Fiber gratings

- Periodic refractive index modulation of the fiber core
 - Inscribed Ge-doped silica fiber with focused UV-Laser
 - Resonant exchange of power between different fiber modes
- Resonance wavelength is determined by...
 - ... the grating period
 - ... the propagation constant of the modes involved
- Period < 1 μm: Fiber Bragg Gratings (FBG)
 - Power exchange between counter propagating core modes
- Period > 50 μm: Long-Period fiber Gratings (LPG)
 - Power exchange between co-propagating core and cladding modes

Surface plasmon waves & optical waveguide

- **Resonance conditions:**
 - Phase matching $(n_{WG} = n_{SPW})$
 - Transversal magnetic (TM) polarisation
 - Metal layer with suitable thickness (50 nm)

- Surface plasmon resonance
- Impact on the guided light:

- Wavelength
- High loss due to strong field concentration on the metal surface

Effective refractive index

- Characteristic shift of the effective refractive index
- High sensitivity to refractive index changes on the metal surface

Transmission

Impact on the guided light:

Wavelength

- High loss due to strong field concentration on the metal surface
- Characteristic shift in the effective refractive index
- High sensitivity to refractive index changes on the metal surface
 - Detection of molecular binding events

Novel fiber-optic sensor concept

Advantages

- Small sensing area enables in-situ investigation of small analyte volumes
- Fiber (Ø 125 μ m) is mechanically robust & independent of polarization
- LPG facilitates highly sensitive SPR of a single cladding mode
- Simple evaluation of transmitted power at a suitable wavelength

- Efficient, precise modelling of cladding modes in SPR
 - ▶ FEM, FDTD software or classical numerical solver are not suitable
 - Relatively large geometry in relation to operating wavelength (660 nm)
 - High polarization-dependent losses of cladding modes
- Omnidirectional deposition of a thin gold film
 - Ensures high sensitivity & low polarization dependency
 - Evaporation or sputtering facilities are designed for planar substrates
- Experimental investigation of the sensor transfer function
 - Interference of the core and cladding mode
 - Losses attributable to a variety of factors

PhD thesis – Modelling

- HE_{1,X} cladding modes
 - Hybrid polarization
 - Axially symmetric field
- Planar approximation
 - Geometrical optics
- Gold coating with complex reflection coefficient
 - Phase $\varphi = \angle \underline{r}$
 - Reflectivity $R = \left| \underline{r} \right|^2$
- Effective refractive index
 - Standing wave condition
- Attenuation

$$A_{SPR(1,X)} = R_{TM}^{a/D_{TR}}$$

30 nm thick gold layer , ideal permittivity, λ = 660 nm

PhD thesis – Electroless gold plating

- Metal deposition out of an aqueous solution
 - Uniform thickness on every shape of substrate
 - Efficient material consumption
- Redox reaction requires catalytic substrate
 - Activation of silica substrate with gold nano particles
 - Island-like growth of gold layer

SPR measurements

- LPG underneath gold coating
- Optical properties depend on thickness of the deposition
- Effective permittivity with increased real- and imaginary part

PhD thesis – Transfer function

- Interference of phase-shifted core and cladding mode
 - Michelson-Interferometer
- Characteristic sensor spectrum determined by:
 - Location, amplitude- and phase response of LPG
 - Effective refractive indices & losses of involved modes
- Maximum sensitivity
 - Constructive interference
 - Near LPG resonance
 - Up to 14.5 RIU⁻¹ @ $n_A = 1.34, 1.37$
 - Electroless plated gold layer
 (t_{opt} = 35 nm, L_{opt} = 1.2 mm)

Cladding mode: $HE_{1,20}$, LPG: Λ =114 µm, L=30 mm, Gold layer: t_M =25 nm, L_M =3.5 mm Surrounding refractive index: n_A = 1, 1.33 – 1.38

Separation of additional losses

- Reflection at fiber end face
- Transition to sensing area
- Scattering at rough surface

Measurments with variable

- Length of gold coating
- Surrounding refractive index
- Experimental results correspond well with simulations
 - Scaling factor $a \approx 0.35$
 - Independent from:
 - Thickness of gold coating
 - Order of the cladding mode
 - Wavelength

 $HE_{1.20}$ cladding mode, $\lambda = 660$ nm

PhD thesis – Summary

- Novel fiber-optic sensor for the detection of refractive index changes
 - High sensitivity due to SPR of a single cladding mode enabled by an LPG
- Quick, accurate modelling
 - Transfer function derived from a Michelson interferometer
 - SPR modelled using a planar approximation for HE_{1,X} cladding modes
- Omnidirectional electroless plating on the sensor fiber
 - High sensitivity & low polarization dependency
 - Island-like growth
- Experimental investigations to support and validate sensor modelling
 - Electroless plated gold depositions exhibit effective permittivity
 - Various optical losses affect sensor transfer function
- Sensor performance comparable with commercial volume optical systems
 - ▶ Refractive index resolution < 10⁻⁸ RIU in aqueous media
 - Simple transmission measurements at a specific wavelength
 - Compact sensing area (< 2 mm) permits investigation of small analyte volumes

PhD thesis – Outlook

Compact device for detection of specific biochemical substances

- No need for a microfluidic system
- Point-of-care devices , lab-on-chip systems
- Medical or environmental diagnostics, bioprocess engineering

Packaging and bio-functionalization

- Compensation of secondary refractive index changes
 - Temperature fluctuations or non-specific binding events
 - Differential interrogation of two identical fiber-optic sensors
 - Residual cross sensitivity determined by sensor's polarization dependency (< 10%)

Optimized electroless plating process

- Improved structure and permittivity
- Higher reproducibility

Dielectric intermediate layer

- SPR shifts towards higher wavelengths
- Higher sensitivity