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Abstract 

Alarm flood similarity analysis (AFSA) methods 
are frequently used as a primary step for root-cause 
analysis, alarm flood pattern mining, and, eventu-
ally, online operator support. AFSA methods have 
been promoted in several research activities in re-
cent years. However, addressing an often-observed 
ambiguity of the order of alarms and the annunci-
ation of irrelevant alarms in otherwise similar 
alarm subsequences remains a challenging task. To 
address and solve these limitations, this paper pre-
sents a novel AFSA method that uses alarm series 
as input to two extended term frequency-inverse 
document frequency (TF-IDF)-based clustering 
approaches and a novel outlier validation. The 
method proposed here utilizes both characteristic 
alarm variables and their coactivations, thus, em-
phasizing the dynamic properties of alarms to a 
greater extent. Our method is compared to three 
relevant methods from the literature. The effective-
ness and performance of the examined methods are 
illustrated by means of an openly accessible da-
taset based on the “Tennessee-Eastman-Process”. 
It is shown that the integration of alarm series data 
improves the overall performance and robustness 
of the AFSA. Furthermore, the clustering results 
are less influenced by the ambiguity of the order of 
alarms and irrelevant alarms, thus overcoming a 
persistent challenge in alarm management re-
search. 

1 Introduction 

Driven by the advances in automation technologies, indus-
trial process plants have become very data intense. A typical 
process plant, like a chemical plant or oil refinery, involves 
a vast amount of data. Typical data types are time series 
readings from sensors, alarm and event logs, electronic op-
erator shift books, laboratory results (e.g., from samples 
taken during production), maintenance and repair reports, 
and more. The amount of data being processed and stored 
in plants today can easily sum up to several hundreds of gi-
gabytes every year [14]. All this data provides a great po-
tential for artificial intelligence (AI) and machine learning, 
to better understand plant behavior and thereby take better 
operator decisions. 

A valuable type of data for industrial analytics and ma-
chine learning is the alarm data, because of the high im-
portance of alarms, which is to warn operators about critical 
process deviations. Here, additional insights that machine 
learning could provide about the alarm data could poten-
tially help operators in better understanding various alarm 
situations, and thereby operating process plants more effec-
tively and safely. 

In process control systems, alarms are raised when a pre-
defined critical threshold value at a field sensor (e.g., a pres-
sure, flow, level, or temperature sensor) is exceeded. As 
process plants can have hundreds of sensors [14], there can 
be hundreds of different types of alarms that can occur. Ide-
ally, the number of alarms raised at a time should be as low 
as possible, so that the number of alarms is still manageable 
by a human. The industry norm [2] recommends that this 
number should be less than 10 alarms in 10 minutes. How-
ever, in more anomalous situations there can be a much 
larger number of alarms, that becomes more difficult to han-
dle, which is a known challenge in the industry and litera-
ture, typically referred to as alarm showers or floods [2]. 

In situations of alarm floods a simple sequential handling 
of alarms may not be the most practical approach, due to the 
limited time available to resolve the overall (critical) plant 
situation, but also due to the fact that the various alarms can-
not be handled in isolation but have dependencies. In many 
cases, alarms of an alarm flood were triggered by the same 
root-cause [11]. Operators are aware of this and try to un-
derstand the “bigger picture” of the overall alarm situation, 
to be able to respond to this situation more effectively and 
quickly. This, however, requires a lot of experience from 
operators and is a demanding task at high time pressure and 
responsibility. Here, an interesting use case for data analyt-
ics and machine learning in the industrial domain is to help 
plant operators in extracting the implicit knowledge about 
different alarm situations more automatically. Such an AI-
based operator support function could potentially save the 
operator a lot of time in the decision-making process, where 
a manual assessment of complex alarm situations, such as 
alarm floods, can be time consuming. 

Driven by the demographic change of society, an addi-
tional challenge seems to be emerging, that a lot of experi-
ence may get lost from operator rooms. Following genera-
tions of young and inexperienced operators will need to re-
learn this knowledge again, how to correctly assess and re-
spond to different plant situations [7]. The use of AI is one 
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possible approach that may help to capture the implicit 
knowledge about historic alarm situations, to prevent it from 
getting lost. Moreover, there is opportunity that such an au-
tomatic learning could save time for a human having to 
learn some of the non-obvious rules and patterns from ex-
perience over years. Based on a learned model, AI-based 
operator support functions could be imagined as part of the 
process control system, that could explain to the (inexperi-
enced) operator a recurrent alarm flood. 

