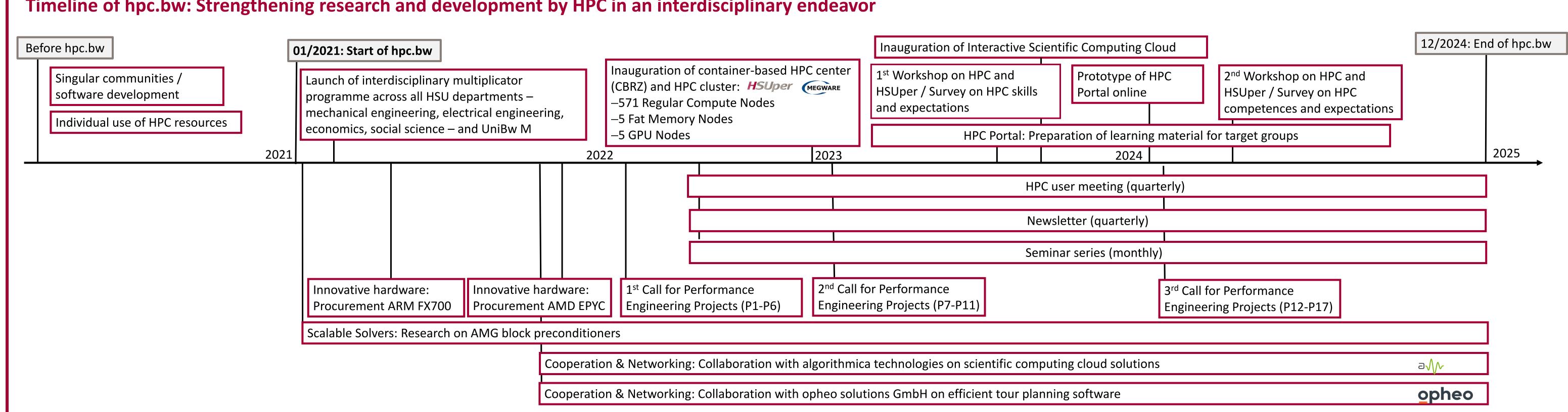


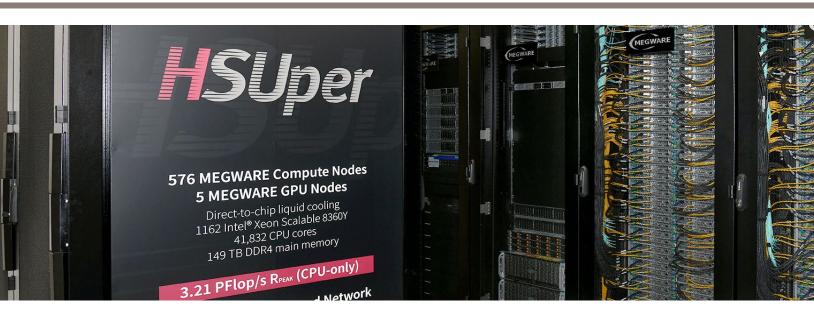
HELMUT SCHMIDT UNIVERSITÄT


Universität der Bundeswehr Hamburg

Competence Platform for Software Efficiency and Supercomputing

Philipp Neumann, Marie Rathmann, Johann Duffek, Hauke Preuß, Alexander Kolling (Helmut Schmidt University / University of the Federal Armed Forces Hamburg)

Further Project Participants at Helmut Schmidt University / University of the Federal Armed Forces Hamburg (HSU) & University of the Federal Armed Forces Munich (UniBw M): Imane Bechelaoui, Andreas Fink, Max Firmbach, Piet Jarmatz, Jessica Kleinschmidt, Willi Leinen, Matthias Mayr, Alexander Popp, Sabine Schumbohm, Yannis Schumann, Marcus Stiemer



Timeline of hpc.bw: Strengthening research and development by HPC in an interdisciplinary endeavor

