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Abstract

Faults in heating-cooling systems can often be ob-
served by changes in temperature. Such faults can
be detected and identified by modeling thermo-
dynamic behavior. In classical models, physical
equations with fixed or trainable parameters are
used to model this behavior. They are limited in
non-linear complexity and the number of parame-
ters to be estimated. They also usually require the
involvement of expert knowledge. In this paper, a
deep learning approach is presented for modeling
thermodynamic behavior without explicitly mod-
eling the physical properties. The modeled arti-
ficial neural network (ANN) can predict the tem-
perature based on other influencing variables. A
comparison with a mathematical-physical model
(MM) shows that the ANN can reproduce tem-
perature changes similarly good when sufficiently
data is available. ~With increasing prediction
windows, the ANN even outperformed the MM
model for most states. Both models can detect
certain heating faults by comparing the measured
and predicted temperatures. Finally, we demon-
strate the diagnostic capabilities of our methods
by injecting a fault into the system.

1 Introduction

In the last decade, many industrialized nations like Germany
have adopted strategic plans that view the digitization of the
manufacturing industry as an essential economic competi-
tive advantage in the future [I]. The automotive industry
spends almost 200 billion US dollar a year in semiconduc-
tors to further automate manufacturing processes and prod-
ucts [2ll. Although most industrial companies in Germany
have already dealt with artificial intelligence (Al), only a
fraction have implemented Al solutions for industrial pro-
cesses [3]l. The potential of Al is still growing, particularly
through the development of special chips for training neural
networks and the availability of user-friendly libraries. Al
methods can help to ease complex modeling processes when
enough heterogeneous data is available. They can help to
facilitate fault detection, diagnostics and troubleshooting in
plants which are essential to reduce maintenance time and
faulty production. In this paper, the use of neural networks
for fault detection in heating-cooling systems is compared
with a classical mathematical model. In addition, the use of
the models for comprehensive diagnostics is discussed.

2 State of the Art

Data-driven anomaly detection and fault detection relate in
the way that data is used to model interdependent relation-
ships between actuator and sensor values in a plant. But
both detection methods differ in the way these relationships
are represented and used. Anomaly detection mainly fo-
cus on general detection of rare observations in data, in-
dependent of component failures. Fault detection is more
concerned to specifically detect component failures by mod-
eling the physical relationships between actuators and sen-
sors. Deep learning methods have been extensively used to
perform anomaly detection tasks. For fault detection and
diagnosis, deep learning methods were rarely applied when
no fault labels exist. We therefore discuss both, anomaly
and fault detection methods and their diagnostic capabili-
ties. Anomaly detection methods for time-series data are
mostly based on predicting data and compare the predicted
values with the measured values. Besides of classical time
prediction methods like ARIMA [4]], various deep learn-
ing approaches exist. RNN-based methods, CNN-based
methods and combinations of both have been used to pre-
dict univariate [5; 6] and multivariate time-series [7]. In
general, anomaly detection works better when using mul-
tivariate time-series methods instead of univariate methods.
However, the anomalies are harder to interpret for multi-
variate time-series methods. Zhang et al. use so called Au-
toencoders to combine anomaly detection for multivariate
time-series and the identification of time-series groups that
exhibit unusual behavior [8]. A further analysis to find the
real cause or to determine error sizes is not possible with the
methods described so far. A few applications exist where
deep learning methods have been applied to build models
for fault detection purposes without having fault labels. Hel-
bing and Ritter list some approaches which use neural net-
works to predict temperatures in wind turbines [9]l. Jiang
and Maskell combine ANN and analytical based methods
to detect faults and identify fault types for photovoltaic sys-
tems [10]. Most of these approaches do not consider time-
dependencies, which is crucial to model time shifted effects.
In this paper, we focus on deep learning methods to build
fault detection models for time-dependent processes with-
out existing fault labels.