There is already a good body of research, that seeks to 
provide data-driven solutions for analyzing similar and re-
current industrial alarm floods, which will be presented in 
detail in the following “Related Work” section. In this arti-
cle a novel solution approach is presented for the analysis 
and clustering of similar alarm floods, that makes use of in-
sights about the dynamic properties of alarms and their co-
activations. The proposed approach was compared to exist-
ing methods using an openly accessible alarm management 
dataset based on the “Tennessee-Eastman-Process” (TEP) 
[3][5] that includes 300 abnormal alarm situations [16], and 
the results from this evaluation are presented in this article. 
It turns out that the proposed approach leads to more accu-
rate and meaningful clusters than if having left the intrinsic 
knowledge about the dynamic structure of the alarm se-
quences in the data unconsidered. 

This study seeks to contribute to AI researchers from ac-
ademia and industrial practitioners, by proposing a feasible 
solution for the extraction of implicit knowledge about re-
current alarm flood situations and their dynamics through 
alarm data clustering, which could be the basis for the de-
velopment of novel AI-based operator support functions in 
process control systems. 

The rest of the paper is organized as follows: Section 2 
describes and analyzes the state-of-the-art methods for the 
analysis of similar alarm floods regarding existing require-
ments and limitations. Section 3 describes the development 
of a novel approach based on the findings from the related 
work. In Section 4 an in-depth evaluation and comparison 
of the methods in Sections 2 and 3 is conducted. Finally, 
this paper concludes with a comprehensive discussion of the 
evaluation results and an outlook on potential future work 
in Section 5. 

2 Related Work 

A comprehensive overview of the existing alarm data anal-
ysis approaches is given in [15]. One major branch is alarm 
flood similarity analysis (AFSA) methods, which detect and 
group recurrent historical alarm flood situations or, more 
generally, alarm subsequences (ASs) [15]. Here, ASs are 
smaller partitions of an original alarm sequence [1][22]. The 
task of grouping similar historical ASs allows for the col-
lection of different variants of otherwise similar abnormal 
situations, which can improve further analysis steps [6]. 
Most commonly, AFSA methods are used for alarm ration-
alization or to generate the input for advanced alarm analy-
sis methods [15]. For example, in [6], [9], and [18], clusters 
of similar ASs are subject to a causal analysis to detect com-
mon root-cause disturbances. This information can then be 
used online to support the operator with suggestions regard-
ing the most likely root-cause disturbance of a recurring AS 
[9]. Reference [4] defined two requirements (R1 and R2) 
regarding the similarity analysis of ASs: 

R1: A suitable method should tolerate irrelevant alarms 
annunciated in some ASs. 

R2: A suitable method should tolerate a swapped order 
of alarm activations (ACTs) in otherwise similar 
ASs. 

One category of AFSA approaches applies “frequent pat-
tern mining” (FPM) methods to sequences of ACTs. For ex-
ample, [7] and [22] use FPM to detect the most relevant 
combinations of alarms in historical alarm data. However, 
these methods are restricted to alarm clusters that have min-
imum support in the data, i.e., either the absolute or relative 
frequency, and thus, they show limitations when an abnor-
mal situation is uncommon. 

Another category that is promoted in several research ac-
tivities is the pairwise alignment of ASs. For this purpose, 
[1] proposed a global sequence alignment method using the 
dynamic time warping (DTW) algorithm to detect common 
alarm patterns. Prior to that, a prefiltering step groups po-
tentially similar ASs according to the Jaccard-distance of 
AS pairs (s. (7)). However, DTW does not tolerate any am-
biguity of order in otherwise similar ASs. This challenging 
task was to some extent solved by [4], in which a local se-
quence alignment was used that allows for a certain ambi-
guity of order if the alarms are close in time. It introduced 
the modified Smith-Waterman (MSW) algorithm, which is 
considered a prevailing benchmark in the AFSA literature 
[15]. The MSW algorithm generates a similarity matrix, 
which is used as the input for an agglomerative hierarchical 
clustering approach with a single-linkage (AHC-SL) to 
cluster similar ASs [4]. One limitation arises from the pe-
nalization of alarms in one AS that could not possibly be 
aligned with a matching counterpart in another AS. A disa-
greement on the number of ACTs in two ASs therefore neg-
atively affects their similarity, thus making the MSW ap-
proach less robust to irrelevant alarms. Reference [18] pro-
posed an improved version of the MSW algorithm by ap-
plying a filtering step based on the Jaccard-distance, as de-
scribed in [1]. Henceforth, this method is referred to as 
MSW-J. Further alignment approaches were presented that 
aimed at reducing the computational effort required to carry 
out the MSW approach [10] and that applied alarm priority 
information as a primary similarity indicator [12]. 

