0: Starting Knowledge Base

output: success or failure

KB← KB0 ; . working knowledge base

X ← [] ; . empty list of executed tasks

while KB 2 P. goal do
if ¬ validate(P,KB) then

return failure ; . replanning is required

end
P, t← schedule(P ,KB) ; . task:t, P:plan

r, o← dispatch(t) ; . r:result,o:observation

X ′ ← X + [(t, o)] ; . temporary execution history

if r = success ∧ consistent(P,X,KB)

then
KB← update-KB(KB,t,o) ; . update KB

else
X ′ ← diagnose(M ,X,t,o) ;
KB← repair-KB(X ′,KB0) ;

end
X ← X ′ ; . update execution history

end
return success ; . goal achieved

Procedure repair-KB(X, KB0)

KB← KB0 ;
foreach (t, o) ∈ X do

KB← update-KB(KB, t, o) ;
end
return KB ; . KB consistent with explanation

Our solution to the diagnosis of hidden faults relies
on extending the planning model to include fault
modes. Informally, for every high-level action (we
referred here as tasks) in the planning domain we
can define a set of task variants representing all
the known possible faults of a task.
In Figure 5 we show different causes of failure
for the action GET, a fault mode can be defined

for each case. Figure 6 illustrates an example
by depicting an hypothetical plan execution se-
quence. Tasks have the time step as subindex.
In this example task tn has failed. Fault modes
of each executed task are indicated by circunflex-
ing the task variable: t̂ij means the fault mode

i for task tj . Let us suppose that modes t̂1n
and t̂2n are both possible because observations
do not allow to single out a specific fault. For
this example several diagnosis are possible: (1)
the first two, [tn−2, tn−1, t̂

1
n], [tn−2, tn−1, t̂

2
n] cor-

respond with the most simple explanations possi-
ble, i.e. that the only fault that has occurred is
at time n; (2) a diagnosis [tn−2, t̂

1
n−1, t̂

1
n], that is

the case we are interested in, it contains a causal
dependency between two fault modes; and (3) two
more cases, [t̂n−2, tn−1, t̂

1
n], [t̂n−2, tn−1, t̂

2
n] involv-

ing other combinations of fault modes and suc-
cessful tasks. At this point a strict logical infer-
ence leading to uniquely identify the cause of the
problem is impossible with the knowledge base of
the agent due to partial observability of the ef-
fect of actions that lead to several possible diag-
nosis. An enhanced representation should capture
the preference towards more likely explanations,
independently of whether they are simple expla-
nations or complex combinations of successful ac-
tions and fault modes. Likelihood of fault modes
can be captured by probabilities. It follows from
the nature of logistics tasks, that actions are de-
pendent on each other and therefore faults that
are analyzed based only on independent probabil-
ities seem insufficient. Conditional probabilities
for task (or fault mode) transitions can be a good
start. In our example, we can expect the nomi-
nal execution to have a higher likelihood than any
of the fault modes. If the fault dependency be-
tween t̂1n−1 and t̂1n is modelled with certainty, then
the fault chain explanation will be preferred if the
likelihood of t̂1n−1 given tn−2 is higher than the

likelihood of t̂1n given tn−1. We have an analogous
reasoning for the hidden fault in our problem of
the dropping piece.

7 Architecture Evaluation

To evaluate our diagnosis system, we performed
a comparison with a previous version of the
GRIPS architecture that does not include the
fault-tolerant plan execution explained in the last
section. In the previous version, replanning is
performed every time a task fails. The planning
algorithm relies on the state of the environment
represented in the KB at the moment the fault
occurs. If the KB is inconsistent with the real
world, and this inconsistency is not detectable by
direct sensing, the new plan will be most likely un-

Figure 6: A fault model execution diagram exam-
ple. The nominal tasks (task in the plan) are in
the light gray box. Vertically aligned to each task
are their fault modes. Task tn has failed. Several
fault modes are consistent with the KB, all are col-
ored light red. This leads to several explanations:
{ [tn−2, tn−1, t̂

1
n], [tn−2, tn−1, t̂

2
n], [tn−2, t̂

1
n−1, t̂

1
n],

[t̂n−2, tn−1, t̂
1
n], [t̂n−2, tn−1, t̂

2
n]}.

