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Abstract
Fault tolerant control (FTC) focuses on develop-
ing algorithms to accommodate system faults in
a manner that still allows the degraded system
to operate effectively. Additionally, a series of
data-driven methods such as reinforcement learn-
ing (RL) have shown success for improving con-
trol of complex and continuous tasks. However,
optimal controllers obtained with RL methods do
not guarantee optimality when introducing faults.
As such, in this work, we propose a control archi-
tecture that combines parameter estimation, RL,
and model-based control to handle faults in a con-
tinuous control environment. Furthermore, we
demonstrate our approach on complex control of
an octocopter subject to a trajectory-tracking task
with single and multiple faults. We showcase im-
proved performance compared to nominal hierar-
chical PID control for single and multiple large
magnitude faults. Lastly, we highlight our ap-
proach’s robustness against noisy parameter esti-
mation representing our controller’s viability in a
real-world scenario.

1 INTRODUCTION
Faults are defined as a deviation of a system property or pa-
rameter that prevents the system from operating in the way
it was designed. Failures, on the other hand, represent a
more drastic condition that prevents the system from op-
erating even probably causing an accident. Fault Tolerant
Control (FTC) methods address the problem of improving
the system performance on a specific task when it operates
in a degraded manner because of a fault(s) [1].

FTC methods are broadly classified into active and pas-
sive [2]. Active methods rely on a Fault Detection and Iso-
lation (FDI) online module to inform the controller about
the presence and characteristics of a fault to be able to re-
configure the control law accordingly. Passive methods do
not need an FDI module thus resulting in less computational
complexity but they can only accommodate faults defined
at the design stage. FTC methods can also be classified de-
pending on the how the controller(s) is designed into model-
based and data-driven [3]. Model-based controllers are de-
signed based on models of the system whose structure is
defined by physics fundamentals with parameters estimated
from measurement data. Data-driven controllers learn di-
rectly from system data. The former type of controllers re-

quire knowledge about the physics and parameters of the
system while the latter require a data set representative of
the operating conditions of interest, i.e. faults to be accom-
modated.

The performance of model-based FTC methods depends
on having accurate and comprehensive first-principle mod-
els. Complex models require complex control methods
compromising the robustness of the controller. Data-driven
FTC methods allow developing complex control strategies
by only using data of the system but they are sample inef-
ficient requiring tons of data to achieve a satisfactory per-
formance. This is the case of deep reinforcement learning
(DRL) controllers which have been become very popular for
solving continuous control tasks in the last few years [4].

DRL applications to solve the FTC problem have been
proposed in [5; 6]. For example, Wang et al.[6] presented
a Deterministic Policy Gradient algorithm with an integral
compensator for robust quadrotor control. However, as it
will be shown in this paper, DRL methods for end-to-end
control of systems lose convergence guarantees for fault tol-
erant control problems. As an alternative, recent works have
combined model-based and DRL for FTC and robust control
[7; 8; 9]. However, none of these works show capability to
handle complex dynamic models nor multiple faults. The
main contribution of this paper is therefore a novel FTC ar-
chitecture combining parameter estimation techniques with
model-based control and DRL to solve the FTC problem.
We consider an octocopter trajectory-tracking task subject
to single and multiple motor faults with varying magnitude
as a case of study. Moreover, we generate the faults based
on modifying the physical parameters of the system instead
of manipulating the signals artificially as it has been done
in the previous referenced literature. Finally, we make the
model fully available so other researchers can work on the
FTC problem for complex systems like octocopters.

The structure of the paper is the following. In Section
2, the preliminaries of the different methods we use are ex-
plained. In Section 3, we present our approach to FTC. The
case study and fault scenarios considered are detailed Sec-
tion 4. The experiments and results are presented in Section
5, and finally, conclusions and directions for future works
are given in Section 6.