A third category of AFSA methods is string metrics, 
which are based on distance or similarity measures [15]. For 
example, in addition to its utilization in the pre- or postpro-
cessing of AS pairs, the Jaccard-distance was also used in 
[6] and [8] as a primary measure for the clustering of similar 
ASs. It considers only the binary activity of alarm variables, 
which are the unique identifiers of configured alarms, and 
not the number or order of ACTs and is therefore robust to 
any ambiguity in both. However, the Jaccard-distance over-
rates the similarity between two ASs that share common 
alarms but have considerable disagreement in their respec-
tive dynamics. Another string metric is the Levenshtein-dis-
tance, which uses the number of edits, i.e., insertion, dele-
tion, and substitution of ACTs, that are needed for the trans-
formation of one AS into another AS [8]. It shares some 
properties with the DTW in [1] and therefore has limitations 
if ACTs are annunciated in a swapped order. Another prom-
ising AFSA string metric, proposed in [8], uses the term fre-
quency-inverse document frequency (TF-IDF) for the pair-
wise comparison of ASs. The TF-IDF is a frequently uti-
lized measure in natural language processing that applies a 
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bag-of-words model, i.e., a simplified representation of the 
alarms in an AS that does not consider their order but rather 
their quantity. Moreover, a unique feature of the TF-IDF is 
its weighting of the relevance of alarm variables according 
to their probability of occurrence with regard to all ASs. 
Eventually, similar ASs are clustered using the “density-
based spatial clustering of applications with noise” 
(DBSCAN) [19]. Reference [8] demonstrated that this 
method generates robust and meaningful results compared 
to other methods, especially when Jaccard-distance-based 
postprocessing is applied. Henceforth, this method is re-
ferred to as T-A-J. It was also used in [9] as a primary step 
for the causal analysis of ASs. However, it is less robust to 
irrelevant ACTs of alarm variables with a high weight. 

In conclusion, the data-driven AFSA approaches de-
scribed here show some deficits in fulfilling both require-
ments R1 and R2. Moreover, most of these approaches use 
fixed alarm rates and time windows to detect ASs in histor-
ical data, e.g., in [1], [4], [8], [9], and [18], which could re-
sult in important alarms or ASs being missed [16]. This de-
ficiency justifies the proposal of a novel method that is ro-
bust against both order ambiguity and some irrelevant ACTs 
while still considering relevant aspects of the AS’s dynamic 
structure. 

It was further shown in [15] that all of the existing AFSA 
methods share the common property of using an alarm se-
quence representation as input, i.e., a sequence of alarm in-
stances ordered by their ACT times. However, [15] also ex-
amined two research areas that are similar to the idea of 
AFSA, namely, alarm similarity analysis and online alarm 
flood classification. The former examines the correlation 
between alarm variables, and the latter identifies known AS 
patterns in incoming alarm floods [15]. In both areas, sev-
eral approaches have demonstrated that using alarm series, 
i.e., alarm data represented as time series, can be beneficial 
and produce more meaningful results, e.g., in [15] and [23], 
than when using only alarm activations. Moreover, [15] il-
lustrated the advantages of using alarm coactivations for 
alarm analysis, i.e., two or more alarm variables that are ac-
tive at the same time. 

3 Proposed Approach 

3.1 Overview of the Proposed Approach 

Based on the findings in [15] and the promising T-A-J ap-
proach in [8], this paper proposes an improvement to the T-
A-J approach that aims at meeting the requirements R1 and 
R2. The improvement is achieved by using two novel TF-
IDF-based AS clustering methods that utilize alarm series 
data for the analysis of individual alarm variables (T-S-J) 
and their coactivations (T-C-J). Here, each configured 
alarm, e.g., a high- or low-alarm, is denoted by an individual 
alarm variable. Eventually, the postprocessed clustering re-
sults from T-S-J and T-C-J are merged by a novel validation 
step that focuses on the detected AS outliers. 

Figure 1 shows the general structure of the proposed 
“alarm series similarity analysis method” (ASSAM) using 
the “formalized process description” given in [21]. The pro-
cess operators (green rectangles) and generated and pro-
cessed information (blue hexagons) are described in detail 
below. T-S-J is specified by process operators O1.1, O1.2, 
O1.4, O1.5, and O1.6 and results in I1.8, whereas T-C-J is 
defined by O1.1, O1.3, O1.4, O1.5, and O1.6 and generates 
the output I1.9. 

 
Figure 1: “Formalized process description” of the proposed 

“alarm series similarity analysis method” (ASSAM). 

3.2 Details of the Proposed Approach 

The ASSAM starts with O1.1. The input of this first step is 
a set of detected historical ASs (I1.1), which were obtained 
using the “alarm coactivations and events detection 
method” (ACEDM) proposed in [16]. The ACEDM uses a 
“median absolute deviation”-based outlier detection in time 
distances between ACTs and alarm deactivations to find po-
tential ASs. Subsequently, an alarm coactivation constraint 
is used to validate the detected historical ASs. It was shown 
that the ACEDM is more precise and robust in detecting co-
herent abnormal situations than are methods that use arbi-
trary alarm rate-thresholds in fixed or sliding time windows 
[16]. The ASSAM uses a time series representation of alarm 
data, i.e., a binary alarm series. Here, each alarm variable � 
is represented by a time series [15]: 

�
�  (1) 

where � is the set of times  in which � is active. Trivial 
ASs with only one active alarm variable are eliminated. 
Moreover, to reduce the computational effort in the follow-
ing steps, only those alarm variables that are active at least 
once in any of the subsequences are selected (I1.2). 