3 Research Gap and Objectives

Component degradation and failure usually occur in plants
only after a longer period of time. The behavior of time-
series in the event of a fault can therefore not be modeled
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Figure 1: Main components of the station: the basin consist-
ing of inner bath and overflow collar, the circulation system,
the heater and the cooling system.

without expert knowledge or previously occurred faults. Al-
though the problem appears to be one that could be solved
by unsupervised learning techniques, it can also be seen as
a supervised prediction problem in an unsupervised setting.
This is done by using each time-series value as a prediction
label for data recorded immediately before. Deep learning
has become state of the art for anomaly detection tasks in
unsupervised settings. To use it for fault detection and fur-
ther diagnostic tasks, the model must be trained to learn the
physical dependencies between dependent and independent
variables. Several criteria can serve as benchmark for a good
diagnostic model, such as high accuracy, robustness and in-
terpretability. In the following, we explore the question of
whether an ANN model is able to predict temperature values
so precisely to replace a physical model for fault detection
of heating and cooling failures. Furthermore, the usefulness
for fault isolation and identification will be discussed to get
a feel for the use of ANNSs as replacement for physical mod-
els.

4 Wet-Chemical Processing System

Our test object is a batch processing system for the wet-
chemical treatment of solar cells. The system consists of
several stations for etching, cleaning, rinsing and drying
wafers. We focus on etching stations where heating and
cooling play a crucial role. Predefined substance amounts
and concentrations are used for each process. Amounts
and concentrations vary slightly with the number of process
runs, but are balanced before each new run. An etching sta-
tion consists of several components. The main ones are il-
lustrated in [Figure ] The wet-chemical treatment of wafers
take place in the inner bath of the basin. The overflow collar
collects the overflow from the inner bath. A solution vol-
ume of 125/ covers a complete filling of the inner bath and
enough liquid to keep the circulation pipes full of liquid dur-
ing circulation. A pump feeds the liquid from the overflow
collar back to the inner bath. The inline heater is located
before the liquid flows into the inner bath. The heater con-
sists of three heating elements with a total power of 12k
The cooling system consists of a water cooling pipe located
in the overflow collar. The cooling pipe supplies water with

a constant temperature. The cooling water does not flow
into the bath, but through a closed cooling circuit. Differ-
ent sensors are installed: a temperature and a level sensor
at the transition between inner bath and overflow collar, a
level sensor in the overflow collar and a flow sensor in the
circulation. We further get switching signals (on/off) for the
heater, the cooling system and the pump.

S5 Methodology

Two models are compared: a traditional model described by
physical equations and a deep learning model comprising a
convolutional neural network. Both are designed to predict
the solution temperature by several influencing factors.

5.1 Mathematical-Physical Model (MM)

The mathematical-physical model (MM model) serves as
reference model. It is based on several laws of thermody-
namics. We mainly model three influencing components
and their effects on the solution temperature: heating, ac-
tive cooling and passive cooling. Passive cooling describes
the cooling process caused by the ambiance. Passive cool-
ing is always present, while heating and active cooling are
only active when the heating and cooling system are turned
on, respectively.

Passive Cooling

Passive cooling is modeled by Newton’s law of cooling. The
law states that the rate of heat loss of a body is proportional
to the difference in temperatures between the body 7" and its
ambience Tey,q:

dQ

dt
Epassivecooling 15 the decay constant and 7, the ambient
temperature.

= _kpassi'uecooling (T - Tenv) (1)

Active Cooling

The active cooling is also modeled by Newton’s law of cool-
ing. Similar to passive cooling, the rate of heat loss can be
described by

aQ
dt

Eactivecooling 1 the decay constant and Tt the tempera-
ture of the cooling water.

- _kactivecooling (T - Tcool) (2)

Heating

The heating is modeled as heat source with lossless heat
transfer. We assume the rate of heat gain as constant, so

that 10
T ATIP(L in 3
dt heating ( )

Temperature Change

The temperature change of the solution can be calculated us-
ing the heat energy formula @) = C- AT where () is the heat
energy and C' the heat capacity of the solution. Due to the
hardly varying concentration of the chemicals, C' is nearly
proportional to the volume V' of the solution. To model the
heating and cooling constants dependent on V, the temper-
ature change of the solution can be described by

_ ¢
AT = @)
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Figure 2: ANN structure. Values of independent variables
from time t—n to t—1 are fed into the CNN. Together with
the start value of the dependent variable at time t—n, the
results of the CNN serve as input for the FCN. The output
is the final prediction of the dependent variable at time ¢.

