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Abstract

This paper proposes transfer learning in a rein-
forcement learning framework for fault-tolerant
control of a class of dynamical systems. Our ap-
proach adapts policy-reuse algorithms to achieve
learning speed improvement when new faults oc-
cur in the system. The policy-reuse strategy
finds a policy parameter initialization by sam-
pling learned policies for past fault occurrences.
We present the conditions under which our ap-
proach becomes effective and empirically demon-
strate our approach on a test-bed of a 6-tank fuel
transfer system of an aircraft.1.

1 Introduction
Physical systems operating in the real world are subject to
degradation and faults during operation. It is important for
the system to respond to these changes in a way that it con-
tinues to operate, be it in a degraded manner to avoid catas-
trophic failures. Such fault-tolerant control (FTC) [4] ap-
proaches can reduce the design cost of systems by relaxing
the constraints on designers to make a system completely
fail-safe and improve safety during operations. FTC seeks
to keep a faulty system operating within acceptable margins
of sub-optimal performance, and this allows for considering
trade-offs between design and operating costs.

Data-driven approaches to FTC [10, 9] exploit the pre-
ponderance of data collected from system operations. They
generate models that avoid the need for time-consuming and
accurate physics-based simulations of system dynamics to
respond to different situations that may occur in the sys-
tem. However, such methods depend on the data to span
the breadth of operating conditions, and the model has to
contain sufficient detail to capture multiple operating modes
and faulty situations. This represents another compromise
between design and operating costs.

In many cases, systems are complex, the number of possi-
ble faults are large, and faults that have not been seen before
can occur during operations. Therefore, there is no available
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system operational data to model such behaviors, and data-
driven approaches cannot learn a sufficiently optimal con-
trol policy to address such behaviors. Reinforcement learn-
ing (RL) presents a semi-supervised approach by forfeiting
the dependence on labeled ground truth, and instead rely-
ing on accumulated feedback (i.e., experience gained) from
a sequence of actions to converge to a globally optimal pol-
icy over time. This ability to learn during operations alle-
viates design time effort and costs. Deep RL methods use
complex, nonlinear approximations of the value function to
overcome the computational intractability of the problem [5,
2]. However, the dependence on data to learn such approxi-
mations limits how fast and how accurately a RL-based con-
troller can adjust to faults.

In ([1]), the authors developed data-driven models to sup-
plement experience with the real environment when known
and unknown faults occur in a system. In this work, we de-
velop a transfer learning framework for faster adaption of
the RL policy parameters to collected data samples. Our
approach is not dependent on the time-consuming step of
learning a data-driven model first. Instead, it reuses the re-
sults of previous learning to quickly respond to a fault and
adapt to a new optimum in due time.

The paper is organized as follows. Section 2 gives a back-
ground including extant research (section 2.1), and theoreti-
cal basis for the proposed approach (section 2.2). The trans-
fer learning approach is documented in section 3. Finally,
simulation results are shown in section 4.

2 Background
2.1 Existing work
Reinforcement learning (RL) has demonstrated promising
results when applied to continuous process control across
different industries [12]. One shortcoming of reinforcement
learning algorithms for continuous control is its sample in-
efficiency. A strategy to address this issue is to pre-train
the policy with a simulator and combine them with do-
main randomization techniques to tackle the sim2real trans-
fer problem. Fault tolerant control applications pose an even
more challenging problem because all possible fault config-
urations cannot be simulated/randomized for most systems.
Therefore, re-learning is a requirement once a fault occurs.

In recent work, RL has been applied for fault tolerant
control problems under different assumptions. A stabilizing
controller is trained in [8] to maintain position control of an
unmanned aerial vehicle regardless of whether a fault/attack
is present or not. They assume that a single controller can
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be trained to perform well across all faults considering that
fault magnitudes are pre-defined within a given range. A
similar approach is presented in [13] where the physical pa-
rameters are randomized during learning to obtain a policy
robust to faults. Zhang and Gao (2020) propose to acceler-
ate the training process when a fault occurs by introducing a
supervisory learning on the basis of a training data-set with
particle swarm optimization as learning algorithm. This ap-
proach resembles the learning from demonstrations tech-
niques commonly used in transfer learning problems [18].