Similar to T-A-J, the TF-IDF is used to weight alarm var-

iables and their pairwise coactivations in O1.2 and O1.3, re-

spectively. The time series for the coactivation of two alarm 

variables � and � can be represented as follows (following 

[15]): 

��
� �

 (2) 

To calculate �� for all possible � and � in an ASs, alarm 

variables must have an identical sampling rate and an iden-

tical number of samples. Here, only those alarm variable 

pairs that are coactive at least once in any of the analyzed 

ASs are selected. The TF-IDF is then computed for each 

alarm variable (T-S-J in O1.2) or pair of alarm variables (T-
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C-J in O1.3) and each alarm subsequence  (following 

[8]): 

 (3) 

with the “term frequency”: 

� �� � ��  (4) 

and the “inverse document frequency”: 

�  (5) 

where  can be either an alarm variable or a pair of alarm 

variables, � �� is the number of samples in which  is ac-

tive in , and  is the set of all ASs. Subsequently, the 

Euclidean distance is used to calculate the pairwise dis-

tances between any two alarm subsequences � and � 

[8]: 

�� � � � �
�
�	
  (6) 

where  is either the total number of alarm variables (O1.2) 
or the total number of alarm variable pairs (O1.3). Eventu-
ally, both resulting distance matrices in O1.2 (I1.3) and 
O1.3 (I1.4) are normalized to the range 0 to 1. 

Identical to [8], the AS distance matrices are postpro-
cessed here. This step aims to reduce spurious low distances 
between ASs that share only a small number of active alarm 
variables [1]. In O1.4, the Jaccard distances for all AS pairs 
are calculated using the following formula (following [8]): 

��
���

��

��

��
�� (7) 

where ��

�� is the number of distinct alarm variables that are 

exclusively active in either � or � and ��
�� is the number 

of distinct alarm variables that are active in any of the two 

ASs. The resulting Jaccard distance matrix (I1.5) is then 

used in O1.5 for the postprocessing of I1.3 and I1.4. Each 

distance value in the postprocessed distance matrices I1.6 

and I1.7 can be calculated as follows [8]: 

��
�� ��

��� ���

 (8) 

where ��� is the Jaccard distance threshold that determines 
whether an AS pair is considered potentially similar. 

In O1.6, both I1.6 and I1.7 are used to generate two par-
titions of  using DBSCAN [19]. Reference [8] demon-
strated the feasibility of utilizing DBSCAN when used for 
the clustering of ASs with different distance measures. 
DBSCAN identifies regions of high density, i.e., ASs that 
are close to each other in terms of the distance. Clusters are 
identified by core points, where an AS is considered as such 
if at least  other ASs are within a distance less 
than or equal to a threshold ε. ASs with no neighboring sub-
sequences in proximity are considered outliers. Two ad-
vantages of DBSCAN are its distinct outlier label and the 
absence of a manual specification of the number of clusters 
[19]. The resulting clustering solution can be represented as 

�
 � 
 �  where � depicts the ith cluster and 

�
 groups all detected outliers. Here, T-S-J and T-C-J gen-
erate � (I1.8) and � (I1.9), respectively. 

It is reasonable to assume that � and � possibly differ 

to some extent. In fact, preliminary tests have suggested that 

for some abnormal situations, one of the two chosen criteria, 

i.e., alarm variables and their coactivations, can have ad-

vantages over the other and result in more meaningful clus-

ters. To benefit from both criteria, we propose a novel step 

(O1.7) that aims at validating the outliers in T-S-J (I1.8) by 

using T-C-J (I1.9). The former is used as the basis here since 

preliminary performance results have indicated that it is 

more robust to different settings of ε. The concept of the 

proposed approach is the following: for each outlier in �

� , 

the corresponding label in � is analyzed. If T-C-J consid-

ers this subsequence as an outlier as well, it is labeled as 

such in the validated clustering solution �� (I1.10). If, 

however, the AS is part of �
� with , the outlier label in 

T-S-J is considered potentially erroneous. Next, we try to 

find the best match for �
� in �. One way to achieve this is 

to compare �
� to each regular cluster in � using a suitable 

similarity measure. Here, we propose using the Braun-Blan-

quet formula for the calculation of the similarity ��
�� be-

tween two clusters � and �. It can be calculated as follows 

[17]: 

��
��

�� � �  (9) 

where �� denotes the number of shared ASs in both clusters 

and �  and �  represent the number of ASs in � and �, 

respectively. Of all clusters in � with a similarity greater 

than or equal to a validation threshold ���  the one with the 

highest similarity to �
� is considered the best match, i.e., �

�. 