Supercomputer **HSUper**

- 581x dual Intel 8360Y (41.832 compute nodes)
- 2x 1-PB-storage system (Ceph, BeeGFS), InfiniBand HDR100
- 571 nodes, dual-socket Intel Icelake (2x36 cores), 256 GB RAM
- 5 nodes, dual-socket Intel Icelake, 1 TB RAM
- 5 nodes, dual-socket Intel Icelake (2x36 cores), equipped with 2 A100 GPUs, 256 GB RAM

Research areas with HPC needs

- Numerical simulation and development of parallel simulation methods
- Artificial intelligence / machine learning / data analyses
- Bioinformatics problems, e.g. in medicine
- Optimization problems, e.g. in logistics

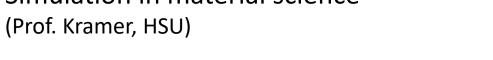
Simulation in material science

Molecular-continuum simulation

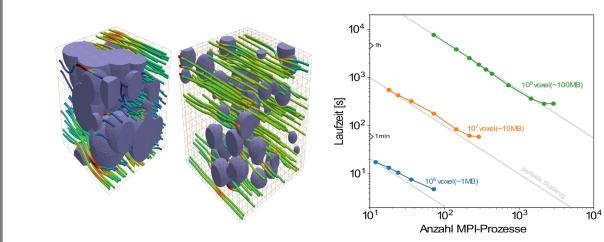
Berechnungszeit (Strong Scaling)

#Kerne

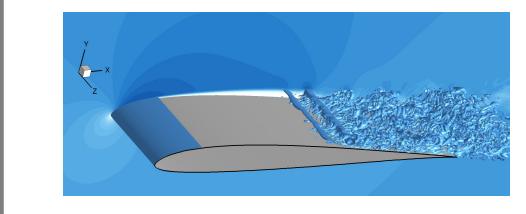
ARM ARM-ideal AMD EPYC

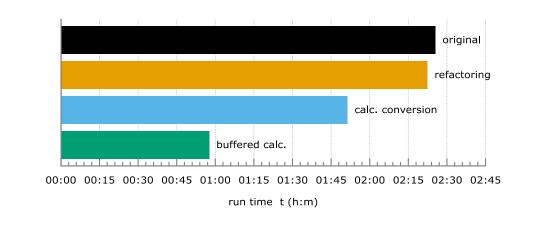

Calls for Projects for Performance Engineering

- Monte Carlo simulations of real fluids (HSU) ✓ P1
- DigiTaKS* Learning behaviour of students in dealing with digital media and tools (HSU) ✓ P2
- benEFIT- Numerical simulation of non-destructive testing of concrete (HSU) ✓ P3
- Enabling High-Throughput Studies of Reactive Materials (HSU) ✓ P4
- C-STAR Electric Propulsion Demonstrator Multiphysics Modelling/Modelling Hypersonic re-entry ✓ P5 from the Martian Thermosphere down to the Troposphere (UniBw M)
- ✓ P6 Optimization of an IGA Code in MATLAB for parallel computing (UniBw M)
- Case Study "Personnel Scheduling in RoRo Terminals" (HSU) ✓ P7
- The 2-stage no-wait hybrid flow job scheduling problem (HSU) U P8
- Single machine scheduling with position dependent maintenance (HSU) **じ P9**
- P10 HPC for semi-parametric statistical modelling on massive data sets (HSU)
- P11 Performance portability for the MIRCO BEM solver for rough surface contact (UniBw M)
- ひP12 Density Functional Theory Calculations of Positron Lifetimes (UniBw M)
- じP13 Nozzle Design in Cold Spray Applications (HSU)
- ひP14 MD-Simulations for damping assessment in MEMS resonators: (HSU)
- P15 Enabling global sensitivity analysis of large-scale FEM models using QUEENS (UniBw M)
- ひ P16 DSMC-based simulation for the development ABEP systems (UniBw M)
- Ů P17 Molecular Monte Carlo simulations on GPUs (HSU)


