
Impedance Measurement of Non-Linear Loads: Test Bench

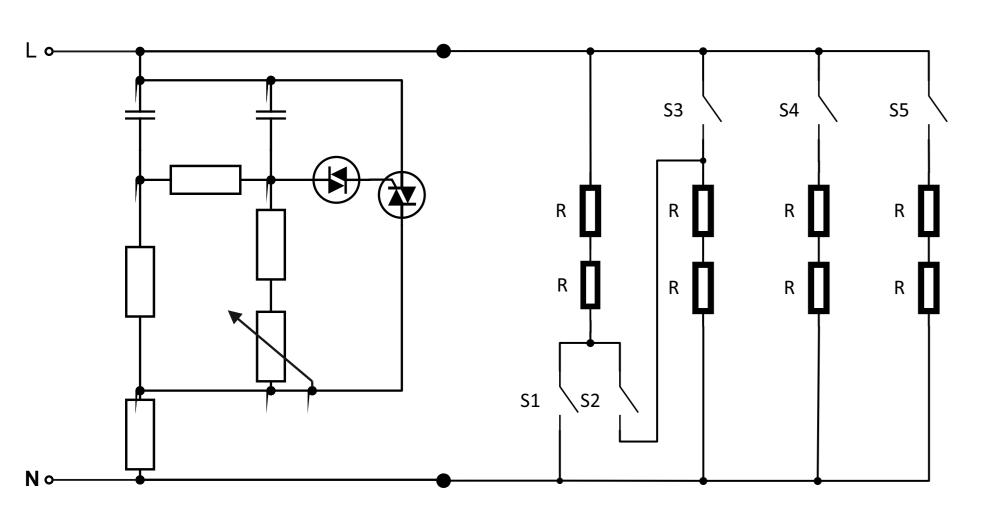
Jonas Josepeit, Johannes Schräder, Patrick Möbius, Detlef Schulz Department of Electrical Power Systems, Helmut Schmidt University/University of the Bundeswehr Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany

Introduction

Broadband Impedance measurement is one significant area of research at the Department of Electrical Power Systems at the Helmut Schmidt University, the method and the devices are patented in [1]. The spectral impedance can be can be utilized to improve the power quality of electrical grids and to optimize the integration of renewable energy sources [2]. Another application is structural health monitoring of a grid, which can be used on large-scale distribution systems as well as on smaller grids such as ship systems. Due to a increasing number of power electronic, grids are getting more and more nonlinear. These nonlinearities affect the measurements [3]. The change

Figure 1 Impedance measurement result of a sub periodic load up to 30 kH [3].

Figure 2 Non-linear load test bench, frontside left, backside right.


of the grid impedance of a nonlinear system during one base period is shown in Fig. 1.

Time- and Frequency-Dependant Impedance Measurement

A given LTI network may be interpreted as a Thevenin equivalent with an inner impedance describing the systems behavior. In order to interpret the broadband characteristics of the grid, it needs to be excited. Therefore, a rPWM method is used. This is executed with a parallel impedance, which is connected and disconnected at random intervals. To interpret the spectrum of voltage and current a FFT is used [4]. Such measurements can be done for one or three phase systems. The devices used can measure the impedance in a frequency range from DC up to 150 kHz [5]. Prototypes are built and used at low- and medium voltage levels. A container-based device for the high voltage level is in development [6]

Non-Linear Load Test Bench

This test bench, as shown in Fig. 2, consists of an adjustable resistive load with forced cooling and a phase control device. The circuit consists of eight resistors with 25 Ω each, these are wired as shown in Fig. 3. This allows a range of load from 12.5 Ω to 100 Ω when connected to a 50 Hz source. The load-network is designed to be operated at 230 V and thus reaches electrical power levels up to 4 kW. The load is depicted via a small TFTscreen connected to an Arduino, which reads out the switch position. The added phase control devise is operational up to 7 kW.

Figure 3 Non-linear load test bench, circuit diagram.

Acknowledgment

I would like to thank my supervisors Johannes Schräder and Patrick Möbius for their continuous support, as well as the professor Detlef Schulz. Furthermore, I am very grateful for the technical expertise of Jirko Tegeler.

Outlook

The test bench will be used in a series of experiments evaluating the impact of subperiodic effects on the impdance measurement by comparing the frequency sweep method [7, 8] and the rPWM method at different power levels.

Silpui

References

- [1] D. Schulz, et. al. "Device for Measuring the Network Impedance of an Electrical Supply Network", german patent, 2010.
- [2] J. Schräder, et. al. "Optimized Grid Connection Assessment of Renewable Energy Systems by Evaluating Harmonic Emissions using Time- and Frequency-Dependent Grid Impedance Measurements" (orig. german). Hamburger Beiträge zum techn. Klimaschutz, Band 3, Hamburg, 2021.
- [3] J. Schräder, et. al. "Load- and Source-Based Impedance Measuring Methods: Comparing Concepts and Structural Limitations in a Laboratory Environment", IEEE NEIS, Hamburg, 2021.
- [4] T. Do, "Measuring Device for Mobile Network Impedance Measurement on the Medium Voltage Level" (orig. german), dissertation, VDE Verlag, Hamburg, 2014.
- [5] morEnergy, https://morenergy.net/produkte/onis, 27th October 2022
- [6] J. Schräder, et. al. "Execution of the High-Voltage Insulation of the 110 kV Impedance Measurement Container" (orig. german), Hamburger Beiträge zum techn. Klimaschutz, Band 4, Hamburg, 2022.
- R. Stiegler "Measurement of Network Harmonic Impedance in Presence [7] of Electronic Equipment", IEEE ISPLC, Aachen, 2015.
- [8] G. Hallak, et. al. "Impedance Measurement of **Electrical Equipment Loads on Power** Line Network", IEEE ISPLC, Aachen, 2017.

Helmut Schmidt University / Universität of the Bundeswehr Hamburg

Chair of Electrical Power Systems

https://www.hsu-hh.de/ees/en/

Electrical Power Systems

HELMUT SCHMIDT

UNIVERSITÄT

Universität der Bundeswehr Hamburg

NASEC 2022 Poster Session