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Zusammenfassung / Abstract

We review, and extend, one of the classic dynamic models of conflict in economics by Richardson

(1919) and Boulding (1962). It turns out that the stability properties of the model change if one takes

a more realistic “incrementalist” view, and that chance / friction can easily be incorporated into the

standard model by defining a probability of (de-)escalation. An application of the model to GDELT

data on the Ethiopian-Eritreian war (1998-2000) reveals some problems with the psychological inter-

pretation of the Richardson equations.
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1. Introduction

The formal, quantitative analysis of dynamic conflict in economics began in 1916,
when Frederick Lanchester (1956) developed his linear and square laws of attri-
tion. Such models consist of systems of ordinary or partial differential equations
(ODEs/PDEs), whose dynamic behaviour – the conflict dynamics – and stability
properties are analysed by solving the systems analytically or by phase diagramme
techniques. Other examples for such models include the Lotka-Volterra-Goodwin
equations of predator-prey conflict (Goodwin, 1967), the Intriligator-Brito (1986)
model and the Richardson (1919) equations, which were extended in monographs
published poshumously (Richardson 1960a, 1960b) as well as in Boulding (1962).1

The latter model is in the focus of the present analysis, and we will refer to it as
the Boulding-Richardson (or B-R for short) model.

One serious lack of this early group of models is that they are effectively “macro”
ones (even when used to illustrate the behaviour of individual parties to a conflict)
with no microeconomic foundations, i.e. they do not contain explicit optimisation.
It comes as no surprise then that the rise of game theory that began in the 1940s
led to a shift of interest away from the first generation of models and towards
dynamic games and, in particular, differential games (Isaacs, 1954). As far as static
patterns of conflict are concerned, game theory provided a convincing taxonomy
(Rapoport and Guyer, 1966),2 and dynamic game theory yielded deep insight into
such features of conflict dynamics as the initiative, signals, and reputation.

However, a general taxonomy of conflict dynamics proved elusive, and differential
game theory hit a conceptual wall when dealing with the non-linearities that are
pervasive in conflict theory (Beckmann and Reimer, 2014). These problems as well
as improvements in the raw computing power available to scholars led to increased
reliance on simulation methods (Fontana, 2006). And for simulation purposes,
both the aforementioned theoretical limits and the insights of behavioural eco-
nomics recommend some version of boundedly rational optimising. It is in this
context that first-generation models may return as more than just a subject for
the historian of economic thought.

In the present paper, we propose to re-visit the B-R equations and provide some
alternative formulations of the two-party model. We will also discuss the model’s

1Lewis Fry Richardson is little known in economics, and without the work of his fellow Quaker
Boulding his work may not have resounded in our field at all. He is, however, well remembered
for his contributions to other disciplines. On this, see Hunt (1995). In mathematics, Richardson’s
equations are a popular simple model of conflict, which amongst other things is used in the class-
room to explain phase diagramming, see https://www.youtube.com/watch?v=e3FfmXtkppM.
The recent conflict economics text by Anderton and Carter (2009) also has a section on the
Richardson model.

2See also the recent book by Robinson and Goforth (2005).
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application to an empirical example. The ultimate aim of the analysis is to assess
whether the B-R model can be used as a building block for modern conflict simula-
tion, and for a taxonomy of dynamic conflict. En passant, we may also contribute
to the history of economic thought.

The obvious extension to three or more parties, which can also be found in Richard-
son (1960a), is left to subsequent work. To justify this, we can in the first instance
refer to the dominance of the two-party case in much of the economics of conflict.3

However, we also note that the three-plus-case differs from the two-party one in a
very important way, namely that one of the parties can act as an attenuator, trying
to dampen the conflict between the remaining agents (Goldstein and Pevehouse
1997). All in all, we think that this extension had best be treated seperately.

We begin by re-stating the Richardson equations and illustrating the dynamic
properties of the original model (section 2). We find that the standard formulation
is deficient in two respects, one having to do with the psychological predominance
of escalation over the level of aggression, the other dealing with the probabilistic
nature of escalation. These extensions and modifications of the BR-model are
discussed in turn in section 3, noting that the resulting dynamics are both more
stable and more plausible. Section 4 illustrates applicability of the BR model
using GDELT data on the Ethiopian-Eritreian war of 1998-2000, and section 5
concludes.