Eventually, the former outlier is clustered in �
��. Otherwise, 

it remains an outlier and is grouped in �

��. Moreover, all 

nonoutlier cluster labels in �� are assigned according to 

the cluster labels in �. 

3.3 Discussion of the Limitations and Advantages 

of the Proposed Approach 

One limitation of the ASSAM arises from the computational 

effort necessary for the calculation of T-C-J. In fact, one 

characteristic of T-C-J is that its TF-IDF vectors can yield a 

length of 
�

�
 at most, i.e., the maximum number of unor-

dered alarm variable pairs, where  is the total number of 

alarm variables. Subsequently, the coactivation of each 

alarm variable pair needs to be determined for each sample. 

Furthermore, as T-C-J considers only alarm variable pairs, 

a single alarm variable can have an excessive impact on the 

TF-IDF representation of an AS; i.e., it is considered in nu-

merous elements of the TF-IDF vector. Future research 

could therefore apply suitable feature selection to determine 

the most relevant alarm variable combinations for the anal-

ysis of alarm coactivations, e.g., using an IDF threshold to 

select the most characteristic alarm variable pairs. 
Nevertheless, the ASSAM shows relevant advantages 

compared to state-of-the-art methods. Swapped alarm or-
ders and a varying number of ACTs in similar abnormal sit-
uations can be characteristic of real-world industrial pro-
cesses [4][15]. The proposed utilization of time series data 
in AFSA expands the view to the dynamic properties of ac-
tivated alarm variables and the dynamic structure of the un-
derlying ASs instead of focusing on a point-to-point exam-
ination of sequenced ACTs. In fact, the calculation of the 
TF in (4) is not affected by the order or number of ACTs. 
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Moreover, randomly activated short alarms that are irrele-
vant for the situation have only a small impact due to the 
consideration of the number of active samples in (4). Hence, 
the proposed ASSAM and its components T-S-J and T-C-J 
fully satisfy the requirements R1 and R2 given in [4]. 

4 Evaluation 

This section evaluates and compares the performances and 
characteristics of three relevant AFSA methods described in 
Section 2 and the method proposed in Section 3. Subsection 
4.1 gives a brief overview of the evaluation dataset used. 
Subsection 4.2 deals with choosing a suitable evaluation 
measure. The obtained evaluation results are presented in 
Subsection 4.3. 

4.1 Evaluation Dataset 

The examined clustering methods are applied to the openly 
accessible simulation dataset1 introduced in [16]. It is based 
on a simulation model of the TEP, a frequently used bench-
mark in process automation [3][5]. It can be separated into 
five modules: a two-phase chemical reactor, a condenser, a 
vapor-liquid separator, a stripper, and a reboiler. Further-
more, the TEP includes 11 automatic pneumatic control 
valves, two pumps, and one compressor [5]. The alarm sys-
tem of the TEP defines 81 low-alarm and 81 high-alarm 
thresholds as well as five high-high-alarm and three low-
low-alarm thresholds [16]. 

The dataset includes 100 simulation runs with 300 speci-
fied abnormal situations. These situations were designed us-
ing eight different root-cause disturbances with variations 
in their respective durations, disturbance scaling, and com-
binations. These variations as well as random influences af-
fect the number of activated alarm variables, the order of 
alarm instances, and their dynamic behavior. The alarm sys-
tem generates a total of 7343 alarm instances over all 300 
situations [16]. 

The application of the ACEDM on the TEP dataset re-
sults in 358 detected ASs (I1.1 in Figure 1), of which 310 
subsequences show more than one alarm instance (I1.2 in 
Figure 1). The latter are used as the preprocessed input for 
all clustering methods examined here, thus being able to 
specifically compare the performances of the selected 
AFSA methods. One advantage of the TEP simulation da-
taset is that all induced abnormal situations are explicitly 
known [16], thus making it possible to use an external va-
lidity index, which compares the computed clusters to a 
given ground-truth partition [17]. The 310 preprocessed 
ASs are therefore manually assigned to 22 ground-truth 
clusters according to the details described in [16]. Each 
cluster includes 4 to 30 similar ASs. Furthermore, 14 of the 
310 subsequences are labeled outliers, as they contain only 
random parts of the respective underlying abnormal situa-
tion and show no similarities to any other ASs. 

