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Control Charts for Time-Dependent Categorical
Processes

Christian H. Weif3

Abstract The monitoring of categorical processes received increasing research in-
terest during the last years, but usually on the premise of the underlying process
being serially independent. We start with a brief survey of approaches for model-
ing and analyzing serially dependent categorical processes. Then we consider two
general strategies for monitoring a categorical process: If the process evolves too
fast to be monitored continuously, then segments are taken in larger intervals and a
corresponding statistic is plotted on a control chart; here, one has to carefully con-
sider the serial dependence within the sample. If a continuous process monitoring is
possible, then the serial dependence between the plotted statistics has to be taken into
account. For both scenarios, we propose appropriate control charts and investigate
their performance through simulations.

Key words: Attributes data; categorical time series; Pearson chart; Gini chart;
CUSUM chart; literature survey.

1 Introduction

Methods of statistical process control (SPC) help to monitor and improve processes
in manufacturing and service industries. For such a process, certain quality charac-
teristics are measured at times € N = {1,2,...} thus leading to a stochastic process
(X;)n of continuous-valued or discrete-valued random variables (variables data or
attributes data, respectively). The most important SPC tool is the control chart,
which requires the relevant quality characteristics to be measured online. Control
charts are applied to a process operating in a stable state (in control), i.e., (X;)n
is assumed to be stationary according to a specified in-control model. As a new
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2 Christian H. Weil3

measurement arrives, this is used to compute a statistic (possibly also incorporating
past values of the quality characteristic) which is then plotted on the chart with its
control limits. If the statistic violates the limits, an alarm signals that the process
may not be stable anymore (out of control) and requires corrective actions. More
details about these terms and concepts can be found in the textbook by Montgomery
(2009) or in the survey papers by Woodall (2000), Woodall & Montgomery (2014).

In this article, we shall be concerned with a particular type of attributes data
processes (X;)n: the range of X, is assumed to be of categorical nature. So X; has
a discrete and non-metric range consisting of a finite number m + 1 of categories
with m € N (state space). In some applications, the range exhibits at least a natural
ordering; it is then referred to as an ordinal range. In other cases, not even such
an inherent order exists (nominal range). Here, we shall consider this latter, most
general case, i.e., even if there would be some ordering, we would not make use
of it but assume that each random variable X; takes one of a finite number of
unordered categories. To simplify notations, it is assumed that the range of (X, )y is
coded as S = {0,...,m}. But as emphasized before, this does nor imply that there is
any natural order between the states in S, except a lexicographic order. In view of
quality-related applications, X, often describes the result of an inspection of an item,
which either leads to classification X, =i for ani = 1, ..., m iff the /™ item was non-
conforming of type ‘i’, or X; = 0 for a conforming item. In the example described by
Mukhopadhyay (2008), a non-conforming ceiling fan cover is classified according to
the most predominant type of paint defect, e.g., ‘poor covering’ or ‘bubbles’, while
Ye et al. (2002) reports about the monitoring of network traffic data with different
types of audit events.

Since a few years, there seems to be increasing research interest in the monitoring
of categorical processes, which manifests itself in some recent articles like Chen et
al. (2011) (traditional y>-chart, see Section 3 below, but with additional inspection
error), or Ryan et al. (2011), Weif3 (2012) (charts for continuous process monitoring,
see Section 4 below); further references can be found in Woodall (1997), Topali-
dou & Psarakis (2009). But when looking for existing literature, it is important to
precisely define the kind of data one is concerned with. In this article, we do not
only concentrate on unordered categories, but also on mutually exclusive ones (i.e.,
different categories cannot appear together). This is in contrast to the recent articles
by Li et al. (2012), Yashchin (2012), which are “multivariate” in a sense by con-
sidering “multi-attribute processes”. Finally, we restrict to statistical methods, while
part of the literature is about methods based on fuzzy theory instead (Woodall, 1997,
Topalidou & Psarakis, 2009).

Although more and more articles deal with categorical attributes data processes,
there is one important restriction with all these works: the underlying process is
assumed to be serially independent in its in-control state, i.e., X, X»,... are inde-
pendent and identically distributed (i.i.d.). Probably the main reason why researchers
and practitioners are often ill at ease when being concerned with time-dependent
categorical data is that concepts for expressing categorical forms of serial depen-
dence are not well communicated yet, and also simple stochastic models for such
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processes, i.e., which are of a simplicity being comparable to that of the well-known
autoregressive moving average (ARMA) models for autocorrelated variables data
processes, are not known to a broader audience. Therefore, we start in Section 2
with a brief survey of approaches for modeling and analyzing categorical processes.
Then we consider two general strategies for monitoring a categorical process: If
the process evolves too fast to be monitored continuously, one may take segments
from the process at selected times. Then a statistic is computed from the resulting
sample and plotted on a control chart, see Section 3. Here, it is important to carefully
consider the serial dependence within the sample. In other cases, it is possible to
continuously monitor the process, but then the serial dependence has to be taken into
account between the plotted statistics, see Section 4. For any of these two scenarios,
we propose appropriate control charts and investigate their performance through
simulations. Finally, we outline possible directions for future research in Section 4.

2 Modeling and Analyzing Categorical Processes

If being concerned with stationary real-valued time series, then a huge toolbox for
analyzing and modeling such time series is readily available and well-known to a
broad audience. To highlight a few basic approaches, the time series is visualized
by simply plotting the observed values against time, marginal properties such as
location and dispersion may be measured in terms of mean and variance, and serial
dependence is commonly quantified in terms of autocorrelation. Depending on the
observed dependence structure, a model of the ARMA family itself might turn out to
be appropriate, or one of its enumerable extensions, see the recent survey by Holan
et al. (2010) or any textbook about time series analysis.

Things change if the available time series is categorical. In the ordinal case, a
time series plot is still feasible by arranging the possible outcomes in their natural
ordering along the Y axis, and location could be measured at least by the median.
In the purely nominal case as considered in this article, not even these basic analytic
tools are applicable. Therefore, tailor-made solutions are required when analyzing
a (stationary) categorical process (X;)z with range S = {0,...,m}, m > 1. In the
sequel, we denote the time-invariant marginal probabilities by 7 := (7, ...,7Tm) "
with 1; := P(X, =i) € (0;1) and 7o = 1 — 7y — ... — ;. As their sample counterpart,
we consider the vector & of relative frequencies computed from Xy, ..., X7.

Although there are a few proposals for a visual analysis of a categorical time
series (Weil}, 2008), a reasonable substitute of the simple time series plot is still
missing. But a number of non-visual tools are available. Concerning location, the
(empirical) mode seems to be the only established solution. Categorical dispersion
measures compare the actual marginal distribution with the two possible extremes
of a one-point distribution (no dispersion; maximal concentration) and a uniform
distribution (maximal dispersion; no concentration). Several measures have been
proposed for this purpose, see the survey in Appendix A of Weill & G&b (2008). In
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the author’s opinion, the (empirical) Gini index,

VG = %$(1—zﬁﬂ¢p and ¥ = 2L (1- ﬁﬂﬁp, (D)
is the most preferable dispersion measure, not only because of its simplicity, but
also because of attractive stochastic properties of the empirical Gini index Vg (like
unbiasedness in the i.i.d. case; see Section 3 in Weil} (2013a) for a detailed discus-
sion). The theoretical Gini index v has range [0; 1], where increasing values indicate
increasing dispersion, with the extremes vg = 0 iff X, has a one-point distribution,
and vg = 1 iff X; has a uniform distribution.

Since autocorrelation is not defined in the categorical case, several alternative
measures of serial dependence have been proposed, see the references in Weill & Gob
(2008), Weif3 (2013a). These measures usually rely on lagged bivariate probabilites,
pij(k):= P(X; =i, X;_i = j), with the empirical counterpart ;; (k) being the relative
frequency of (i, j) within the pairs (Xg+1, X1), - .., (X7, X7-1). Again, there seems to
be a preferable solution, namely (empirical) Cohen’s k

o (pji (k) —m?) 1 Xm (b (k) —#2)
K(k) — j=0 J.]m - J and k(k) - j=0 ]]m - j . (2)
1- o7 T I—ijonj
07

The range of (k) is given by [—

Y ; 1], where O corresponds to serial
independence. So it includes both positive and negative values in analogy to the
range of the autocorrelation function. In fact, Weill & Go6b (2008) argued that x (k)
is a measure of signed serial dependence: While we have perfect (unsigned) serial
dependence at lag k € N iff for any j, the conditional distribution p.|;(k) is a one-
point distribution, we have perfect positive (negative) dependence iff all p;); (k) =1
(all p;ji (k) = 0). So like positive autocorrelation implies that large values tend to be
followed by large values, for instance, positive dependence implies that the process
tends to stay in the state it has reached (and vice versa). Besides this analogy
to the autocorrelation function, again the empirical version, kK(k), has attractive
properties (also see below). Among others, it is nearly unbiased in the i.i.d. case,
and its distribution is well approximated by the normal distribution N(0, %) with
To?=1-(1+237, Jrj3. =33, )/ (1-20, 7r]2.)2, which, in turn, allows to test
for significant serial dependence in a categorical time series (Weil3, 2011).

Next, we turn to the question of how to model a categorical process. Perhaps the
most obvious approach is to use a Markov model. (X;)z is said to be a p™ order
Markov process with p € N if for all # and for each x; € S, we have

PX:=x: | Xio1 = x-15...) = P(Xy =% | Xem1 = X415 -7Xt—p = xt—p)- €))

The special case p =1 (“memory of length 1”) is usually referred to as a Markov
chain, with its stochastic properties being solely determined by the (1-step) transition
probabilities p;|; = P(X; =i | X;—1 = j) or the corresponding transition matrix P =
(pi|j)i,j> respectively (Feller, 1968, Chapter XV). General p™ order Markov processes
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(i.e., where the conditional probabilities are not further restricted by parametric
assumptions), however, have the practical disadvantage of a huge number of model
parameters, (m + 1)P - m. For this reason, more parsimonious models for categorical
processes have been proposed in the literature, e.g., the variable length Markov
model by Biihlmann & Wyner (1999) or the mixture transition distribution model
by Raftery (1985).

An even more parsimonious model class, which also allows for non-Markovian
forms of serial dependence, are the new discrete ARMA (NDARMA) models by
Jacobs & Lewis (1983)1, which are motivated by the standard ARMA models for
real-valued processes. As shown in Weifl & Gob (2008), the NDARMA process
(X;)z can be defined as follows:

Let (€;)z be i.i.d. with marginal distribution & and, independently, let

Dl‘ = (at,b . '5at,p’ ﬁt,()s . 'sﬁl‘,q)

be a (p+q+ 1)-dimensional vector, where exactly one of the components takes the
value 1 (either an «;; with probability ¢; or a ; ; with probability ¢;; ¢1+...+¢q =
1) and all others are equal to 0. Both €, and D, are assumed to be independent of
(X5)s<t- Then (X;)z defined by the random mixture

Xt = a/t’l-X,_1+...+a,,p-X,_p + ﬁt,0'6t+-~'+ﬁt,q'6t—q (4)

is said to be an NDARMA process of order (p,q).

Although written down in an ARMA-like manner, recursion (4) states that X;
chooses either one of X;_,.. »Xt—p OF €1y, €. Therefore, this approach is ap-
plicable to categorical processes. In fact, it can be applied to any kind of processes,
but already for ordinal data, the selection mechanism would not be very plausible
anymore because it is not able to deal with an order between the possible outcomes.
If q > 0, then (X} )z is not Markovian, while the model order (p,0) leads to a special
type of p™ order Markov process, the DAR process of order p. In the latter case, the
transition probabilities are given by

P(Xl = X0 | Xl*] =X1,. -~7Xt7p = xp) = 9007Tx0 +Z£":l 5x0,xr¢r, (5)

where 6,5 denotes the Kronecker delta. Generally, the NDARMA process is sta-
tionary with marginal distribution 7, and if serial dependence is measured in terms
of Cohen’s «, then (k) satisfies a set of Yule-Walker-type equations in analogy to
the standard ARMA case (Wei3 & Gob, 2008):

k(k) = 3P ¢ k(lk=j)) + 550 grkrG)  fork 21, ©)

where the (i) are determined by (i) = 0 for i <0, r(0) = ¢¢, and

}"(l) = Zj;lnax{o,i—p} ¢i—j'r(j) + Z?’:O (Si’j'gaj fori > 0.

! The ARMA model discussed by Biswas & Song (2009) is equivalent to the NDARMA model.
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This implies to use the empirical version, K(k), not only for uncovering significant
serial dependence, but also for identifying the model order of an NDARMA process
and for estimating the model parameters in analogy to the method of moments. The
empirical analyses in Weifl (2013a), Maiti & Biswas (2015) showed that £(k) is
often better suited for this purpose than alternative measures of serial dependence.

3 Sample-based Monitoring of Categorical Processes

From now on, we turn to the question of monitoring a categorical process. If the
process (X;)n cannot be monitored continuously, then (non-overlapping) segments
from the process (of a certain length n > 1, taken at times #1,7, ... with fx —tx_1 > n
sufficiently large) are analyzed and evaluated.

3.1 Sample-based Monitoring: Binary Case

In the special case of a binary process with range {0, 1}, one commonly determines
either the sample sum N = X;, +...+ X;, 1,1 (e.g., count of non-conforming
items) or the corresponding sample fraction of ‘1’s. Then this count or fraction is
either plotted directly on a Shewhart-type chart (np chart or p chart, respectively,
see Montgomery (2009)), or this quantity is used for an advanced control scheme
like an exponentially weighted moving average (EWMA) chart or cumulative sum
(CUSUM) chart, see Gan (1990, 1993) for instance.

Concerning the distribution of the sample count (the sample fraction differs from
the count only by the factor 1/n), the serial dependence structure of the underlying
binary process (X; ) is important. If (X, )y isi.i.d. with P(X; =1)=7m €(0;1) (e.g.,
probability for a non-conforming item), then each sample sum Ny = X, +...+
Xi, +n—1 is binomially distributed according to Bin(n,n), and the statistics (N "Ny
constitute themselves an i.i.d. process of binomial counts. But if (X, )y exhibits serial
dependence, in contrast, the distribution of N ™ will deviate from a binomial one.

In Deligonul & Mergen (1987), Bhat & Lal (1990), Weif3 (2009), the case of (X )
being a binary Markov chain with success probability 7 € (0; 1) and autocorrelation
- l-n

parameter p € (max{m, —T}; 1) is considered, i.e., with transition matrix

P (Polopoll) _ ((1—n><1—p>+p(1—n)(1—p> o

P Piii n(1-p) n(l-p)+p |’

In this case, Ny™ = X, +...+ X, +n—1 follows the so-called Markov binomial
distribution MB(n, r, p) (which coincides with Bin(n, ) iff p = 0). While the mean
of N;™ is not affected by the serial dependence, especially the variance changes
(extra-binomial variation if p > 0):
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. . I 2p(1=pt
E[N™] = nzr,  VIN™] = nﬂ(l—ﬂ)li—z (1— :((1_;)))

~1 for large n

s

these and further well-known properties of the MB-distribution are summarized in
Table II in Weil3 (2009). If the time distance #x —#;_; between successive segments
from (X;)y is sufficiently large, the resulting process of counts (Nx ™)y can still
be assumend to be approximately i.i.d. (note that the correlation p!"~! between
X, and X, decays exponentially), but with a marginal distribution being different
from a binomial one. This difference in the distribution of N; " certainly has to be
considered very carefully when designing a corresponding control chart (see Weil3
(2009) for the case of an np or EWMA chart). An alternative approach was recently
proposed by Adnaik et al. (2015), who do not use the sample sums N; ™ as the
chart’s statistics, but compute a likelihood ratio statistic for each segment.

3.2 Sample-based Monitoring: i.i.d. Case

Let us return to the truly categorical case, i.e., where the range of (X;)n consists
of more than two states, S = {0,...,m} with m > 1, and has time-invariant marginal
probabilities & := (7g,...,7,) ", see Section 2 before. If the number of different
states, m + 1, is small, it would be feasible to monitor the process by m simultaneous
binary charts, e.g., by using the p-tree method described in Duran & Albin (2009).
But here, we shall concentrate on such charting procedures, where the information
about the process is comprised in a univariate statistic: After having taken a sample
or segment from the process, we first compute the resulting frequency distribution
as a summary, which then serves as the base for deriving the statistic to be plotted
on the control chart. To keep it consistent with the binary case from before, we
concentrate on absolute frequencies: N = (Nk;o(”),...,Nk;m(”))T with Nk;,-(")
being the absolute frequency of the state ‘i’ in the sample X,,..., X +n-1 such
that Ni.o"™ + ...+ Ni.,n ™ = n. If the underlying categorical process (X, )y is even
serially independent (so altogether i.i.d.), then the distribution of each N is a
multinomial one.

Remark I (Multinomial distribution). The multinomial distribution is defined by
summing up n independent copies of a binary random vector Y, where exactly one
of the components takes the value 1, all others are equal to 0. So the possible range
of Y consists of the unit vectors e, . ..,e, € {0,1}"*!, where ej = (ej0,.. .,e]-,m)T
is defined by e;; = 0;,; (e; has a one in its jth component) for j =0,...,m, and
P(Y = ej) = n; is assumed. Then N := 3.7 | ¥; ~MULT(n; no,...,7y) has the
range {n € {0,...,n}"*! | ng+...+n,, = n}, and its probability mass function (PMF)
is given by

no

P(N =n) = Binomnny,...,ny-7," "

m

The covariance matrix equals
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n-X, where X =(0y;) isgivenbyo;; = {ﬂilﬂ_m) 12;;’
—nimj )

Each component N; of N is binomially distributed according to Bin(n, 7).

The importance of the multinomial distribution fori.i.d. categorical samples arises
from the fact that the binary random vector Y can be understood as a binarization of
a categorical random variable X, by defining ¥ = e; if X = j. Then N represents the
realized absolute frequencies of n independent replications of X.

So according to Remark 1, the categorical process (X;)ny might be represented
equivalently by the process (Y,)y of its binarizations, and hence N™ =Y, ™ +
oo+ Y, 1,1™ in analogy to the above binary situation.

Using that N is multinomially distributed if (X, )y is i.i.d., Duncan (1950),
Marcucci (1985), Nelson (1987), Mukhopadhyay (2008) proposed to plot Pearson’s
Xz-statistic on a control chart,

m 2
(Ni.;—nmo. ;)
C(n) = E #, 8
k nmo,j ®)

j=0
where g := (0.0, . .., T0:m) " refers to the in-control values of the categorical prob-
abilities. So in the in-control case, the process (Cy )y is i.i.d. with a marginal
distribution that might be approximated by a x2,-distribution (Horn, 1977). This ap-
proximate distribution may be used for chart design, i.e., for finding an appropriate
upper control limit uc.

As an alternative, Weils (2012) proposed to use a control statistic based on a cate-
gorical dispersion measure such as the Gini index (1). This suggestion is motivated by
the fact that for most production processes, the probability of a unit being conform-
ing, say mo.o, is much larger than any defect probability, i.e., .o > mo.1, ..., T0:m
and thus we have low categorical dispersion. A relevant out-of-control scenario, in
turn, will be one where my gets reduced, while ny,..., 7, are increased (leading to
increased categorical dispersion). Therefore, an upper-sided Gini chart is reasonable
for quality-related applications. If (X; )y isi.i.d., following the in-control model, then

-2 ym 2
G = 1-n =0 Nk;j )
k 1=3ym 71.2 )
j=070;j

m 71.3 _
j=070:j
(XL né_}.)z)/(l -2k ﬂ%_j)z, see Weil (2011), which can be used to determine an
appropiate upper limit ug.

. . e . . 4
is approximately normally distributed with mean 1—1/n and variance , (%

Remark 2 (Ordinal Data). As already briefly pointed out in Section 1, in some appli-
cations, the possible categories might exhibit an inherent order, i.e., the categorical
data are indeed ordinal data. All control charts discussed in this article could be
applied to such ordinal data, too. In fact, such an example is given by Marcucci
(1985), where the above )(z—chart (designed for nominal data) is applied to ordinal
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data from a brick manufacturing process. However, the ordinal nature of the data is
completely ignored by such a monitoring approach.

There are a few proposals for sample-based control charts, which make use of
the inherent order in the range of an i.i.d. ordinal process. Tucker et al. (2002)
assume a latent variable Z, with a continuous distribution behind each ordinal
observation X;, e.g., following a normal distribution. The real axis is partitioned
into m + 1 intervals, and if (the unobservable) Z, falls into the jth interval, then X;
takes the category j. To obtain a control statistic from the k™ sample, the maximum
likelihood estimate (MLE) of the location parameter of Z;’s distribution is computed,
and the standardized MLE is then plotted on a control chart.

Another approach is used by Cozzucoli (2009), who picks up the idea of a demerits
control chart (Jones et al., 1999). Each category is assigned a weight, which reflects
the severeness of the respective type of quality defect (and which accounts for the
ordinality of the range in this way). Using these weights, the control statistic for the
k™ sample is defined as a weighted sum of the observed defect proportions.

We conclude this section by pointing out the relationship between the sample
frequencies and so-called compositional data.

Remark 3 (Compositional data). If the number n of replications becomes very large,
say n — oo, then the vector of random proportions becomes a continuous random
vector with the (m + 1)-part unit simplex as its range,

S™ = (x e (0™ | xo+ ...+ x, = 1),

The corresponding data, which express the “proportions of some whole” (Aitchison,
1986, p. 1), are referred to as compositional data (CoDa). Excellent books about
this topic are the ones by Aitchison (1986), Pawlowsky-Glahn & Buccianti (2011).
Approaches for monitoring i.i.d. compositional data have been investigated by Boyles
(1997), Vives-Mestres et al. (2014a,b).

3.3 Sample-based Monitoring of Serially Dependent Categorical
Processes

From now on, we allow (X;)n to be serially dependent. Then, in general, the dis-
tribution of N;™ will not be multinomial anymore, and consequently, also the
distributions of Cx ™ and G " will deviate from the ones given above for the i.i.d.
case. As argued in WeiB (2012), especially C; " is extremely sensitive with re-
spect to serial dependence. This is also illustrated by the asymptotic results in Weil3
(2013a), which refer to the case of an underlying NDARMA process (see (4) before).
If we define the model-dependent constant (remember the Yule-Walker equations
(6) for Cohen’s « (2))

c = 1+2-32 k(i) < oo (¢ =1 in the i.i.d. case),
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then C ™ /c is approximately y2-distributed, and the distribution of G, is still
approximately normal, but with the mean being deflated by the factor (n—c)/(n—1)
and the variance being inflated by the factor ¢ (Weil3, 2013a).

For illustration, we discuss the example of an underlying DAR(1) process (as an
instance of a Markov chain) in more detail. To keep the notation consistent with the
above binary Markov chain, we denote p := ¢y, i.e., the transition matrix of (X, )y is
given by

no(l—=p)+pmo(l=p) -+ mo(l—p)
1- 1- :
Tm(1=p)  m7n(1—p) - mu(1-p)+p

and we have ¢ = (1+ p)/(1 - p) since (i) = p’ according to (6). The distribution
of N ™ is called the Markov multinomial distribution by Wang & Yang (1995), say
MM(n; m,...,Tm; p). A closed-form formula for the joint probability generating
function of N ™ is provided by Wang & Yang (1995). An asymptotic approximation
of the distribution is derived in Weif3 (2013a), a normal distribution with mean vector
nzm and covariance matrix c¢ - X, where X is given as in Remark 1. So compared to
the multinomial distribution (case p = 0), the (asymptotic) covariance matrix of
MM (n; 7, ..., Ttm; p) is inflated by the factor c. Note that the j™ component N ;™
follows the MB(n, 7, p) distribution, since for this particular type of Markov chain,
also each component of the binarization (Y, )y is itself a binary Markov chain.