© Ulrike Schröder

Types of hpc.bw team support:


- Problem identification
- Setup, familiarization on usage/code
- Introduction of best practices
- Profiling/benchmarking on test cases
- Selection on promising bottlenecks
- Introduction of changes/optimizations
- 1 on 1 mentoring/help
- Investigation of possible solutions
- Communication of solution clues
- Preparation of 'proof-of-concept'


(Prof. Neumann, HSU) Mast

Simulation of turbulent flows (Prof. Breuer, HSU)

Monte Carlo simulation of real fluids (Prof. Meier, HSU)

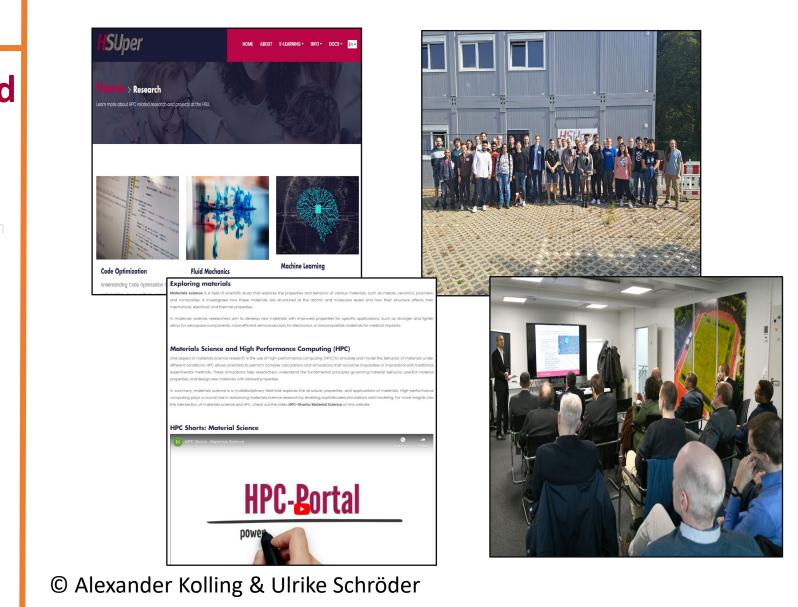
HPC Competences Platform: Interdisciplinary Cooperation – Continuing Education and Lifelong Learning & HPC

"Culture of Digitalization" (Stalder, 2021) & Computer Science

- "Data as the raw material of the future" (DARP 2022, 324)
- Algorithmicity: Automated decision-making processes that generate Information and become the basis for collective behaviour
- Referentiality: Referential processes that enable references on the basis of data and thus have a meaningful and formative effect on knowledge and practices
- *Collectivity*: Collective frames of reference that stabilise meanings, generate options for action and agency

Strengthening of HPC discipline & bringing together different potentials

- Construct knowledge on the basis of data
- Open Educational Resources and Open Access regarding HPC competences
- Overcoming boundaries
- Strengthening interdisciplinary research and cooperation
- Profiling HPC discipline
- Discovering new research horizons


Acquisition of Future Skills (Ehlers, 2020)

Selection of Future Skills in relation to HPC Portal:

- *Digital and design competence*: Knowing and using rigorous metrics and promoting value
- *Ethical and initiative competence*: sustainability of HPC resources
- Reflection-, decision-making and system competence: Understanding, weighing up and managing risks in relation to hard- and software
- Ambiguity and innovation competence: dealing with complexity and uncertainty of HPC knowledge

HPC Portal: Interim conclusion and next steps

- Methodical and didactic preparation of teaching and learning materials
- Open Educational Resources for self-directed learning processes and for exploring new research potential
- HPC competences transfer along digital, on-site and hybrid learning settings
- Informal learning with the aim of creating networking and exchange opportunities in various target groups and disciplines
- Example offers: Seminar series, HPC workshops for beginners and advanced users, newsletter, forum, blog post, videos, cluster tours