4.2 External Validity Index 

For evaluation, a suitable external validity index needs to be 
chosen, which facilitates an appropriate performance com-
parison of different clustering methods in terms of which 
clusters best fit with the given ground-truth [17]. A fre-
quently used pair-counting index, which evaluates the 

 
1 https://dx.doi.org/10.21227/326k-qr90 

agreement of a ground-truth partition � and a computed 
trial partition 
 on the pairs of objects in the dataset [17], 
is the adjusted Rand-index (ARI) [13]. Reference [20] sug-
gested using the ARI as a benchmark in cluster evaluations. 
The ARI can be calculated using the following formula 
[13][20]: 

�(�����)

(���)(���)�(���)(���)
 (10) 

where  is the number of AS pairs that are in the same clus-
ter in both partitions,  is the number of AS pairs that are in 
the same cluster in � but in different clusters in 
,  is the 
number of AS pairs that are in the same cluster in 
 but in 
different clusters in �, and  is the number of AS pairs that 
are in different clusters in both partitions. If � and 
 are 
identical, the ARI yields a value of 1. A value of 0 arises in 
the case where � and 
 are statistically independent 
[13][20]. A detailed analysis of the properties and charac-
teristics of the ARI can be found in [20]. 

4.3 Evaluation Results 

An overview of the methods examined here is given in Table 
1. Two methods, J and MSW-J, are used as benchmarks for 
the evaluation of the TF-IDF-based methods, namely, T-A-J, 
the proposed ASSAM, and its components T-S-J and T-C-J. 
In addition, some of these methods are compared to versions 
of them that do not use the postprocessing step in process 
operator O1.7 (s. Figure 1), namely, T-A, T-S, and T-C. This 
evaluation approach allows for a systematic and in-depth 
examination of the effectiveness of the ASSAM and its 
components, i.e., the proposed alarm variable and 
coactivation input, as well as the postprocessing of the 
obtained distance matrices and the validation of potential 
outliers. For MSW-J, the algorithm parameters were set 
according to [4], i.e., , , and � . The 
Jaccard-distance threshold for MSW-J, T-A-J, T-S-J, and T-
C-J was set to 0.4. The validation threshold ��� of the 
ASSAM was set to 0.5. Based on preliminary tests, the 
minPts parameter of DBSCAN was set to 3 for all methods. 
The distance threshold of the AHC-SL and ε of DBSCAN 
values between 0.1 and 1.0 with a step size of 0.001 were 
examined. For the evaluation of the ASSAM, both 
components T-S-J and T-C-J used the same ε due to the 
assumption that the individual tuning of two parameter 
settings would be cumbersome in an industrial application of 
the ASSAM. 

For each method, the highest ARI value, which was ob-
tained by applying all considered parameter settings, is 
shown in Figure 2. J, T-A, and T-A-J, which do not consider 
alarm activation durations or their order, show the lowest 
ARI values of all examined methods. Indeed, in some cases, 
these three methods detected similarities between ASs that 
are in different ground-truth clusters and arose from differ-
ent root- cause disturbances, thus resulting in fewer, though 
larger, computed clusters, i.e., 15 clusters for J. By using an 
optimal ε of 0.081, both T-A and T-A-J labeled 32 outliers, 
which represents the highest number for all examined meth-
ods. The corresponding ASs were characterized by random 
variations in the number of ACTs of those alarm variables 
with a high value for the IDF-vector. 
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Abbrevi-

ation 
Method 

Post-

proc. 

Clustering 

Method 

J Jaccard-distance [6][8] No DBSCAN 

MSW-J Modified Smith-Waterman [4][18] Yes AHC-SL 

T-A TF-IDF using alarm sequences [8] No DBSCAN 

T-A-J TF-IDF using alarm sequences [8] Yes DBSCAN 

T-S TF-IDF using alarm series: alarm 

variables 

No DBSCAN 

T-S-J TF-IDF using alarm series: alarm 

variables 

Yes DBSCAN 

T-C TF-IDF using alarm series: alarm 

coactivations 

No DBSCAN 

T-C-J TF-IDF using alarm series: alarm 

coactivations 

Yes DBSCAN 

ASSAM TF-IDF using alarm series: alarm 

variables and coactivations 

Yes DBSCAN 

Table 1: Overview of the examined and compared methods. 

In contrast, the consideration of the order of ACTs with 
ambiguity to short-term variations in MSW-J resulted in a 
higher ARI value. MSW-J detected 20 clusters and 24 outli-
ers using an optimal distance threshold of 0.276. An in-
depth inspection of the obtained results revealed that MSW-
J was not always able to distinguish between significant var-
iations for the same root-cause disturbance. Moreover, the 
detected outliers differed considerably from those in the 
given ground-truth; i.e., MSW-J was not always able to find 
similarities between two ASs with identical ground-truth 
cluster labels in cases where both disagreed on the number 
of ACTs. 