Remark 4 (Multinomial CUSUM Chart). Besides plotting the statistics Cy " or G ™"
on a Shewhart-type control chart, one may also consider a type of CUSUM control
chart (Page, 1954) as an alternative. Generally, such CUSUM charts are known to be
more sensitive to small changes in the process, since they accumulate information
about the process’ past in contrast to the memoryless Shewhart charts. Picking up a
proposal by Steiner et al. (1996), Ryan et al. (2011) defined a multinomial CUSUM
chart based on the log-likelihood ratio of the process (V, ™) en (such an approach
was also considered by Hohle (2010) in the context of a categorical logit model). Due
to (N ™)y being i.i.d., the contribution to the log-likelihood ratio by the k™ sample
simply equals Ly = In (Pg, (Nx™)/Pry (N ™)), where mr; expresses a likely out-
of-control scenario that is to be detected. Furthermore, since (X, )y is i.i.d., Nx " is
multinomially distributed (Remark 1), so the expression for L, simplifies to

m
_ Z (n) 1. TLj
Lk = Nk;j In _71'0- ~
=0 5

Now the CUSUM statistics are defined in the usual way as Sy = max {0, Sxk—1 + Lg}.

The CUSUM statistics are easily computed in the above i.i.d. situation, and as
shown by Ryan et al. (2011), the CUSUM chart quickly detects an out-of-control
situation provided that this situation is in the direction anticipated by ;. Things
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change, however, if the underlying process (X; )y becomes serially dependent. As we
have seen before, a closed-form formula for the PMF of Ny " is not yet known even in
the case of the rather simple Markov dependence. As a consequence, the computation
of the CUSUM statistics becomes difficult. An exception is the boundary case n = 1
(continuous process monitoring, see Section 4 below); a feasible CUSUM chart for
the case n > 1 (truly sample-based monitoring) appears to be a relevant issue for
future research.

3.4 Sample-based Monitoring: ARL Performance

Design and performance of the Pearson chart (8) with upper limit uc as well as of the
Gini chart (9) with upper limit u; are investigated through simulations. As some rel-
evant in-control scenarios, we choose marginal distributions that have already been
analyzed in the literature, namely g = (0.54,0.25,0.12,0.09) " (Duncan, 1950), 7o =
(0.65,0.24,0.07,0.04)7,(0.83,0.104,0.04,0.026) ", (0.99,0.005,0.004,0.001) T (Coz-
zucoli, 2009), and 7o = (0.769,0.081,0.059,0.022,0.023,0.022,0.025) " (Mukhopad-
hyay, 2008), with dispersion vg ~ 0.831, 0.685, 0.397, 0.026 and 0.463, respectively.
For these marginals, we consider both the i.i.d. case (p = 0) as well as DAR(1) depen-
dence with parameter value p > 0. While the serial dependence within the samples
Xii» -+ X1 +n-1 being used for computing C ™ and G ™, respectively, is explicitly
considered, we assume that the resulting processes (Cx ™)y and (G ")y are i.i.d.
(since the time distance f; —f;_ between successive samples is sufficiently large).
So as for any Shewhart chart, we can define uc and ug as appropriate quantiles
from the in-control distributions of C; " and G ", respectively. Since the ARL is
computed as

1 1

ARL = — d ARL = —
= oG sue ) = G > wg)

respectively, we always determine the (1 —1/ARLg)-quantile for a specified in-
control level ARLy. Here, we choose ARL € {100,200,370,500}, and the sample
size as n € {50,100, 150,200, 250}.

Remark 5 (ARL vs. ATS). An ARL-based chart design has to be treated with some
caution. If we have fixed sampling intervals ¢ty —tx_1 = K >n,say tx :==k-K—n+1,
for instance, and if the chart triggers its first alarm after plotting the r® sample
statistic (corresponds to run length r), then the number of manufactured items until
this alarm is much larger, given by r - K. Therefore, it would be preferable to look
at the average time to signal (ATS) instead, where “time” refers to the original
process (X; ), not to the number of plotted statistics. In the given example, we have
ATS = K - ARL. But for the sake of simplicity, we shall continue the simulation study
by considering the ARL performance of the control charts.
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The main focus of our investigations is on finding an appropriate in-control design.
For this purpose, 1 million i.i.d. samples N are simulated for each situation,
and C; " and G, "V are always computed. Then we determine

e the true ARL if deriving uc,uc from the asymptotic approximations, and
e the true limits uc,us as the (empirical) (1 —1/ARLy)-quantiles.

The complete tables of control limits and ARLs are available from the author upon
request; here, we just summarize and illustrate the main findings. First of all, in
nearly any case, the asymptotic approximation of uc or ug is rather bad, so these
approximations can only be recommended as a starting value when searching for
the true value. For the Pearson chart (8), the asymptotic limits are always too small
(hence, also the true in-control ARL becomes too small), and the difference becomes
worse with decreasing n, with decreasing dispersion in g, and with increasing p. For
the Gini chart (9), in contrast, except for situation o = (0.99,0.005,0.004,0.001) ",
the asympotic limits are always too large, and now worse with increasing dispersion
in y. As an example,

o = (0.83,0.104,0.04,0.026)7, n = 150, ARLq = 370,
P |ARLC;as UC;as uC|ARLG;as UG;as UG
0 221.1 14.154 15.554| 476.4 1.4250 1.4147
0.25 128.4 23.590 30.512| 467.5 1.5462 1.5317
0.5 84.042.462 63.989| 605.3 1.7277 1.6933
0.75 50.9 99.079 189.423| 1508.3 2.0955 1.9677

In the case of distribution 7y = (0.99,0.005,0.004,0.001) T with its extremely low
degree of dispersion, we have ug.as < ug.

Next, we analyze the effect of serial dependence in more detail. The above table
already indicates that the actual dependence level p has to be considered when
designing the control chart (widened limits for increasing p). In fact, if we just take
the i.i.d. design (p = 0) but apply it to a DAR(1) process with p > 0, the resulting
ARL is severely affected. Already values of p being only slightly above O lead to
an enormous decrease in the ARL, independent of the marginal distribution 7y and
of the sample size n, but even more severely for the Pearson chart (8) than for the
Gini chart (9). This is illustrated by Figure 1, which shows the ARL against p in
the situation 7o = (0.769,0.081,0.059,0.022,0.023,0.022,0.025) " (Mukhopadhyay,
2008) with n = 150. On the other hand, this implies that especially the Pearson chart
might be used for uncovering increases in p.

Even if the chart design is chosen appropriately with respect to the serial depen-
dence level p, we usually will observe an effect on the out-of-control performance. As
an example, assume that the probability 7y of having no defect is shifted downwards
by a certain relative amount, i.e., 1.0 = (1 —shift) 7p.0, and all other probabilities

. . 1-shift-7o.o
are increased in equal measure, .k =

g T0:k- Independent of the marginal
distribution g, it can be observed that the out-of-control performance becomes
worse for increasing p. As an illustration, Figure 2 shows some ARL graphs for the

marginal distribution ¢ = (0.769,0.081,0.059,0.022,0.023,0.022,0.025)", where
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o
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Fig. 1: ARL performance of Pearson (up = 22.41094) and Gini chart (ug =
1.327252), n = 150, mg = (0.769,0.081,0.059,0.022,0.023,0.022,0.025) 7.

o o
g 7. Pearson: g . Gini:
o ‘5. e 0 o 0 p:O
8 7 - e 0.25 S o p=0.25
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Fig. 2: ARL performance of Pearson and Gini chart (ARLy = 370) concerning 7ry.0 =
(1 = shift) 7,0, n = 150, 7y = (0.769,0.081,0.059,0.022,0.023,0.022,0.025) ".

all charts are designed to give roughly the same in-control ARL. For this particular
out-of-control scenario, the Gini chart is preferable, which is reasonable since the
dispersion strongly increases with increasing shift size. In some other scenarios,
e.g., ifmy.p =mo.x fork=1,...,m—1and ., = Mo, m + mo.0 — 71:0 as suggested by
Cozzucoli (2009), the Pearson chart is superior (at least for larger shift amounts),
but again with a worse performance for increasing p.

4 Continuous Monitoring of Categorical Processes

In this section, we consider the case of a continuous monitoring of the categorical
process (X;)n, i.e., as a new categorical observation X; arrives, the next statistic is
computed and plotted on the control chart.
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4.1 Continuous Monitoring: Binary Case

Again, we start by looking at the binary case first. Perhaps the most well-known
approach for (quasi) continuously monitoring a binary process is by plotting run
lengths on the chart, i.e., the number of ‘0’s between two successive ‘1’s (Bourke,
1991, Xie et al., 2000). This is a reasonable approach especially for high-quality
processes, where m = P(X; = 1) is very small. If ‘1’s are observed more frequently,
and hence the usual runs become quite short, one may modify the definition of a
run, e.g., by waiting until the rih occurrence of a ‘1’ (Bourke, 1991) or until the
occurrence of a segment of ‘1’s (Weil}, 2013b). Bourke (1991) also proposed a
CUSUM procedure to monitor the run lengths in (X;)n. This geometric CUSUM
control chart is essentially equivalent to the Bernoulli CUSUM control chart of
Reynolds & Stoumbos (1999) and shall be discussed in some more detail below.
Generally, while it is quite natural to check for runs in a binary process, it is more
difficult to define a run for the truly categorical case in a reasonable way. One possible
solution was discussed in Weil3 (2012), but as pointed out there, also waiting times
for different types of patterns might be relevant. Because of this ambiguity, we shall
not further consider the monitoring of runs in a categorical process here.

Another approach for continuously monitoring a binary process would be the
EWMA chart (Roberts, 1959), which was applied to binary processes by, among
others, Yeh et al. (2008), Weill & Atzmiiller (2010). In view of generalizing to the
truly categorical case and of incorporating serial dependence, however, it appears
that again the CUSUM approach is more feasible (an EWMA-based categorical
approach is discussed by Ye et al. (2002)). A CUSUM chart for an i.i.d. binary
process (X;)n was first proposed by Reynolds & Stoumbos (1999), and it was
extendend to the case of a binary Markov chain as in (7) by Mousavi & Reynolds
(2009). Here, the idea is as sketched in Remark 4: the contribution to the log-
likelihood ratio by the ™ observation equals L; = In (Pr, (X;)/Pr,(X;)) (i.i.d. case)
or Ly = In (Pr, (X¢|X-1)/Pry(X¢1X;-1)) (Markov case), respectively, which is then
used to compute the " CUSUM statistic. Again, 7| refers to the relevant out-of-
control parameter value of &, while 7 represents the in-control value.

4.2 Continuous Monitoring: Categorical Case

At this point, let us return to the truly categorical case, where (X;)y has range
S =1{0,...,m} with an m > 1. The true marginal probabilities are denoted again
by 7 := (my,...,mm) ", with ( representing the corresponding in-control value. For
defining a CUSUM monitoring scheme, we also have to consider a relevant out-of-
control value, say 7. Such a CUSUM scheme, assuming that the underlying process
is i.i.d., was proposed by Ryan et al. (2011) (also see the discussion in Remark 4
before). If L; = In (Px, (X;)/Pr,(X;)), then the CUSUM statistic at time ¢ is

S; = max{0, S;_1 +L;}, where Sy :=0. (11)
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Note that Pr (X, = i) just equals 7r;, so we can denote Pr(X;) = mx,, and hence
L; = In(ny.x, /70, x, ). An alarm is triggered once S; violates the upper control limit
h > 0 for the first time.

In analogy to Mousavi & Reynolds (2009), we can extend this categorical CUSUM
approach to any kind of Markov-dependent categorical process by defining

L. = (P:rl(Xt|X[],...,ti))
! Py‘r()(Xt|Xt—],...,Xt_p) ’

For illustration, to keep it simple, we shall focus again on the special case of an
underlying DAR(1) process (10), where we denote the dependence parameter by
p = ¢ as before. It then follows that

(I-p)mx, + 0x,.x,_, P
(I-p)mo,x, + 0x,.%,, P

ﬂl;Xl

L; =1In ) fort > 2, Ly = ln( ) (12)

710, X,

4.3 Continuous Monitoring: ARL Performance

To investigate the effect of serial dependence on the categorical CUSUM chart, we
pick up the four situations discussed by Ryan et al. (2011). The assumed in-control
marginal distributions and the corresponding anticipated out-of-control scenarios
are

Case I: mp=(0.65,0250.10)T,  m; = (0.4517,0.2999,0.2484)7;
Case2: mo=(0.94,0.050.01)T,  m; = (0.8495,0.0992,0.0513);
Case 3: 7o =(0.994,0.005,0.001)7, m; = (0.9848,0.0099,0.0053);
Case 4: 7o = (0.65,0.20,0.10,0.05)", 1 = (0.3960,0.3283,0.1734,0.1023)7.

The first three cases have three states and show decreasing dispersion (vg =
0.758,0.171,0.018), while the fourth case has four states (vg = 0.7).

Ryan et al. (2011) assumed the categorical process to be i.i.d. and, hence, applied
the CUSUM chart (11) for process monitoring. The corresponding chart designs £
for Cases 1, 2 and 4 (Case 3 is discussed separately for reasons explained below)
are shown in the first block of Table 1, together with simulated (zero-state) ARL
values (100,000 replications). Here, ARL always refers to the in-control marginal
distribution g, while ARL; refers to the special out-of-control situation 7.

If the chart design is done assuming i.i.d. observations, but if serial dependence
according to a DAR(1) model with parameter value p > 0 is present (see the first
block of Table 1), then the true in-control performance deviates heavily from the
expected one. The values for ARL( decrease severely with increasing p such that
false alarms will be observed much too often. One solution is to retain chart type
(11) but with adjusted control limit 4, as it is shown in the second block of Table 1. It
can be observed that the control limit has to be widened to make the chart sufficiently
robust (which, inevitably, goes along with a worse out-of-control performance).
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Table 1: CUSUM chart (11) with i.i.d. design and adjusted design, CUSUM chart
(12).

CUSUM (11)  |CUSUM (11)  |CUSUM (12)
Case p |h ARLy ARL||h ARLy ARL;|h ARL( ARL,
T 0 295 2804 219
0.252.95 1163 209[4.3 2784 31.1[2.85 304.5 30.6
0.5 |2.95 720 203|6.1 2740 434|255 3060 41.0
0.75/12.95 59.6 21.8/9.5 280.6 65.0/1.9 289.4 59.6
2 0 |28 5018 363
0.25/2.8 2457 37.2|3.85 509.8 52.4|2.55 503.4 45.6
0.5 [2.8 170.8 39.3[52 5002 72.6[2.25 508.4 58.8
0.75/2.8 1552 48.3|7.6 500.7 107.8|1.7 514.7 86.0
4 0 |[325 2846 206
0.25/3.25 103.9 18.9|47 285.7 289|3 2930 27.6
0.5 |3.25 529 17.0/6.9 280.8 40.8/2.6 289.1 37.1
075|325 352 15.6/11.5 284.6 63.1|2.05 298.1 56.9

The recommended solution, however, is to use the CUSUM chart (12), which is
designed to deal with DAR(1) dependence. Appropriate chart designs are shown in
the third block of Table 1. Although the out-of-control performance is still worse
than in the i.i.d. case (the price one has to pay for serially dependent data), it is
visibly better than for the adjusted i.i.d.-CUSUM (11).

Finally, let us have a look at Case 3. Here, g shows very little dispersion, most

of the probability mass concentrates on the state ‘0’. Certainly, if serial dependence
is present but ignored, the chart’s performance is affected, see

ARLy if p = ARL, if p =
0 02505 0750 025 05 075
500.8 488.5 543.6 839.8[124.2 143.7 184.9 309.4

However, for such an extreme marginal distribution, a monitoring of the process is
rather problematic if additional serial dependence is present, since then the process
nearly always leads constant sample paths. For instance, if p = 0.75, then pgo =
0.9994 according to (10), so we will hardly ever leave the state ‘0’. This increasing
tendency to constantly observing ‘0’ also explains the non-monotonic behaviour
observed for ARL before.

5 Conclusions and Future Research

Two scenarios of monitoring a serially dependent categorical process were dis-
cussed: a sample-based approach, where the dependence within the samples has
to be considered, and a continuous monitoring approach, where the dependence
between successive observations has to be taken into account for chart design. Con-
cerning the first scenario, a Shewhart chart based on a dispersion measure is plausible
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in view of quality-related applications, while a likelihood-ratio-based CUSUM ap-
proach is feasible in the second scenario. In both cases, simulations are required
for chart design and performance evaluation. As already pointed out in Remark 4,
the development of a sample-based CUSUM chart for serially dependent categorical
processes would be an interesting direction for future research.

Besides this, much more work is required concerning both models and control
charts for serially dependent ordinal data (Remark 2). In view of Remark 3, the de-
velopment of control charts being able to deal with both time-dependent categorical
and compositional data would be a promising topic for future research. It also seems
that the Phase I application of categorical control charts, in particular, the effect of
parameter estimation on the charts’ performance (Jensen et al., 2006, Jones-Farmer
et al., 2014), has not been investigated yet.

Finally, another traditional SPC topic has been ignored completely until now
regarding categorical data: process capability analysis. A popular tool for evaluating
the actual process capability are process capability indices. If it is possible to define
a specification region for the categorical distribution & in a reasonable way, then
one may pick up the idea of Perakis & Xekalaki (2005) and define an index based
on the actual “proportion of conformance”. The estimation of such an index from
time-dependent categorical in-control data has to be investigated.
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A Median Loss Control Chart

Su-Fen Yang and Shan-Wen Lu

Abstract The quality and loss of products are crucial factors separating competitive
companies in many industries. Firms widely employ a loss function to measure the
loss caused by a deviation of the quality variable from the target value. Monitoring
this deviation from the process target value is important from the view of Taguchi’s
philosophy. In reality, the distribution of the quality variable may be skewed and not
normal, and the in-control process mean may not be the target. We propose a median
loss control chart to detect the changes in the process loss center or equivalently the
shifts in the process deviation from the mean and target and/or variance for the quality
variable with a skewed distribution. We also derive the median loss control chart
with variable sampling intervals to detect small shifts in the process loss center. The
out-of-control detection performance of the proposed median loss control chart and
the median loss chart with variable sampling intervals are illustrated and compared
for the process variable with a left-skewed, symmetric or right-skewed distribution.
Numerical results show that the median loss chart with variable sampling intervals
performs better than the median loss chart in detecting small to moderate shifts in
the process loss center or in the difference of mean and target and/or variance of
a process variable. The median loss chart and the median loss chart with variable
sampling intervals also illustrate the best performance in detection out-of-control
process for a process quality variable with a left-skewed distribution.
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1 Introduction

Control charts are commonly used tools in process signal detection to improve the
quality of manufacturing processes and service processes. In the past few years,
more and more statistical process control techniques have been applied to the ser-
vice industry, and control charts are also becoming an effective tool in improving
service quality. Tsung et al. (2008), Ning et al. (2009) and Yang and Yang (2013)
are some of the few studies covering this area in the literature. Much of the service
process data come from processes with variables having non-normal or unknown
distributions, and thus the commonly used Shewhart variables control charts, which
depend on a normality assumption, are not suitable. Some research has dealt with
such a situation; see, for example, Amin et al. (1995); Chakraborti et al. (2001); Al-
tukife (2003); Bakir (2004)(2006); Li, Tang and Ng (2010); Zou and Tsung (2010);
Graham et al. (2011); Yang et al. (2011); Yang (2015) and Yang and Arnold (2015).

Product and service qualities and productivity loss are all crucial competitive fac-
tors for companies in numerous industries, and the loss function is a popular method
for measuring the loss caused by variations in product or service quality. Taguchi
(1986) proposed that target values are vital during process specification. Sullivan
(1984) emphasized the importance of monitoring deviations from the target value.
Because increases in the difference between the mean and the target or variability are
the sources of out-of-control loss, it is crucial to monitor the loss variation of a man-
ufacturing or service process. Little research has looked into monitoring a process
loss center. Existing loss-function-based control charts assume that the in-control
mean of the process quality variable equals the target value - see, for example, Zhang
and Wu (2006) and Wu et al. (2009). However, in practice, the in-control process
mean may not actually be the process target, and diagnosing the source of an out-
of-control signal is crucial for correcting an out-of-control process loss center. Yang
(2013a,b) and Yang and Lin (2014) proposed loss-based control charts in order to
monitor the loss center caused when quality variables deviate from target values.

A major drawback of the above loss-based control charts is that they all assume
the quality variable exhibits a normal distribution. In reality the distribution of the
quality variable may be skewed and not symmetric, and hence the sample median is
better than the sample average to measure the population center due to its robustness
to the outliers (Graham, et al. (2010)), and it can be easily implemented by practi-
tioners. Therefore it is reasonable to use median-type loss control charts to deal with
process loss center monitoring.

In this paper we propose using median loss (ML) control chart for variables data
to monitor the process loss center, assuming that the underlying distribution of the
quality variable is skew-normal. The out-of-control detection performance of the ML
chart is measured by the average run length (ARL). Furthermore, we consider the
variable sampling intervals (VSI) control scheme for the proposed ML control chart
in order to effectively detect small shifts in the process loss center, and investigate
its out-of-control detection performance by comparing with some existing control
charts.

The paper is organized as follows. Section 2 derives the sampling distribution of
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the median loss for a quality variable, X, with a skew-normal distribution. Section 3
designs the ML chart and illustrates its control limits for various sample sizes and the
out-of-control detection performance for small to moderate shifts in the difference of
mean and target and/or variance. Section 4 constructs a VSI ML chart and measures
its out-of-control detection performance for small to moderate shifts in the differ-
ence of mean and target and/or variance. Section 5 compares their performances
with those of some existing control charts. Section 6 summarizes the findings and
provides a recommendation.

2 Median Loss Control Chart

2.1 Skew-normal distribution

We denote random variable X has a skew-normal distribution with location parameter
& € (—00,00), scale parameter ag € (0, o), and shape parameter b € (—oo, ). In other
words, X ~ SN (&o,ap,b). From Azzalini (1985), the probability density function
(pdf) of X is

x—fo)q)(bx—fo

ao ao

Sx(x) = a%¢( ), X € (—00,00), (1
where ¢(-) and @(-) are respectively the pdf and cumulated distribution function
(cdf) of the standard normal distribution.

In (1) we know that if b = 0, then the skew-normal distribution reduces to normal
with mean &y and standard deviation ag. The distribution is right-skewed if b > 0
and left-skewed if b < 0 .

The cdf of the skew-normal random variable X is

-1 x-—
a1 el ()
Fx<x)=<1>(a—0>—;f0 Ty dy,  x€(-,0), (2)

The expectation (o) and variance (0'%) of X are

=é+a b \/E a'2—a2[l— 22 ]
Ho =60 0\/sz o 0 = dg prya

Hence, if we know uy, 0'%, and shape b, then we can obtain

V2baryg g
fo=pp— ———, ap=

Va+)n—20% b2

]— —=
7(1+b2)
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2.2 Taguchi Loss Function

The Taguchi loss function is defined as L = k(X —T)2. Without loss of generality,
we set k = 1. For X ~ SN (&, ao, b), the cdf of loss, (X — T)2, is expressed in eq. (3).

Fix_rp () =P((X-T)* <1)

Vi+T - & T-Vt-&
=( )= ( )
ao ao
I T-Vi-& 1 Vi+T-&
b (AR ()XY
1 e? ao —e 2 ap
+— dy, t>0
T Jo 1+y2

3)

2.3 Derivation of the Distribution of Median Loss

Let X; ,i=1,2,..,n, be a random sample from the in-control distribution of
SN (&,a,b). The statistic of sample median loss apparently depends on the sample
size being odd or even. Without loss of generality, we only consider the case where
the sample size is an odd value to make it easier and faster to compute the sample
median loss.

Denote the sample median loss as ML = (X — T)zn 1

(—)
The cdf of ML is derived as ?

t
FML(t)szM(M)du
0
n-1 n—1
n! !
- fF(X—TV(”) 2 [1-Fix_7y )] 2 Sx—ry (W) du

T V2 Yo

[( 5 )
n! 1 Vi+T-&) Vi+T-& —Vi+T-& —Vi+T -4, n+l1 n+1

= B d(b (b ) ) )
[(%1)!]2 (aO\/Z[¢( . )D( p” )+ é( p )D( " )=

t>0,
)

where B(x,a,b) = fox 14711 =1)P~1 dt is an incomplete beta function.