2. The basic B-R model

Richardson (1916) conceived of his equations as a model of an arms race (see
also Anderton and Carter 2009, pp. 199-202). In Boulding’s (1962) version, the
equations describe the joint dynamics of the aggressiveness (or escalation level) of
two parties to a conflict. This is the story we will adopt here.

Denote by a (b) a measure of party A’s (B’s) aggressiveness towards the other and

assume that without interaction, this reverts over time to a base level â (b̂). This
base level is, however, not the long-term equilibrium because of the interaction
effect: each party’s aggressiveness increases exponentially as a function of the
competitor’s escalation measure. Together with the assumption a, b > 0, this
gives the Richardson equations

(1) ȧ = ka(â− a) + rab

3Two-party interactions are prevalent among the models presented in Hirshleifer (2001) as
well as in the volumes edited by Sandler and Hartley (1995, 2007) or Garfinkle and Skaperdas
(2012).
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(2) ḃ = kb(b̂− b) + rba

where the strictly positive parameters ki and ri represent the parties’ speed of
adjustment to the base level and sensitivity to aggression, respectively.

We can explicitly solve this system of linear ODEs for the time paths a(t), b(t)
of aggressiveness. For example, in the symmetric case where ra = rb = r and
ka = kb = k (assuming r 6= k), we find

(3) a(t) =
k(âk + b̂r)

k2 − r2
+ e−kt(c1 cosh(tr) + c2 sinh(tr))

where c1 and c2 are constants. If we additionally assume that a(0) = b(0) = 0, we
have

(4) a(t) =
e2rt − e(k+r)t

r−k
k
e(k+r)t

â

and likewise for b.

However, the general properties of this model are better studied using phase di-
agramme techniques. Letting ȧ = 0 and ḃ = 0, we obtain the first two isoclines
where the vector field is vertical and horizontal, respectively (written as functions
of a for easier plotting)

(5) b =
ka

ra
(a− â)

(6) b = b̂+
rb

kb
a

Note that both graphs are upward sloping lines in (a, b)-space and that the equation
for ȧ = 0 has a negative intercept on the b axis, while the other cuts the ordinate
at b̂ > 0. This already implies that there are just two possible configurations (see
figure 1). If ka

ra
> rb

kb
, the two lines intersect in the positive orthant (left-hand panel

in figure 1) and there exists a stable stationary equilibrium at

(7) (a∗, b∗) =

(

kb(âka + b̂rb)

kakb − rarb
,
ka(b̂kb + ârb)

kakb − rarb

)
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Otherwise, there is no such intersection and aggressiveness explodes in the positive
orthant (right-hand panel in figure 1). Onserve that a symmetry assumption, i.e.
ra = rb and ka = kb, would generate a borderline case where the graphs of are
parallel. The consequences are much the same as in case 2 above, with an explosion
of aggression in the first orthant.

Figure 1. The two possible scenarios in the B-R model

Formally, note that the Jacobian for the system (1) and (2) is

J =

(

−ka ra
rb −kb

)

with the two eigenvalues λ1,2 = −1
2
(ka + kb ±

√

(ka − kb)2 + 4rarb). As the term
under the square root must be positive given our assumptions, both eigenvalues
are real. The obvious condition for both eigenvalues to be negative is

ka + kb >
√

(ka − kb)2 + 4rarb

Square both sides of this inequality and rearrange to find kakb > rarb, which is
equivalent to the graphical restriction on slopes given earlier as a condition for
stability. If this inequality does not hold, we will have two real eigenvalues with
differing signs, i.e. saddlepoint stability (however, the equilibrium will be in the
negative orthant).

The endless escalation of conflict in this case (2) may appear implausible because
infinite aggression levels are an unwieldy concept. However, in interpreting the B-
R model, one can assume that there exists a threshold level of escalation beyond
which the conflict in question changes its nature (i.e., an open outbreak of military
hostilities). One can also add an additional constraint to the model – for instance,
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a and b could represent the share of two competing news media (total broadcast
time or pages in a magazine) devoted to a particular conflict, or a particular
scandal. The latter modification would give rise to a stable corner solution.