2 PRELIMINARIES
2.1 Reinforcement Learning
Reinforcement learning (RL) aims to solve an optimal con-
trol problem through neural network-based methods. The



control law is refined through the continuous interactions
of a learning agent with an environment [10]. The control
problem is formalized through the following definition,
Definition 1 (Markov Decision Process) A Markov deci-
sion process is defined by a four tuple: M = {S ,A,T ,R},
where S represents the set of possible states in the environ-
ment. The transition function T : S × A × S → [0, 1]
defines the probability of reaching state s′ at t + 1 given
that action a ∈ A was chosen in state s ∈ S at decision
epoch t, T = p(s′|s, a) = Pr{st+1 = s′|st = s, at = a}.
The reward function R : S ×A→ < estimates the immedi-
ate reward R ∼ r(s, a) obtained from choosing action a in
state s.
The objective of the agent is to find an optimal policy π∗
that maximizes the following criteria ∀s ∈ S :

V π
∗
(s) = max

π∈Π
E

[ ∞∑
t=0

γtR(st, at)|s0 = s, at = π(s)

]
,

(1)
where V π : S → R is called value function and it is defined
as

V π(s) = E

[ ∞∑
t=0

γtR(st, at)|s0 = s

]
, ∀s ∈ S , (2)

where 0 < γ ≤ 1 is called the discount factor, and it de-
termines the weight assigned to future rewards. The agent’s
objective is to find the policy that maximizes the expected
sum of reward. Obtaining a policy with optimality guaran-
tees requires the following two conditions to be satisfied

1. |R ∼ r(s, a)| ≤ C <∞,∀a ∈ A, s ∈ S

2. T and R do not change over time.
Systems subjects to faults undergo changes that cause their
dynamic model, represented by the transition function T , to
change over time [4]. Therefore, learning direct control with
DRL for fault tolerance is not theoretically feasible. We
propose a fault adaptive control scheme that avoids using
DRL for direct control and we present it in the next section.

2.2 Proximal Policy Optimization
Proximal Policy Optimization (PPO) is a reinforcement
learning algorithm based on the Natural Policy Gradient
method [11]. PPO allows to learn a policy π(s) using a neu-
ral network whose input is the state vector and the output is
the mean µ and standard deviation σ of the best possible ac-
tion in that state. A second neural network, called the value
network, keeps track of the values associated with the states
under this policy. This is subsequently used to estimate the
advantage of a certain action compared to alternatives in
that state. This network is trained using the Temporal Dif-
ference (TD) error [10]. PPO has demonstrated outstand-
ing performance compared to other gradient-based policy
learning algorithms for a number of complex stochastic en-
vironment benchmarks, such as those provided in the Mu-
joco platform [12]. Moreover, PPO guarantees monotone
improvement of the policy over multiple learning iterations.
We therefore selected PPO as our DRL algorithm because
of the above-mentioned reasons.

3 PROPOSED APPROACH
We propose the combination of model-based control
schemes with DRL as a solution to the FTC problem pre-

sented in Figure 1. Model-based control methods like Pro-
portional Integral Derivative (PID) Controllers remain dom-
inant in real world industry applications thanks to their sim-
ple structure, ease of implementation, and wide variety of
tuning methods [13]. Nonetheless, traditional tuning meth-
ods for PID control do not account simultaneously for multi-
ple input-output systems and multiple PID controllers. Car-
lucho et al. [14] proposed to use DRL for PID parame-
ter tuning to tackle the previously mentioned problems in
robotic tasks. However, adaptation is required for control
systems which undergo through faults. We propose to ex-
tend the scheme proposed in [14] to accommodate faults as-
suming they are not catastrophic (the system can continue
to operate in a degraded manner and implying that perfor-
mance can be recovered to some extent by updating the PID
parameters).
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Figure 1: Fault Adaptive Control framework

The core of the proposed approach relies in the combi-
nation of parameter estimation techniques with DRL. We
propose to update the PID controller when the value of
the parameter(s) associated with faults affect the control
performance. The measurements obtained from the sys-
tem y ∈ <m are used to estimate fault-related parameters
ρ ∈ <n through widely studied estimation techniques like
the Unscented Kalman Filter and the Particle Filter [15].
The estimated parameters are then used as inputs to the DRL
agent (s = ρ) and the action of the agent consists in a new
set of parameters for the controller(s) (a = ξ). We demon-
strate the feasibility of the proposed approach in a complex
control task presented next.