\2bo o
Since the process parameters &y = g — S o and ag = 0

V(A + b2 —2b2 2p2
- —=
7(1+b?)
are related with in-control population mean and standard deviation, the shifts in the
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in-control population mean and/or standard deviation lead to a change in the cdf
of ML. Thus, we may construct the ML control chart based on the cdf of ML to
monitor changes in the loss center, or equivalently to monitor shifts in the in-control
population mean (or the deviation of ug— 7)) and/or standard deviation.

2.4 Construction of the Median Loss Control Chart

Using eq. (4), we may construct the ML control chart with a specified false alarm
rate . The upper control limit (UCL) and the lower control limit (LCL) of the ML
chart are determined by taking the inverse cdf of ML - that is:

UCL=F;}, (1- %)
LCL=FA}1L(%)

If the monitoring statistic M L is smaller than LCL or larger than UCL, then the
process is deemed to be out-of-control; otherwise the process is in-control. Let 03
denote the dispersion parameter that satisfies py — 7T = d3079. Without loss of gen-
erality we set 3 > 0 . Table 1 gives the control limits of the ML chart for various
combinationsof n=5,11,63=0,1,2,and b = —500, -2, 0,2, 500 when the in-control
average run length (ARLg) is 370.4, up =0, and o9 = 1 . Note that when b = —500
or 500 the skew normal distribution converges to the left half normal distribution
and right normal distribution, respectively.

From Table 1 we can see that the width of the control limits becomes narrower
when n increases and b and 3 are fixed, and the width of the control limits becomes
wider when 63 increases and n and b are fixed. When 63 = 0, the width of the control
limits is the widest for a symmetric (b = 0) distributed quality variable. When 63 # 0,
the width of the control limits becomes wider for an increasing b or for the distribu-
tion of the quality variable changing from left half normal, left-skewed, normal or
right-skewed to right half normal.

Table 1 Control Limits of the ML Chart
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03

n b 0 1 2
(LCL,UCL) (LCL,UCL) (LCL,UCL)
=500 (0.006, 3.573) (0.021, 4.958) (0.157, 10.331)
-2 (0.004 ,3.707) (0.016, 6.190) (0.176, 12.086)
5 0 (0.004,3.754) (0.012, 6.868) (0.198, 13.099)
2 (0.004 ,3.707) (0.009, 7.546) (0.283, 14.040)
500 (0.006,3.573) (0.003, 8.354) (0.618, 15.135)
-500 (0.036, 1.661) (0.132, 4.264) (0.800, 9.290)
-2 (0.027,2.192) (0.102, 4.374) (0.814, 9.463)
11 0 (0.028,2.268) (0.075, 4.498) (0.796, 9.713)
2 (0.027 ,2.192) (0.054, 4.542) (0.855, 9.802)
500 (0.036,1.661) (0.020, 4.729) (0.907 , 10.078)

3 Performance Measurement of the Median Loss Chart

We next use Average Run Length (ARL) to measure the performance of the ML
chart. ARL is the average number of samples before the control chart produces a
signal, which is the most popular performance measure for a control chart. ARL
is fixed at a request level, for example 370.4, while the out-of-control process ARL
(ARL,) is as small as can be. For the ML chart, ARL is

1
ARLy =~ (5)

where « = 1-P(LCL <ML <UCL|in—control ML).

We derive the out-of-control distribution of the sample median loss to calculate
ARL, values of the ML chart. Suppose that X* is the quality characteristic for the
out-of-control process, and X* ~ SN (&¢*,a*, b) with mean yy = yo+010¢9, 01 #0,
and standard deviation 0| = 6,0 , 52 # 1 . We thus now have:

2bo 0
§*=ﬂ0+510'0——\/_ SR - . —
V(1 + b2 - 202 B2

-2
x(1+b%)

Denote the out-of-control median loss as ML* = (X*—T)?, ., . We derive the
(—)
2
cdf of ML* as

! 1 1
Fari () = —5—B(Fix rp (0, "= ") ©)
[ 7) 12
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where F(X*—T)2 (1) = FX*(\/;+,L£0 + (81 —03)00) —FX*(—\/;+ Ho + (01 —93)0) and
t>0.

The power that the ML* is larger than UCL or smaller than LCL is 1 -8 . In
other words, 1 - 8=1-P(LCL<ML* < LCL) = Fpyr-(LCL)+1—-Fp1-(UCL).
Hence, ARL, is:

1 1

ARL, = =
1-8 Fyr-(LCL)+1—-Fpp-(UCL)

(M

To investigate the out-of-control detection performance of the proposed chart, we
consider the combinations of small to moderate shifts in mean and standard deviation,
01 =1.0,2.0,6, = 1.0,1.5,2.0, and the dispersion parameter, 63 = 0, 1,2, under the
ARLgas 370.4,n =35, up =0, and oy = 1, and where the quality variable has left half
normal (b = —500), left-skewed (b = —2), symmetric (b = 0), right-skewed (b = 2),
and right half normal (b —500) distributions, respectively. Table 2 gives the ARL;s of
the M L chart for all combinations of §; = 1.0,2.0, §, =1.0,1.5,2.0, and §5 =0, 1,2.

In Table 2 we see that, no matter for b = —500, -2,0, 2,500, ARL decreases when
01 and/or 0, increase under a specified 03; ARL1 of the ML chart decreases when
03 increases for a specified combination of (81, d2, b); the ARL;s of the ML chart
with the left-skewed distributed (b < 0) quality variable are all smaller than those of
the quality variable with symmetric (b = 0) and right-skewed (b > 0) distributions;
the ARLI1s of the ML chart are the smallest for the quality variable with the left half
normal distribution (b = —500). It suggests that the ML chart should be preferred
when the distribution of the process variable is left-skewed, especially for the left
half normal distribution.

4 Optimal Variable Sampling Interval Median Loss Chart

Several studies on the performance of adaptive control charts have suggested the use
of adaptive control schemes instead of a fixed control scheme. To show better ability
in detecting a small or moderate shift of the process loss center, we let the sampling
interval be variable for the median loss control chart. In the process control, we adopt
two variable sampling intervals: one is long, ¢; , another is short, ¢, . The variable
sampling intervals media loss chart (VSI-ML) chart is composed of UCL, warning
control limits (WL), and LCL, which are in the form of:

UCLZILlML+kO'ML,
WL = pupyr+wopmr,
LCL =0,

where k and w respectively denote the coefficients of UCL and WL with 0 <w < k.

Table 2 ARL; of the ML Chart



28 Su-Fen Yang and Shan-Wen Lu

516 b 5 ‘513 5
=500 13.869 2.059 2.027
-2 22527 4764 4.615
1 1 0 24152 8.146 8.113
2 25.040 14.131 14.131
500 22.726 22.207 22.027
500 1.415 1.067 1.065
-2 1.618 1.164 1.158
2 1 0 1.829 1313 1312
2 2027 1.588 1.588
500 2.308 2.308 2.308
=500 3.322 1.780 1.832
-2 5242 3.068 3.092
115 0 6591 4528 4.545
2 8421 6.835 6.830
500 9.799 9.878 9.880
500 1.401 1.135 1.136
-2 1615 1275 1271
215 0 1.854 1465 1.464
2 2101 1.768 1.768
500 2.447 2.447 2.447
500 2.010 1.577 1.715
-2 2757 2393 2.579
1 2 0 3317 3355 3.528
2 4176 4.882 4.889
500 6.860 6.867 6.452
500 1.326 1.168 1.190
-2 1523 1335 1.351
2 2 0 1757 1554 1.563
2 2052 1.874 1.875
500 2.519 2.522 2.522

In the VSI ML chart, the region between LCL and WL is the “central region” (CR),
the region between WL and LCL is the “warning region”(WR), and the region above
UCL is the “action region”(AR). We adopt the long sampling interval (¢;) when the
statistic falls into CR; the short sampling interval (¢,) when the statistic falls into WR.
The VSI chart parameters, k and w , are chosen to satisfy the in-control average time
to signal (AT Sp) requirements. Since the time interval between samples is variable
and not fixed for the proposed VSI ML chart, a more appropriate out-of-control
detection performance index could be the average time to signal (ATS) and not ARL
again. A smaller out-of-control ATS (AT'S) leads to better out-of-control detection
performance under a specified in-control ATS (AT Sy).

Under the specified AT'Sy , the procedure to calculate UCL and WL is described
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as follows:

Step 1 Specify the values of o , #1 ,t2 , n, o , 09 , 61 , 02 , 03 , ky (upper bound of
k), and ATSy .

Step 2 Divide the interval (0,UCL) into N subintervals, each with an equal width of

2d, where d = U—CL
2N

Step 3 Denote the i'" interval (State) as (m; —d,m; +d) with midpoint m;, where

2i—1)UCL
m; = %, i=1,2,..,N and the (N + 1) interval (State) as [UCL, o).
Step 4

AT Sy = b'(I-0Q) 1o, ®

where to = (f1,11,....,t2)” is an N-vector with element ¢; = t; for m; € CR and
t; =ty form; e WR,i =1,2.

Step 5 With AT Sy, t1 ,t2,n, o, 09 ,and 63, ATSy=b"(I - 0)" 'ty is an equation,
including the unknown factor w and k of the chart. Use the routine “zreal” in
IMSL to find w and k values satisfying the constraint, 0 < w < k < ky , and
determine WL and UCL.

When t; =1, =ty and w = 0, the VSI-ML chart is reduced to a one-sided ML
chart.

In reality, engineers may not easily determine the appropriate sampling intervals
t1 and t, . Thus, the optimal VSI-ML chart with minimal out-of-control ATS and
optimal values of #; and ¢, is thus recommended.

The procedure for determining the optimal VSI-ML chart is as follows.

Step 1 Specify the values of ¢y, n, uo , 0o, 01, 92 , 03 , and the requested AT .

Step 2 Determine the appropriate ranges of the variable sampling intervals and w and
k of the VSI-ML chart, t; <t <tg<t; <ty and 0 < w < k < ky , where the
subscript L signifies the lower bound and U is the upper bound.

Step 3 Give the initial values of (¢,f2,w, k) . Use an optimization technique, “optim”
subroutine in R package, to determine the optimal tT , t; ,w*and k* that minimize
AT Sy with the constraints described in Step 2 under the requested AT'Sy.

Step 4 The optimal VSI-ML chart with optimal #] , #5 , w* and k" is thus constructed.

To construct the optimal VSI-ML chart, all the combinations of §; = 1.0,2.0 and
02 = 1.5,2.0 are considered under AT Sy =370,n=5,63=1,up=0,00=1,0<1; <
to=1<1t; <2,and b =-500 and 0, respectively. Table 3 illustrates the AT'S;s of the
optimal VSI ML chart with optimal (¢1,7,) under the considered combinations of ¢,
and 6> when b = —500, 0. The last two columns of Table 3 list the AT S;s of the VSI
ML chart with specified (¢1,¢,) = (2,0.1) and the FSI ML chart. We find that the
out-of-control detection performance of the optimal VSI ML chart is a little bit better
than those of the specified VSI-ML chart, and that the specified VSI-ML chart is
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much better than the FSI ML chart. No matter for the optimal VSI-ML, VSI-ML, or
FSIML chart, the AT S;s of the process variable with left half normal distribution are
smaller than those of the process variable with symmetric distribution. This reveals
that the VSI-ML or ML charts are able to effectively monitor the out-of-control
process with the left-skewed distributed quality variable, especially for the left half
normal distributed quality variable.

5 Performance Comparison

We now compare the out-of-control detection performance of the proposed opti-
mal VSI ML, the specified VSI ML, and ML charts under b = 0 with some existing
control charts, like MEW chart proposed by Chen et al. (2001), NCS chart addressed
by Costa and Rahim (2004), WLC chart proposed by Zhang and Wu (2006), and ERL
chart developed by Zhang et al. (2010) with a normal distributed quality variable
forn=35, AT Sy =370.4 , and ARLy = 370.4 . For the considered combinations of
small to moderate shifts in mean and/or standard deviation, we find that the AT S;s
of the optimal VSI ML and the specified VSI ML charts are all smaller than those
of the existing control charts. However, the out-of-control detection performance of
the FSI ML chart is always worse compared to the existing control charts for small
shifts in mean.

Table 3 AT'S| of the Optimal VSI-ML, VSI-ML, and FSI ML Charts

b 6 6 Optimal VSI-ML VSI-ML FSI-ML
IT l‘; ATS, ATS, AT S
=500 11 1.848 0.000 0.282 0.435 2.059
0 1.993 0.000 0.417 0.925 7.974
-500 21 1.989 0.000 0.063 0.173  1.067
0 1.945 0.000 0.068 0.204 1.465
=500 115 1.848 0.000 0.340 0.474 1.781
0 ™ 1.945 0.000 0.709 0.987 4.528
-500 215 1.959 0.000 0.034 0.145 1.168
0 " 1.9450.000 0.043 0.152 1414
-500 | 9 1.989 0.000 0.275 0.405 1.576
0 1.945 0.000 0.627 0.842  3.355
-500 ) 9 1.959 0.000 0.005 0.111  1.135
0 1.945 0.000 0.019 0.122 1.313
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Table 4 Performance Comparison with Some Existing Control Charts

b5y 6 ARL
MEW NCS WLC ELR OPT. VSI-ML VSI-ML FSI-ML

1 27 7.50 7.50 3.40 0.42 093 797
115 24 295 295 2.65 0.71 099 453
o2 19 1.80 1.80 1.90 0.63 0.84  3.36
T 13 120 1.20 1.90 0.07 020 147
215 1.5 130 1.30 1.40 0.04 0.15  1.41
2 1.3 1.20 1.20 1.30 0.02 0.12 131

6 Conclusion

In this paper, we propose the new Median Loss and (Optimal) Variable Sam-
pling Intervals Median Loss Control Charts to simultaneously monitor changes in a
loss center or in the process mean and/or variance when the distribution of a qual-
ity variable is not symmetric but rather left-skewed or right-skewed. The proposed
optimal VSI and VSI ML charts both illustrate better out-of-control detection per-
formance for the left-skewed distributed quality variable. Furthermore, the proposed
VSI ML Chart shows better detection ability than the ML Chart in monitoring small
to moderate shifts in process mean and/or variance. The optimal VSI ML Chart
is thus recommended. A future study could consider to improve the out-of-control
detection performance of the proposed Median Loss control charts with an adaptive
control scheme on the effect of the contamination.
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Bayesian Reliability Analysis of Accelerated
Gamma Degradation Processes with Random
Effects and Time-scale Transformation

Tsai-Hung Fan and Ya-Ling Huang

1 Introduction

For highly reliable products, it is quite difficult to obtain their lifetimes through
traditional life tests within a reasonable period of time. Alternatively, degradation
tests are widely used to assess the lifetime information of highly reliable products that
possess quality characteristics that degrade over time and can be related to reliability.
Apart for the time to failure itself, degradation tests are also useful in providing
additional information regarding the distribution and process of the product lifetime.
A detailed explanation on degradation tests in reliability can be seen in Nelson (1990)
and Meeker and Escobar (1998).

In degradation tests, degradation measurements of a quality characteristic of each
test unit are observed in specified times. When the degradation measurement reaches
a pre-stated critical level, the failure is assumed. The performance of a degradation
test strongly depends on the suitability of the assumed model of a product’s degra-
dation path. For degradation paths involving independently nonnegative increments,
gamma processes are more suitable for describing the deterioration of the product.
Park and Padgett (2005) provided several new degradation models that incorporate
an accelerated test variable based on stochastic processes including a gamma pro-
cess. Some recent applications of gamma degradation models can be found in Wang
(2008) and Tseng et al. (2009) and the references therein.

Considering the research on parameter estimation, maximum likelihood estima-
tion (MLE) is often the tool of choice to implement parameter estimation for the
stochastic process models. Nowadays, two typical situations are generally encoun-
tered in degradation analysis of modern products, i.e. (1) the degradation analysis
with sparse/fragmented degradation observations, and (2) the degradation analy-
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sis with evolving/updating degradation observations. The first situation is com-
monly introduced by the reliability analysis of the products that cannot be moni-
tored frequently, such as the underground oil and natural gas pipelines (Qin, et al.
(2013)). Subjective information or historical information is generally incorporated
to complement the insufficiency of these sparse/fragmented degradation observa-
tions (Singpuwalla (2005) and Meeker, et al. (2005)). In addition, it is hard for
the MLE-based method to carry out the degradation analysis under this situation.
A degradation analysis for information integration is needed. The second situation
is generally introduced by the system health management of the products that are
subject to condition monitoring, such as the super luminescent diode analyzed in
Wang, et al. (2013) and the GaAs Laser discussed in Wang and Xu (2010). The
degradation analysis results are updated when newly observed degradation data are
available. A degradation analysis method for model updating is needed as well. For
the degradation analysis with subjective information and continual monitoring data,
Bayesian method has become a standard toolkit. Moreover, the aspects concerning
hierarchical priors for random effects information fusion and posterior analysis for
degradation analysis results updating were not well studied. An improvement of the
random drifts degradation process model and a further extension of the proposed
Bayesian method for more general situation is needed.

In many applications, the health or quality of a system is usually quantified in terms
of percentage to the initial value. For example, Chaluvadi (2008) presented a dataset
of LEDs with light intensities by percent under accelerated degradation life tests,
and the failure is declared when the light intensity falls below 50%. Therefore, the
data received from the degradation paths must be transformed to fit in the stochastic
processes considered. Moreover, the degradation data are collected by time and the
stochastic process may not be linear in the true time units. In other words, the time
must also be rescaled to fit in the underlying stochastic process. We will develop
Bayesian inferences on different lifetime characteristics of the data behaving like the
LEDs. However, due to the degradation being bounded in this way between 0 and
1, the development of inferential methods for the lifetime characteristics of LEDs
becomes a challenging task. On the other hand, the degradation path may not be
linear in time. Lawless and Crowder (2004) made a complex transformation in time
to fit the gamma degradation process for the laser data. A simpler model in which
the time scale is of power transformation may be considered alternatively.

In this article, we are interested in formulating Bayesian degradation analysis
based on the gamma accelerated degradation processes with random effects in which
the time scale is of power transformation. Incorporating prior distribution for all the
unknown parameters of the underlying model (with or without random effects), we
shall conduct a Bayesian reliability analysis for the population lifetime distribution
under normal use condition. To identify if random effects model is appropriate, the
DIC model selection criterion via MCMC method will be carried out to interpret the
model adequacy.

This paper is organized as follows: In Section 2, it introduces the notation and the
statistical formulation of the model; In Section 3, it deals with the Bayesian inference
of the population lifetime distribution and sequentially predictive analysis of a new
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product; In Section 4, data analysis through an illustrated example is provided; In
Section 5, some concluding remarks are made.

2 Statistical Model

Assume the degradation path Y (¢) follows a gamma process with shape parameter a >
0 and rate parameter A > 0 which satisfies (i) Y (0) = 0; (ii) Y (¢) is of the independent
increments, i.e. Y (#) —Y () is independent of Y (s), for > s > 0 and (iii) Y () =Y (s)
has a gamma distribution with shape proportional to AA = A(¢ + Ar) — A(t), denoted
by Gamma(a(AA), 1) where @ > 0, and A > 0 is the scale parameter. We consider
the nonlinear case that A(f) = ¢, ¢ > 0 in this paper.

Let x1,...,x; be the levels of the accelerating variable, and assume that the shape
parameter of the gamma process is log linear in the stress level, and the degradation
measurements are observed at 0 =7y <ty < ... < ;. Consider that K test products
are put under each stress level in a constant-stress degradation test. Specifically, let
Y, (¢) be the gamma degradation path for product k and yy;; = ¥;;(¢;) be the observed
data at = t; under stress level x;, respectively, for j = 1,2,...,J,andi=1,...,/ and
k=1,...,K.Define gi;; = yri(t;) — yki(tj-1), then we have gi;; has Gamma(c;}, 5),
where o;; = /l,-(t]‘f —tjC._1 ), di = a+bx;, c, B> 0and yy;;’s are all independent, for for
j=12,...,J,andi=1,...,]and k = 1,..., K. Then given the observed degradation
data g = {g;;}, and x = {x;}, the likelihood function of (a, b, c, B) is

K I J B B
a; _
Labeplgx =[ [[ [[ | e=—=gwi " e s ul?. (1)

Due to the heterogeneity of the individual degradation paths, the random effects
model is taken into account by assuming unit to unit variation to be carried out
through random parameter S of the inverse gamma distribution, IG(y, §), with pdf
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The major concern in reliability analysis is about the lifetime distribution under
normal use condition x¢. The failure time of the product is the first time that the
degradation path touches a given threshold Y;. Thus, the cumulative distribution
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function (cdf) of the failure time 7" under x( for the underlying model is

Fr(t|10,x9) = P(T <16, xp)
L YNy T(A0r€ +6)
- Logyf (y + )01+ T(291¢)T(6)

oY
Aoyr€)

= Fy 150, 3)
where F(dj,d>)(-) is the cdf of the F distribution with d; =21t and d, = 26 being
the numerator and denominator degrees of freedom, respectively. Consequently, the
failure time distribution under normal use condition with fixed effect is

1 h e .
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r(18.%0) = Fss f (logyf)/ﬁﬁ Yy le P dy
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where I'(u,v) = fv ® 5”‘16‘5 dé, the incomplete gamma function.

3 Bayesian Inference and Model Selection

We consider the Bayesian approach by using independent priors for the parameters
a, b,y and §. Specifically, since a and b are the regression coefficients associated
with the stress variable, consider a and b to have normal priors N (pa,oﬁ) and
N(up,0}), respectively, where pq,pp, and 5,07 are the corresponding means
and variances. A conjugate prior of Gamma(u,v) is used for the nuisance scale
parameter y of the random effects and log 6 has N (uy, 0'3). Moreover, we consider a
mixture distribution of a truncated normal prior and a point mass at 1 for the power

transformation parameter c; namely,

n(c) = plpy(c) + (1 =p) e (0)mi(c), 0<p <1,

where m1(c) ~ Truncated N (,uc,(rg) on ¢ > 0 and ¢ # 1. Treating all the random

effects B = (Bi1,. .., Bkr) as latent variables, we have the joint posterior
-
(0, 5|g x) « ki g;:lu— e~ 8kij/Bri
- Okij
k=1 i=1 \j=1 [(ay;
Y9

Bri

where 7(8) is the joint posterior prior of 6 as described above.

—ﬂ,;f‘lexp(—l) (),
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The posterior is too complicated to make further inference, but with the aid of the
Markov chain Monte Carlo (MCMC) method with Gibbs sampler for 8,y and c; and
the Metropolis-Hastings algorithm for a, b and §, one can simulate an approximate
the posterior sample of 6. To reduce the serial correlation, we take one sample
point in several iterations after convergence of the MCMC sequence. Let 8™ =
(@™, b M)y (m) sy Ty = 1.2, . M, be the resulting approximate posterior
sample of size M, then the sample mean a = Z”Ml:1 a™ /M is the usual Bayes
estimates of a, for example; while its posterior variance can be approximated by
the corresponding sample variance. Moreover, an approximate 100(1 — p)% credible
interval can be obtained by (a'?/?,a1=P/?)), where aP’ is the sample p-quantile
ofa™ m=12,...,M, correspondingly. Furthermore, the distribution of the failure
time, (3) or (4), under normal use condition is a function of 6, so are the mean time
to failure (MTT Fy), the reliability function (R(#|x¢)) as well as p-quantile (¢, (xo))
of T. Therefore, the predictive distribution of 7" under x( given g,x and At is

F(tlg,XO)=j; F (110, x0)m(6]g,x)d6.