Final Formula
Putting it all together, we get the formula

fn(?)
Jac(t)
pe(t) =

H( )ATheatzng
K( )( Tcool)) (5
kpasswecoollng (T Tenv)

fh(t_ 1) +fac(t_ 1) +fpc(t_ ]-)

actwecoolzng (T -

TH)=Tt—-1)+

V(t—1)
(6)
with variables

H(t) 0: heating is off at time ¢

1: heating is on at time ¢
K(t) 0: active cooling is off at time ¢

1: active cooling is on at time ¢
T(t) temperature of solution at time ¢
V(t) volume of solution at time ¢
Teool temperature of cooling water
Tenw ambient temperature

AT‘ht—mting

activecooling

heating temperature change constant
decay constant of active water cooling

Epassivecooling ~ decay constant of passive cooling

We assume that the cooling water is constantly at 18 °C and
the ambient temperature constantly at 23 °C.

5.2 Artificial Neural Network Model (ANN)

Our artificial neural network model (ANN model) is a spe-
cial combination of a convolutional neural network (CNN)
and a fully connected neural network (FCN). The structure
is visualized in A convolutional neural network
is used to handle time dependencies between variables. In
contrast to convolutional neural networks commonly used
for anomaly detection tasks where all the input is fed into the
CNN, the data is split into one dependent variable and the
corresponding independent variables. The goal is to model
the dependent variable to be predicted not by its previous
values, but the previous values of the independent variables.
With this approach, we hope to achieve a better modeling of
the real influencing factors. In our case, temperature is the

dependent variable. Heating, cooling and volume are the
independent variables. We would like to predict the tem-
perature at time ¢ using the temperature at time t{—n and
all independent variables from time ¢t—n until t—1. If we
would also use the temperature from time t—n-+1 to t—1
to predict the temperature at time ¢, we could just use the
temperature at time t—1 to get a very close approximation.
But our goal is that the model learns to predict temperature
changes based on the influencing variables. For this rea-
son, we don’t include the intermediate temperature values.
The convolutional neural network itself consists of several
layers. The input layer takes all independent variables for
several time steps as a two-dimensional matrix. Two con-
secutive one-dimensional convolutional layers follow. Each
layer is using a kernel size of maz(2, min(%,6)) and 64
filters. Relu is used as activation function [11]. Two more
layers follow: a dropout layer and a MaxPooling1D layer.
Both layers are used to avoid overfitting. The flatten layer
flattens the resulting two-dimensional matrix into a single
vector. This vector is used together with the dependent vari-
able at time t—n as the input for the FCN. The FCN consists
of two fully connected layers. In the first one, the input vec-
tor is fully connected to 20 nodes. After the second one,
we get the predicted dependent variable at time ¢. For both
layers, the Relu activation function is used.

5.3 Model Parameters

The mean squared error (MSE) serves as the loss function
for both models to optimize the parameters. The Levenberg-
Marquardt optimizer [12] is used for the MM model. For the
ANN model, the Adam optimizer [[13] is used, and the batch
size is set to 100. To avoid overfitting in the ANN, 20 % of
the training set is used as validation set. Training is stopped
as soon as there is no improvement in performance on the
validation set within 5 epochs.

6 Data Preprocessing

The wet-chemical plant provides data every second. Data
from a rather shorter processing day are shown in[Figure 3]
The data includes the temperature, whether the heating is
on or off, whether the active cooling is on or off, the level
of the solution and whether the circulation is on or off. The
volume of the solution is calculated by the level and circu-
lation value. Training and testing data cover a total of three
months. Active processing took place throughout the day,
five days a week. The data is aggregated to 10s. Mean is
used as aggregation function for temperature and level. Rel-
ative frequency of activity is used for heating, active cooling
and circulation. To generate the model input data, a rolling
time window of size w is used, which consists of w consec-
utive time steps of 10s.