4 CASE STUDY
We consider an octocopter airframe dynamics model based
on Newton-Euler equations of motion for a rigid body [16].

The octocopter’s cascade control scheme is shown in Fig-
ure 2. This control approach allows for stabilization of the
position and orientation of the octocopter with respect to a
trajectory. A set of three PID controllers adjust the vehicle
attitude, and different three PID controllers adjust the posi-
tion variables, together forming nested feedback loops. The
reference trajectory is defined in terms of position and yaw
angle [xt, yt, zt, zt, ψt]. The Altitude PID controller gen-
erates the required force in the z direction. The position
PD controllers estimate, based on the current position of the
vehicle and yaw angle, the reference for the pitch (θ) and
roll (φ) angles. The attitude PD controllers generate the re-
quired torque in each direction. The control allocation block
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Figure 2: Cascade Control scheme for the octocopter

transforms the torques and force into a reference voltage for
each motor of the octocopter. Finally, each motor generates
angular velocity according to the motor’s dynamics and we
cap the input voltage to 11.1V to represent a realistic motor
scenario. [17] More details of the octocopter modeling and
control allocation can be found in [18]. Additionally, we
publicly publish our Open AI Gym Environment for explo-
ration of the Octorotor dynamics case study and to encour-
age future research in this sector of fault tolerant control -
Octorotor Gym Github.

Table 1: Octocopter Parameters
Parameter Value

Mass 2
Inertia Coefficient X 0.0429 kgm2

Inertia Coefficient Y 0.0429 kgm2

Inertia Coefficient Z 0.0748 kgm2

Length 1m
Rotor Thrust Constant 8.54858 ∗ 10−6 Ns2/rad2

Drag Constant 1.3678 ∗ 10−7 Nms2/rad2

Nominal Motor Resistance 0.2371 Ω
Electrical Motor constant 0.0107 Vs/rad

Mechanical Motor Constant 0.0107 Nm/A

4.1 Fault scenarios
Typically, the degradation of the components of the octo-
copter increases monotonically from mission to mission.
Motors are susceptible to mechanical degradation in the
form of bearing wear, and electrical degradation in the form
of contact corrosion and insulation deterioration [19]. In-
stead of generating faults through the manipulation of con-
trol signals as it has been done in previous works, we take
a more realistic simulation approach and generate the faults
by modifying the value of the motor parameters. We con-
sider the following simplified model for each of the eight
motors

ω̇ =
1

Jm
(Keic − Tload −Dfω − Tf ), (3)

ic =
1

Req
(vDC −Keωi), (4)

where Req = 2
3

∑3
j=1Rj is the equivalent electric resis-

tance of the coils, Ke is the back electromotive force con-
stant, ω is the angular velocity, Tf is the static friction
torque, Df is the viscous damping coefficient, Jm is the
inertia along the z axis, vDC is the input voltage control sig-
nal, ic is the current demanded, and Tload represents the
torque load generated by the propellers. An increase in
winding resistance (Req) results in the loss of effectiveness
of the motor. Therefore, through the modification of this
parameter we generate faulty behaviors of the octocopter in

the trajectory-tracking task. In this work, we considered sin-
gle motor faults ranging between 3 and 8 times the nominal
value of the resistance as well as dual motor faults ranging
between 2 and 4 times the nominal value of the resistance.
Additionally, we refer to the motors as labeled in figure 3
for defining the motor’s position in our experiments.
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Figure 3: Octocopter motor fault configuration