Thus the corresponding Bayesian inference can also be carried out by using the
posterior sample, 0 =1,2,...,M. For example, MTTFy, R(¢) and ¢, of the
lifetime distribution under x( can be estimated by E (T|xp) = ﬁ Zf;f VE (116D, x0),
R(t|xo) = 37 ), R(t10", x0),t > 0, and 7, (x0) = 75 7, 1,0V, x0), 0 < p < 1,
respectively.

There are two model selection issues involved. One is whether the time-scale
transformation is necessary and another is the existence of random effects. The
weight of the point mass in the mixture distribution of ¢ is an indicator for the time-
scale transformation. If the majority of the posterior sample yield ¢ # 1, we conclude
that the power transformation in ¢ is needed and the inference is obtained based on
those with ¢ # 1; otherwise, the model is indeed linear in time and the inference is
made through those with ¢ = 1 in the posterior sample. On the other hand, we use
DIC (Deviance information criterion) to identify existence of random effects among
test items. The DIC can be approximated by

__ 2 M¥ 1 4
DIC=— ) [-210g L(6P|g,x)]-[-2log L(— > 8V|g x)],
M;[ og L(8"|g,x)] - [-2log (MH lg,%)]

where 8¢ ,1=1,..., M, are the posterior sample. We compute the DIC for the models
based on (1) and (2), respectively, and the model with smaller DIC is preferred.
4 Data Analysis

The proposed method is applied to the LED data in Chaluvadi (2008). Under each
stress level, x; = 35 and x, =40, 12 LED bulbs were tested and their lightness was
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observed in every 50 hours for 5 times. Figure 1 presents the paths of the degradation
data, and Figure2 and Figure 3 show the probability plots of the increments fitted
by the normal and gamma distributions, respectively. From the plots, we decided to
model the degradation paths by the gamma process.

1.0

0.9
|

0.8

0.7

0.6

Threshold : 1 =0.5

0.5

I I I I I I
0 50 100 150 200 250

Time (hours)

Fig. 1: LED lightness degradation data from Chaluvadi (2008).

In the Bayesian analysis, we considered (u, /1;,,0'(21,0%) = (-15,3, 100,25) and
(Wes M, 0'%,0"21, uv)=(0,24,1, (0.35)2,8,4) were used in the random effects model
and 7(B) ~ IG(100,0.1) was considered for the fixed effect model. An MCMC
procedure, with normal proposal densities of oy = 0.3 and o, = 100, was per-
formed 20000 iterations and the convergence was assured after 5000 iterations by
the Gelman-Rubin ratios plots (cf. Gelman and Rubin (1992)). Then one sample was
taken in every 10 iterations to get M= 1000 posterior samples afterwards. It con-
cludes that there exists no random effect in this data set based on the DIC criterion
and the time scale is about A(¢) = t%-6. On the other hand, we applied the function
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Probability Plot for Normal distribution
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Fig. 2: Probability plots of the increments of the LED data fitted by normal distribu-
tion.

optim() in the R-software to get the maximum likelihood estimates (MLE) and the
confidence interval was obtained by bootstrap method. The estimation results are
presented in Table 1 and the inference of the failure time under normal use condition
Xxo =25 is given in Table 2.

Table 1: Parameters estimation (95% interval estimation) of the LED data.

MLE Fixed Effect Random Effects

-13.93 (-19.54, -8.32) -14.87(-15.46, -14.27) -13.92(-20.03, -8.03)
3.63(2.05, 5.20) 3.86(3.63, 4.07) 3.61(1.95,5.33)
0.60(0.53, 0.68) 0.61(0.55, 0.69) (0.54,0.70)

0.032(0.024, 0.042)  0.033(0.025, 0.042) -
- - 251.4(39.63, 647.1)
- - 8.25(1.26,21.27)
DIC - -415.6 4113

R ST™WO T
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Probability Plot for Gamma distribution
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Fig. 3: Probability plots of the increments of the LED data fitted by gamma distri-
bution.

Table 2: Inference on failure time distribution under normal use condition.

MTTF 10.1
Estimate SE 95% C.I. Estimate SE 95% C.I.

MLE 2508.43 873.11 (1458.86,4651.48) 1470.19 541.06 (840.51,2982.19)
Fixed Effect 2476.02 641.63 (1508.48,4004.17) 1473.32 363.83 (901.17,2354.82)
Random Eff. 2835.47 533.90 (1998.66,4149.64) 1470.54 245.80 (1067.10,2049.83)

5 Concluding Remarks

A Bayesian approach is applied to an ADT test under gamma processes with random
effects. We use a mixture prior to determine if a time scaling is necessary and then
use DIC to identify existence of random effects among the test items. The proposed
method is also applied to analysis the LED data. It seems that Bayesian inference can
make reliable inference for the failure time distribution under normal use condition
under the random effects model; while the conventional ML approach may encounter
unstable estimation frequently unless the sample size is large.

Other kinds of random effects may be of practical interest and how to construct a
unified approach to identify the time scaling and the random effects simultaneously
is under investigation.
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Sampling inspection by variables under Weibull
distribution and Type I censoring

Peter-Th. Wilrich

Abstract The lifetime (time to failure) of a product is modelled as Weibull distributed
(with unknown parameters); in this case the logarithms of the lifetimes are Gumbel
distributed. Lots of items shall be accepted if their fraction p of nonconforming items
(items the lifetime of which is smaller than a lower specification limit #7 ) is not larger
than a specified acceptable quality limit. The acceptance decision is based on the
r < n observed lifetimes of a sample of size n which is put under test until a defined
censoring time 7¢ is reached (Type I censoring). A lot is accepted if r =0 orr =1 or
if the test statistic y = fi— k0 is not smaller than the logarithm of the specification
limit, x;, =log(¢z), where k is an accepance factor and fi and & are the Maximum
Likelihood estimates of the parameters of the Gumbel distribution. The parameters
of the sampling plan (acceptance factor k, sample size n and censoring time #¢) are
derived so that lots with p < p; shall be accepted with probability not smaller than
1 — a. On the other hand, lots with fractions nonconforming larger than a specified
value p, shall be accepted with probability not larger than S. n and ¢¢ are not
obtained separately but as a function that relates the sample size n to the censoring
time 7. Of course, n decreases if the censoring time ¢ is increased. For f¢ — oo the
smallest sample size, i.e. that of the uncensored sample, is obtained. Unfortunately,
the parameters of the sampling plan do not only depend on the two specified points
of the OC, Pi(p1,1 —a) and P>(p», B), but directly on the parameters 7 and ¢ of
the underlying Weibull distribution or equivalently, on the parameters u = log(t)
and o = 1/6 of the corresponding Gumbel distribution. Since these parameters are
unknown we assume that the hazard rate of the underlying Weibull distribution is
nondecreasing (6 > 1). For the design of the sampling plan we use the limiting case
0=1o0ro=1/6=1. A simulation study shows that the OC of the sampling plan is
almost independent of ¢ if the censoring time #¢ is not smaller than the specification
limit 7.

Peter-Th. Wilrich
Institut fiir Statistik und Okonometrie, Freie Universitit Berlin, Garystrasse 21, D-14195 Berlin,
Germany, e-mail: wilrich@wiwiss. fu-berlin.de
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Key words: sampling inspection, inspection by variables, variables sampling, life-
time, life test, Weibull distribution, Gumbel distribution, censoring

1 Introduction

The lifetime (time to failure) is an important quality characteristic of many types
of product. If a lower specification limit 77, for the lifetime is established an item is
non-conforming if its lifetime # is smaller than 7, . In order to test whether the fraction
of nonconforming items in a lot of a product, p, is small so that it can be accepted,
or that p is large so that it should be rejected, a sample of size n is put on test and
the lifetimes of the samples items are noted. In sampling inspection by attributes the
number of lifetimes of the sample being smaller than the lower specification limit
is used for the acceptance decision whereas in sampling inspection by variables the
lifetimes of the sample are statistically evaluated for the acceptance decision.

Technical Report TR 3 (1961), Technical Report TR 4 (1962), Technical Report
TR 6 (1963), Technical Report TR 7 (1965), based on Goode and Kao (1961, 1962,
1963) present sampling plans for inspection by attributes for the lifetime assumed
to be Weibull distributed with known shape parameter ¢ and specification limits
established for the mean life, the hazard rate or the reliable life. Since it is known
that sampling by attributes requires larger sample sizes than sampling by variables
in order to work with equal efficiency it seems favourable to apply sampling plans
for inspection by attributes. Most of the existing sampling plans for inspection by
variables as, e.g. ISO 3951-1 (2005), ISO 3951-2 (2005), cannot be applied to
lifetimes because they assume a normal distribution of the quality characteristic
which is unrealistic for lifetimes, and they require the lifetimes of all sampled items
to be measured. Instead of the normal distribution the Weibull distribution is very
often an appropriate assumption for the distribution of lifetimes. And economical
considerations require the life test to be finished when only a specified number r of
items of the sample have failed (Type II censoring) or a specified test time ¢¢ has
elapsed (Type I censoring).

Type II censored sampling plans for inspection by variables under Weibull dis-
tribution have been presented by Fertig and Mann (1980) and Hosono, Ohta and
Kase (1981). They used best linear unbiased estimators (BLUESs) of the parameters
of the Weibull distribution for the acceptance decision which need tables of the
coefficients being available only for small sample sizes. Schneider (1989) based
the acceptance procedure on Maximum Likelihood estimators and their asymptotic
normal distribution.

I deal with Type I censored sampling plans for inspection by variables which have
the advantage of the test time #¢ being fixed in advance. Section 2 presents the Weibull
distribution and the Gumbel distribution as the underlying model. Section 3 describes
the sampling plans and their design. Section 4 gives an example. Section 5 presents a
graphical procedure that uses Weibull probability paper. The Maximum Likelihood
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estimators of the parameters of the Gumbel distribution and the asymptotic variance
of the test statistic are derived in Annex A and B, respectively.

2 The model

The lifetime of a product is modelled as a random variable T that is Weibull dis-
tributed with probability density function

fr<r)=9(3)5_1exp(—(£)5);x>0 0

T

where 7 > 0 is a scale parameter and 6 > O is a shape parameter. The cumulative
distribution function of T is

£\6
FT(t)zP(TSt)zl—exp(—(;) ) @)
the survival function is
t 5
GT(Z):P(T>t):exp(—(—) ) 3)
T
and the failure rate (hazard rate) is

hr (1) =

1-Fr(t) 1

T

fr@®) ¢ (t)f“; @

hr(t) is monotonically increasing (decreasing) for 6 > 1 (6 < 1). For 6 = 1, hr(¢) is
constant, hr(#) = 1/7; in this case T follows the exponential distribution.
The transformed random variable X = InT has the survival function

Gx(x) = P(InT > x) = P(T > %) = Gy (&%)
= exp(—(e*/7)°) = exp(—exp(5(x —InT)) = exp(—exp((x — ) /7). (5)

This location and scale parameter distribution with location parameter u =Int € R
and scale parameter o = 1/6 > 0 (Note: u and o are not expectation and standard
deviation of X) is the Type I asymptotic distribution of the smallest extreme value
in a sample of size n — oo, often denoted as Gumbel distribution.

The linear transformation Z = (X — u)/o transforms this distribution into the
standardized Gumbel distribution with the survival function

Gz(z) = exp(—exp(z)) (6)

and the probabildity density function

fz(z) = exp(z—exp(z)) = exp(2)Gz(2); (M
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it has no parameters. In the following we use the Gumbel distribution of X =InT
instead of the Weibull distribution of 7" because, as a location and scale distribution,
it has many advantages in the design of sampling plans.

3 The sampling plan

A lower limit ¢, for the lifetime 7 of the items of a product is specified. An item is
nonconforming if its lifetime is smaller than 77, T < t.. A lot of items is acceptable
if its fraction of nonconforming items, p, is not larger than a specified value p;. The
sampling plan shall accept a lot with p < p; with probability not smaller than 1 — .
On the other hand, lots with fractions nonconforming larger than a specified value
p> shall be accepted with probability not larger than B. (p;,1 — @) and (py, 8) are
design specifications for the sampling plan. We put n items on a life test and note the
lifetimes (1) < f(2) < ... <t of all items that fail until an established test time 7¢
is reached, i.e. the sample is censored at the right with censoring time 7. Note that
r is a random variable. Based on the logarithms x; = In#; of the lifetimes #(;) the
Maximum Likelihood estimators i and & of the paramters ¢ and o of the Gumbel
distribution are calculated; see Annex A.

The lot is accepted if the test statistic

y=fp-ko ®)
is not smaller than x; =Int;,
y=[-ko =xL ©)
where k is the accepance factor of the sampling plan (k,n,t¢), or equivalently
(xL =/ < -k (10)

or
P=Fz((xL—)/6) < Fz(=k) = perits (11)

where p is an estimate of the fraction nonconforming in the lot. k, n and 7 shall be
fixed so that the probabilities of acceptance of the lot are 1 — @ and S if the fractions
of nonconforming items in the lot are p; and p,, respectively. Since the test statistic
and the estimate of the fraction nonconforming cannot be calculated if the observed
number of failures is » = 0 and is very unreliable if » = 1 the decision rules (9) and
(11) are amended by the rule to accept the lot if » = 0 or r = 1; this causes a very
small increase of the probability of acceptance of a lot.

Asymptotically, the test statistic y = (i — k& is normally distributed with expec-
tation E(y) = pu— ko~ and variance V(y) = oy = V(1) + k*V (0) = 2kCov(fi, &); see
Annex B.
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The operating characteristic function (OC), i.e. the probabilty of acceptance of
the lot as a function of its fraction nonconforming, p, is

L(p)=P(y=xrlp)=P(i—ké =2 xL|p)
_ P((u—kv)—(u—ko) 5 xL—,u+k6f)
Ty Ty

1 - 1
=P|U > —(XL 'u+k)|p =1-PlU < —=(zp+k)|p
A o A
1
_ l—CD(Z(zp+k)) (12)
where U is the standardized normal variable and

A=oy/0; (13)

®(-) is the cumulative distribution of the standardized normal distribution. The
standardized lower specification limit z7, = (xz — ) /o is equal to the p-quantile z,, =
In(—In(1 - p)) of the standarized Gumbel distribution if the fraction nonconforming
in the lot is p.

A and k are obtained by solving the equations

1
L(py) = 1—<I)(Z(Zp1 +k)) =l-a
1
L(p2) = 1_(D(Z(sz+k)) =B (14)
for A and k. From the first equation we get (I)(%(zp1 +k))=aor

1
Z(Zm +k) =uq, (15)

and from the second equation

1
Z(sz-i-k) =ui-g, (16)

where u,, is the p-quantile of the standardized normal distribution. The equations
(15) and (16) have the solutions

_ ZpM1-Bg ~ Zpylla

k A7)

Ug —UI-B
and

A= i (18)
Ug —UI-B



50 Peter-Th. Wilrich

The OC of the sampling plan passes through the two points Pi(p;,1 — @) and
Py (po, B) if the parameters of the sampling plan are k and A according to (17)
and (18). The value of A according to (18) has to be equal to A = o /0 according
to (53):

Ao T Vit +k2vp = 2kvin _ fk,zc)

Ug —U1-B \n vVn 1
or ) ‘
. A (A;ZC)’ 20)

where vy, vi» and vy, are the elements of the asymptotic covariance matrix of the
estimators {2 and & according to (49).

The parameters of the sampling plan, k£ and A, being fixed according to (17) and
(18), this equation defines a series of pairs (z¢,n) for which the design requirement
is met. The smallest n = n,,;, belongs to zc — oo, i.e. the case of no censoring, and
according to (54) we obtain it as

2
1+ 6(k+12 )

Nmin = A—Zﬂ 21)

where y = 0.57721566490... is Euler’s constant (see Erdéliy (1954), p.148). De-
pending on the cost of sampled items and test time the user of the sampling plan can
choose smaller test times with larger sample sizes and vice versa.

In order to calculate the right hand side of (20) we need the standardized censoring
time z¢ = (x¢ — p)/o. However, we have only the established censoring time x¢ =
Inzc, and we cannot convert it into the standardized censoring time z¢ because u
and o are unknown.

We solve this problem with the assumption that the failure rate of the Weibull
distribution of the lifetime is nondecreasing, i.e. that the failure rate of an item does
not decrease if its lifetime increases. This corresponds to the case where the shape
parameter of the Weibull distribution is larger or equal to 1, 6 > 1, and the scale
parameter of the Gumbel distribution is not larger than 1, o0 = 1/6 < 1. We fix o at
oo = 1 (and discuss this choice in section ??). Since the fraction nonconforming in the
lotis p = Fz(zp) = Fz((xp — p) /o) the unknown parameter 4 now only depends
on the fraction nonconforming p. We then choose u so that the corresponding
p=Fz(xp—w)/oo) = psoq is the indifferent quality of the sampling plan, i.e. that
the probability of acceptance according to (12) is 50%, L(psoq,) = 50%. For this case,
2p = (X — ) /00 = Zps, = —k and we see that, according to (11), psoq, = perir. With
u=xp+kogwe finally obtain z¢c = (xc —p) /oo = (xc—xp)/oco—k =xc—x1 —k.

If we calculate the standardized censoring time as

zc=xc—-xp—k=Intc —Int; —k 22)
and hence,

f2(k,Intc —Int; — k)
n= .
A2

(23)
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we get a sampling plan the OCs of which pass through the indifference point
(Perit»50%) and for oo =1 (6 = 1) through the design points P;(p;,1 — @) and
Py(p2, B).

4 An example

The lifetime T of a particular product is assumed to be Weibull distributed. An
item of the product is defined as nonconforming if its lifetme 7 is smaller than the
lower specification limit 77 = 5. A sampling plan for inspection by variables has to
be designed so that lots with fraction nonconforming p; = 0.1 are accepted with
probability 1 —a = 0.95, and lots with fraction nonconforming p, = 0.2 are accepted
with probability g =0.1.

1.0

e e
,,,,,,,,,,,,

08

0.6

« Py=(py=0.1,1-a=095)

.« Py=(p,=02,B=0.1)

« Po= (pee=0.148, L=0.5)
4=5,1=5 S
n=103, k=183, pe;=0.148 n

Probability of acceptance, L
04

— designed OC S,

0.2
I

—— simulated OC, 0 =1
— simulated OC, 6=0.5 e,

simulated OC, 0=0.2

>>>>>>>

0.0

T T T T
0.00 0.05 0.10 015 0.20 0.25

Fraction nonconforming, p

Fig. 1: The asymptotic OC curve (blue) of the sampling plan (k,n,t¢c) = (1.83,103,5)
that passes through the points P;(p; =0.1,1 —a =0.95) and P>(p, =0.2,58=0.1).
The black, red, green curves lare the simulated OC curves for o = 1,0.5,0.2, respec-
tively (solid: numerical acceptance decision, dashed: graphical acceptance decision,
see section ??). Each point represents the average of 10* simulation runs.

According to (17) and (18) the parameters of the sampling plan are k = 1.83 and
A =0.256; the critical fraction nonconforming according to (11) is p¢,;; = 0.148. A
lot is accepted if, according to (9), the test statistic y is not smaller than the lower
specification limit x;, = In#y =5, or equivalently according to (11), if the estimate p
is not larger than the critical fraction nonconforming, p.,;; = 0.148. The blue curve
of Figure 1 shows the OC curve of this sampling plan. The two blue points on this
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Pi=(p;=01,1-a=095)
+ Py=(p,=02,B=01)
P,
1

Probability of acceptance, L

0 = (Pere =0.148, L =0.5)
=5, tc=25
n=296, k=183, poy=0.148
— designed OC
— simulated OC, 0=1
— simulated OC, 0=0.5
simulated OC, 6=0.2

0.0

T T T T
0.00 0.05 0.10 015 0.20 025

Fraction nonconforming, p

Fig. 2: The asymptotic OC curve (blue) of the sampling plan (k,n,tc) =
(1.83,296,2.5) that passes through the points Pj(p; = 0.1,1 —a = 0.95) and
P>(p2 =0.2, 8=0.1). The black, red, green curves are the simulated OC curves for
o =1,0.5,0.2, respectively (solid: numerical acceptance decision, dashed: graphical
acceptance decision). Each point represents the average of 10* simulation runs.

curve are the design points P;(p; =0.1,1 —a =0.95) and P>(p, =0.2,5=0.1). The
black point Py(pcrir = 0.148, L = 0.5) indicates the indifferent quality.

Figure 3 is a plot of the sample size n as a function of the censoring time 7¢.
If we choose the censoring time as ¢ = 2t7,t7,t7,/2 we obtain the sample sizes
n =175,103,296, respectively. The smallest sample size, for the case of no censoring,
is nmin = 63. The corresponding attributes sampling plan is (ng; = 109, ¢ = 16): if
not more than 16 lifetimes are smaller than ¢;, = 5 the lot is accepted. For such an
attribute sampling plan, the life test can always be finished at ¢;, and hence, the
censoring time is equal to the specification limit, - = 7. It is interesting to note that
the sample size of the attributes sampling plan, n,,; = 109 (orange point in Figure 3),
is not much larger than the sample size of the variables sampling plan for tc =1,
n=103.

We now start sampling with the censoring time t¢c =t; = 5. In a simulation
experiment we choose o = 1,0.5,0.2, calculate for various p the corresponding
1= X1 — 2,0, generate samples of size n = 75 with censoring time tc =t = 5 and
count the number of simulation runs in which the test statistic is larger than#; = 5. The
black, red, green curves of Figure 1 are the simulated OC curves for o = 1,0.5,0.2,
respectively, which are almost equal to the theoretical OC. If we now fix the censoring
time at fc = t7/2 = 2.5 the sampling plan is (k,n,tc) = (1.83,296,2.5). Figure
2 shows that the OC’s now depend very much on the standard deviation o of the
distribution of the log-lifetime, i.e. on the shape parameter 6 = 1 /0 of the distribution
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of the lifetime. We note that the sampling plan becomes less efficient (OC more flat)
if the standard deviation is smaller than the value that had been used for the design
of the sampling plan, oo = 1.

Figure 4 gives an explanation of this unexpected behaviour of the sampling
plan. In the upper graph the censoring time is 7¢ =ty =5, in the lower graph it is
tc =t1./2 =2.5. The green simulated distributions of the test statistic y belong to
o =1(6 = 1) of the underlying lifetime distribution, the blue distributions to o =
0.5(6 =2). The solid distributions belong to the fraction p; = 0.1 of nonconforming
items in the lot, the dashed distributions to p, = 0.2. In the upper graph for p; = 0.1
the fraction of accepted lots (area of the distribution to the right of the specification
limit x; =1In5 = 1.61, indicated as red vertical line) is 0.948 if o = 1 (solid green)
and 0.945 if o = 0.5 (solid blue). For p, = 0.2 it is 0.102 (dashed green) if o = 1 and
0.103 if o = 0.5. All these results of 10* simulation runs are in excellent agreement
with the specified values 1 —« =0.95 and 8 = 0.1, respectively. However, in the lower
graph for p; = 0.1 the fraction of accepted lots is 0.896 if o = 1 (solid green) and
0.374if o = 0.5 (solid blue). For p, = 0.2 itis 0.065 (dashed green) if o = 1 and 0.319
if o = 0.5. Whereas for o = 1 the fractions of accepted lots are in agreement with the
specified values, they are extremely different from them if o = 0.5. A comparison of
the blue distributions with the green distributions of y shows that they have a smaller
standard deviation if o = 0.5(6 = 2) than if o = 1(6 = 1), and this would increase
the efficiency of the sampling plan. On the other hand, the distributions (and the
expected values of the test statistic y, indicated as points) are shifted towards the
specification limit if o decreases (¢ increases), and this stronger effect decreases
the efficiency of the sampling plan. Simulations show that the choice of a smaller
o than o = 1 is no practical solution: it slightly turns all OC’s clockwise around
the point of indifferent quality, however this efficiency increasing effect is small and
the price is a much larger sample size n. The best recommendation is not to use
censoring times t¢c smaller than the specification limit ¢7 . Figure 3 demonstrates
another reason for this recommendation: for censoring times decreasing from the
specification limit to O the sample size increases sharply.