7 Results

The study is carried out in three steps. First, the perfor-
mance of the models is compared for different assumptions
over the time delays between actuators and sensors. Sec-
ondly, the performance is compared for different prediction
windows. In the last step, relative prediction errors of the
temperature changes for different states are investigated to
evaluate the potential use for further diagnostic purposes.
Unless otherwise specified, a 3-fold cross-validation (3-CV)
is used to evaluate performance. The data set is split only
by day to prevent tearing apart too much consecutive data.
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Figure 3: Before processes take place, the circulation is
turned on and the solution is heated. After the desired tem-
perature has been reached, the bath is set for processes. The
solution is kept at temperature by alternating heating and
cooling phases. The level changes especially during pro-
cessing. After all processes of the day have taken place, the
heating, the cooling and the circulation are switched off.

State Count | Rel. Count| AT Mean AT Std

in % in °C in °C
Off 651k 85.7 —0.02 0.07
Cool 4k 0.5 —0.50 0.30
Heat 34k 4.4 0.78 0.60
Mixed T2k 9.4 —0.12 1.05
Total 760k 100.0 0.00 0.39

Table 1: States for w=~6 without shifts. Counts refer to the
number of windows. AT are temperature differences be-
tween end and start temperatures.

In the MM model, the temperature prediction is done se-
quentially, time step by time step. This means that predicted
temperatures of intermediate time steps are used as input for
the next temperature prediction until the final temperature is
predicted.

7.1 Time Delays

The performance for varying time delays for heating and
cooling is investigated for both models. A prediction win-
dow of 1 min is selected for this analysis. The numbers of
different states when no time delays are considered can be
looked up in With 85.7 %, most of the time neither
the heating nor the cooling is on (Off). Windows in which
only the cooling is on continuously (Cool) are rare, with a
relative share of 0.5 %. In 4.4 % of cases, only the heating
is on continuously (Heat). In 9.4 % of cases, either heating,
cooling or both are on at any time within the time window
(Mixed). The latter state further excludes cases that already
fall into state Cool or Heat. Time delays are examined in
steps of 10 s ranging from 0's to 70 s seconds for heating and
cooling. This is done to determine the delay effect between
switching on the heater or cooling and measuring the tem-
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Cooling t-n-s. t-1-s¢

Level t-n e t-1
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Figure 4: Vectors are shifted to the right by sj steps for
heating and s. steps for cooling, while the other values stay
in place.
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Figure 5: Spread of mean temperature differences between
Heat and Cool state.

perature. Time delays are applied to the input data by shift-
ing the heating and cooling vectors by the time delay, like
visualized in When shifts are applied, the states
are also reclassified. For example, if a heating time delay of
10s is assumed and the heating is switched on after a longer
phase without heating and cooling, the subsequent 10s are
still classified as Off states. Only after the 10s a heating ef-
fect is assumed and the Off state changes to a Mixed or Heat
state depending on w. In the following, the influence on the
temperature difference spread between Heat and Cool states
is examined. Afterwards, the general performance is eval-
uated for both models using the root-mean-squared error
(RMSE) and the mean-absolute error (MAE) as metrics.

Temperature Difference

We expect the temperature to raise if the heating is on and
fall if the cooling is on. The spread between the mean
temperature difference of state Heat and state Cool serves
as indicator of how well the delay effect of heating and
cooling is mapped. This is because we expect higher av-
erage temperature changes for Heat states when the actual
heating periods are met. The equivalent holds for Cool
states. For w=6 without shifts, the spread amounts to
0.78°C — (—0.50°C) = 1.28 °C. The spreads for different
time delays for cooling and heating are visualized in
With 2.04 °C the largest spread was achieved for a
heating shift of 4 steps and a cooling shift of 4 steps. This
equals 40 s time delay for both heating and cooling.

RMSE

For the RMSE, the squared errors are summed up over the 3
CV runs before applying the root mean. Results are shown
in [Figure 6 First, the results for the MM model are con-
sidered. Looking at each cooling shift curve separately, the
best result is between 2 and 5 heating shift steps. Look-
ing at each heating shift curve separately, the best cooling




RMSE
Method: mm | Dataset: test | Steps: 6

13) Cooling
° 0.30 - Shift
k= " Steps
5 0
2 0.25- 1
b 2
@
=1 3
= 0.20 -
E 4
] 5
5 0.15- 6
g 7
0.10- ! ! ! ! ! ! l
0 1 2 3 4 5 6 7
Heating Shift Steps
RMSE
Method: ann | Dataset: test | Steps: 6
] Cooling
& 020 Shift
= Steps
o 0.18 - 0
2 1
m 0.16 - 2
[
g — 3
% 0.14 - St -1
$ 012 - ~uo T meletS Tvan i LT 5
=T — 6
g 7
& 0.10 -
0 1 2 3 4 5 6 7

