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Zusammenfassung / Abstract
The present paper proposes a myopic, boundedly rational heuristic for individual decision-making in
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1 Introduction

1 Introduction

Much of the economic analysis of conflict relies on game theory as an analytical tool.1
When elements of control theory are integrated into a classical non-cooperative game, we
obtain a di�erential game (Lewin 1994). These models are of high interest, but fraught
with two problems: first, the resulting systems of di�erential equations frequently do
not a�ord an analytical solution (Ruth and Hannon 2012), in particular if the equations
of motion contain nonlinearities (Beckmann und Reimer 2014). Second, the calculations
involved are so complex that it is hardly credible that real-world decision-makers would
employ them at all. In the absence of repetition and learning, it is di�cult to rationalise
how agents could “feel their way” towards equilibrium.2

In the present paper, I address both of these problems by suggesting a boundedly rational
heuristic for deciding in a di�erential game. This heuristic was used in Frey and Rohner
(2007) as well as in Beckmann and Reimer (2014), but has not to my knowledge been
analysed as general decision rule. As we will see in section 2, this heuristic also avoids
the infinite utility problems that would ensue in an infinitely repeated game with no
discounting.

I suggest that this decision rule is intuitively plausible and also simplifies both the
calculations required of the agents and the resulting di�erential equations describing the
behaviour of the system in such a way that analytical solutions can become available.
This paper is organised as follows: The next section 2 sets out the idea for a simple
decision heuristic and demonstrates how this would work in an infinite repetition of
a simple stage game. Section 3 generalises the idea to di�erential games (with state
variables) and considers two classical examples, the political business cycle and a rent-
seeking game, to illustrate the usefulness of our approach. Section 4 concludes.

2 Basic approach

Consider a game with two agents i œ {1, 2}, each of whom has a compact set of pure
strategies Si. Denote strategy choices by ‡i and payo�s by fii(‡i, ‡j) where j is the

1See Garfinkel und Skaperdas (2007) for an overview. Kress and Washburn (2009) present an instructive
taxonomy of the relevant technical fields.

2Applications where optimal solutions are sought in order to program them into a computer, as in the
pursuit-evasion models (Isaacs 1965), are a di�erent matter altogether.
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2 Basic approach

“other” player. The first order condition for an optimal choice given ‡2 is the obvi-
ous

ˆfi(‡i, ‡j)
ˆ‡i

= 0 (2.1)

From the above, one can compute player i’s reaction function by solving for ‡i and
then find the Nash equilibrium (NE) as the solution of the system of the two reaction
functions.

We now consider a simple dynamic version of the above game: strategy choices are made
over a (possibly endless) interval of time t œ [0;T ]. At each point in time, an identical
version of the stage game is played; that is, the state of the system does not change as
a consequence of agents’ choices (an assumption we will relax in the next section). Let
us use this simple scenario to posit a simple heuristic and explore its properties.

2.1 The decision heuristic

At any point of time, agent i takes j’s current strategy ‡j as given (as in the Nash
conjecture) and as time invariant — that is, agents are assumed to be myopic. We then
assume the agent to calculate the optimal static response according to equation (2.1) and
close a proportion –i of the gap between this myopic optimum and its current strategy
‡i(t). The equation of motion for i’s control is given by

‡̇i = –i (argmax(fii(‡i(t), ‡j(t))) ≠ ‡i(t)) (2.2)

In addition to being myopic, this heuristic has two important properties:

1. Choices have a history, in particular, there is an exogenous starting strategy ‡(0).
This can reflect such things as initial readiness or deployment in a theory of conflict.

2. Agents can di�er in their speed of adaptation to the current myopic optimum.
This property can be used to model di�ering speeds of decision-making processes
or di�erent flexibilities in implementing policy changes.
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2 Basic approach

2.2 Convergence to Nash equilibrium

Denote i’s the reaction function as ‡ú
i = ‡ú

i (‡j(t)). Equation (2.2) can then be rewritten
as

‡̇i = –i (‡ú
i (‡j(t)) ≠ ‡i(t)) (2.3)

From total di�erentiation of i’s first-order condition, we obtain

ˆ‡ú
i

ˆ‡j
= ≠

ˆ2fii
ˆ‡iˆ‡j

ˆ2fi2
i

ˆ‡2
i

= ≠dij
dii

(2.4)

We write dij as a shorthand for ˆ2fii
ˆ‡iˆ‡j

. Obviously, from the second order conditions for
a maximum, we have d11 < 0 and d22 < 0, and the sign of the mixed partials depends on
whether there is strategic complementarity or substitutability. Using (2.4), the Jacobian
of our system is