3. Extensions and variations

We now propose two variants of the B-R model, which we explore in turn:

1. a version which incorporates the idea that it may be escalation rather than
the stock of aggressiveness which determines the interaction effect,

2. a model which replaces the deterministic interaction effect with a proba-
bilistic version, taking account of Clausewitzian friction and other sources
of uncertainty.

3.1. An incrementalist B-R model. In our first variation on the B-R theme, we
recognise that it can be the change in enemy aggression levels, i.e. the escalation of
conflict, which drives conflict dynamics. We retain the assumption that aggression
levels will return to base values â, b̂ over time, but replace the stock levels of
aggression with their time derivatives ȧ, ḃ. This leads to the following model:

(8) ȧ = ka(â− a) + raḃ

(9) ḃ = kb(b̂− b) + rbȧ

As was the case for the baseline model, we can solve this system of differential
equations explicitly, obtaining complete time paths for the two variables of interest,
given the parameters and starting values a(0), b(0). Using the symmetric example
from section 2, we find

(10) a(t) =
(

1− e
k(1+r)t)

r2−1

)

a(0)

with an analogous solution for b. Again, however, we find it more instructive to take
a conventional approach using phase diagrammes to illustrate system behaviour
over time for more general parameter values.

Substituting ḃ into the first equation of the model and rearranging, we can express
the change in a and in b as a function of the state variables
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(11) ȧ =
ka(â− a) + rakb(b̂− b)

1− rarb

(12) ḃ =
kb(b̂− b) + rbka(â− a)

1− rarb

Proceeding as before, we obtain the following equations for the loci of ȧ = 0 and
ḃ = 0, respectively.

(13) b =
âka + b̂kbra − kaa

kbra

(14) b =
b̂kb + âkarb − karba

kbra

Solving this simple system yields the stationary point at a∗ = â ∧ b∗ = b̂. This
implies that contrary to the standard B-R model, the stationary point always lies
in the positive orthant.

For a graphical analysis, observe that the slope of the graph for ȧ = 0 is steeper
than the other iff rb < 1. Also note that the denominator in both equations of
motion (11) and (12) becomes negative for rarb > 1. All in all, this leaves us with
four possible dynamic configurations shown in figure 2 below. Case 1 exhibits a
stable stationary state, whereas case 2 is characterised by instability. However,
case 2 differs from the unstable case in the original model in that a corner solution
at the origin is also a possibility. Cases 3 and 4 – where rb > 1 – have saddlepoint
stable equilibria.

Start from equations (11) and (12) to find the Jacobian

J =

(

− ka
1−rarb

− rakb
1−rarb

− rbka
1−rarb

− kb
1−rarb

)

and the two eigenvalues λ1,2 =
ka+kb±

√
(ka−kb)2+4kakbrarb
2rarb−2

. While we can rule out
complex eigenvalues again, the fact that the sign of the denominator reverses at
rarb = 1 now gives rise to a total of four possible configurations, as shown in figure
2 above.
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Figure 2. The four scenarios in the incrementalist BR model

In the original B-R model, it was the relative size of adaptation k and reaction
coefficients r that determined the dynamic pattern of conflict. Now, it is the
absolute value of the reaction coefficients alone that proves crucial. It is sufficient
for convergence to a stable equilibrium at the “normal” aggro level â, b̂ that both
parties do not respond “in kind” to an enemy escalation, but with an r < 1. This
feature of the model appears more plausible than the results we obtained for the
original formulation. In addition, the incrementalist model allows for a “pacifist”
party (with low r) to compensate for the existence of an aggressive opponent in a
very plausible manner.

3.2. Probabilistic interaction. Finally, let us briefly consider how to incorpo-
rate randomness – and Clausewitzian “friction” – into the simple framework. As
a large conflict unfolds, there will be several small interactions during which either
side can either escalate, de-escalate, or ignore the other side’s aggression. Let a’s
probability p of escalation depend on b’s aggro level according to a probability
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function p(b) with p′ > 0 and vice versa. For a large number of such interactions
per unit of time, the BR equations of motion can then be amended by just plug-
ging in the probability functions for rab and rba, respectively. We then obtain the
following system of equations

(15) ȧ = ka(â− a) + sap(b)− sa(1− p(b))

(16) ḃ = kb(b̂− b) + sbp(a)− sb(1− p(a))

where the si represent party i‘s “step size” of (de-)escalation, assumed to be a
constant for simplicity.