5 A graphical approach

The cumulative distribution function of the Weibull distribution is
t )
le—exp(—(—) ) (24)
T
By taking twice the logarithm of 1 — F we get

In(—=In(1-F)) =6(Int—InT). 25)

This equation relates In(—In(1 — F)) linearly to Inz. Hence, in a coordinate system
with a logarithmic horizontal axis for # and a vertical axis according to In(—In(1 - F)
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Fig. 3: The sample size n as a function of the censoring time #¢ for the sampling
plan the OC of which passes through the points Pj(p; = 0.1,1 —a = 0.95) and
P>(p2 =0.2,8 =0.1). For the censoring times ¢ = 2t (green), t¢c =t (black),
tc =tr /2 (red) we obtain the sample sizes n = 75, 103,296, respectively. The smallest
sample size, for the case of no censoring, is n,,;,, = 63 (blue). The orange point
indicates the sample size of the corresponding attributes sampling plan, n,.; = 109.

for F' the cumulative distribution function of any Weibull distribution is represented
as a straight line. The slope of this straight line is equal to the parameter ¢ and
the parameter 7 is the lifetime 7 for which the cumulative distribution is equal to
1 —exp(—1) = 0.632. Graph paper with such a coordinate system exists as Weibull
probability paper.

We can use the Weibull probability paper for the application of the sampling
pland based on the Weibull distribution (but not for its design). We plot the points
(@) E(Fr(t@))) =i/(n+1)) and draw a "best fit" straight line through these points.
At the intersection of this straight line with the vertical line through the specification
limit #; we can read an estimate p of the fraction of nonconforming items in the lot.
If p is not larger than the critical fraction p.,;; given by the sampling plan we accept
the lot. Figure 5 shows a particular example of the application of our sampling plan
(n =103,k = 1.83,p¢ris = 0.148,t; = 5,tc =5). 9 lifetimes #(y),...,t9) have been
observed and are plotted against 1/(n+1),...,9/(n+1) (black points). The "best fit"
straight line (black) intersects with the vertical line through ¢;, = 5 in the green part
for which the estimate p is smaller than p.,;; and hence, the lot is accepted. If the
intersection were in the red part of the vertical line p were larger than p.,;; and the
lot would be rejected.

In our simulation experiment we have used the graphical procedure parallel to the
numerical procedure of section 3. The dashed curves of Figure 1 are the simulated OC
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Fig. 4: The distributions of the test statistic y for censoring time tc = ¢, =5 (upper
graphs), tc =t;/2 = 2.5 (lower graphs), o =1 (green), o = 0.5 (blue), p; = 0.1
(solid) and p, = 0.2 (dashed) obtained by 10* simulation runs. The expected values
of the test statistic are indicated as points on the horizontal axis. The specification
limit x;, = 1.61(¢z, = 5) is indicated as red vertical line.
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curves of the graphical procedure corresponding to the solid curves of the numerical
procedure. The OC curves are a little more flat, i.e. the graphical procedure is slightly
less efficient. However, the graphical procedure depends on the visually fitted straight
line and this fit might cause dispute if the intersection with the vertical line is close
to the critical value p¢,i;.

Weibull probability plot

0.999

0.9

o
3
S

0.001

Lifetime:

Fig. 5: In this particular example of the application of our sampling plan (n =
103,k =1.83, pcrir = 0.148,¢tp = 5,tc =5) 9 lifetimes ¢ (1), . . ., (9) have been observed
and are plotted against 1/(n+1),...,9/(n+ 1) (black points). The "best fit" straight
line (black) intersects with the vertical line through #;, =5 in the green part for
which the estimate p is smaller than p.,;; and hence, the lot is accepted. (The blue
lines demonstrate how the parameters of the Weibull distribution can be estimated
graphically).

6 Conclusions

The lifetime (time to failure) of a product is modelled as Weibull distributed (with
unknown parameters); in this case the logarithms of the lifetimes are Gumbel dis-
tributed. Lots of items shall be accepted if their fraction p of nonconforming items
(items the lifetime of which is smaller than a lower specification limit ¢7 ) is not larger
than a specified acceptable quality limit. The acceptance decision is based on the
r < n observed lifetimes of a sample of size n which is put under test until a defined
censoring time ¢ is reached (Type I censoring). A lot is accepted if r =0 orr =1 or
if the test statistic y = fi — k0~ is not smaller than the logarithm of the specification
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limit, x;, = log(z), where k is an acceptance factor and fi and & are the Maximum
Likelihood estimates of the parameters of the Gumbel distribution. The parameters
of the sampling plan (acceptance factor k, sample size n and censoring time #¢) are
derived so that lots with p < p; shall be accepted with probability not smaller than
1 — a. On the other hand, lots with fractions nonconforming larger than a specified
value p; shall be accepted with probability not larger than §. n and #¢ are not ob-
tained separately but as a function that relates the sample size n to the censoring
time ¢ . Of course, n decreases if the censoring time #¢ is increased. For tc — oo the
smallest sample size, i.e. that of the uncensored sample, is obtained. Unfortunately,
the parameters of the sampling plan do not only depend on the two specified points
of the OC, Pi(p1,1 —a) and P,(p», B), but directly on the parameters 7 and ¢ of
the underlying Weibull distribution or equivalently, on the parameters u = log(t)
and o = 1/6 of the corresponding Gumbel distribtuion. Since these parameters are
unknown we assume that the hazard rate of the underlying Weibull distribution is
nondecreasing (6 > 1). For the design of the sampling plan we use the limiting case
0=1oro=1/6=1. A simulation study shows that the OC of the sampling plan is
almost independent of ¢ if the censoring time 7¢ is not smaller than the specification
limit 7.

If the censoring time 7¢ is chosen smaller than the specification limit 77 then the
sample size of the sampling plan is rather large, if tc = ¢ the sample size is not
much smaller than the sample size of the corresponding attributes sampling plan,
whereas for 7¢ larger than ¢;, the sample size is, e.g. for tc = 2¢1,, about 10% to 30%
smaller than that of the corresponding attributes sampling plan.

Annex A: Maximum likelihood estimation of the parameters of
the Gumbel distribution

r lifetimes #(1) < t(2) < ... <1, (assumed to be Weibull distributed) are observed in
a life test with n items put on test and the test finished at time z¢ (Type I censoring
to the right); all n —r unobserved lifetimes #(,+1) < t(-+2) < ... < () are larger than
tc;r=0,1,...,nis arandom variable.

We transform the lifetimes #(;) to x; = Int(;). The likelihood function of the sample
is

L(p,0)

r 1 r
[ [/x-Gy (o) = — [ [ 260G " o)
i=1 i=1

1 r
pr l_[exp(zz' —exp(zi)) (exp(—exp(zc))™™" (26)
i=1

with z; = (x; — p)/o and z¢ = (x¢ — p)/o. The loglikelihood function is
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(o) =—-rlno + (zi —exp(zi)) — (n—r)exp(zc). 27

r
i=1

With dz;/0u = —1/0 and dz;/d0 = —x; /o> we obtain the first derivatives of the
loglikelihood as

5 D (1=exp(zi) - (n=r)exp(zc)
u

i=1

o) _ 1 [ a }

i=1

1 r
= —— [r—exp(—y/a-)( E exp(x;/o)+(n—r) exp(xc/a))] (28)
o

and

) _ 7 LN exnen)— (n—

9o o o2 [;(xz x;exp(z;))—(n r)xcexp(zC)} (29)
o ZiaXi_exp(-plo) [ B
s o2 o2 [;xlexp(xl/ﬂ')+(n ")xceXp(xc/O')].

The Maximum Likelihood estimates are the roots of the equations %}’IU) =0

and 242 - 0. With (28) and (29) we find

o r
) S ep (o) + - Pexp(ec ) G0
r6'+2f:1x;

exp(—f1/0) = p — (3D

b L xiexp(x, /&) + (- xc exp(xc /&)
respectively, and by equating (30) and (31) we obtain a nonlinear equation for the
determination of &:

. DiciXi X Xiexp(xi/0) +(n—r)xcexp(xc/0)

- = 0. 32
r ST exp(/8) + (n—r)exp(rc/o) 52)
From (30) we finally obtain
a=—ol r (33)
R0\ S exp(xi/6) + (n—r)exp(xc /o) )

It shall be noted that the estimation of the parameters is not possible if » = 0 (no
lifetime observed).
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A

Annex B: The variance of the test statisticy = i — k&

We write the likelihood of a single observation z = (x — u)/o = (Int — w) /o as

Lpwo) = f5(2)G5 ' (2) (34)
where
1 z<zc
={p D e 3)

indicates that z is observed. The loglikelihood is
I=l(uo)=I1(—Inoc+z—-exp(z)) — (1 -I)exp(zc)

With dz/0u =—1/0 and dz/do = —z/o the first partial derivatives of / become

ol 1

= —— [I(1=exp(2)) ~ (1 - Dexp(zc)] (36)
M a

al 1

55 =~ [ +z=exp(x) = (1=Dexp(zc)] - (37)
g a

The second derivatives of [ are

d%l 1
- o2 [Texp(z) + (1 =1)exp(zc)] (38)
0%l 1
Gade = ~ga U1 +exp(@) + (1-Dexp(ze)]
1
= [1zexp(z) + (1 =D zc exp(zc)]
= —% [—Uﬂ +1zexp(z) + (1 -I)zc exp(zc) (39)
o ou
0%l 1
2oz =~ U+ 2-zexp(2) = (1= Dzcexp(zc)]

—% [1(=1=z+zexp(2) + 1+ 2 exp(2)) = (1 - (=zc exp(zc) — 7-exp(zc)) |

S [_zgﬂ FI(1+ 2 exp(2) + (1 - Dz exp(zc) (40)
o Jdo

The expectations of the second derivatives are, with E(I) = P(Z < z¢) = Fz(z¢),
E(§.)=0and E(ZL) =0:

0%l L[ [z
E(a_;ﬂ):_ﬁ[f exp(2) fz(2)dz+ (1 = Fz(zc))exp(ze) |- (41)

00

By partial integration with u = exp(z), v’ = fz(z), u’ = exp(z), v = Fz(z) and
u'v =exp(z)Fz(z) = exp(z) —exp(2)Gz(z) = exp(z) — fz(z) we obtain
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f' eXP(Z)fZ(Z)dZ=eXP(ZC)FZ(ZC)_fv (exp(2) = fz(2)) dz
= —(1-Fz(zc)exp(zc) + Fz(zc)

and hence,
0%l 1 1
E|—|=-—F =——f11. 42
(5/12) 2 fz(zc) 0_2f11 (42)

For z¢ — oo we have fi1 = fi1,0 = 1.

8%l 1 zc
E (6 ) =-— [f zexp(2) fz(2)dz+ (1= Fz(zc))zc exp(zc)
uoo o oo

By partial integration withu = zexp(z), v’ = fz(2),u’ = (1 +z)exp(z),v = Fz(z) and
uw'v=_~1+z)exp(z2)Fz(z) = (1+z2)exp(z) — (1 +z2)exp(z)Gz(z) = (1 +2)exp(z) —
(14 2)fz(z) we obtain

f' ZeXP(Z)fz(Z)dZ=ZceXp(Zc)Fz(Zc)—fv (1+2) (exp(z) - fz(2)) dz,

0

zc Z

f (1+2) (exp(z) — f2(2)) dz = f

o0

(1+z2) exp(z)dz+f ‘ (1+2)fz(2)dz

Ji J>
J1 = exp(zc) + zc exp(zc) —exp(zc)

b = —zcexp(ze) (1= Fr(ze) + f (1+2)f2(2)dz

=

f (1+Z)(6XP(Z—fZ(Z))dZZZCeXP(ZC)FZ(ZC)"‘fv (1+2)fz(2)dz

and hence,

621 1 zc 1
E(aﬂad) = —;[m (1+2)fz(2)dz =~ — fia. (43)

With the substitution u = exp(z), fi12 becomes for z¢ — oo
Si2.00 = f (1+2)fz(2)dz=1 +f Inuexp(—uldu=1-y (44)
—00 0

where y = 0.57721566490. .. is Euler’s constant (see Erdéliy (1954), p.148).

%l 1 zc
E(ﬁ) =-= U (1+2%exp(2)) fz(2)dz + (1 = Fz(z¢))z-exp(zc)

1 ydeol zc
=—;[ f fz(z)dz + f 22 exp(2) fz(2)dz + (1= Fz(zc)) 2% exp(zc)
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By partial integration withu = z2exp(2), v’ = fz(2),u’ = (2z+2%) exp(2), v = Fz(2)
and u’v = (2z+ 22) exp(Z)Fz(Z) =2z+ Zz) exp(z) - 27+ Zz)eXP(Z)Gz(Z) -2z +
72)exp(z) — (22 + z%) fz(z) we obtain

f ‘ 2 exp(z) fz(2)dz = Z2C exp(zc)Fz(zc)—f C(2Z+Z2)€Xp(Z)Fz(Z)dZ,

(o)

zZc Zc
= zgexp(zc) Fz(zc) - (2z+zz)exp(z)dz+f (2z+2) fz(2)dz,
J3
zZc el
J3 = 2[ zexp(z)dz+zzc exp(zc)—2f zexp(z)dz = zzcexp(zc)
= - -
zZc zc
f Zexp(zc) fz(2)dz = —(1-Fz(z¢))zg explac) + f Qz+7°) fz(2)dz
and hence,
5(20) =L [Fur0rei=-Ly (45)
dor2) o2 ) o L JzlRar == n .

With the substitution u = exp(z), f22 becomes for z¢ — oo

f22,oo=1+2f zfz(z)dz+f zzfz(z)dz=1+2f lnuexp(—u)du+f ln2uexp(—u)du.
- 0 0

00 —00

J4 Js

With J; = —y according to (44) and J5 = y% + %2 (see Erdéliy (1954), p. 149) we get

frreo= (1= +Z.

The formulae for f11, f12 and f>> in (42), (44) and (45) are equivalent to formulae
derived in Harter and Moore (1968). The integrals in (44) and (45) cannot be soved
directly. Escobar and Meeker (1986) present series expansions
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and recommend to use these series expansions if z¢c < 0 and to split the integrals
into
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f C1 42 f2(2)dz
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for zc > 1 and to calculate the integrals on the right hand side by numerical integra-
tion.
The Fisher information matrix of a sample of size n is

= E ilz E(ﬁagtr) _hfufi2
F__H(E(((};U)) E(%) _p(flzfzz) (48)

with f11, f12, f22 according to (42), (44), (45), respectively.
The asymptotic covariance matrix of the estimators [ and ¢ is the inverse of the
Fisher inormation matrix,
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We note that the inverse (f; J-)’l = (v;) only depends on the standardized censoring
time z¢c = (xc —p)/o.
For z¢ — oo the Fisher information matrix is

szi(f]],oo le,oo): n ( 1 -y )’ (50)
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and the asymptotic covariance matrix is
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The asymptotic variance of the test statistic y = [i— k& becomes
2
2

o2 =02+ k202 ~2kops = ‘% (i1 + K2y~ 2kvyp) = 02 A2 (52)

with
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where the numerator f(k,zc) only depends on the acceptance factor k and the
standardized censoring time z¢, and the denominator only on the sample size n. For

A= (53)
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Design of Experiments: A Key to Successful
Innovation

Douglas C. Montgomery and Rachel T. Silvestrini

Abstract Does the use of statistical methodology such as design of experiments
stifle innovation? This is an important theme in this paper. Design of experiments
is viewed as part of a process for enabling both breakthrough innovation and incre-
mental innovation, without which western society will fail to be competitive. Quality
engineering technology in general is part of a broader approach to innovation and
business improvement called statistical engineering. The most powerful statistical
technique in statistical engineering is design of experiments. Several important de-
velopments in this field are reviewed, the role of designed experiments in innovation
examined, and new developments and applications of the methods discussed.

1 Introduction

In June 2007 (http://www.bloomberg.com/news/articles/2007-06-10/at-3m-a-struggle-between-effic
Brian Hindo wrote an article in Bloomberg News entitled “At 3M, A struggle Be-
tween Efficiency and Creativity.” The article strongly suggests that programs such as
Six Sigma and Total Quality Management (TQM) stifle innovation if they become
engrained within a company’s culture. Hindo writes “Efficiency programs such as
Six Sigma are designed to identify problems in work processes . . . When these types
of initiatives become ingrained in a company’s culture, as they did at 3M, creativ-
ity can easily get squelched. After all, a breakthrough innovation is something that
challenges existing procedures and norms.” In the article, this opinion seems to be
shared with several other CEO’s as well as a number of business school professors
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based on quotations throughout his piece. While Hindo presents many good points
about invention and innovation needing room for unstructured discovery, we believe
that programs such as Six Sigma and TQM, with toolboxes that include Design of
Experiment, can still coexist with creativity, innovation, and invention.

In this paper we explore the larger context of whether or not the use of statistically
methodologies stifle innovation. Spoiler alert, we do not think that these methodolo-
gies suppress innovation. On the contrary, we illustrate their place and appropriate
use and illustrate examples of success. Statisticians view one such statistical method,
design of experiments, as part of a process for enabling both breakthrough and in-
cremental innovation. Statistical programs such as Six Sigma and TQM generally
fall under the Quality Engineering realm. Quality engineering technology in general
is part of a broader approach to innovation and business improvement called statisti-
cal engineering. Readers should reference Hoerl and Snee, who present two papers
(2012a, 2012b), which discuss aspects of statistical engineering and how best to use
statistical methods for improved results. Also see the papers by Anderson-Cook et al
(2012a,2012b), Box and Woodall (2012) and Hockman and Jensen (2016). Antony et
al discuss and illustrate how designed experiments can promote innovative solutions
to complex problems in non-manufacturing and service organizations.

We believe that the most powerful statistical technique in statistical engineering
is design of experiments. In this paper we explore what innovation is, how it is
different from invention, and its place within research and development. We also
discuss design of experiments and its relationship with the scientific method. Finally,
we present important developments in this field of experimental design, the role of
designed experiments in innovation, and applications of the methods illustrated.

2 Innovation and Invention

Innovation is the successful exploitation of new ideas for products, services or pro-
cesses. This includes both radical new ideas (breakthrough innovation) and changes
to existing ones (incremental innovation). Successful innovation is a key factor in
higher and more sustainable profitability, staying ahead of your competition and
providing higher value to customers. Thus, all businesses should innovate in order
to thrive. Innovation offers a way of meeting challenges both inside and outside a
business and allows businesses to compete effectively in the increasingly competitive
global environment.

What is the difference between innovation and invention? The two are listed as
synonyms of each other. An invention is described as a unique or novel device or
discovery. Like innovation this can be in the form of a breakthrough or built on a pre-
existing idea. An invention that is not derived from an existing model or idea, or that
achieves a completely unique function, discovery, or result, may be a breakthrough.
An invention may also be an improvement upon something that already exists.
The difference between innovation and invention is subtle. A 2015 Wired article,
entitled “Innovation vs. Invention: Make the Leap and Reap the Rewards,” by Bill
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Walker discusses these subtleties (http://www.wired.com/insights/2015/01/
innovation-vs-invention/). Walker emphasizes that innovation deals with the
concepts of use while invention pertains to a thing.

In his article on efficiency and creativity, Hindo cites three examples of innovation
within 3M in his 2007 article: masking tape, Thinsulate, and the Post-it note. We
believe these are both inventions and innovations. All of these products provided a
fundamentally new product—a thing—to the market and fulfilled an unmet need—
a use. All three of these products can be classified in the breakthrough category.
Interestingly, Post-it notes were an innovative idea founded on a failed invention.
Dr. Spencer Silver is credited with the development of the adhesive chemical used
in Post-it notes, however it was Art Fry, a colleague of Silver’s, who came up with
the idea of using the product in the post-it style. Originally, Dr. Silver was trying
to develop a super-strong adhesive product, but accidentally created a reusable light
adhesive product.

Forbes regularly publishes a list of the “Most Innovative Companies.” Among
that list in the past 10 years include companies such as Apple, Google, 3M, Toyota,
Microsoft, GE, P&G, Nokia, Starbucks, and IBM. In 2015, Tesla ranked num-
ber 1 (http://www.forbes.com/innovative-companies/list/#tab:rank).
A brief survey of the list reveals a list of companies that are both innovative and
inventive and thus have an edge in the market. Many of these companies have strong,
well-known activities that embrace statistics and statistical engineering, including
the use of designed experiments. A large portion of the innovation and invention ac-
tivities in many organizations takes place within Research and Development (R&D).

Type research and development into your web browser and the first thing that
pops up is a definition. The definition is “(in industry) work directed towards the
innovation, introduction, and improvement of produces and processes.” While R&D
is listed as an umbrella term, we feel that it is important to distinguish the two.
Research is the area of a company that is directed to take risks and allow failures.
Surprises are both rewarded and celebrated, especially when they result in a novel
discovery. In contrast, Development would like no surprises as they can lead to catas-
trophic failure. The customer of the research department is generally the consumer
and the customer of the development department is generally manufacturing or the
fulfillment process.

Breakthrough innovation and invention within a company often occurs within
the research team. Incremental innovation is more typically found in development
organizations. The R&D sector within a company has a long history of relying on
the scientific method to aid in discovery. In the next section of this paper we will
discuss the scientific method and its relationship with design of experiments.

3 The Scientific Method and Design of Experiments

Scientists and engineers solve problems of interest to society by the efficient ap-
plication of scientific principles. This is usually accomplished by either refining an
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existing product or process or by designing a new product or process that meets
customers’ needs. The scientific (or engineering) method is the approach typically
used in formulating and solving these problems. Montgomery and Runger (2014)
identify the steps in the scientific (or engineering) method as follows:

1. Develop a clear and concise description of the problem.

2. Identify, at least tentatively, the important factors that affect this problem or that
may play a role in its solution.

3. Propose a model for the problem, using scientific or engineering knowledge of
the phenomenon being studied. This model may be a theory or hypothesis about
how the phenomena of interest behaves. State any limitations or assumptions of
the model.

4. Conduct appropriate experiments and collect data to test or validate the tentative

model or conclusions made in steps 2 and 3.

Refine the model on the basis of the observed data.

Manipulate the model to assist in developing a solution to the problem.

7. Conduct an appropriate experiment to confirm that the proposed solution to the
problem is both effective and efficient.

8. Draw conclusions or make recommendations based on the problem solution.

AN

The steps in the scientific method are shown in Fig. 1. Many of the fields of sci-
ence are employed in the scientific method: the physics and the mechanical sciences
(statics, dynamics), fluid science, thermal science, electrical science, the science of
materials, chemistry, biochemistry and biological sciences. Notice that the scien-
tific method features a strong interplay between the problem, the factors that may
influence its solution, a model of the phenomenon, and experimentation to verify
the adequacy of the model and the proposed solution to the problem. Steps 2—4 in
Fig. 1 are enclosed in a box, indicating that several cycles or iterations of these steps
may be required to obtain the final solution. Consequently, scientists and engineers
must know how to efficiently plan experiments, collect data, analyze and interpret
the data, and understand how the observed data are related to the model they have
proposed for the problem under study.

r—————————————- 1
| |
Developa || | Identify the Propose or || | Manipulate Confirm Conclusions
clear Jl-;- important | refinea Jl-h- the | the |- and
description | | factors model | model solution recommendations
| |
| |
| Conduct :
| experiments I
| |
|

—— ——

Fig. 1: The Scientific (or Engineering) Method Montgomery & Runger (2014)
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An experiment is a test or series of tests in which purposeful changes are made
to the input variables of a process or system so that we may observe and identify
the reasons for changes that may be observed in the output response. We usually
want to determine which input variables are responsible for the observed changes
in the response, develop or refine a model relating the response to the important
input variables and to use this model for process or system improvement or other
decision-making. In R&D activities we are often trying to discover how some system
behaves or performs, or to validate a theory about how the system should perform.