Faults can be broadly classified into incipient and abrupt.
Incipient faults account for degradation mechanisms that
slowly change the behavior of the system. Lifelong learn-
ing approaches can be adopted to tackle incipient faults [1].
However, abrupt faults alter the system dynamics model,
and, therefore, present a new task to be solved, We frame
the re-learning process required when an abrupt fault oc-
curs as a transfer learning problem. We learn how to solve
a new fixed task by combining observed experiences after
the fault occurs with the knowledge from previously solved
tasks [18]. While transfer learning methods have been pro-
posed recently for fault detection in supervised learning set-
tings [6], to the best our knowledge, transfer learning has
not been applied to solve the abrupt fault tolerant control
problem.

Transfer learning in RL settings has been used to speed
up the learning process when interactions with the environ-
ment are costly by reward shaping, learning from demon-
strations, and policy transfer (policy distillation and policy
reuse) [18]. In this work, we combine ideas from policy
reuse strategy to develop a transfer learning framework for
abrupt fault tolerant control.

2.2 Preliminaries
Reinforcement learning
Reinforcement learning (RL) is a semi-supervised machine
learning approach. It relies on a controller interacting with
an environment which yields feedback: a reward signal. The
optimization objective is to select control actions to maxi-
mize cumulative rewards over time. The function that se-
lects control actions is called a policy π.

A RL task can be represented by a Markov Decision Pro-
cess (MDP). An MDP consists of states (x), actions (u), a
reward function, rt ← R(xt, xt+1), and a state transition
function, xt+1 ← T (xt, ut). The functions can be stochas-
tic. Using these, the optimal action at time t = τ becomes:

uτ ← arg max
u

(
rτ +

inf∑
t=τ+1

γt−τrt

)
(1)

Where γ ∈ R[0, 1] is a discount factor to prioritize im-
mediate rewards. The cumulative rewards of optimal ac-
tions proceeding from a state are its value V (x). Equation
(1) is recursive an can be solved via dynamic programming,
as first introduced by [3]. Later improvements such as Q-
Learning [16] iteratively tabulated the cumulative rewards
(i.e. values) of actions to then derive the most rewarding
action. Later still, value-function approximations were used
with the help of neural networks [11] to great success. This
process of estimating state and action values so the most
valuable one can be picked is called policy iteration.

Policy gradient approaches [15] directly iterate over a
policy function u← πθ(x) parametrized by θ. They bypass

the need of explicit value function approximation to evalu-
ate each state. This is specially useful for continuous action
spaces where the controller does not have to search for the
action with the highest value. Proximal Policy Optimization
(PPO) [14] is one such approach. Internally, it has a critic
function which evaluates states and actions. Those valua-
tions are then used to train the actor function which maps
states to action probabilities i.e. the policy. PPO takes care
not to change the policy drastically with each iteration of the
optimization process. PPO is employed as the RL algorithm
of choice in this work.

Transfer learning
Transfer learning methods [19] are designed to automati-
cally build prior knowledge from the solution of a set of
source tasks (i.e., training tasks) to be used during the learn-
ing process on a new task (i.e., testing task). The idea is to
retain and reuse the knowledge across different but related
tasks to improve the learning performance.

Formally, we define a RL taskM ∼ Ω as a MDP, where Ω
represents the distribution from the available space of tasks.
The goal of a transfer learning algorithm is to extract knowl-
edge from a set of L source tasks to improve the learning
process and/or performance on a target task Mt.

Typically there are three performance metrics considered
for transfer learning problems: jump-start improvement,
asymptotic improvement, and learning speed improvement.
The first one measures the initial performance of a policy
compared to random initialization. The second one mea-
sures the improvement of the final performance achieved by
the policy. The third one measures the efficiency of learning
by reducing the required interactions with the environment.

Problem formulation
The FTC challenge is posed as a transfer learning problem.
Given a history of control policies learned from other tasks
in the distribution (faults), and sampled observations from a
new task (fault), find the policy expected to yield the highest
feedback on that task.