We require a specific probability function for plotting or explicit solutions, although
basic phase diagrammes such as the ones in figures 1 and 2 could by derived with
just some assumptions regarding the curvature of p. Borrowing from the literature
on conflict success functions,4 we employ a logistic function

(17) p(a) =
1

1 + eκ(â−a)

where â denotes the reference level of aggression by A (i.e., the level where esca-
lation and de-escalation are just as likely), and the parameter κ determines the
steepness of the probability function.

One important difference from the variants discussed previously is that the isoclines
for ȧ, ḃ = 0 are now non-linear. Also, the fact that the limits of the logistic function
are zero for a, b → −∞ and one for a, b → +∞ together with the structure of the
system imply that there exists a stable intersection in the positive orthant. Figure
3 below illustrates this for the symmetric case.5

4. Empirical illustration

In order to provide an empirical illustration for the suitability (or otherwise) of
the B-R model, two prerequisites need to be met: first, one has to find a well-
documented conflict in history with just two parties to it, and second, the state
variables of the model need to be identified in the appertaining dataset.6

4The classic treatment is the book by Hirshleifer (2001).
5We assume a symmetric solution with the following parameter values: ka = kb = 1

5
, ra =

rb =
1

2
, â = b̂ = 10. The plot was produced using Mathematica.

6We recognise in passing that Richardson (1960b) also played a pioneering role in the system-
atic collection of data about conflicts.
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Figure 3. A stable stationary point in the probabilistic model

Regarding the first issue, we focus on the war between Ethiopia and Eritreia (hos-
tilities lasted from May 1998 to May 2000,7 but our dataset includes the three
years preceding the outbreak of hostilities and following the ceasefire), arguing
that this is indeed a conflict in which external players and mediators did not play
a decisive role.

As to the second, we follow a large strand of the literature using the GDELT8

database of coded discrete event data (see Goldstein and Pevehouse, 1997, 1999).
Our measure of (de-)escalation or the change of aggressiveness is the Goldstein
score (Goldstein 1992), which assigns each conflictary (and cooperative) action
an integer in the interval [−10; 10] indicating the flow impact on relations be-
tween the involved parties. The state variables, therefore, are just the sum of the
(undiscounted) Goldstein scores accumulated over the course of the conflict. One
unfortunate consequence of this is that we need to fix the starting values for the
state variables a(0), b(0) at some arbitrary level – zero in the following illustration.

7See https://en.wikipedia.org/wiki/EritreanEthiopian_War.
8The GDELT Project – Global Database of Events, Language and Tone – http://

gdeltproject.org/.
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Figure 4. Goldstein (1992) scores and “Goldstein levels” for the
Ethiopian-Eritreian conflict, 1995-2002

This being said, figure 4 above plots the four time series – our measures for ȧ, ḃ, a, b
– over time.9

On inspection of figure 4, we observe that the accumulated Goldstein scores re-
mained constant in the years preceding the war and abated in the aftermath of
the ceasefire, we also observe a (not unexpected) steep increase during hostilities.
The change of aggressiveness during the war is dominated by three extreme peaks
corresponding to major campaigns10 and also influenced by the onset of the rain
season, which impeded the movement of motorised troops. It is clear that such
peaks of escalation are incompatible with the B-R model. This bolsters Richard-
son’s original arms race story relative to Boulding’s psychological version, which
might be applied to wartime aggression as well. It is also compatible with the
hypothesis that open hostilities arising whenever the stock of aggression exceeds
an exogenous threshold level in an unstable B-R model.

9The two flow variables are called “golderi” – the sum of the Goldstein indices assigned to
Eritreia’s actions towards Ethiopia on a given day – and “goldeth”, while we refer to the stock
variables as “cumeri” and “cumeth”.

10The Eritrean attack on Badme in May 1998 including the subsequent air war, Ethiopia’s
offensive of February 1999, and the final Ethiopian attack in May 2000 that severed Eritreian
lines of communication and paved the way for the ceasefire.
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Figure 5. Correlograms for our time series of Goldstein scores

Evidence of an additional difference between the shooting war and the period of
time preceding it can be found by looking at the correlograms of the Goldstein
score time series separately for the war and the three years leading up to it (figure
5). Not only does there seem to be more autocorrelation during the war, but
significant lags appear clustered over the first week. This is suggestive of the
effect of military planning leading to continuous activity. During the crisis before
the war, on the other hand, significant lags were not concentrated in the same
manner, and the correlation coefficients do not shrink over time as they do during
the war.