There are at least three distinct strategies of experimentation. In the best-guess
approach the experimenter makes an educated guess based on his or her experience
and scientific/engineering knowledge about the phenomena being studied behaves.
Based on the outcome of this experiment, another experiment or series of experiments
is planned and conducted. This process is continued until either (1) success is
achieved, (2) no further guesses about the problem are forthcoming so testing is
halted, or (3) the organization abandons the effort. Best-guess experimentation is
sometimes very successful, but it can take a long time and there is no assurance
that any solution found is the best one. The one-factor-at-a-time or OFAT strategy
is very popular in some fields. In this approach a list of potential factors to be
studied is constructed and then experiments are performed in which all factors but
one are held constant at some reference or baseline level while one factor is varied
over its range. This is repeated until all factors have been varied over their range
while simultaneously holding all others constant. Then a decision is made about the
problem by examining the one-factor-at-a-time results. This decision is often a pick-
the-winner process, where the best combination of factors is read from a series of
plots. The well-known disadvantage of this approach is that any interaction between
the factors will not be discovered. Interactions occur relatively often and in many
cases they are the key to problem solution.

Statistically designed experiments are the recommended strategy. Usually these
are experiments based on the idea of factorial designs Montgomery (2012). This
approach varies factors together which among other things facilitates the discovery
of interaction effects. The famous statistician George Box was often quoted as saying
that if “. . . scientists and engineers only knew about the simplest factorial design (the
2%y and only knew how to visually examine the data this would have a huge impact
on innovation and competitive position in this country.”

Some argue that successful invention and innovation requires creativity and orig-
inal thinking and that the use of formal statistical methods like designed experiments
stifles or retards the creative ’trial and error’ process. We think of designed exper-
iments as an efficient and well-organized approach to trial-and-error experiments.
Perhaps a key difference is that a sound approach to designed experiments is that a
pre-experimental planning activity is highly recommended. Refer to Coleman and
Montgomery (1993) and Chapter 1 of Montgomery (2012), including the supple-
mental material for that chapter and the additional references therein. Charles Hicks,
a famous professor of statistics and mathematics at Purdue University, is said to have
told his design of experiments students that “...if you have 10 weeks to solve a
problem, you should spend 8 weeks planning the experiment, one week running it,
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and one week analyzing the data.” It is important to remember that all experiments
are designed experiments. Ones that are poorly planned and executed will usually
deliver disappointing results, while careful pre-experimental planning and execution
of an experiment will usually produce results helpful and even essential in eventual
problem solution.

It is often a capital mistake in invention and innovation activities to over-rely on
theory. An example of this occurred early in the history of powered flight. In the
early part of the 20th century Samuel P. Langley was the most famous authority in
aerodynamics of his era. He was sponsored by the US government to develop a flying
machine. Langley built an airplane based entirely on his understanding of theoretical
aerodynamic principles. At the same time, Orville and Wilbur Wright, two bicycle
mechanics from Dayton, Ohio, were building an airplane based on their experimental
work. They developed a working knowledge of aerodynamics from a home-built
wind tunnel in which they conducted numerous experiments, they flew kites and
eventually gliders at Kitty Hawk, North Carolina, developed a control system for the
airplane based on the wing-warping technique, and developed a propulsion system
experimentally. This work took place over a period of several years. Langley tested
his airplane by launching it from a ramp. It fell into the Potomac River and never
flew. The Wright Brothers were highly successful, becoming the founding fathers
of modern aviation. Good pre-experimental planning which brings in a variety of
backgrounds, viewpoints, and experiences is often effective in avoiding over-reliance
on theory.

4 The Role of Design of Experiments in Innovation

As noted in the introduction, Hindo and others think that statistical methodologies
can stifle innovation. In fact, many people believe that any specific frameworks, for
example, Design Thinking, may suppress creative thinking or in general the creative
thinking process. We are proponents of using appropriate toolsets when warranted.
For example, control charting, and specifically a Shewhart chart, cannot be used until
there is a process in place in which measurement may be taken and thus sampling
and charting can be applied.

Misguided use of methodologies and a lack of understanding of toolsets can
lead to failure or lack of success. It is wrong for a manager to say, “Use design
of experiments to innovate me a new product.” Design of experiments will not
produce results; people will produce results. It is more appropriate to understand
that design of experiments can provide a very effective and efficient aid that leads to
innovation and invention. Hindo argues that “defenders of Six Sigma at 3M claim
that a more systematic new-product introduction process allows innovations to get
to market faster.” Six sigma is about reducing variability in key product quality
characteristics, not a tool to create a new-product. See Montgomery (1992) and
Montgomery (1999) for a more thorough discussion of statistical process control
and the role of experimental design within process control.
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So, when should Design of Experiments be applied for innovation? The process
can be used when an idea has been formed regarding use or development of a
thing. Noting back to Flight testing, a notion of an airplane and flight was developed.
Determining the notion of flight leads way into the first step of design of experiments
“statement or recognition of a problem.” Prior to figuring out what this statement is,
the design of experiments framework cannot begin. Once the statement is formed,
or the problem is recognized, then design of experiment may be applied.

Based on the notion of ’creating a vehicle that can fly,” it was important to
determine how to fly and what factors might influence flight. In order to determine
the how and why, it is important to conduct experiments. Whether it is a small or
large number of tests or trials, design of experiments can be extremely effective for
determining what to test, where to test, and how much to test.

5 Barriers Hindering the Use of Design of Experiments

We believe that designed experiments should be much more widely used in invention
and innovation activities. As alluded to earlier in the quote attributed to Box, even
the use of simple techniques such as 2% factorial designs, has the potential to greatly
spark innovation and research and development productivity. So, why aren’t the basic
design of experiments concepts and techniques more widely used? We think there
are several barriers that hinder the more widespread use of design experiments and
probably statistical methods in general.

Resistance to change is certainly an issue. Many scientists and engineers were
educated in an environment where the OFAT approach was used in their university
laboratory courses. In many cases it’s not just the scientists and engineers, but often
the managers and executives responsible for R&D that have this experience in their
background. This can make it difficult to effectively integrate designed experiments
as a standard part of R&D activities. Furthermore, many individuals may view the
use of designed experiments as more time-consuming and difficult that the traditional
approach such as an OFAT.

Prior negative experiences with statistical methods including designed experi-
ments may also be a factor. Prior experiments may not have been successful because
appropriate design and analysis techniques were not used. For example, one of us
was engaged as a consultant by a company to provide some training on design of
experiments to their R&D organization. It turned out that there had been a previous
round of training by a consultant who had focused exclusively on Taguchi meth-
ods. However, most of the experiments actually conducted in this organization were
mixture experiments and the scientists and engineers quickly became disillusioned
with deigned experiments when they were unable to see how to use the L18 and
L27 orthogonal array for the kind of problems they encountered. There was a lot of
negative energy to overcome to convince them that there were appropriate techniques
that would be useful to them.
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Sometimes a failed experiment could be the result of poor pre-experimental
planning. As noted in Coleman and Montgomery (1993) and Montgomery (2012),
good experimental design is almost always a team effort. Letting one person design
the experiment is almost always a mistake, especially if that person is an expert in
the field. This often results in a situation where the expert already knows the answer
and as a result designs an experiment to prove his or her conjecture. This can lead to
an experiment that is too narrow in scope and that produces disappointing results.

Sometimes scientists and engineers have a weak statistical background that in-
hibits there understanding and use of designed experiments. Sadly, many scientific
and engineering disciplines don’t recognize the value of statistics and require very
minimal (if any) university education in the field. Equally sadly, university courses
are sometimes poorly taught. Often the statistics course for engineers and scientists
is a service course and assigned to someone with little interest in how the subject
matter will actually be used by the students. Sometimes the course disintegrates
into a semester-long exposition of balls and urns and almost nothing that illustrates
the power and beauty of using statistical methods to solve real problems is actually
covered. Sometimes even a full course in design of experiments is not taught well.
Many faculty members lack practical experience with designed experiments and
don’t have full appreciation of its use in an R&D environment. They do not present
real and meaningful examples and case studies in class. Furthermore, students are
not encouraged to conduct a real experiment as a course term project requirement.
Finally, many university design of experiments courses really don’t focus enough on
design, with too much course content devoted to analysis. Integration of computer
software into the course could change that emphasis.

Over-reliance on knowledge of underlying theory is another all-to-common prob-
lem; team leadership believes that the project can be addressed by relying on first
principles. So the product or system design is carried out using a purely theoretical
modeling and analysis approach. Utilizing one’s knowledge of the underlying theory
is an integral part of the successful use of the scientific method but it needs to be
integrated into a well-thought-out approach to research and development that also
makes use of sound experimental strategy at important steps along the way. The first
principles approach often leads to viewing experimentation as confirmation only, and
testing comes too late in the development cycle to take advantage of the discovery
and exploration aspects of good experimental strategy. The story of Samuel Langley
and the Wright brothers discussed previously is an excellent example of how things
can go wrong when we rely too much on first principles.

6 Recent Developments in Design of Experiments

There have been several developments in recent years in the design of experiments
field that have great potential to enhance innovation and drive more efficient product
and process development. Here we mention only a few of these. The first of these
is new design methodology that can reduce the amount of experimentation, reduce
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resources required for testing, and reduce development time. The use of non-regular
fractional factorial designs can be very useful in this regard. These are designs in
which many of the factorial effects are not completely aliased. Jones and Mont-
gomery (2010) identify a class of designs for 68 two-level factors in 16 runs that do
not alias any main effects with two-factor interactions and no two-factor interactions
are completely aliased with each other (although they are correlated). These designs
are good alternatives to the usual resolution IV fractions in which the two-factor
interactions are completely aliased. If there are significant two-factor interactions
the usual resolution IV designs would require follow-on experimentation to identify
which two-factor interactions are active. Unless there are many two-factor interac-
tions these non-regular designs provide experimenters to identify important main
effects and two-factor interactions without additional experimentation. The ability
to isolate both main effects and two-factor interactions from a single relatively small
experiment has the potential to greatly accelerate the development cycle. Shinde et al
(2014) explore the projection properties of these designs and provide some insight on
potential analysis methods. Krishnamoorthy et al (2015) demonstrate how one mod-
ern regression technique, the Dantzig selector, can be used to analyze these designs.
In a subsequent paper Jones et al (2015) present 16-run designs for 9-14 two-level
factors that do not completely alias any main effects with two-factor interactions
and no two-factor interactions are completely aliased with each other, although these
effects are correlated. These designs can be thought of as alternative to the regular
resolution III 16-run fractions.

The definitive screening designs developed by Jones and Nachtsheim (2011) are
three-level designs that require only one more run than twice the number of factors.
These designs are small enough to allow efficient screening of potentially many
factors yet they can accommodate many second-order effects without additional
runs. These designs have the following desirable properties:

1. The number of required runs is only one more than twice the number of factors.
Consequently, these are very small designs.

2. Unlike resolution III designs, main effects are completely independent of two-
factor interactions. As a result, estimates of main effects are not biased by the
presence of active two-factor interactions, regardless of whether the interactions
are included in the model.

3. Unlike resolution IV designs, two-factor interactions are not completely aliased
with other two-factor interactions, although they may be correlated.

4. Unlike resolution III, IV and V designs with added center points, all quadratic
effects can be estimated in models comprised of any number of linear and
quadratic main effect terms.

5. Quadratic effects are orthogonal to main effects and not completely aliased
(although they are correlated) with interaction effects.

6. With six or more factors, the designs are capable of estimating all possible
full quadratic models involving three or fewer factors with very high levels of
statistical efficiency.
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These designs are an excellent compromise between Resolution III fractions for
screening and small RSM designs. They also admit the possibility of moving directly
from screening to optimization using the results of a single experiment. Jones and
Nachtsheim found these designs using an optimization technique they had previously
developed for finding minimum aliasing designs. This procedure minimizes the sum
of squares of the elements of the alias matrix subject to a constraint on the D-
efficiency of the resulting design. These designs can also be constructed directly
from conference matrices.

Experimental designs for deterministic computer models is another relatively new
area of application that has great potential to accelerate innovation. Many engineer-
ing design activities make use of these types of models which include finite element
models, computational fluid dynamics models, computational thermodynamic mod-
els, environmental models, and electrical circuit and device design software. Some
of these models have many variables that must be studied and they can have very long
execution times even on very fast computers. A widely used way to use these models
is to deploy an experimental design on the computer model and then fit a response
surface of some type as a meta-model to the resulting output. Standard experimental
design techniques such as factorial designs and response surface designs often do
not work well in these applications because the low-order models that these designs
support don’t usually lead to an approximating meta-model that fits the response
surface with the desired accuracy.

The approach that is widely used in practice is to use a space-filling design and fit
the meta-model using the Gaussian process model. Jones and Johnson (2009) give an
introduction and overview of these methods. Other useful references on space-filling
designs and associated modeling techniques include Johnson et al (2011), Silvestrini
etal (2013), and Jones etal (2015). Space-filling designs are not recommended for use
in modeling response surfaces with low-order polynomials because of undesirable
prediction variance properties Johnson et al. (2010).

7 Conclusions

It is our view that design of experiments is the most statistical powerful tool that is
useful in enhancing both breakthrough and incremental innovation. Yet it is not as
widely used as it could be. Based on research of 3M practice, Hindo discusses that
“for along time, 3M had allowed researchers to spend years testing products.” Design
of experiments could greatly improve the testing process and six sigma practice can
be used to reduce noise when the product is formed and being produced. Making
statements that a culture of quality stifles activities such as testing seems to be a
misunderstanding of toolsets. Aside from this misunderstanding, we have identified
four reason main reasons for barriers to design of experiments, but which can be
thought of as barriers to any formal statistical toolset:

1. Resistance to change
2. Prior negative experiences with statistical methods
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3. Lack of statistical knowledge of key personnel in the organization
4. Over-reliance on underlying theory or a first-principles approach

Design of experiments provides a structured methodology for experimentation and
this can greatly aid in creative thinking. This structured methodology can improve
creative thinking in many instances because it allows you the ability to iterate through
ideas in a very efficient manner. There is always struggle with regards to innovation
and invention. The struggle will not and should not be removed. Creating the starting
point, that leads the way to the use of designed experiments takes time and energy,
but will be very rewarding. Applying statistical methodology is an important aid in
the innovative process and should be employed for improved results.
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Risk-Adjusted Exponentially Weighted Moving
Average Charting Procedure Based on
Multi-Responses

Xu Tang and Fah Fatt Gan

Abstract Quality control charting procedures like cumulative sum (CUSUM) and ex-
ponentially weighted moving average (EWMA) charting procedures are traditionally
used for monitoring the quality of manufactured products. Unlike a manufacturing
process where the raw material is usually reasonably homogeneous, patients’ risks of
various surgical outcomes are usually quite different. The risks will have to be taken
into consideration when monitoring surgical performances. Risk-adjusted CUSUM
charting procedure for monitoring surgical performances has already been developed
in the literature. In this paper, we develop a risk-adjusted EWMA charting procedure
based on 2 or more outcomes. The properties of this procedure is studied. It is also
compared with the risk-adjusted CUSUM procedure using a real surgical data set.
Our study shows that the risk-adjusted EWMA procedure is an attractive alternative
because of its performance and ease of interpretation.

Key words: Cumulative sum charting procedure; Odds ratio; Parsonnet scores; Pa-
tient mix; Proportional odds logistic regression model; Quality monitoring; Surgical
outcomes

1 Introduction

The need for effective monitoring of surgical performances has gained much attention
in recent years after the public was alerted to a high profile case of professional
misconduct over the quality of heart surgeries (BRI Inquiry Panel, 2001). Treasure
et al. (1997), Waldie (1998) and Treasure et al. (2004) have also highlighted several
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other critical cases. The importance of effective online monitoring procedures cannot
be understated because such procedures allow prompt detection of any deterioration
in surgical performance, and hence investigations of possible causes and eventually
reduction in undesirable outcomes.

In a manufacturing process, raw material fed into the process is usually quite
homogeneous. The added complexity in monitoring surgical performances is that
patients usually have different health conditions which affect the surgical outcomes
directly. If the heterogeneity of patients is not taken into consideration, then monitor-
ing procedures could lead to misleading inferences (Steiner et al., 2000). To estimate
the risk of death from a cardiac operation, Parsonnet et al. (1989) proposed an ad-
ditive scoring system based on a patient’s health condition like age, blood pressure,
existence of certain disease such as diabetes, morbid obesity etc. This score is com-
monly known as the Parsonnet score. Steiner et al. (2000) for example, fitted a binary
logistic regression model using the Parsonnet score as the explanatory variable to
estimate the probability of death from a cardiac operation. The Euroscore which
was developed by Roques et al. (1999) for estimating the probability of death was
also obtained by fitting a binary logistic regression model. Their model is based on
19,030 cardiac surgeries, using various measures of health condition as explanatory
variables. For 3 or more surgical outcomes, Tang, Gan and Zhang (2015) fitted a pro-
portional odds logistic regression model using the Parsonnet score as the explanatory
variable to estimate the probabilities of various surgical outcomes.

The earliest risk-adjusted monitoring procedure was developed by Lovegrove et
al. (1997, 1999) and Poloniecki et al. (1998). Their simple risk-adjustment is done
using the difference between the surgical outcome (0 for survival within 30 days
and 1 for death) and the estimated probability of death. The main disadvantage of
this procedure is the lack of a proper signaling rule. The risk-adjusted cumulative
sum (CUSUM) charting procedure developed by Steiner et al. (2000) is based on
accumulating the log likelihood ratio derived from testing the odds ratio that a patient
dies. This chart is also based on the same binary outcomes. A more general risk-
adjusted CUSUM procedure obtained by testing the probability of death was given
by Gan, Lin and Loke (2012). In order to improve the effectiveness of this procedure,
Tang, Gan and Zhang (2015) developed a risk-adjusted CUSUM procedure based on
more than 2 outcomes: death and different grades of survival. Grigg and Spiegelhalter
(2007) developed a risk-adjusted exponentially weighted moving average (EWMA)
chart for exponential family data. Their EWMA chart is only feasible for monitoring
surgical performances with 2 outcomes. However, more effective procedures can
be obtained by classifying the surgical outcomes into more than 2 outcomes as
explained in Tang, Gan and Zhang (2015).

In this paper, we will develop a risk-adjusted EWMA chart based on 2 or more
outcomes. In Section 2, a proportional odds logistic regression model is used to
estimate the probabilities of various surgical outcomes. We then develop a risk-
adjusted statistic based on the likelihood ratio approach. The properties of this
statistic is investigated and conditions are derived for it to be a reasonable monitoring
statistic. In Section 3, we develop a risk-adjusted EWMA charting procedure based
on this statistic. The risk-adjusted EWMA and CUSUM procedures are used to study
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the performances of 3 surgeons based on a real data set in Section 4. Similarities
and differences between these 2 procedures are compared. Conclusions are given in
Section 5.

2 Proportional Odds Logistic Regression Model and Log
Likelihood Ratio Statistic

The Parsonnet score S measures the mortality risk of a patient undergoing a cardiac
surgery. The outcome is usually determined after 30 days of an operation and it can
be represented by a discrete random variable Y which takes a value from O to J. Let
Y =0 when a patient has a fully recovery, Y = 1,2,...,J — 1 denote various states of
partial recovery, with a smaller number associated with a better state of recovery and
Y = J when a patient dies.

We will follow the notations used by Tang, Gan and Zhang (2015). Conditional
on a patient’s risk score S = s, the distribution Y is denoted as

P(Y =k|S=5)=mc(s), k=0,1,...,J.

The cumulative logit is defined as

logit[P(Y < k|S =s)] =log

PY <k|S=y¥) ]_ [ mo(s) + -+ m(s)
1-PY <klS=s)]  “lme(s)++m(s) 1

where kK =0,...,J — 1. The cumulative distribution function of Y can be estimated
using the proportional odds logistic regression model (McCullagh, 1980) as

logit[P(Y < k|S=s)]=ar+Bs, k=0,....,0—1, (1)

based a historical data set of patients’ risk scores and surgical outcomes. The model
assumes that the cumulative logits share the same slope S but with different inter-
cepts, a’s. The assumption of parallel logit surfaces is known as the proportional
odds assumption. For this application, the parameter «y is increasing in k because
the probability P(Y < k|S = s) increases in k for all s and the logit is an increas-
ing function of this probability. Also, the cumulative probability P(Y < k|S = s)
decreases with increasing risk score s and hence the parameter § is negative.

Following the notations used by Tang, Gan and Zhang (2015), we let the proba-
bility density function (pdf) of the risk score of a patient be f(s). The joint density
of (§,Y) is then given as f(s,y) = m,(s) f(s), y =0,...,J. We consider testing the
null hypothesis Hy : fo(s,y) against the alternative hypothesis Hx : fa(s,y) where
((8),..., 7y (5)) = (m)(s), ..., 5 (s)) under the null hypothesis and (mo(s), ...,
ny(s)) = (n(‘;‘(s), e ﬂ‘J“(s)) under the alternative hypothesis.

The nth log likelihood ratio statistic is given by

W, = log(fA(Sna Yn)/fO(Sna ).
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The statistic W,, is hence obtained by risk-adjusting ¥,, using S,,. The joint pdf’s
under the null and alternative hypotheses are given by fo(s,,yn) = ”(y),, (sn) f(sn)
and fa(Sp, yn) = nfn (sn) f(s,) respectively, hence,

W, =log(my (S) /7y, (Su)). (2)

The statistic W,, does not contain f(s,) because the risk distribution is assumed to
be the same for both hypotheses.

Based on the multi-response proportional odds logistic regression model, a natural
way of defining performance of a surgeon is to use the one based on cumulative
probabilities,

k k
% 7i(5) % mis)
i= _ i=
k . - Rk k £ (3)
1= 7 (s) 1- 3 mi(s)
i=0 i=0
k=0,---,J—1 where Ry is the odds ratio of cumulative probabilities of recovery.

In order for the probabilities ﬂ,’;(s), k=0,---,J tobein [0, 1], Tang, Gan and Zhang
(2015) showed that the odds ratios must satisfy the condition

ao+1log(Ry) < @y +log(Ry) <--- < ay_ +log(Ry-1). 4

In practice, we may assume that Ry = ... = Ry_; = 1 under the null hypothesis
which means that the performance under the null hypothesis is characterized by the
fitted logistic regression model. The values of Ry’s can then be set to be greater
than 1 for detecting improvement and less than 1 for detecting deterioration. Once
an alternative hypothesis is chosen, the monitoring statistic W (Y, S) is then defined
by equation (2).

Let the target alternative performance be ﬂ;(S) based on odds ratios Ra’ TR
R}[l for detecting improvement and 7, (S) based on Rg,---,R;_, for detecting
deterioration. Then, the statistic for detecting improvement and deterioration can be
determined using equation (2) as

W*(Y,S) =log(my (8)/my (5)),

and
W=(Y,$) =log(my (S)/my (S)),

respectively. One could use a charting procedure based on W* (Y, S) for monitoring
improvement and another procedure based on W~ (Y, S) for monitoring deterioration
but this would involve 2 procedures. We propose the adaptive statistic

Wa(Y,S) = WH(Y,S) - W (Y,S). 5)

as the monitoring statistic. This statistic has some attractive properties. The statistic
can be expressed as
Wo (Y, 8) = log(ny (S)/my (S)).
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It is the log likelihood ratio of the probability of an outcome Y given a risk score S
assuming a surgeon performing better than average to that of a surgeon performing
worst than average. This provides a mathematical support for the use of this adaptive
statistic for monitoring.

The statistic W, (Y, S) can also be viewed meaningfully as a penalty-reward score
for monitoring. In general, a reward score is given for a successful operation and a
penalty score is given for a failed operation. The penalty-reward score is a positive
number if it is a reward, and a negative number if it is a penalty. Given a particular
outcome Y =k, k =0,---,J, the penalty-reward score should increase as the risk
score increases. This means that for detecting deterioration, a surgeon should be
given a lower penalty score for a higher-risk patient given the same outcome. Also,
for detecting an improvement, a surgeon should be given a higher reward score for a
higher-risk patient given the same outcome. For a given risk score s, we also require
Wa(0,5) > W,(1,s5) > --- > W,(J,s) to be satisfied. This defines a proper ordering
of the penalty-reward score for all the outcomes.