3 Approach
The proposed FTC scheme takes over after an abrupt fault
is diagnosed in the system. It maintains a library of policy
parameters previously learned under different tasks. On en-
countering a new fault, observations are buffered. A policy
expected to generate larger rewards on that buffer is sampled
from the library and substituted into the controller. Once
initialized, the controller starts interacting with the new task
and fine-tunes policy parameters according to the RL algo-
rithm being used. The trained parameters are then consoli-
dated in the library for future reuse.

3.1 Discriminating between policies
The choice to maintain a library of policies can be justi-
fied by the diverse modes of operations they cover. The
policies change substantially with the learning task for each
fault. The policies being randomly initialized and highly
non-linear functions, their parameter distances cannot be
used directly to measure similarity. Policies may also be-
have differently when subjected to two different tasks. So
performance difference on a nominal task is not necessarily
the same difference on a separate task.



Therefore, similarity between two policies π1, π2 is com-
puted dynamically using probabilities of actions (p1, p2) ex-
tracted from a buffer M of states encountered and actions
taken by the controller on the target task Mt. One such
measure is the Jensen-Shannon divergence, JSD(π1‖π2),
[7], which is based on Kullback-Leibler (KL) divergence
between two probability distributions D(π1‖π2). The di-
vergence calculates the similarity between two probability
distributions. In this case the distributions are the action
probabilities of states inM. In other words, the controller
is asking the question: which policy in the library behaves
most similarly under the same fault as the extant policy?

~p1,2 = {π1,2(x, u) : x, u ∈M}
~pM = (~p1 + ~p2)/2

JSD(π1‖π2) = (D(~p1‖ ~pM ) +D(~p2‖ ~pM )) /2 (2)

Where pM is the mixture of the two compared distribu-
tions. JS divergence is symmetric, unlike KL divergence.
Therefore JSD(π1‖π2) ≡ JSD(π2‖π1). The square root
of JSD can be used as a distance metric. Policies which pro-
duce a smaller distances are likely to behave similarly and
thus produce the same feedback. Such policies can be clus-
tered or filtered out, to reduce the sample size in the library.
Library pruning is left as a discussion for a later work.

3.2 Ranking optimal policies
Policies previously learned are ranked by how well they can
be expected to perform under the new task at initialization.
The policy estimated to yield this largest cumulative rewards
is selected by the controller as optimal. The architecture of
policy gradient algorithms like PPO is leveraged to sample
optimal policies. PPO’s policy is trained as a critic function
that evaluates actions taken from states V (x, u), in turn to
train the actor function that outputs the probability of ac-
tions to take P (u).

Let the current nominal task be M , and the controller
policy be π. Let there be a library of policies trained
on tasks (faults) previously encountered by the controller
Π = {πl : l ∈ L}. When a new fault occurs, the controller
faces a new test task Mt ∼ Ω, which would have an optimal
choice of πl∗ from Π. LetMl be the buffer of experiences
had a library policy πl been used to collect observations in
the aftermath of a fault. WhereasM is the buffer using the
extant policy π. Then the selection of the optimal policy
initialization is given by equation 3.

V (Ml)πl
=

∑
x,u∼Ml

V (x, u) · πl(x, u)

πl∗ = arg max
πl∼Π

V (Ml)πl
(3)

Equation 3 is used as a heuristic for comparison more
than as a true approximation of value. The weighed sum
emphasizes more valuable states from likelier actions over
other state-action pairs in M. It does not evaluate actions
not taken by the extant policy.

It should be noted that the controller only has access to
M under π. There is not enough time to deploy each policy
in the library and collect a buffer of experiences. There-
fore, for equation 3 to hold, the ordinal relationships use
the substitution V (M)πl

≈ V (Ml)πl
for l ∈ L. Figure

1 demonstrates how policies trained on tasks similar to Mt

will share intermediate or terminal states. Therefore the val-
uation of the πl usingM will be truer to the valuation had
Ml been used. With a truer policy evaluation, the policy
likely to perform better will be chosen. The following ex-
periments bear these results by showing the utility of policy
re-use and its limitations under faults of various similarities.