Heating Shift Steps

Figure 6: RMSE for different heating and cooling shifts.

shift result is also between 2 and 5 steps. The best result
with an RMSE of 0.108 °C is achieved by setting the heat-
ing shift to 3 steps and cooling shift to 4 steps. This equals
30s time delay for heating and 40 s time delay for cooling.
For the ANN model, looking at each cooling shift curve sep-
arately, the best result is also between 2 and 5 heating shifts.
Looking at each heating shift curve separately, there is no
clear best result for the cooling shift. The best result with an
RMSE of 0.093 °C is achieved by setting the heating shift
to 3 steps and cooling shift to 6 steps. This equals 30 s time
delay for heating and 60 s time delay for cooling. The ANN
model performed better than the MM model in most cases,
but the results are less clear for the ANN model. Deriving
the true time delay for heating and cooling does not appear
to be straightforward using the ANN model.

MAE

For the MAE, the absolute errors are summed up over the
3 CV runs before applying the mean. Results are shown in
The best result for the MM model is achieved by
setting the heating shift to 2 or 3 steps and the cooling shift
to 4 steps. This corresponds to 20s or 30s time delay for
heating and 40 s time delay for cooling. Both configurations
led to a MAE of 0.048°C. The best result for the ANN
model is achieved by setting the heating shift to 3 steps and
the cooling shift to 6 steps. This configuration led to a MAE
of 0.038 °C. This corresponds to 30 s time delay for heating
and 60 s time delay for cooling.

7.2 Time Window Size

In this subsection, the performance for varying prediction
windows is investigated in detail. Window sizes of 1 min,
2min and 5 min are compared. In the previous subsection,
the best result for the 1 min MM model was achieved by
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Figure 7: MAE for different heating and cooling shifts.

Rel. Count in % AT Mean in °C

State | w 6 12 30 6 12 30
Off 85.7  85.2 84.8 | —0.03 —-0.05 —-0.11
Cool 0.44  0.08 0.02 | -0.76 —-1.27 -5.00
Heat 4.2 1.6 1.3 1.19 247  6.25

Mixed 9.6 13.1 13.8 | —0.27 0.01 0.08

Table 2: Counts and temperature changes by state and win-
dow size applying 3 heating and 4 cooling shift steps.

shifting the heating by 3 steps and cooling by 4 steps. The
same process is repeated for a 2 min and 5 min prediction
window, leading to the identical best configuration. A 30s
time delay for heating and a 40s time delay for cooling is
therefore applied to the input data for all MM models. For
the 1 min ANN model, a 30s time delay for heating and a
60 s time delay for cooling performed best. For the 2 min
and 5 min prediction window, a 30 s time delay for heating
and 40 s time delay for cooling performed best. These con-
figurations are applied to the input data for the correspond-
ing ANN models.

The numbers of different states for 1min, 2min and
5min windows of consecutive data are shown in
About 85 % of the time, neither the heating nor the cooling
is on for all window sizes. Dependent on the window size,
the proportions for the other states vary a lot. The proportion
of mixed heating and cooling logically increases with the
window size, while the exclusively cooling and exclusively
heating states decrease. Having 0.44 % of time steps falling
into cooling states for 1 min windows, only 0.02 % of time
steps remain when using 5 min prediction windows. Like-
wise, heating states drop from 4.2 % to 1.3 % comparing the
1min and 5 min window, respectively. In contrast, mixed
heating and cooling states increase from 9.6 % to 13.8 %.
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Two metrics are used to evaluate the performance for dif-
ferent prediction windows and states. First, the RMSE is
used to analyze the absolute temperature error. Afterwards,
the median of the absolute relative temperature change er-
ror is used to evaluate the performance in terms of relative
temperature changes.