J =
A

≠–1 ≠–1
d12
d11

≠–2
d21
d22

≠–2

B

The eigenvalues of this Jacobian are given by

e1,2 = ≠1
2

Q
a–1 + –2 ±

Û
4–1–2d12d21 + (–1 ≠ –2)2d11d22

d11d22

R
b

Note that the reaction speeds –i are non-negative. If the mixed partials have the same
sign – i.e., if the game is weakly symmetric in the sense that the complementarity or
otherwise of stategies is the same for both players –, then the eigenvalues will both
be real-valued and no oscillations can occur. If the reaction speeds are identical, then
0 < d12d21 < d11d22 is a su�cient stability condition in the sense that both eigenvalues
will be real-valued and negative.
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3 Di�erential games

3 Di�erential games

3.1 The state equation

The typical di�erential game model di�ers from the above game in that the players’
instantaneous utility or payo� depends on the current value x(t) of a state variable —
or a vector of such variables —, while the change of the system state is a function of the
system’s history and the players’ strategies or controls. Formally we have

fii(t) = fii(x(t)) (3.1)

ẋ = f(x(t), ‡1(t), ‡2(t)) (3.2)

We can translate this into the format of equation (2.1) by integration. Notice that

x(t) =
⁄ t

0
f(x(t), ‡1(t), ‡2(t))dt

to find

fii(x0, ‡1, ‡2) = fi(
⁄ t

0
f(x(t), ‡1(t), ‡2(t))dt)

i’s payo� at time t is therefore a function of the history of play and of the initial condition
of the system x0. We can still apply the heuristic represented by equation (2.2): players
are assumed to treat the current state of the system x(t) and their opponent’s current
strategies as given, calculate their optimal response in this static setting and then close a
percentage – between the “best” response and their current strategy ‡i. The di�erence
between the di�erential game and the repeated static game of the previous section is that
the desired end state is now a moving target — the process no longer converges to the
NE of the stage game, but to the NE of a static game described by the system’s state at
termination x(T ). (If time is infinite, the target can continue moving indefinitely.)
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3 Di�erential games

3.2 First example: the political business cycle

We now consider a simple application of our approach: the classical political business
cycle model (Drazen 2000). There are two players, the government and the private
sector. Let the short-run trade-o� between unemployment u(t) and inflation p(t) be
given by the simple Phillips curve

u(t) = ◊ ≠ (p(t) ≠ pE(t)) (3.3)

where p represents the actual rate of inflation — the government’s control — and pE

is the expected rate of inflation, controlled by the private sector. The government is
assumed to minimise a quadratic loss function defined over the two bads inflation and
unemployment:

w(t) = p(t)2 + Ÿu(t)2 (3.4)

where Ÿ is an exogenous weight increasing in the government’s leftiness. As in the
literature, we assume that the private sector’s goal is to minimise the squared forecast
error (p(t) ≠ pE(t))2. The usual specification of adaptive expectations can be dropped
because it is built into our behavioural assumptions as long as – < 1.

As for the private sector, its optimal choice at each point of time (given a static reference)
is obvious: it is to set pE(t) = p(t). However, only a proportion – of this gap can be
closed. This yields the equation of motion

ṗE = –(p(t) ≠ pE(t))

As for the government, we plug equation (3.3) into equation (3.4) to get

w(t) = (1 + Ÿ)p(t)2 ≠ 2Ÿp(t)(pE + ◊) + ŸpE2 + 2ŸpE◊ + Ÿ◊2

The myopically optimal response is therefore

p(t) = Ÿ

1 + Ÿ
(pE(t) + ◊)
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3 Di�erential games

which yields the following equation of motion (assuming for simplicity that the –s are
the same):

ṗ = –

3
Ÿ

1 + Ÿ
(pE(t) + ◊) ≠ p(t)

4

These equations of motion can be studied in the usual way. First, we let ṗE = ṗ = 0
to find the steady state pEú = pú = Ÿ◊. We then compute the eingenvalues of the
Jabobian

J =
A

≠– –
Ÿ–
1+Ÿ ≠–

B

to find e1,2 = ≠ –
1+Ÿ

1
1 + – ±

Ô
Ÿ + Ÿ2

2
, both of which are real-valued and at least one of

which is negative.The steady state will therefore be either stable or saddle point stable
(if the signs di�er).