Having observed differences between the wartime and pre-/post-war times series
and recognised that the B-R model appears comparatively less attractive as a
framework for modelling the former, we now proceed to a formal time series anal-
ysis of our data set. Table 1 on page 12 summarises the results. An augmented
Dickey-Fuller test using 21 lags as suggested by the Schwert criterion allows us
to reject the null of a unit root for our time series of Goldstein scores (analysing
the pre-war, wartime and post-war periods separately). Unsurprisingly, this is not
the case for the state variable, i.e. the accumulated scores (see table 1). We use
a Johansen test for cointegration – again with 21 lags – and find that the time
series for the Goldstein scores are clearly cointegrated at all conventional levels
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Table 1. Summary of time series analyses

Type of analysis Time series 1995-1998 1998-2000 2000-2003

Stationarity

goldeth yes∗∗∗ yes∗∗∗ yes∗∗∗

golderi yes∗∗∗ yes∗∗∗ yes∗∗∗

cumeth no no no
cumeri no no no

Cointegration
golderi, goldeth yes∗∗∗ yes∗∗∗ yes∗∗∗

cumeri, cumeth no no yes∗∗∗

Granger causality

golderi ⇒ goldeth yes∗∗∗ yes∗∗∗ yes∗∗∗

goldeth ⇒ golderi yes∗∗∗ yes∗∗∗ yes∗∗∗

cumeth ⇒ golderi yes∗∗∗ yes∗∗∗ yes∗∗∗

cumeri ⇒ goldeth yes∗∗∗ yes∗∗∗ yes∗∗∗

cumeth ⇒ goldeth no no no
cumeri ⇒ golderi no no no

of significance, while no significant evidence of cointegration can be found for the
accumulated scores with the interesting exception of the post-war period.

The most interesting (non-)results can be found in the last two lines of table 1:
a conflict party’s accumulated Goldstein scores do not Granger cause their daily
escalation. Regardless of which variant of B-R model from sections 2 and 3 one
chooses, this effect is a clear implication. We thus conclude that the data on the
conflict at hand are not consistent with the B-R approach.

5. Conclusion

The present paper revisits the B-R model from both an analytical and an empirical
perspective. In so doing, our objective is to see whether this old staple can be
brought back from the world of teaching (where it serves as an example for solving
systems of differential equations) into modern research on conflict dynamics.

In the analytical part, we find that the dynamic properties of the model can be
improved upon by letting a party’s level of aggression depend on the change in
the other party’s aggro level (“escalation”) rather than on the stock variable. We
also note that the probabilistic nature of conflict, which has figured prominently
in the military literature since Clausewitz’ (1873) made friction a core element of
his theory, and which is also reflected by the modern vision of “hybrid” warfare,
can be integrated into the BR model. Such integration can be shown to improve
the stability properties of the BR model.

The negative findings in the empirical section could arise in at least two ways: first,
the Goldstein scores from databases like GDELT may be an inappropriate measure
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of aggressiveness levels and escalation, and second, the B-R model may not fit the
situation at hand. Given the successful empirical work using Goldstein scores (e.g.,
Goldstein and Pevehouse 1999), we tend to favour the latter explanation.

Recall that Richardson (1919, 1960a) explicitly developed his equation to model
arms races. It was Boulding (1962) who added a psychological interpretation,
modelling how one party’s aggression level depends on the perceived aggression by
the other party, and vice versa. Our empirical results cast doubt on this particular
application of the B-R equations. In particular, we raised two objections:

(1) The model does not fit the pattern of escalation and de-escalation in a
shooting war. One problem is that the grouping of actions into (military)
operations and the concomitant constraints – in our example: the Monsoon
– is not captured.

(2) Any “regression to the mean” of the state variable would imply a causal
link between this state and later (de-)escalation, which we fail to find in
our time series of daily sums of Goldstein scores.

This criticism need not impinge on using the B-R model as it was originally de-
signed, or for applications that closely resemble arms races. The treatment of
scandals by the media may serve as an example.
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