feasible leading to plan execution failure. When
this mismatch happens, recovery is not possible
without the help of a diagnosis system. The goal
of this evaluation is to measure how effective is
our diagnosis system dealing with the dropping
piece problem. In our experimental setting, we
randomly generated 10 games and simulated each
game against the two versions of the GRIPS ar-
chitecture. To have a more controlled experiment,
games were modified to place only three C1 prod-
uct orders. In this way we increase the potential
number of orders delivered in a game and facilitate
the quantification of the results. An additional
reasons for not including C3 products in the eval-
uation is the observation that building a complex
product consumes almost all the time available in
one game, making it almost impossible to recover
from a failure of a C3 product if it happens near
the end of the game. The evaluation has been
performed using the simulation software Gazebo,
able to reproduce the physics and interactions of
real games. We summarize our results in Table 1.

We can conclude from the evaluation that diagno-
sis lead to better decisions. In our case the diag-
nosis allows to repair the KB. In the first run of
the games, it is able to deliver 24 products. How-
ever, the dropping piece problem affects the over-
all performance even with the fault-tolerant plan
execution, as can be seen from the second run.
It seems apparent that although we have correc-
tive measures in place at the deliberation layer,
improvements must be also done in the two other
layers.

8 Conclusions and Future Work

In this paper we proposed a proof of concept di-
agnosis able to deal with a systematic problem

Game W\O DX W DX
r1 r2 tot r1 r2 tot

g1 3 1 4 2 3 5
g2 3 1 4 3 1 4
g3 1 1 2 1 2 3
g4 3 2 5 3 3 6
g5 0 1 1 3 1 4
g6 3 3 6 3 0 3
g7 3 3 6 3 1 4
g8 1 0 1 3 3 6
g9 1 2 3 1 3 4
g10 0 0 0 2 1 3
total 18 14 32 24 18 42

Table 1: Number of delivered C1 products by the
two versions of the GRIPS architecture for 10 dif-
ferent randomly generated games. Each game was
ran twice. Runs are labeled as r1 or r2. The to-
tal amount of delivered products for each game is
shown in the column labeled tot.

affecting the GRIPS software in the RCLL. In our
approach, diagnosis is possible, even when there
is limited feedback from lower abstraction layers
in the system architecture. The dropping piece
problem affecting our software is not immediately
detectable by the robot. There are occurrences
of hidden faults, that manifest themselves with a
delay. If no history of the execution of actions is
available the manifested fault may lead the system
to conclude a false belief, hindering decision mak-
ing. In this scenario diagnosis is ineffective and
only based on a local scope. For this reason, we
implemented a proof of concept experimental set-
ting that extends a plan model with fault modes
and fault mode dependencies. If a DELIVER ac-
tion fails, involving a specific production station,
the history of plan execution steps involving the
same station is analyzed. If the inference can be
made to the root cause, then a KB repair mech-
anism takes place. If the KB repair is successful
then replanning is more likely to tolerate the fault
and eventually achieve the goal. As shown in our
experimental result in Section 7, our model is able
to detect and correct the problem several times, by
calling a replanning phase which attempts to re-
build the lost product. Without such diagnosis,
typically a robot remains blocked on a production
station, trying to retrieve an object which is no
longer there.
As future work, we plan to develop further our
diagnosis approach and apply it to correct other
planning execution problems, for example, local-
ization and path finding problems of the architec-
ture of the GRIPS software in the RCLL. Diag-
nosis at the EX and platform level are also neces-
sary. Integrating a monitoring system that spans

the different levels of abstraction and is used for
rational decision making would also be highly de-
sirable. From the research perspective, one open
question to explore would be the online learning
of fault modes based on experience gained by the
execution of plans.

9 Acknowledgments

This work is possible thanks to the LEAD project
“Dependable Internet of Things in Adverse Envi-
ronments”, Funded by Graz University of Tech-
nology.

References

[1] RoboCup. RoboCup Logistics League.
https://ll.robocup.org/, 2021. Accessed: 2021-
08-19.