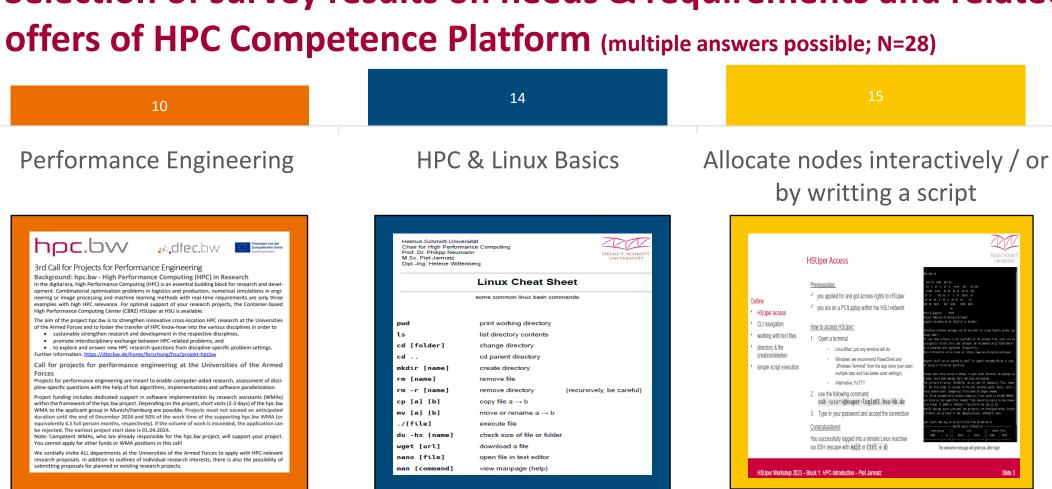
Target Groups of HPC Competence Platform

Selection of survey results on needs & requirements and related

Interdisciplinary users without affinity for Computer Science

 Currently no affinity for computational processes Writing only individual lines of code or having no experience with HPC, programming or optimizing software

Beginners


- Basic knowledge of computer science
- Driven by scientific questions to be addressed using HPC
- Ability to write short parts of programmes, e.g. larger macros, scripts or interfaces for commercial software

Advanced users

Intermediate knowledge of computer science Advanced knowledge about software development, e.g. writing own programmes and having parts of these programmes parallelized (for execution on HPC systems)

Advanced software developers

- Comprehensive knowledge of computer science
- Ability to parallelize/optimize software mostly independently
- Detailed knowledge of job scheduling systems etc.

Project related publication:

Neumann, P./Duffek, J./Kleinschmidt, J./Leinen, W./Breuer, M./Schmidt-Lauff, S./Fink, A./Mayr, M./Firmbach, M./Popp, A. & Auweter, A. (2022): hpc.bw: A Supercomputer with Competence Platform for the Universities of the Federal Armed Forces. In: Schulz, D./Fay, A./Matiaske, W. and Schulz, M. (eds.): dtec.bw-Beiträge der Helmut-Schmidt-Universität. Forschungsaktivitäten im Zentrum für Digitalisierungs- und Technologieforschung der Bundeswehr dtec.bw. Band 1. Hamburg: OpenHSU, pp. 305–310. https://openhsu.ub.hsu-hh.de > openHSU_14569

Mentioned publications in the poster:

DARP (2020): Deutscher Aufbau- und Resilienzplan.

Ehlers, U.-D. (2020): Future Skills. Lernen der Zukunft – Hochschule der Zukunft. Wiesbaden: Springer VS. Stalder, F. (2021): Kultur der Digitalität. Frankfurt am Main: Suhrkamp.

Kontakt: Prof. Dr. P. Neumann · Holstenhofweg 85, 22043 Hamburg · E-Mail: philipp.neumann@hsu-hh.de