In order for W, (Y, S) to satisfy the property that W, (y, s) is an increasing function
of s and a decreasing function of y, it only requires the condition in Theorem 1 to
be true. The proof of this theorem is given in Appendix 1.

Theorem 1. Assume equations (1), (2) and (3) hold. Suppose Rj,--,R;_, define
n;(S), and R;),---,R;_, define my,(S). Then the condition

Ry/Ry =+ =Rj_,/R;_; > 1,
is necessary and sufficient for W, (v, s) to be (i) an increasing function of s given y,
and (ii) a decreasing function of y given s.

Additional properties of the adaptive statistic are given in Theorem 2. The proof of
this theorem is given in Appendix 2.

Theorem 2. Assume equations (1), (2) and (3) hold. If

Rj/Ry=---=R;_|/R;_,=R'/R" > 1,
then W, (y, s) satisfies the following condition:
1. Wa(0,5) > 0.
2. W,(J,s) <O.

3. W,(0,5) = 0 when s —» —co, W, (J,s) — 0 when s — co.
4. Forye{0,---,J -1}, W,(y,s) — log(R*/R™) when s — .
5. Forye{l,---,J}, Wu(y,s) > —log(R*/R™), when s — —c0.

Note that Theorems 1 and 2 do not require Rj =---=Rj_ =R " and Rj =--- =
R;_, = R™. They only require Rj/R;, ---, Rj_,/R;_, to be the same as the ratio
R*/R™. The condition Rj =---=R; ; =R"and R; =---=R,_, = R is just a
special case and the more natural one to use. Hence, in this paper, we will be using
Ri=--=R! =R‘andR;=---=R, =R

The properties of W, (y, s) as stated in Theorems 1 and 2 can be explained further
using Figure 1 which shows a plot of W, (y, s) against s for y = 0, 1 and 2. This figure
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shows that as reward, the score W, (y, s) is positive and as penalty, negative. Results
1 and 2 of Theorem 2 show that the penalty-reward score W, (0, s) is positive for full
recovery and negative for death. For partial recovery, results 4 and 5 of Theorem 2
show that W, (k, s) < O for s less than some s* and W, (k, s) > O for s greater than s*.
Thus, for a patient with a risk s less than s*, the penalty-reward score is negative (a
penalty) if the patient makes a partial recovery. On the other hand, for a patient with
arisk s greater than s*, the penalty-reward is positive (a reward) if the patient makes
a partial recovery. This is reasonable because if a high-risk patient makes even a
partial recovery, this is considered a desirable outcome, whereas if a low-risk patient
who is more likely to make a full recovery, makes only a partial recovery, this is not
considered a desirable outcome. Note that the score W, (0, s) is always a reward and

Wa(y,s)
1.0
Yy = 0 (Full reCOVery)
0.5 )
7/
/
00 // D
—0.5 4 y )
- 'y =2 (Death
d y= eath)
—1.0+ -
//
......... ' | | | | | | | |

0 10 20 30 40 50 60 70 80 90 100

Parsonnet score s

Fig. 1: Plots of W,(y,s) against the Parsonnet score s for y = 0,1,2 when J = 2,
Rt=2and R~ =0.5.

W, (J,s) is always a penalty. The score W, (k,s),k =1,...,J —1 can be viewed either
as a penalty or a reward depending on the Parsonnet score of a patient and the state
of partial recovery. Furthermore, it can be seen from result 4 of Theorem 2 that for
a very high risk patient who makes a partial recovery, the reward given is very close
to that of a full recovery. This means that any state of partial recovery is considered
almost as good as a full recovery for a very high risk patient. Similarly, result 5 of
Theorem 2 implies that for a very low risk patient, the penalty given for any partial
recovery is very close to that of a patient who dies. This means that any state of
partial recovery is considered almost as bad as dead for a very low risk patient. For
a very low-risk patient, the only desirable outcome is a full recovery.
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3 Risk-Adjusted Exponentially Weighted Moving Average
Charting Procedure

Suppose X,, is the monitoring statistic based on the nth sample obtained. Let the
mean and variance of X,, be i and o2 respectively. The EWMA chart is obtained by
plotting

Zy=(1-0)Zy 1+ AX,,

against the sample number n where A is a smoothing parameter such that 0 < 2 < 1.
The starting value Zj is usually taken to be Zy = u. The statistic Z,, can also be

expressed as
n—1

Z, =1 Z(l — D) X+ (1= )" Z,.
i=0
It can be shown that if Zy = y, then E(Z,,) = . The variance of Z,, can be shown to
be Var(Z,) = o2 A[1 — (1 - 2)>"]/(2 - A) and hence the asymptotic variance of Z,
is given as 02 1/(2 - ). The upper and lower control limits for the EWMA chart are

typically set as
[ A
UCLZILI+L1 mO'ZH,
A
LCL=u-1L, 1%

respectively where L and L, are some constants. The constants L; and L, are
usually chosen to achieve a specific in-control average run length (ARL). If the risk
distribution can be determined, the ARL can be approximated using the collocation
procedure presented by Knoth (2005) based on the integral equation derived by
Crowder (1987). The details are described in Appendix 3.

We can now summarize the procedure of constructing a risk-adjusted EWMA
chart for monitoring surgical performances.

and

ha

Step 1. Fit a proportional odds logistic regression model (1) using some past surgical
data to estimate the probabilities of various outcomes 7 (s), k =0, ..., J, given
the Parsonnet score s.

Step 2. Set the alternative hypothesis H : Ry = R; =--- = Ry_; = R* > 1 for detecting
improvement and the alternative hypothesis H~ : Ry = R =--- = Rj_1 =
R~ <1 for detecting deterioration. The probabilities of various outcomes
nZ(s), k=0,..,J, given the Parsonnet score s, assuming the odds ratios
Ro,R1,...,Ry_; for a surgeon can be determined using equation (3). The
penalty-reward score W, (y, s) can then be calculated using equation (5).

Step 3. Plot Z,, = AW, (S,,,Y;,) + (1 — A1) Z,,—; against n and signal if Z,, > H of Z,, < h.
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4 Evaluation of the Performances of 3 Surgeons

In this section, we will construct risk-adjusted EWMA and CUSUM charts of 3
surgeons and compare their performances. These 3 surgeons are among a group of
7 surgeons who performed heart bypass operations on 6449 patients. A patient is
considered to have died (Y = 2) if the patient dies within 30 days of the surgery.
A patient is considered to have a partial recovery (Y = 1) if the patient survives
more than 30 days but died later before the study concluded. A patient who survives
throughout the entire period of study is considered a full recovery (¥ = 0). Our clas-
sification of the 3 outcomes is only approximate and quite likely not the best possible
classification, a surgeon should be able make a more appropriate classification. For
the 3-outcome data, we first fit a proportional odds logistic regression model as

7o ()
[ ey | =20 B
log[—m(s) il (s)] =aj + s, (6)

mo(s)

where ag = 3.057, a; =3.691 and B = —0.078. A score test performed for the
proportional odds assumption gives a p-value of 0.36 which is not significant,
thus it is reasonable to use the proportional odds logistic regression model. The
probabilities of the 3 outcomes can be obtained using equation (6) as my(s) =
exp(3.057-0.078s)/[1+exp(3.057-0.078s)], m2(s) = 1/[1 +exp(3.691-0.078s)],
m(s) = 1 =my(s) —m2(s). These probabilities assume the average performance of
surgeons in the entire data set. For a surgeon whose performance is characterized by
Ry and R|, these probabilities can be calculated using equation (3).

We will highlight the performances of 3 surgeons. The risk-adjusted EWMA
charts constructed for surgeons A, B and C are displayed in Figures 2, 3 and 4
respectively. The smoothing constant A for these charts is set to be 0.01. A very
small A is used here because of the large variability of the penalty-reward score. The
large variability is natural for this type of data. The chart limits are chosen such that
the in-control ARL is about 100. Unlike an industrial process, the in-control ARL
for this application should ideally be chosen to be small so that it will signal earlier
should there be any deterioration in surgical performance. Surgeon A operated on
986 patients. Figure 2 shows that his performance remained stable for about the first
700 patients and then started to improve steadily after that. Surgeon B operated on
1654 patients. Figure 3 shows that his performance deteriorated for approximately
the first 550 patients but turned around after that and continued to improve for the
rest of the patients. Surgeon C operated on 568 patients. Figure 4 shows that his
performance is stable for approximate the first half of the patients but deteriorated
for the rest of the patients.

The risk-adjusted CUSUM charts for the 3 surgeons are displayed in Figures 5,
6 and 7 respectively. The upper-sided CUSUM chart is designed to be optimal in
detecting R =2 and the lower-sided CUSUM chart is designed to be optimal in
detecting R = 0.5 The inferences drawn from these CUSUM charts are similar to
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those drawn from the EWMA charts. Even though the CUSUM chart is slightly
more sensitive than the EWMA chart, the EWMA chart has the advantage of ease
of interpretation.
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Fig. 2: Plot of risk-adjusted EWMA chart for Surgeon A.
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Fig. 3: Plot of risk-adjusted EWMA chart for Surgeon B.
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Fig. 4: Plot of risk-adjusted EWMA chart for Surgeon C.
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(a) Detecting Improvement (R = 2) (b) Detecting Deterioration (R = 0.5)

Fig. 5: Risk-adjusted CUSUM charts for detecting improvement (R = 2) and deteri-
oration (R = 0.5) for Surgeon A.

5 Conclusions

Steiner et al. (2000) developed a risk-adjusted CUSUM charting procedure for moni-
toring surgical performances based on binary outcomes: survival or death. However,
for a patient who survives an operation, there can be many different grades of sur-



Risk-Adjusted EWMA 87

CUSUM CUSUM
5 14

12

Al A e i

It i i Al Il
T — 0 T T T T T
0 200 400 601 800 1000 1200 1400 1600 0O 200 400 600 800 1000 1200 1400 1600

Patient Number Patient Number

(a) [Detecting Improvement (R = 2) (b) Detecting Deterioration (R = 0.5)

Fig. 6: Risk-adjusted CUSUM charts for detecting improvement (R = 2) and deteri-
oration (R = 0.5) for Surgeon B.
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Fig. 7: Risk-adjusted CUSUM charts for detecting improvement (R = 2) and deteri-
oration (R = 0.5) for Surgeon C.

vival. In order to improve the effectiveness of the CUSUM procedure, Tang, Gan
and Zhang (2015) developed a risk-adjusted CUSUM procedure based on 3 or more
outcomes. The EWMA procedure is known to have run length properties similar
to the CUSUM procedure but with the advantage of ease of interpretation. In this
paper, we develop a risk-adjusted EWMA procedure based on 2 or more outcomes.
The monitoring statistic is an adaptive statistic obtained by combining the log like-
lihood ratio statistics for detecting improvement and deterioration. The properties
of this statistic is studied and conditions are established to ensure that there is a
proper ordering according to the severities of surgical outcomes. We compare the
performances of these two competing charting procedures by analysing 3 surgeons’
surgical data. The performances of the two procedures were found to be similar.
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The EWMA procedure is an attractive alternative with the advantage of ease of
interpretation.
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Appendix 1: Proof of Theorem 1

To prove sufficiency, let Rj /Ry =---=Rj_,/R;_, = R"/R™ > 1. From the propor-
tional odds logistic regression model

logit[P(Y <k|S=s)]=ax+Bs,k=0,...,J -1,

we can obtain the conditional probability

mi(s) = P(Y <k|S=s5)—P(Y <k—1]S=5)
__explax+Bs)  exp(ag-1+fBs)
1+exp(ar+Bs) 1+exp(ak-1+pBs)
exp(Bs)lexp(ar) —exp(ag-1)]
[1+exp(ax + Bs)][1+exp(ai_1+ Bs)]

where k =0,---,J, a_; = —c0 and @; = co. From equation (3), we have

k k
1og(zn;(s)/[1 —Zn;(s)]) = log(R}) + g + Bs.
i=0 i=0

Then, we have

exp(Bs)[exp(a +1og(R})) —exp(ai_ +log(R}_|))]
[1+exp(ax +1og(R)) + B[ +exp(ag-1 +log(R;_) + Bs)]

i (5) =

where k =0,---,J, and RY| = R} = 1. Similarly,

exp(Bs)[exp(ay +log(Ry)) —exp(ax—i +1og(Ry_))]
[1+exp(ak +1og(R,) + Bs)I[1 +exp(ak-1 +10g(R,_,) + Bs)]

m (s) =

where k =0,---,J, and R:1 =R, = 1. Hence,
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Wa(k,s) = log[n (s)/m; (5)]
= Dy +log(1 +exp(ax +1og(Ry) + Bs)) +1og(1 +exp(ar-1
+log(R;_;) + Bs)) —log(1 +exp(ak +10g(R,:“) + Bs))
—log[1+exp(ar—1 +1og(R;_}) + Bs)],

where
Dy = log[exp(ay +10g(R;)) —exp(ax—1 +1og(R{_;))]

—log[exp(ak +10g(R; ) —exp(ak—1 +1og(R;_;))] = log(R*/R™).

Taking the first derivative with respect to s, we obtain

OWa(k,s) [ exp(ag +1og(R;) + Bs) . exp(a-1 +1og(R,_ ) + Bs)
as 1 +exp(ag +1og(R, )+ Bs) 1+exp(ak-1+1og(R,_,)+ Bs)
exp(ag +1log(R;) + Bs) exp(ak-1 +1og(R}_,) + Bs)
1+exp(ag +log(RY) +fBs)  1+exp(ar_i +log(R}_,) + ﬁs)]

1 1
= B[ + + +
1 +exp(ag +1og(R) + Bs)  1+exp(ak-1+1og(R;_,)+ Bs)
B 1 B 1 ]
1 +exp(ax +1log(R.)+ Bs) 1+exp(ak-1+log(R,_,)+ Bs)
= BE.
where
E= 1 _ 1
 l+exp(ag +1og(RY) +Bs)  1+exp(ax +1og(Ry) + Bs)
N 1 B 1
1 +exp(ag—1 +1og(Rf_|)+Bs) 1 +exp(ar_;+log(R,_)+Bs)
Note that Rj/R; =---=Rj_,/R;_, = R"/R™ > 1, this imply E < 0. In addition, note

that 8 < 0 from earlier discussion. Thus, W, (k,s)/ds > 0. It follows that W, (y, s)
is an increasing function of s given y.

In addition, let A =log(R*/R™) > 0. Define gx (A) = W, (k+1,5)— W, (k,s). Then

gk (A) = log(1 +exp(ak+1 +10g(R; ) + Bs))
—log(1 +exp(ar+1 +1og(R, ;) + A+ Bs))
—log(1+exp(ai-1 +1log(R,_;) + Bs))
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+log(1 +exp(ak-1 +1og(R,_,) + A+ Bs)).

It is clear that g (0) = 0. Take the first derivative of gx (A)

exp(ag+1 + log(R,:H) +A+ Bs)
" T+exp(aks +log(R;, ) +A+ Bs)
exp(ak-1 +10g(R,_,) +A+ Bs)
* 1 +exp(ak-1 +10g(R];1) + A+ Bs)
1
1 +exp(ai+1 +10g(R];+1) +A+ Bs)
1
" 1+exp(ar_ +log(R,_|)+A+Bs)

g (A) =

Note that @1 +10g(R, ) > @x-1 +10g(R,_,), thus g; (A) < 0. Hence, gx(A) <0
for A > 0. Thus, W,(k+1,s) < W,(k,s). In other words, W, (y,s) is a decreasing
function of y conditional on s. This proves the sufficiency.

Note that 7r;;(S) and 7y, (S) are defined as:

k k
PEAE) > mi(s)
i=0 _ gt _i=0
k k k ’
1= 3 7/ (s) 1= 3 mi(s)
i=0 i=0
and
k k
27 (s) 2 7i(s)
— R/
1= 77 (s) 1= mi(s)
i=0 i=0
It follows that . .
at(s) o (8)
igo ! 3 R_Z E‘o ! (AD)
k TR k )
1-Y i) % 1-% ()
i=0 i=0

In other words, the odds ratios of 7y, (S) related to 7y, (S) is given by R /R, .
To prove necessity, assume W, (y, s) is a decreasing function of y conditional on
s: Wq(0,8) > Wg(l,s) > - > Wy(J,s). Equivalently,

ny(s)  mf(s) . ny(s)
ny(s) ~ap(s) A (s)

Then, we have
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J-1 J
g (s) . ng(s) + i (s) EO m; (s) R E{)ﬂi (s) )

() T mo(s)+ac(s) -l =77 =1, (A2)
0 0 1 PEAC DT AC)
i=0 i=0
Srw S
* + + i 7 (s
7y (s) - i (s) + 7 P & N .

i (s)  w_(s)+7y(s)

= J = J -
2 (s) X m(s)
i=1 i=0

Based on the odds ratio of cumulative probabilities defined in equation (A1) we can
obtain

k
nr(s) _
Eo ! _ R /R,

- - k k=001 (A4)
goﬂi_(s) 1- goﬂi_(s) +RI /R, Z‘Oﬂi_(s)

1

J

2z 7 (s)
i=k+1 _

J

- k k ’
2 m(s) 1=Y a7 (s)+RI/R. X 77 (s)
i=k+1 i=0 i=0

Substitute (A4) into (A2) and (AS5) into (A3), we get
R{ /Ry . RY/R;
l=my(s)+ Ry /Ry -7y (s) —

1 1 > ..
1- 'Z‘Oﬂi_(s) +RI /Ry Z‘Oﬂi_(s)

R%_/R;
71 /R > 1 (A6)

A J-1 =
1- _20 n (s)+R;_/R;_, ‘20 7 (s)
1= 1=

and

1 1
<

J-1 J-1 = U2 J-2
1- _ZO n () + Ry /R, _ZO n(s) 1- 'Zo n (s)+R)_,/R;_, 'Zo w7 (s)
1= 1= 1= 1=

< - 1+ —— < 1.
1—770 (s)+RO/RO E (s)

(AT)

k
From the definition of risk score, if s — oo, 77 (s) — 1, thus ¥ 77 (s) — O for
i=0

k=0,---,J—1 and we obtain the following from equation (A6)

Rj/Ry =2 R{/Ry 2---2Rj_|/R; | >1. (A8)
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k
Similarly, if s — —oo, na(s) — 1, thus _Z 7 (s) > 1 for k=0,---,J—1 and we

obtain the following from equation (A7) =

1>Rj/R; =R /Ry >-->R;_|/R}_,. (A9)
(A8) and (A9) imply

Rj/Ry =R{/Ry=---=R;_,/R;_; > 1.

Appendix 2: Proof of Theorem 2

Let A=1og(R*/R™). Note that A >0 .

Wa(k,s) = A+log(1 +exp(ax +log(Ry) + Bs))
+log(1 +exp(ak-1 +1og(R;,_,) + Bs))
—log(1 +exp(ay +1log(R;) + Bs))
—log[1 +exp(ar-1 +log(R;_)) + Bs)],

1.ForY =0and a@_; = —o0, then

Wa(0,5) = A+log(1 +exp(ap +log(Ry) + Bs))
—log(1 +exp(ap+log(Ry) + A+ Bs))
= log(1 +exp(ao +log(R,) + Bs))
—log(exp(=A) +exp(ag +1og(Ry) + B5)).

Since A > 0, exp(—=A) < 1 and hence W, (0, s) > 0.
2.ForY = J and ay = o, then

Wa(J,s) = log(1 +exp(ay-1 +1log(R;_)) + Bs))
—log(1 +exp(ay-1 +log(R;_;) +A+ Bs))

Since A > 0, W,(J,s) <O0.
3. This is clear from the functions of W, (0, s) and W, (J,s) given in parts 1 and 2.
4andS5.ForY=ke{l,---,J—-1},
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Wa(k,s) = A+log(l +exp(ag +1log(R,) + Bs))
—log(1 +exp(ax +1og(R;) + A+ Bs))
—log(1 +exp(ai-1 +1og(R,_;) + A+ Bs)).

Note that 8 < 0 for our logistic model.

Let s — oo, then W, (k,s) > A< 0. Let s > —co, then W, (k,s) - —A > 0.

For Y =0, from the function W,(0,s) obtained in part 1, let s — oo, then
W,(0,s) — A. For Y = J, from the function W,(J,s) obtained in part 2, we can
show that

Wa(J,s) = log(1 +exp(ay-1 +1og(R,_,) + Bs))
—log(1 +exp(ay-1 +1og(R;_;) + A+ Bs))
= —A+log(1 +exp(ay_1 +1log(R,_;) + Bs))
—log(exp(—=A) +exp(ay-1 +1og(R,_;) + B5)).

Let s — —oo, then W,(J,s5) - —=A > 0.

Appendix 3: Average Run Length of EWMA Chart

Page (1954) introduced a integral equation method for evaluating the ARL of a
CUSUM chart, and Crowder (1987) derived a similar integral equation for the
EWMA chart. Let L(u) denote the ARL of the EWMA chart that starts at Zy = u,
then the integral equation for the ARL can be shown as

x—(l—/l)u)dx

1 H
L(u)=1+th L(x) fa -

where f,(+) is the pdf of W, (Y, S). This function L(«) can be approximated numer-
ically by using the collocation method (Knoth, 2005).
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A Note on the Quality of Biomedical Statistics

Elart von Collani

Abstract During the last decades numerous articles were published dealing with the
bad quality of biomedical statistics. However, most of the relevant papers confine
themselves to describe misunderstandings, misinterpretations and misuses of statis-
tical methods. In contrast, in this paper it is argued that the bad quality of biomedical
statistics is also due to the statistical methodology and statistical methods them-
selves. This claim is illustrated by several examples. Special emphasize is laid on
significance testing the most often applied statistical method in biostatistics. This
paper aims at raising the awareness of the statistical community for what is going on
in medicine and hoping that this will lead to improvements.

Key words: Laboratory medicine, evidence-based medicine, significance test, prob-
ability, Jakob Bernoulli

1 Introduction

During the last five years I came in very close contact with medicine and especially
the use of statistical methods in medicine. I remember one of the first disturbing
moments occurred when my oncologist told me that I should not compare my blood
values determined by different laboratories because even the examination results of
the same blood sample may differ greatly. This could lead to different therapeutic
measures and thus endanger the success of a treatment.

When discussing with physicians my concerns with respect to statistical methods
in medicine, I generally meet complete agreement. However, many of them told me
the following:
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* Physicians not only feel left alone by statistics, but that statisticians propose
the applied methods and interpretations that afterwards are criticized by other
statisticians.

* The education of physicians does not qualify them to be able to judge statistical
methods and once working as physicians they have no time and opportunity to
catch up on statistics.

* Many physicians feel that the critique of their use of statistical methods is
unjustified because statistics is not their field of expertise.

During the discussions some of the physicians indicated that medicine had al-
ready reacted on the existing weaknesses by developing the so-called evidence-based
medicine (EbM). They told me that EbM would provide serious evidence with re-
spect to diagnosis and treatment. As a matter of fact EbM was new to me and their
words intrigued me. I will come back later to it. To begin with lets have a closer look
to laboratory medicine.

2 Laboratory Medicine

From Wikipedia we learn: “A medical laboratory or clinical laboratory is a laboratory
where tests are usually done on clinical specimens in order to obtain information
about the health of a patient as pertaining to the diagnosis, treatment, and prevention
of disease.” And “Credibility of medical laboratories is paramount to the health
and safety of the patients relying on the testing services provided by these labs.
The international standard in use today for the accreditation of medical laboratories
is ISO 15189 - Medical laboratories - Requirements for quality and competence”
ISO15189 (2012). Thus, if something goes wrong with laboratory medicine then it is
due to an ISO standard. Actually, ISO 15189 appears to be one of the fastest growing
international quality standards in the world. By 2013 the standard was adopted by
medical laboratories in over 60 countries. The quality of medical laboratories is
controlled via round robin tests aiming at improving comparability of the results of
different laboratories. The overall goal is that for any parameter which is determined
by different laboratories the results must still be comparable.