[2] Tim Niemueller, Sebastian Zug, Sven Schnei-
der, and Ulrich Karras. Knowledge-based instru-
mentation and control for competitive industry-
inspired robotic domains. KI - Künstliche Intel-
ligenz, 30, 08 2016.

[3] Gerald Steinbauer and Alexander Ferrein. 20
Years of RoboCup. Künstliche Intelligenz, 30(3-
4):221–224, 2016.

[4] Marco De Bortoli and Gerald Steinbauer. The
robocup logistics league from a planning perspec-
tive. In ICAPS 2020, 2020.

[5] Ola Pettersson. Execution monitoring in
robotics: A survey. Robotics and Autonomous
Systems, 53(2):73–88, 2005.

[6] Leo H Chiang, Evan L Russell, and Richard D
Braatz. Fault detection and diagnosis in indus-
trial systems. Springer Science & Business Media,
2000.

[7] Eliahu Khalastchi and Meir Kalech. On fault de-
tection and diagnosis in robotic systems. ACM
Computing Surveys (CSUR), 51(1):1–24, 2018.

[8] Gero Iwan. History-based diagnosis templates in
the framework of the situation calculus. In An-
nual Conference on Artificial Intelligence, pages
244–259. Springer, 2001.

[9] Stephan Gspandl, Ingo Pill, Michael Reip, Ger-
ald Steinbauer, and Alexander Ferrein. Be-
lief management for high-level robot programs.
In Twenty-Second International Joint Conference
on Artificial Intelligence, 2011.

[10] Open Source Robotics Foundation. Gazebo.
http://gazebosim.org/, 2014. Accessed: 2021-08-
15.

[11] Festo. MPS® – the modular production
system: From module to learning fac-
tory. https://www.festo-didactic.com/int-
en/learning-systems/mps-the-modular-
production-system/102775.htm, 2021. Accessed:
2021-08-12.

[12] Oracle. Oracle java technologies.
https://www.oracle.com/java/technologies/,
2021. Accessed: 2021-08-15.

[13] Felix Ingrand. OpenPRS.
https://git.openrobots.org/projects/openprs,
2021. Accessed: 2021-08-15.

[14] Patrik Haslum, Nir Lipovetzky, Daniele Maga-
zzeni, and Christian Muise. An introduction to
the planning domain definition language. Syn-
thesis Lectures on Artificial Intelligence and Ma-
chine Learning, 13(2):1–187, 2019.

[15] Damien Pellier and Humbert Fiorino. Pddl4j:
a planning domain description library for java.
Journal of Experimental & Theoretical Artificial
Intelligence, 30(1):143–176, 2018.

[16] J Benton, Amanda Coles, and Andrew Coles.
Temporal planning with preferences and time-
dependent continuous costs. In Twenty-Second
International Conference on Automated Planning
and Scheduling, 2012.

[17] Félix Ingrand and Malik Ghallab. Deliberation
for autonomous robots: A survey. Artificial In-
telligence, 247:10–44, 2017.

[18] François Félix Ingrand, Raja Chatila, Rachid
Alami, and Frédéric Robert. Prs: A high level
supervision and control language for autonomous
mobile robots. In Proceedings of IEEE Interna-
tional Conference on Robotics and Automation,
volume 1, pages 43–49. IEEE, 1996.

[19] Rachid Alami, Raja Chatila, Sara Fleury, Malik
Ghallab, and Félix Ingrand. An architecture for
autonomy. The International Journal of Robotics
Research, 17(4):315–337, 1998.

[20] Malik Ghallab, Dana Nau, and Paolo Traverso.
Automated Planning: theory and practice. Else-
vier, 2004.

[21] Amanda Coles, Andrew Coles, Maria Fox, and
Derek Long. Forward-chaining partial-order plan-
ning. In Proceedings of the International Con-
ference on Automated Planning and Scheduling,
volume 20, 2010.

[22] Keith Halsey. Temporal planning with a non-
temporal planner. In Newsletter of the European
Network of Excellence in AI Planning, number 7,
2003.

[23] Rina Dechter, Itay Meiri, and Judea Pearl. Tem-
poral constraint networks. Artificial intelligence,
49(1-3):61–95, 1991.