RMSE

For the RMSE, the squared errors are summed up over
the 3 CV runs before applying the root mean.
shows the results for different prediction windows. Look-
ing at the Cool states, the ANN model performs better than
the MM model for the 1 min prediction window, while the
MM model performs better for the 2 min and 5 min win-
dows. Looking at the Heat states, the MM model performs
slightly better for the 1 min and 2 min prediction windows,
while the ANN model performs better for the 5 min window.
Looking at the Mixed states, the ANN model outperforms
the MM for all window sizes. Looking at the Off states,
both models are almost on par for all window sizes. With
increasing window size, the ANN model gains performance
compared to the MM model for Heat, Mixed and Off states.

Relative Error in Temperature Change

Relative temperature change errors can be used to relate the
absolute prediction errors to the real temperature changes.
The absolute relative temperature change error is defined by

ATpTediction — AT
AT

(N

where AT cdiction is the predicted temperature change of a
model and AT the measured temperature change. All abso-
lute relative errors of the 3 CV runs are considered to calcu-
late the median for each combination of method, state and
window size. Values with a zero denominator are ignored.
Results are visualized in[Figure 9] For Cool states, the ANN
model has high median errors between 40 % and 73 %. The
MM model performs better, with median errors between
9% and 28 %. For Heat states, median errors are between
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Figure 9: Median of absolute relative temperature change
errors for different states, models and window sizes.

9% and 12 % for the 1 min and 2 min windows. Only for
the 5 min window, the ANN model outperforms the MM
model with a median error of 7 % compared to 11 %, respec-
tively. For Mixed states, the ANN model achieves better re-
sults than the MM model. Median errors are between 16 %
and 30 % for all methods and window sizes. Median errors
for the Off states are significantly higher than for all other
states. While the errors reach values above 100 % for all
window sizes of the MM model and the 1 min ANN model,
errors decrease for the ANN models with increased window
size. With 54 %, the best result is achieved by the ANN
model for the 5 min window.

7.3 Detection of Heating Losses

In this subsection, the role of relative prediction errors for
diagnostic tasks is discussed. Further, we demonstrate the
diagnostic capabilities by provoking a failure.

Relative Power
Relative prediction errors in terms of temperature changes
are useful to evaluate heating and cooling losses. A heating
power loss can be detected, for example, by a smaller tem-
perature increase than expected. This can be well quantified
as the relative power calculated by
AT
P, =

rel ATpredietion (8)
If the measured change in temperature equals the predicted
change, P,.; would be 1 which corresponds to 100 % power.
When the heater is no longer providing full power, P,
would drop below 1 as the expected change in temperature
would be higher than the measured change. In
histograms for calculated P,.; are shown for a 2 min pre-
diction window. Values lower than 50 % were set to 50 %.
Values higher than 200 % were set to 200 %. The relative
deviation from the 100 % mark serves as the error metric.
Looking at the Cool states, the ANN model underestimates
and the MM model overestimates the real cooling effect in
most cases. Accurate detection of cooling defects is unlikely
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no matter which model is used. For heating states, the dis-
tribution is denser. Both models slightly underestimate the
majority. Deviations from the 100 % mark might be low
enough for both models to detect heating defects with a cer-
tain defect severity. For Mixed states, deviations from the
100 % mark are generally high. Nevertheless, errors might
be detected depending on the frequency of heating and cool-
ing phases. If the heating is on most of the time, detecting
a heating loss is more likely than if it is off most of the
time. For Off states, high deviations from the 100 % mark
occurred frequently. Neither of both models can be used in
this form to detect changes in passive cooling behavior.

Test Case

The loss of heating power is demonstrated experimentally:
One of the three heating elements of the heater is deac-
tivated during a phase of alternating heating and cooling.
Both models with a 2 min prediction window are tested. An
alarm is triggered when the relative power for a heat state
drops constantly below 80 % for 5 min. The results for the
test case are illustrated in The regular initial
heating procedure starts at 7:23. The desired temperature
is reached at 7:59. Alternating cooling and heating states
follow to keep the temperature around the desired temper-
ature. A single etching process starts at 8:59 and ends at
9:06. At 9:16, one of the three heating elements is deacti-
vated. The deactivated element is reactivated at 9:34. Dur-
ing the initial heating procedure, both models can predict
the temperature change quite accurately. The relative power
fluctuates slightly above 100 %. Additionally, during alter-
nating cooling and heating states, the temperature change
prediction seems to be quite accurate. During the etching
process, the prediction gets worse, resulting in two relative
power peaks for which one is far lower and the other far
higher than 100 %. They only last a short time. The alarm
is therefore not triggered. After manipulating the heater, the
relative power drops to values which are constantly between
40 % and 60 % for both models. The alarm is triggered after
5min. After reactivating the deactivated heating element,
the calculated relative power increases again. The provoked
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Figure 11: One heating element is deactivated at 9:16. Rela-
tive power drops sharply below 100 %, as the expected tem-
perature increase is significantly higher than the real one.