Figure 1: Illustration of buffered experiences using differ-
ent policies under Mt. Dark sections represent stored expe-
riences. Faint sections show the difference with the extant
policy π under Mt. (a) : M using π. (b) : Ml where the
task to train πl is similar to Mt. (c) :Ml but where the task
to train πl is dissimilar to Mt.

3.3 Test-bed for experiments
The RL test-bed is a six-tank fuel transfer system on the
wings of an aircraft (figure 2). Fuel is pumped from tanks
to engines under a fixed schedule. The objective is to trans-
fer fuel between tanks to keep fuel mass balanced about the
longitudinal axis, to keep fuel mass concentrated at the ex-
tremities, and to conserve fuel mass against leaks. This is a
hybrid system. The state space x ∈ [0, 1]6 constitutes of fuel
levels in each tank as a fraction of their height. The action
space is the status of valves on each tank x ∈ {[0..1]}6. The
environment is parametrized by the tank geometry, valve re-
sistances, and engine fuel consumption rates.

The model can experience multi-modal faults. Each
faulty state represents a separate task to be learned by the
controller.

• Valve faults leave a single or a pair of valves unable to
close fully.

• Leak faults cause fuel to leave tanks besides through
engine pumps or valves.

• Pump faults cause fuel supply to engines degrade for a
tank.

The evaluation metric for training and testing is the re-
ward function. It is made up of several sub-components,



each pertaining to operating features that should be opti-
mized:

• centre is the deviation of centre of gravity from the
longitudinal axis. Closer to zero is better.

• activity is the average number of valves that are open.
Closer to zero is better to prevent unnecessary mass
transfer.

• spread is the variance of mass distribution about the
longitudinal axis. Higher is better for forward-swept
wings.

• level is the average fuel in tanks. Higher is better.

• deficit is the engine fuel demand unmet my pumps in
tanks. Closer to zero is better.

Ultimately, the components form the reward function in
equation 4. Figure 3 charts the reward components for each
time step in a nominal episode, and the total reward as a
function of those components.

r =

(
level + (1− |centre|) +

spread

2
− activity

4

)
· (1− deficit) (4)

Figure 2: The fuel tank system. Pumps are in grey, tanks in
blue, and valves in yellow.

Figure 3: A breakdown of various components in the reward
signal over a single episode. For the nominal case, compo-
nents such as deficit and activity are zero.

4 Results
For the following experiments, a library of policies trained
on faults was learned. In all cases, a fault was chosen with-
out replacement and introduced into the environment. This
created a new MDP representing the target taskMt. A prox-
imal policy was chosen from the policies corresponding to

the remaining faults, corresponding to the source tasks L.
The proposed approach was evaluated using the area un-
der curve (AuC) of reward signals over multiple episodes
of operation after a fault. AuC was calculated for indivi-
tual reward components, and the total reward function as de-
scribed in equation 4. As a benchmark, the performance of
the same policy before the fault was charted as the “Vanilla"
approach, along with the averaged performance of choosing
every other policy in the library, labelled “Average".

Type Number Description
valves25 4 Pair of valves stuck at 25%
valves50 4 Pair of valves stuck at 50%
leak 4 Leak in one fuel tank
pumps 4 Pump stuck at 10%

Table 1: A description of the designation and sizes of vari-
ous modes of faults.

4.1 Measuring proximal policies
A library of 16 faults was used to measure the pairwise simi-
larities between their corresponding policies. Table 1 shows
the various modes of faults in the system. The Jensen-
Shannon divergence was compared against the cosine, Eu-
clidean, and L1 norm metrics. Figure 4 shows normalized
pairwise distances between policies trained on faults for
each similarity measure. Of note are the lower mutual dis-
tances for faults pertaining to valves (indices 1-8) and leaks
(indices 9-12). They are delineated against pump faults (in-
dices 13-16). One explanation for this is that the fluid dy-
namics of valves and leaks are similar: the flow rates depend
on tank pressure and resistances. Whereas the flow rates for
pump faults are modeled as constant. Figure 5 shows an al-
ternative visualization where the distances are projected in
a possible arrangement in two dimensions. By all similar-
ity measures, the overlap between valve and leak policies is
larger than with pump policies. To note is that all four simi-
larity measures qualitatively delineate different fault modes.
Whereas the use of Jensen-Shannon divergence was moti-
vated in this work, its marginal utility over other measures
demands further study.