5 EXPERIMENTS AND RESULTS
5.1 Experimental design
In this work, we considered training the DRL agent to
learn how to adapt the parameters of PD position con-
trollers, this implies a four-dimensional action space a =
{Kx

p ,K
x
d ,K

y
p ,K

y
d}. The only information received by the

agent is the motor resistance estimated and the reward func-
tion is defined by R = (10 − error)/10 where error is
the Euclidean distance calculated between the position of
the octocopter and the reference trajectory. We defined 10
meters as the maximum deviation allowed from the refer-
ence trajectory and we re-scale the reward between 0-1 as
suggested for continuous control tasks[20].

We considered a change in the reference from (x =
0, y = 0) to (x = 5, y = 5) as the trajectory tracking task
for simplification purposes and assuming that the resulting
architecture will scale well as long as the changes in the
reference are smaller than the one experience during train-
ing. Different fault magnitudes must be experienced by the
agent to learn how to adapt the position controller parame-
ters. However, we noticed that randomly selecting the fault
magnitude for each episode resulted in no convergence. We
thus defined a curriculum learning approach where we first
expose the agent to the lower bound of the fault magnitude
until it converges and then we generate for each episode with
probability of 0.5 a fault with maximum magnitude. In this
way, we avoid the catastrophic forgetting problem for the
agent.

We demonstrate the approach on two different experi-
ments. For both experiments, we use PPO as defined pre-
viously with the following parameters:

In the first experiment, we explore a single fault on motor
3 as defined in figure 3. We initially begin training the DRL

https://github.com/lukebhan/gym-octorotor


Table 2: PPO Parameters
Parameter Value
Optimizer ADAM
Batch Size 64

Discount Factor 0.99
Initial Learning Rate 0.0003

Time Steps of an Episode 2000
Total Number of Episodes 3000

agent on a 3x fault (3 times the nominal value of the param-
eter) and after convergence is reached, we then introduce a
larger 8x where at the beginning of the episode, a choice of
the fault is made between 3x and 8x with equal probabil-
ity. We then test our approach by comparing the trajectory
between the nominal PD controller and the DRL scheme
when the DRL controller is given the exact magnitude of
the 8x fault. Furthermore, we then evaluate the robustness
of our controller by introducing variance in the estimated
parameter such that the value given to the controller is bi-
ased. We sample the parameter from a normal distribution
with mean value equal to the true value and a deviation of
0.5x the nominal resistance.

For our second experiment, we explore a dual motor fault
on motor 5 and 6 as defined in figure 3. However, our
controller is now given two values for the estimated mo-
tor resistances instead of the one above. For training, we set
both motors to an equal 2x fault and allow the DRL agent
to learn until convergence is reached. Then, following the
same method as proposed above, we introduce a large fault
of 4x in both motors such that a choice is made between the
smaller and larger fault at the beginning of each episode.
Following this, we then test our approach by comparing the
trajectory where both motors have a 4x fault. However, to
explore the robustness of our approach, we then explore set-
ting motor 6 to a 4x fault and allow the fault of motor 5
to vary. We then introduce variance in the state estimator
of both motors such that parameters fed are normally dis-
tributed with mean equal to the true value and a standard
deviation of 0.5x the nominal resistance. This allows us to
explore the effects of large state estimation errors in both of
our motors. Furthermore, it also allows us to explore the re-
alistic case of different fault magnitudes on the two different
motors.