heating failure was severe enough for a successful fault de-
tection.

8 Discussion

Regarding the performance of both models, no clear win-
ner could be determined. Both models performed best for
Heat states, considering the relative temperature change er-
ror. For Cool states, relative errors of the ANN model are
high. The most likely reason for the high errors is the small
number of available data sets for cooling states. Increas-
ing the number of cooling states may help to improve the
performance. The ANN model generally performed better
than the MM model for Mixed states. Looking at Off states,
relative errors are high for both models.

Regarding fault diagnosis, both models can detect heat-
ing faults with sufficiently large severity. The magnitude of
the fault can be quantified by the relative power loss. For
the detection of active and passive cooling faults, both mod-
els are not suitable in this form. Besides the small number
of training examples for active cooling states, likely reasons
are the assumption over the ambient temperature and the
high noise compared to the small temperature change for
small prediction windows. We assumed the ambient tem-
perature to be static but in particular when several processes
take place in the plant, a significantly higher ambient tem-
perature is likely. Underestimated cooling powers during
active and passive cooling processes are the result. Measur-
ing and using the real ambient temperature may improve the
performance of both models. A larger prediction window
may further be helpful to detect faults in passive cooling.



In addition to the influencing variables considered, there
are still others that have an effect on the temperature
but were not considered in the models. These variables
are in particular the temperature of the incoming carri-
ers and wafers, the reaction heat, the temperature of the
added chemicals and different concentrations and amounts
of chemicals in the process bath. The incoming carriers and
wafers have lower temperatures than the solution at the time
of processing, but the chemical reaction causes additional
heating. Neither is easily quantifiable, but both have an im-
pact on the temperature. The dosing of chemicals is done
before initially heating the bath. Since temperatures are usu-
ally low at this time, the effect on the temperature is only mi-
nor and for a short time. Using minimum times for thresh-
old exceedances before an alarm is triggered may prevent
the detection of false positives caused by short time influ-
ences. Different concentrations and amounts of chemicals
have an impact on the temperature as well. During process-
ing, however, care is taken to ensure that the composition
of the chemicals may change only slightly. The effect is
therefore negligible. As still various minor influencing vari-
ables exist, they can be hardly modeled in a mathematical-
physical model. The ANN model on the other hand does not
need to specify equations for the thermodynamic behavior.
Further, influencing variables can be easily included. Even
an explicit time shift may not be necessary. Just extending
the non-shifted matrix of independent variables by the val-
ues of previous time steps may be enough to consider the
time delays of heating and cooling. The ANN by itself can
consider time dependencies, which is the main reason it con-
sists partially of a CNN. A comparison between ANNs with
the shifted and the non-shifted extension version applied to
the input data is still pending.

9 Conclusion

We showed that an ANN model can calculate temperature
changes of a wet-chemical heating-cooling system by other
influencing variables similarly good as a mathematical-
physical model. Both models can detect certain types of
faults. An induced heating failure was successfully detected
by both models. We investigated weaknesses in both models
and identified various approaches to improve the tempera-
ture prediction, fault detection and fault identification. Both
models could be made useful for detecting cooling faults by
using a sufficiently large set of cooling states and using the
real ambient temperature instead of a static one. We showed
that modeling the thermodynamic behavior in a classic way
is limited, whereas models based on neural networks can in-
clude hard to model influences in a simpler way. Once the
diagnostics have improved to the point where they are suf-
ficiently good for common cooling and heating faults, other
potential fault cases can be modeled until we have a diag-
nostic model for the main faults in the system.
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