4.2 Single-mode faults
The approach was first tested by having only a single cat-
egory of fault in the library and occur in the system. In
this and the following subsections, the domain of faults
were sampled from [valves50, leaks, pumps] as
described in table 1. Results are presented in table 2. For
the valve and leak faults, the proposed approach produces
higher overall rewards. This translates into an aerodynam-
ically preferable mass distribution and lesser number of
valves open. For pump faults, our approach is the least
rewarding. From figure 4 and 5, pump faults have one of
the larger mutual distances inside their category and against
other categories of faults. This means that pump faults’ poli-
cies are significantly different from each other, and therefore
the estimate in section 3.2 may have been inaccurate.

4.3 Novel Faults
To evaluate the case where the encountered fault was com-
pletely novel or the learned policies were very different, the
set of faults on the system and learned policies in the library
were kept disjoint. Under novel faults, the performance was



Figure 4: Pair-wise distances between the nominal policy
(index=0) and faults (1-27) normalized to [0, 1]. The demar-
cating lines represent different fault modes as described in
table 1.

Figure 5: Using multi-dimensional sampling to project poli-
cies on 2 principal axes.

valves50 AuC
Deficit Centre Activity Spread Level Total

Ours 0.0325 262 28918 32158 17948 65735
Vanilla 0.0432 367 29794 31867 17945 65298
Average - - - - - 64598

leaks AuC
Deficit Centre Activity Spread Level Total

Ours 52.39 -5.37 28512 31424 18013 64847
Vanilla 39.86 -15.51 30161 31139 18008 64583
Average - - - - - 64568

pumps AuC
Deficit Centre Activity Spread Level Total

Ours 1012 -18.2 32342 29429 17634 61724
Vanilla 947 -41.4 29557 29487 17643 62507
Average - - - - - 64568

Table 2: Rewards from single-mode faults where library and
encountered faults belong to a single category.

poorer. This reinforces the hypothesis in section 3.2 that
when the optimal sequence of actions and states for a new
task is significantly different from the buffer of experiences
generated by a sub-optimal policy, the corresponding evalu-
ation may not be useful for ranking.

valves50 AuC
Deficit Centre Activity Spread Level Total

Ours 0.073 -35.5 28572 32181 17946 65919
Vanilla 0.049 1.56 29139 31858 17940 65563
Average - - - - - 64686

leaks AuC
Deficit Centre Activity Spread Level Total

Ours 55.78 1111 33874.25 30892 18008 63394
Vanilla 37.7 995.9 30181.75 30812 18007 64398
Average - - - - - 64460

pumps AuC
Deficit Centre Activity Spread Level Total

Ours 203 803 30403 30485 17915 63860
Vanilla 171 763 28168 30472 17916 64459
Average - - - - - 64030

Table 3: Rewards from novel faults where library and en-
countered faults belong to a separate categories. Names are
categories of the novel fault.

5 Conclusion
In this paper we presented a use case of transfer learning
for fault-tolerant control of a hybrid system. By exploiting
experiences from similar faults, the controller was able to
achieve marginally better performance than using its current
policy for learning the new task. In cases where the encoun-
tered fault was novel, or where the category of that fault re-
sulted in dissimilar policies, the achieved performance often
lagged behind simply learning using the extant policy.

Thus, the choice of a dynamic policy ranking metric
which is robust against dissimilar policies poses an inter-
esting problem for future work. Equally vital is the prun-
ing of the library of policies to keep the sample size small



while preserving breadth of experiences. This paper pre-
sented some preliminary solutions by way of similarity mea-
sures to discriminate policies. Further study is required
in the selection criteria for policy reuse, incorporation of
meta-learning, and choice of hyper-parameters and regular-
ization techniques against multiple test-beds to validate this
approach thoroughly.
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