5.2 Single-motor faults
For our single-motor fault experiment, we can see in figure 4
that our reward function clearly converges by step 1000 and
when the larger fault is introduced, we have a dip in perfor-
mance, but then converge again by the time training ends.
As such, this demonstrates that our scheme first minimizes
the error with a small fault, and then builds on it’s initial
learning by minimizing the error of both the small and larger
fault. From figures 5 and 6, we can see that our method out-
performs the nominal PD controller in terms of a 8x fault
for a single episode. In the X-direction, it is clear that
our controller does not overshoot and converges closer to
the reference value while the nominal PD controller signifi-
cantly overcompensates and contains more error in it’s con-
vergence. Meanwhile, in the Y-direction, both controllers
perform similarly due to the positioning of the motor fault.
Furthermore, in 7, we can see that while the median error
of smaller faults are outperformed by the nominal PD, when

we move to larger faults, our approach can still accurately
achieve convergence with a significantly lower error when
compared to the nominal PD controller. As such, a parame-
ter estimator can be used to measure the active states of each
motor and when a large fault is detected, our controller can
be invoked to ensure the stability of the octocopter. Addi-
tionally, figure 7 demonstrates that our controller is robust
to large instability as only a marginal set of outliers ever
surpass the PD controller’s error in 7x, 7.25x, and 8x faults.

Figure 4: Reward Function for Training the DRL Agent on
a Single Motor 3 Fault

Figure 5: Comparison of X-trajectory Between PD Control
and Hybrid Scheme for 8x Fault on Motor 3

Figure 6: Comparison of Y-trajectory Between PD Control
and Hybrid Scheme for 8x Fault on Motor 3

5.3 Multiple-Motor faults
Considering a multi-motor fault carries larger impact on
the octocopter’s performance, we only explore multi-motor
faults up to 4x. Similar to above, we can see in figure 8 that
our controller first learns to handle the smaller dual fault
and then struggles initially when the larger fault is intro-
duced, but ultimately converges to minimize the larger and
small fault errors. As such, in a single episode’s trajectory,



Figure 7: Robustness of Hybrid Scheme for Single Motor 3
Fault

we can see in figure 9 that both the nominal controller and
the reinforcement learning scheme converge to the correct
X position. However, we can see that the nominal controller
performs poorly as it initially becomes unstable and then
overcompensates for the fault while our approach accurately
compensates to ensure a much faster convergence. Further-
more, in the Y-direction, we can see that the reinforcement
learning approach slightly overcompensates, but still con-
verges equally fast as the nominal controller. As such, the
improvements in the X-direction significantly outweigh the
marginal overshoot in the Y-direction. Similar to figure 7,
we can also see in 11 that the hybrid based control outper-
forms the sole PD controller at large faults when the PD
controller begins to deteriorate in stability. However, in this
case, we set a single motor to a 4x fault and vary the fault
of the second motor. Despite the variance of the second mo-
tor’s fault, we see that the controller is robust to parameter
estimation noise as even the outliers in the dual motor fault
experiment have smaller error than that of the nominal con-
troller. Additionally, this demonstrates that our approach is
viable for different magnitude faults in each motor as figure
11 demonstrates an equal or better performance then the PD
control scheme at almost every single fault magnitude.

Figure 8: Reward Function for Training the DRL Agent on
a Dual Motor 5 and 6 Faults

6 CONCLUSIONS
In this paper, we presented a FTC architecture combining
parameter estimation, DRL, and model-based control tech-
niques. We tested the approach with an octocopter consid-
ering a cascade control scheme subject to single and mul-
tiple motor faults with different magnitude. The parame-
ters of the position controllers in the hierarchical control
scheme are updated according to the fault magnitude es-
timated through the parameter estimation techniques. We
compared our approach with nominal PID without adapta-

Figure 9: Comparison of X-trajectory Between PD Control
and Hybrid Scheme for 4x Faults on Motor’s 5 and 6

Figure 10: Comparison of Y-trajectory Between PD Control
and Hybrid Scheme for 4x Faults on Motor’s 5 and 6

tion and found that the latter fails when the magnitude of
the faults is high for single faults and moderate for multiple
faults. We also demonstrated that the proposed approach is
robust against biased parameter estimation through Monte
Carlo simulations. Future works will consider extend the
presented experiments to faults in the navigation system and
wind conditions.
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