The proposed methods T-S-J and T-C-J, as well as the 
alternative versions T-S and T-C, showed an improved per-
formance compared to that of the existing AFSA methods. 
Of the 170 alarm variables of the TEP, only 76 were active 
at least once in the dataset, with 1851 alarm variable pairs 
showing coactivation. As a result, the TF-IDF vectors of T-
C-J contain more than 24 times as many elements as the TF-
IDF vectors of T-S-J. Both T-S-J and T-C-J were able to de-
tect 23 clusters and 12 outliers with as few as 12 mislabeled 
ASs. The optimal ε values for T-S-J and T-C-J were 0.095 
and 0.080, respectively. An in-depth inspection of the clus-
ter labels resulting from T-S-J and T-C-J revealed that they 
are essentially identical except for four ASs, which stem 
from two different abnormal situations. Interestingly, in 
both cases, one of the methods classified two of the subse-
quences as outliers, whereas the other method classified 
them correctly according to the ground-truth cluster labels. 
The application of both T-S-J and T-C-J and the subsequent 
validation of outliers in the ASSAM were shown to result in 
more meaningful clusters; i.e., only 10 ASs were misla-
beled, which resembles the ground-truth best. This finding 
was also supported by the ASSAM yielding an ARI value 
superior to that of all other examined methods. Another sig-
nificant phenomenon revealed in Figure 2 is that the post-
processing of the TF-IDF-based methods was beneficial re-
garding the optimal ARI value. This phenomenon is further 
analyzed in Figures 3 and 4. 

Figure 3 illustrates the heatmaps of the distance matrices 
for the TF-IDF-based methods. The ASs in the columns and 
rows are ordered by the ground-truth cluster labels. This al-
lows for the visual evaluation of the distance measures used. 
A trial partition identical to the ground-truth is characterized 

 
Figure 2: Performance of the examined AS clustering methods un-

der the optimal parameter settings. 

by the dark colored blocks along the diagonal of the distance 
matrix. In contrast, undesired similarities between different 
ground-truth clusters appear as dark colored off-diagonal 
blocks. Figures 3 (a), (b), and (c) show the computed dis-
tances without the application of the postprocessing step. 
The distance matrix of T-A in Figure 3 (a) contains some 
erroneously high distances between ASs that have the same 
ground-truth cluster label and numerous spuriously high 
similarities in terms of the off-diagonal blocks. Only one 
cluster presents a desirable high visual contrast. The corre-
sponding simple ASs are characterized by only two alarm 
variables that are both active throughout the respective ab-
normal situations. The distance matrices of T-S and T-C in 
Figures 3 (b) and (c) show a substantially higher visual con-
trast between blocks along the diagonal and in the off-diag-
onal areas than shown in Figure 3 (a). In fact, the highest 
contrast can be found in Figure 3 (b), which is reflected by 
T-S having the highest ARI value of all TF-IDF-based ap-
proaches without postprocessing. The lower performance 
and lower visual contrast of T-C in Figure 3 (c) can possibly 
be explained by its relatively high-dimensional TF-IDF vec-
tors; i.e., ASs with only a few coactive alarm variables tend 
to show a shorter distance than that of subsequences with a 
high number of nonzero elements in the TF-IDF vectors. 
Figures 3 (d), (e), and (f) show the computed distance ma-
trices after the application of the postprocessing step. By as-
signing the highest distance value to most of the erroneous 
AS pairs, the resulting visual contrast shows high agreement 
with the cluster structure of the ground-truth. However, Fig-
ure 3 (d) demonstrates that T-A-J yields low distance values 
for most of the remaining subsequence pairs, thus impeding 
the detection of the correct ground-truth clusters. In con-
trast, Figures 3 (e) and (f) depict overall higher distances in 
the remaining off-diagonal pairs for T-S-J and T-C-J. This 
advantageous characteristic resulted in higher ARI values 
for both proposed components of the ASSAM. 

The performance and the number of resulting clusters for 
the TF-IDF-based methods over all considered settings of 
the DBSCAN parameter ε are illustrated in Figure 4. The 
corresponding diagram for the ASSAM is similar to that of 
T-S-J and is therefore not depicted here. The comparison of 
Figures 4 (a), (b), and (c) and Figures 4 (d), (e), and (f) re-
veals the benefits of the postprocessing step: T-A, T-S, and 
T-C show a steep and sudden performance decline for ε 
greater than 0.07 (for T-C) and 0.15 (for T-A and T-S). On 
the other hand, T-A-J, T-S-J, and T-C-J present an improved 
performance baseline for ε greater than 0.25 with an ARI 
value of approximately 0.47 and 11 to 14 detected clusters. 
In that case, the clustering results are mainly determined by 
 