3.3 Second example: a dynamic rent-seeking model

The second example extends the well-known basic model of rent-seeking (or, altern-
atively, wasteful military conflict) to a dynamic setting (Rowley, Tollison and Tullock
2013). Assume we have two agents vying for resources. At every point of time, agent i
has ri(t) units of the resource pool under her control, which she can either invest into
some productive activity or spend on fighting f . Denote the constant rate of return for
peaceful production fl > 1. The pool of resources that is up for grabs at time t is then
fl

q
j(rj ≠ fJ), and we assume that agent i receives a share pi according to the standard

contest success function (Hirshleifer 2001) pi = fiq
j
fj

. The equation of motion for i’s
resources is therefore

ṙi = fiq
j fj

fl
ÿ

j

(rj ≠ fj) ≠ ri (3.5)

In our bounded rationality model, agent i will choose fi in such a way as to maximise
this net gain of resources. The first-order condition for this problem simplifies to:
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3 Di�erential games

fi
ÿ

j

(rj ≠ fj) + (
ÿ

j

(rj ≠ fj) ≠ fi)
ÿ

j

fj = 0 (3.6)

For the remainder of this example, let us focus on the two-agent case. Using (3.6), we
find that both agents aspire to realise f1,2 = 3

8(r1 + r2). We therefore have the following
equations of motion for the controls:

ḟi = –i

33
8(r1 + r2) ≠ fi

4
(3.7)

As the state and control variables di�er in this model, the dynamics of the model come
from a system of four ordinary di�erential equations – (3.5) and (3.7) – , half of which
are non-linear. The nonlinearities lead to the usual kind of problems when attempting
to solve the system explicitly.

In order to solve the equation system for a steady state, observe that we must have
f1, f2 ”= 0 due to (3.5). From (3.7), we conclude that the ris must also be nonzero. We
proceed to proove the nonexistence of a steady state in three steps.

1. Consider a symmetric steady state with f1 = f2 = f > 0. We can then subtract
the two versions of (3.5) to find that r1 = r2 = r. Substitute into (3.7) to find
f = 3

4r. Plugging this into (3.5), we find r(fl ≠ 3
8fl ≠ 1) = 0, which implies that

either r = 0 – which would lead to a contradiction – or fl = 1
1≠3/8 and r free.

2. In any solution, we can add the two equations (3.5) to find, after some rearranging,
that (fl≠1)(r1+r2) = fl(f1+f2). Using (3.7), this in turn implies (fl≠1)(r1+r2) =
fl3

4(r1 + r2) or fl = 4.

3. Finally, our first (symmetric) version is a special case of the second, and so the
second argument must apply to the first case also. However, fl cannot simu-
lataneously be equal to 4 and 1.6. Consequently, not steady state with nonzero
values for ri and fi exists.

Consequently, numerical techniques must be used to explore the properties of this model.
Figure 1 below shows a simulation model of equations (3.5) and (3.7) set up using
Stella.3

It is easy to explore this model and to find that the typical results are not very sensitive
to one’s choice of parameter values. Figure 2 displays agent 2’s fighting e�ort over time

3See https://www.iseesystems.com.
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3 Di�erential games

F1 R1

F2 R2

dF1

dF2

dR1

dR2

Alpha

Rho

fightsum netresource ressum fightsumressum

Figure 1: A Stella simulation of the dynamic rent-seeking model
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4 Conclusion

Typical	simulation	results

Time

0,0

250

500

0 3 6 9 12

f2(t)

Figure 2: Results from a typical run of the simulation model

when we set f1(0) = f2(0) = 100, r1(0) = r2(0) = 1000, fl = 1.1 and –1,2 = 3
4 . We

see that fighting intensifies in the beginning as the parties try to acquire the existing
resources, but then decreases again as resources are depleted. Production fails to keep
up with resource use for fighting, and the typical PD-type ine�ciencies of rent-seeking
models are clearly evident. In our model, all resources will be used up in the end. The
system asymptotically approaches the origin (f1 = f2 = r1 = r2 = 0) without ever
reaching it.

4 Conclusion

The present paper has shown how a boundedly rational heuristic can be used to simplify
di�erential games. The basic assumptions resemble adaptive expectations as they were
used in early dynamic models in the 1950s, and are admittedly rather simple. In contrast
to these older models, they do contain an element of optimisation, and represent may be
considered the “other extreme” when compared to the highly complicated calculations
involved in solving di�erenctial games (if that is at all possible in a technical sense).

I presented to examples spanning the gamut of applications both regarding subject
matter and our ability to solve the resulting system of ODEs. In the macroeconomic
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4 Conclusion

example, a steady states existed and its stability properties were amenable to analytical
scrutiny. In the conflict / micro example, no steady states existed, and so simulation
was used to describe the system’s behaviour over time. However, in both examples we
were able to state analytical equations of motion for the controls, which is more than
can be said of many di�erential games with non-linearities.
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