J

MSW-J

T-A

T-A-J

T-S

T-S-J

T-C

T-C-J

ASSAM
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Figure 3: Matrices of the pairwise distances of alarm subse-

quences for the TF-IDF-based methods. Each pixel represents the 

distance between two alarm subsequences. The alarm subse-

quences in the columns and rows are ordered by the ground-truth 

cluster labels. (a) T-A. (b) T-S. (c) T-C. (d) T-A-J. (e) T-S-J. (f) T-

C-J. 

the postprocessing step. Moreover, the close inspection of 
Figure 4 indicates that the range of suitable values for ε, 
which results in ARI values close to the maximum, is ap-
proximately twice as long for T-S-J and T-C-J compared to 
T-S and T-C. In conclusion, the postprocessing step makes 
the proposed methods more robust to changes in ε and the 
clustering results more reliable in cases where an optimal ε 
cannot be determined using a ground-truth partition. 

5 Discussion and Conclusions 

The evaluation in Subsection 4.3 showed that the existing 
AFSA methods are not able to meet the requirements de-
fined in [4] (s. Section 2) to the fullest extent. In fact, the in-
depth examination revealed that the methods J, T-A, T-A-J, 
and MSW-J can handle a certain ambiguity of the order of 
alarms in two compared ASs (R1), whereas none of them 
could suitably tolerate irrelevant alarms occurring in one or 
both ASs (R2). These methods are therefore not able to cor-
rectly detect all underlying AS similarities. Despite this dis-
tinct limitation, the clustering results obtained by MSW-J 
showed a relatively high agreement with the given ground-
truth of the TEP dataset used here. However, the MSW ne-
cessitates the cumbersome tuning of four interrelated pa-
rameters, i.e., , , �, and the distance threshold of the 
AHC-SL. It was further demonstrated that the proposed TF-
IDF-based method ASSAM as well as its components T-S-
J and T-C-J are able to fulfill all given requirements. More-
over, the ASSAM achieves the best performance among all 
considered AS clustering methods. This result confirms the 
assumption that the clustering results can be improved when 
using alarm series data and alarm coactivations as input. 
Overall, the evaluation showed that clustering methods that 
consider the dynamic properties of activated alarm variables 
and the dynamic structure of the ASs consistently demon-
strate a higher performance than that of methods that utilize 
a less extensive data input. 

One limitation of the ASSAM results from its need for a 
relatively high computational effort using T-C-J; i.e., each 
sample in a subsequence needs to be analyzed on occurring 
pairwise alarm coactivations. In contrast, T-S-J maintains a 
 

 

Figure 4: Performance (blue solid lines) and number of clusters 

(green dashed lines) for the TF-IDF-based methods over all con-

sidered settings of the DBSCAN parameter ε. (a) T-A. (b) T-S. (c) 

T-C. (d) T-A-J. (e) T-S-J. (f) T-C-J. 

relatively low computational burden. Another limitation re-
sults from the necessity of tuning the DBSCAN parameter 
ε. In this context, it was proven that the postprocessing step 
of T-S-J and T-C-J makes them and the ASSAM more ro-
bust to changes in the parameter settings than without post-
processing and compared to T-A-J. It is noteworthy that this 
beneficial characteristic of the ASSAM makes it more suit-
able for an industrial application where a priori knowledge 
for parameter tuning can be limited. Moreover, this finding 
substantiates the viability of the postprocessing step, as hy-
pothesized in [8]. 

Furthermore, the evaluation indicated a high agreement 
between the clustering results of T-S-J and T-C-J. However, 
the data also showed that the proposed combined approach 
ASSAM has advantages over the individual methods. For 
industrial practitioners, we recommend using T-S-J in cases 
where a low computational burden is of relevance. In other 
cases, we propose using the ASSAM as intended. It is 
reasonable to assume that in processes similar to the TEP 
used here, this approach can produce more meaningful 
clustering results. Future studies should apply the proposed 
ASSAM and its components T-S-J and T-C-J to further 
industrial and experimental datasets. Furthermore, it should 
be investigated whether suitable feature selection for T-C-J 
can be found to reduce the relatively high dimensionality of 
its TF-IDF vectors. Moreover, further research should 
evaluate whether modern machine learning methods, e.g., 
representation learning, can improve the analysis of similar 
historical ASs. 

Additional recommendations for future research opportu-
nities include causal investigations of the detected AS 
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clusters and the mining of meaningful alarm patterns 
therein. Subsequently, different clusters that share common 
root-cause disturbances can be further examined regarding 
intermittent similarities and differences in their patterns. AI 
may help to capture the different versions of an abnormal 
situation, which can arise due to varying operator interven-
tions. Such versions could be characterized by a normaliza-
tion or an escalation, e.g., an emergency shutdown, of the 
process. This approach could help to explore suitable oper-
ator interventions and characteristic indicators that allow for 
a timely identification of the specific version of an abnormal 
situation that is most likely to occur. 
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