In view of this goal, my personal experiences with several private and clinical
laboratories which were all accredited according to ISO 15189 show that it has not
been reached so far. I noticed the following:

 Different laboratories use different units. This may cause errors of inexperienced
personal and represents a potential danger for patients. In fact, it is a miracle to
me that the units in laboratory reports may change from laboratory to laboratory.
The units should be fixed and any deviation should necessarily lead to the loss
of accreditation.

* The laboratory results are given by single numbers and these numbers can differ
greatly from laboratory to laboratory. In fact, according to my experience the
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differences might go up to 20% or even 30% from the same blood sample.This
is, of course, due to measurement uncertainty. The relevant part of the standard
reads as follows:

ISO 15189: 5.6.2. The laboratory shall determine the uncertainty of results, where
relevant and possible. Uncertainty components, which are of importance, shall be
taken into account. Sources that contribute to uncertainty may include sampling, sample
preparation, sample portion election, calibrators, reference materials, input quantities,
equipment used, environmental conditions, condition of the sample and changes of
operator.

However, when checking the laboratory reports, I have never seen anything
which can be interpreted as uncertainty of the given measurement result.

* When trying to figure out the reasons for not revealing the underlying uncertainty
of measurement, I learnt that the uncertainties were hidden in the reference
ranges. Actually, each laboratory has specific reference ranges.

The following example shall illustrate the above:

The CRP-value (C-reactive protein) is used as a marker of inflammation and belongs to
the most often determined parameters in laboratory medicine. From the reports of two
laboratories we find the following statements:

Laboratory A [range of reference| unit
0.00 - 0.50 mg/1
Laboratory B [range of reference| unit
0.00 - 8.00 mg/dl

Since the values of many of the examined parameters may range by several orders of
magnitude, mistakes may easily be made, whenever an unexpected unit is used or if the
range of reference deviates from the familiar one.

The consequence of not stating the uncertainty of the values in the laboratory
reports is that the results may be misinterpreted and thus endanger health or even
life of patients. Therefore, if the laboratory is not known to the physician in charge,
the measurement are not trusted and, therefore, repeated.

In order to obtain comparable laboratory data, it is necessary that measurement
uncertainty is clearly stated in the reports. Hiding measurement uncertainty by
laboratory specific reference ranges does not help much and may, in some circum-
stances, even strengthen misunderstandings. What is therefore needed are simple
and straightforward methods to determine the uncertainty of measurements. The
reference ranges, on the other hand, should be determined by the relevant health
organizations and be identical for all the accredited laboratories.

Unfortunately, statistics neglects measurement uncertainty and has left the field
to metrology. More than 20 years ago the “Guide to the Expression of Uncertainty
in Measurement (GUM)” BIPM (2008) was published and is still in use. However,
from the very beginning the proposed methods were criticized, because they are
questionable and at the same time too complicated. Since measurements are the
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most important means for quality control, I appeal to the statistical community
to turn to this eminently important field and make available simple and easy to
understand methods for determining measurement uncertainty.

Next let me turn to “evidence-based medicine” which is often looked upon as a
means to avoid wrong recommendations in making diagnosis and determining on
therapies in all areas of medicine.

3 Evidence-based Medicine (EbM)

The evidence-based medicine (EbM ) has developed since the nineties (see Sack-
ettetal. (1996)). EbM is defined as the medical care and treatment of patients on the
basis of the best available sources of knowledge and information. Therefore, it aims
at defining requirements that only those medical procedures are recommended and
should be incorporated into guidelines and principles, whose positive effects have
been proven. For EbM, two types of studies (called “gold standards”) are primarily
considered as giving evidence, namely “randomized controlled clinical trials” and
“meta-studies”.

* Randomized controlled clinical trials:
A clinical study is called “controlled” if there is both an experimental group
and a control group. “Randomized” means that the assignment of subjects to
experimental or control group is random, that is, each subject is assigned with
equal probability to the experimental group or to the control group. In addition,
randomized controlled trials are usually double-blind that is, both the subject
itself and the experimenter do not know whether the subject is part of the
experimental or the control group.

* Meta-Studies:
The second basis of EbM are meta-studies. Often the same treatment is inves-
tigated by several clinical trials, although contradictory results are published.
A meta-study attempts to combine the results of several randomized controlled
clinical trials. The results of the various published studies are compared with
each other and then evaluated together. It is thereby hoped to get an overall larger
sample size and thus to better sound results.

For each clinical trial, the study design and the evaluation method must be dis-
tinguished. The study design determines which indicators are to be observed when,
how often, and for which of the objects. This depends on the specific procedures
and especially on the study objective, the type of treatment to be tested and of the
study indication. Depending on the study objective there are different study designs,
such as the single case study, the cohort study, the case-control study, etc. Once the
observations are available, they must be analyzed statistically. This is done using
the evaluation method which includes all the requirements, models and statistical
methods that are to be used. In contrast to the study design, the evaluation method
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is less influenced by the purpose of the study. This is primarily due to statistics that
offers many models and methods for evaluation of one and the same situation. The
user therefore faces the problem to select an adequate method among the various
competing statistical tools. The steadily growing number of statistical analysis meth-
ods that are available in a given case lead on to errors and misinterpretation. This is
one of the reasons for the large number of articles in medical literature that report on
the big rate of medical papers with erroneous statistical analysis. Already 35 years
ago, Stanton Glantz Glantz (1980) wrote in an article entitled “Biostatistics: how to
detect, correct and prevent errors in the medical literature”:

Critical reviewers of the biomedical literature have consistently found that about half the
articles that used statistical methods did so incorrectly.

This state has not changed as the following quote from a work by Lang T. und
Altman D. Lang & Douglas (2013) show which was published in 2013:

The first major study of the quality of statistical reporting in the biomedical literature was
published in 1966. Since then, dozens of similar studies have been published, every one of
which has found that large proportions of articles contain errors in the application, analysis,
interpretation, or reporting of statistics or in the design or conduct of research. Further, large
proportions of these errors are serious enough to call the authors’ conclusions into question.
The problem is made worse by the fact that most of these studies are of the world’s leading
peer-reviewed general medical and specialty journals.

Before the EbM approach shall be evaluated with respect to quality, we must first
answer the question which claims are to be placed on a trial so that the study results
may be judged as evidence or proof. In this context it is necessary to distinguish
between “assertion” and “assumption”. The goal of a proof is to show that the
assertion follows necessarily from the assumption. If this goal is met, the assertion
can be considered as true, if the made assumptions are recognized as correct. The
central criterion is the consistency of the model assumptions with reality. In order
to check the consistency, the trial must meet certain requirements which shall make
manipulations difficult and the results verifiable by the statistical community.

The statistical community is responsible for the evaluation and validation of new
findings whenever the results are obtained by applying statistical methods. Note
that the requirements are not intended to regulate clinical trials, because that would
be an unjustified restriction of academic freedom and would only hinder scientific
progress.

* Requirements to prevent manipulations:

1. The aim of the study must be stated clearly and unambiguously. The assertion
to be derived must be consistent with the target in line. If one of these
requirements is not satisfied, it remains unclear if the objective has been
really achieved. If the aim of the study is not clear and unambiguous, then
the trial is like a shooter who shoots on a large barn and then paints the
target around the bullet hole.
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2. The study design must define clearly, when the data recording is finished
and the data analysis may start. If the end of data collection is not fixed, the
procedure is similar to a horse race in which it remains open when the race
is over and the race ends when your own horse is ahead.

3. All assumptions and statistical methods by means of which the assertion
shall be deduced, must be stated right at the start. If this requirement is not
met, assumptions and methods could be selected later on the basis of the
observed data. Or in other words, one can try all possible statistical methods,
until a procedure is found that leads to a “significance”. This result is then
published.

* Requirement to make the result verifiable:

4. Immediately after completion of the data collection, all raw data that have
been collected during the study (including those later eliminated as outliers)
must be made available to the public. If this requirement is not met, then
the study results cannot be verified and should therefore not be taken as
evidence. Actually, clinical trials are often conducted by companies which
refuse to publish the raw data, because they represent “business secrets”. If
the data are business secrets then the results are also business secrets and
must not be looked upon as evidence but rather as marketing tools.

These four requirements are prerequisites for a clinical trial so that the results may
be considered as evidence. Whether actually evidence is given, must be examined
by a review of the evaluation method and, of course, by reproducing the results. Of
course, one would have to develop criteria for this review, because statistics contain
many questionable methods and concepts. These include the significance test which
is almost always used in clinical trials and which is briefly examined later.

In view of these requirements it must be noted that the two “gold standards” of
EbM do not fulfill them. Instead, EbM stipulates a study design which makes only
sense if a comparison between at least two different methods of treatment should
be made. If this is not the case, the implementation of a controlled trial makes little
sense. But even in the case where a comparison by means of a controlled clinical
trial should be done, this can lead to evidence at best if the above requirements would
be met which however is not demanded by the EbM approach. The establishment of
a control group implies two additional problems. First of all the ethical issue has to
be considered which emerges when ill persons are given a non-effective treatment.
Moreover, the overall sample size is cut in half by the control group. This makes a
study unnecessarily expensive.

Instead of demanding the above specified requirements the gold standard includes
randomization. Randomization means that the available subjects are allocated ran-
domly to the given groups. The aim of the allocation is to form as homogeneous
groups as possible in view of the comparison’s objective. Homogeneous refers to all
the characteristics of the subjects which could play a role in the comparison. In such
a situation the allocation of subjects should not be left to chance, but the subjects
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should be specifically selected so that the groups are as equivalent as possible with
respect to the planned intervention. If the groups, as is the case for randomized trials,
are randomly occupied, then it cannot be ruled out that the study is conducted with
groups that are not at all homogeneous. Maybe randomization in medical studies
is so common, because it makes a targeted manipulation of the grouping at least
difficult.

Scientific claims must be verifiable by the corresponding scientific community
otherwise they should not be accepted as evidence. This applies in particular in
medicine, where it comes to the health and lives of many people. By the assessment
of randomized controlled trials as “gold standard” they take a position which they do
not deserve. The mere fact of a randomized controlled trial makes many physicians
believe in the evidence of the results. This is particularly serious because randomized
controlled trials are generally used in the drug development process and the results
are the basis for the regulatory decisions of the authorities. The statistical community
is therefore called upon to clarify the corresponding misunderstandings and to show
the way to achieve real evidence.

4 Test of Significance

The significance test is the most widely used statistical method in applications. At
the same time it is also one of the most questionable one. For many decades articles
are published dealing with shortcomings and false interpretations of the results of
the significance tests in medicine. Nonetheless articles based on significance testing
are still published in scientific journals. In many cases published papers contain
contradictory results that have led and lead to wrong decisions. Moreover reports of
fraud and forgery in the application of significance tests are almost daily occurrence.

Verifiability i.e. reproducibility of results is a necessary condition for science.
To allow verifiability of a scientific method it must yield with high probability a
correct and sufficiently accurate result. If this condition is not met by a method,
as for example by methods applied in astrology, then the method cannot be looked
upon as part of science. In numerous publications it is shown that the significance
test does not usually fulfill its promises. The article “A Critical Assessment of
Null Hypothesis Significance Testing in Quantitative Communication Research” by
Timothy R. Levine et al. Levine et al. (2008) not only lists the main shortcomings of
the significance tests, but also contains a bibliography of the many works that deal
with this issue.

The significance test of today, hereinafter referred to as modern significance
test, was developed from two sources: the significance test of Fisher, which is
described in the work “Statistical Methods for Research Workers” Fisher (1934)
and the hypothesis test of Neyman-Pearson, which was published in 1933 in the
paper “On the issue of the Most Efficient tests of Statistical Hypotheses” Neyman &
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Pearson (1933). Unfortunately, neither Fisher nor Neyman and Pearson succeeded
in displaying the meaning and purpose of their respective procedures sufficiently
clear. So it is no wonder that their work has been misunderstood and it has come to
the present day confusion.

4.1 Fisher’s significance test

The word “significant” appeared already at the end of the 19th century in the statistical
literature, but the “significance test” was only introduced by R.A. Fisher in his famous
book “Statistical Methods for Research Workers”, whose first edition was published
in 1925. Fisher’s approach had from the beginning two fundamental weaknesses:
Fisher does not explain the meaning and purpose of a “test” nor did he clarify the
meaning of the word “‘significant”. The goal of a significance test is solely to obtain
a significant result. A significant result is achieved if the so-called p-value is smaller
than one of the predetermined levels of significance. As significance level Fisher
set four values, namely 0.10, 0.05, 0,02 and 0.01. A significant result is interpreted
as an objective indication that the treatment has the desired effect. Accordingly,
the significance test of Fisher may have one of only two results. Either the target
(significance) is reached or not. The latter case means that the significance test was a
failure, and therefore a decision about the desired effect is impossible. It follows that
a wrong decision can be made only, if a significance is falsely achieved. A failure
means no wrong decision, as no decision is made. It simply means that the test does
not allow a decision.

Fisher’s significance test is characterized by the following issues:

* The test admits only one simple hypothesis which may be selected rather freely
making manipulation of the test result possible.

* It is designed for small sample sizes, i.e. only when the difference between
hypothesis and reality is considerable, the target will be reached.

» No significance level is set before the start of the experiment. Whether a signif-
icance test is successful or not, is determined only after the p-Value has been
calculated and compared with the proposed four levels of significance. This
creates a certain arbitrariness, which should actually be avoided in scientific
procedures.

* The goal is to provide a first (preliminary) indication that a particular course
of action (therapy) has a desired effect. Only when such an indication exists, a
larger experiment is performed and the decision is made.
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4.2 Neyman-Pearson hypotheses test

In 1933 Jerzy Neyman and Egon Pearson published in the “Philosophical Transac-
tions” of the Royal Society of London a paper entitled “On the Problem of the Most
Efficient Tests of Statistical Hypotheses”. Unlike Fisher’s book, which is intended
for non-mathematicians Neyman and Pearson’s paper is a very mathematical work.
In contrast to the significance test of Fisher it is not easy to find a meaningful ex-
ample for the hypothesis test of Neyman-Pearson, because of the rather unrealistic
assumptions about the situation to be examined.

The Neyman-Pearson hypotheses test is characterized by the following issues:

* The test refers to two hypotheses Hy and H; and has two possible results, namely
acceptance of Hy or acceptance of Hj.

» The hypothesis Hy represents that situation where an error (Type 1 error) has
serious consequences, while Hj represents that situation where an error (Type
2 error) is less severe.

* The probability of a Type 1 error is limited by the significance level which is
defined prior to testing.

» At the specified significance level, the critical region (rejection region) for Hy is
determined so that two conditions are met: The probability of a Type 1 error is
equal to the predetermined level of significance, while the probability of a Type
2 error is minimized.

* Incontrastto Fisher’s significance test, the goal of the hypotheses test of Neyman-
Pearson is the final evaluation of a situation.

» Simple and composite hypothesis Hy are admitted, however, the latter case is
mathematically rather difficult and therefore applications are restricted generally
to simple hypothesis Hy.

To make the hypothesis test of Neyman-Pearson meaningful, it would be necessary
to admit significance levels for each of the two hypotheses. Only in this way it can
be avoided, that the probability of a Type 2 error may be uncontrolled large.

4.3 Significance test versus hypotheses test

Obviously, both methods have different objectives and are based on different as-
sumptions implying that they are not comparable. Nevertheless, Fisher and Neyman
argued about which method is the better one. This dispute is hardly understand-
able, because Fisher’s test aims at excluding one single given hypothesis, while the
hypotheses test aims at detecting which of two hypotheses is the right one.

This strange controversy might also be a reason for the misunderstandings of the
two methods which finally led to the “modern significance test”.
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4.4 Modern significance test

The modern significance test is a blend of the significance test of Fisher and the
hypotheses test of Neyman-Pearson. Its development began in the 40s in the social
sciences. From there, the modern significance test has spread to all other areas
of science and is now by far the most commonly used statistical method. It is
characterized by no generally agreed rules for interpretations of the numerical results
and the admissible decisions. This is certainly one of the reasons for the many reports
of misuse and misinterpretation when applying a significance test.

The modern significance test and the significance test of Fisher have in common
the name and the p-value. By analogy with the hypotheses test of Neyman-Pearson,
there are two hypotheses namely the null hypothesis Hj and the alternative hypothesis
H, . The alternative hypothesis represents that what one expects as a result of the test.
The null hypothesis is then the complement to the alternative hypothesis. Similar to
the significance test of Fisher, a significance level is often not set in the outset of the
experiment. A significant result is obtained by calculating the p-value. If the value
obtained is less than 0.01, the result is called “highly significant”, if the result is
between 0.01 and 0.05 it is called “significant” and if it between 0.05 and 0.10 “low-
significant”. The null hypothesis is simple or can be attributed to a simple one, which
makes it possible to calculate a p-value. The probability of the Type 2 error is not
minimized. A significant result is achieved if the null hypothesis is rejected, which
is tantamount to the acceptance of the alternative hypothesis. There are also cases in
which the result is specified as acceptance of the null hypothesis or the alternative
hypothesis. It is interesting to note that the words “rejection” or “acceptance’ do not
occur in Fisher’s original work, just as the term “null hypothesis”. Only later, the
term null hypothesis is introduced, possibly inspired by the symbol Hy introduced by
Neyman and Pearson. The modern significance test combines two different methods
and borrows not only the weaknesses of the two method, but also adds new deficits.

Fisher intended his significance test for small samples in order to obtain a first,
cost-effective and objective indication. The modern significance test demands large
sample sizes making the weakness caused by the simple hypothesis a fortiori virulent.
This is especially the case in so-called meta-studies in which the results of different
studies are combined to increase the sample size and allegedly the reliability of
results. The goal of modern significance tests, is similar to the significance test of
Fisher, the rejection of the null hypothesis. If this is not possible, the procedure is
a failure, i.e., it has not brought new insights. Nevertheless, in such cases the result
is often stated as acceptance of the null hypothesis or rejection of the alternative
hypothesis. The initial goal of the significance test of Fisher was to be an indication
of the existence of an effect. In contrast, the modern significance aims at a final
judgment.
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4.5 The emergence of the modern significance tests

How it could happen that such a questionable procedure as the modern significance
test was developed and was able to win such a market-dominating position in science?
The most important reason is probably the fact that the basic concept of statistics, the
probability, is not explained clearly and each user may choose an own interpretation.
By this, statistics goes against a fundamental principle of science and this fact is also
reflected in the statistical method.

The modern significance test was developed with the presumably most impor-
tant goal to get a “significance” and thus a publication. To achieve this goal, even
questionable interpretations of the numerical results were considered. Unfortunately,
there is no institution in statistics, which could exert a control function to stigmatize
questionable methods and interpretations. The problems with the significance test is
by no means a purely statistical problem but affects the whole science because the
significance test is applied in all branches of science. For example the spectacular
detection of new elementary particles in physics was made by means of significance
tests. The test leads in virtually all branches of science to wrong decisions. However,
in medicine that deals with the health and lives of people it is especially misplaced.

5 Conclusions

Besides the above there are many more problematic issues in biomedical statistics
like, for example, the widespread use of relative terms which generally assumes
controlled clinical studies. Actually, many of these weaknesses may be traced back
to the ambiguity of the fundamental term probability in statistics.

Two years ago I performed a survey among statisticians about the meaning of
the concept “probability”. The answers revealed that only very few statisticians are
concerned with this question, although most of them judge it as being essential. A ma-
jority of surveyed statisticians seems to espouse the frequentist interpretation, while
a big part of them are adherents of the Bayes interpretation. Another surprisingly
large part deems right both, the frequentist and the Bayes interpretation.

The concept probability aims at quantifying what is known as “randomness”.
Having this in mind it is easy to see that none of these opinions makes sense.
The first one assumes a series of experiments, but randomness is independent of
any series of experiments. The second one denies the existence of randomness and
thereby moves statistics close to religion, while the third is simply out of question.
The survey also revealed that the oldest attempt to quantify randomness is almost
unknown to statisticians. Already more than 300 years ago, Jakob Bernoulli defined
the concept probability of a future event as the degree of certitude of its occurrence
Bernoulli (2006). This definition reflects the fact that a future event may occur or
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may not occur depending on the event and the given circumstances. It is an objective
quantity that exists and is independent of any experiments and of any belief and it is
in particular unambiguous. It is easy to show that in case of a series of experiments
Bernoulli’s interpretation coincides with the frequentist interpretation.

If statistics should become an acknowledged branch of science then Jakob
Bernoulli’s interpretation must be accepted by the entire statistical community.
Moreover, results obtained by statistical methods must become verifiable, i.e. re-
producible. This means that the results must occur with a known and sufficiently
high probability. Any method which does not yield results meeting this requirement
should be abandoned. Finally, models should be developed not following mathemat-
ical or philosophical principles, but should be guided by reality, i.e. for one situation
should be only one model.

All these changes seem to be straightforward and attainable without big difficul-
ties. The only problem is that they challenge tradition and necessitate entrenched
habits. But if statistics should get rid of its bad image which let people say: “Never
trust statistics you didn’t fake yourself,” and if the quality of biomedical statistics
should be improved then these changes must come true.
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Monitoring and diagnosis of causal relationships
among variables

Ken Nishina, Hironobu Kawamura, Kosuke Okamoto, and Tatsuya Takahashi

Abstract In statistical process control (SPC) there are two situations where moni-
toring multivariate is needed. One is that all of the variables monitored are product
ones. The other is that the variables monitored are some product and process ones.
In these cases, there are correlations among the variables. Therefore, application of
multivariate control charts to such process control is useful.

In this paper, the latter case of monitoring causality is addressed. It is known that 72 —
Q control charts, which are modified from standard multivariate control charts utiliz-
ing Mahalanobis distance, are an effective SPC tool. However, in using multivariate
control charts, diagnosis is not so easy. The objective in this paper is to propose a
diagnostic method for identifying an unusual causal relationship in a process causal
model and then to examine its performance.

Our proposed method is to identify the nearest unusual model by utilizing the Ma-
halanobis distance between some supposed unusual models and the data indicating
the out of control in Q charts.

Key words: statistical process control, TZ—Q control charts, unusual causal relation-
ship, Mahalanobis distance

1 Introduction

In statistical process control (SPC) there are two situations where monitoring
multivariate is needed.
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One is that all of the variables monitored are product ones; for example, the re-
maining film thickness on the wafer surface after polishing in chemical mechanical
polish process of semiconductor manufacturing process (see Nishina et. al. (2011)).
In this case, correlations among the variables are strongly positive. Therefore, ap-
plying multivariate control charts to such process control is useful.

The other is that the variables monitored are some process and product ones;
for example, some equipment parameters and product characteristics are monitored.
In this case, it can be supposed that monitoring causality among the variables
is needed. A case in which an environmental variable, which has an interaction
with an equipment parameter, is suddenly varied can be illustrated as an unusual
causal relationship. Another example is to lose control completely by a cyberattack.
Applying multivariate control charts is also useful.

In this paper, the latter case of monitoring causality is addressed. It is known
that T2-Q control charts, which are modified from standard multivariate control
charts utilizing Mahalanobis distance, are an effective SPC tool (see Jackson and
Mudholkar (1979)).

The causal model consists of variables and causal relationships between the
variables. In using multivariate control charts, diagnosis is not so easy because an
unusual event may affect more than one variable. Moreover, if an unusual event may
affect the causal relationship as mentioned above, it is more difficult to isolate the
source of the causal unusualness. The objective of this paper is to propose a method
of diagnosis for isolating an unusual causal relationship in a process causal model
and then to examine its performance.

Our proposed method is to identify the nearest unusual model by utilizing the Ma-
halanobis distance between some supposed unusual models and the data indicating
the out of control in Q charts.

Kourti and MacGregor (1996) proposed a diagnostic method, called contribution
plots, to isolate the unusual variable. Higashide et al. (2014) made slight improvement
on the method. Another method is diagnosis by the MT (Mahalanobis — Taguchi)
method (see Tatebayashi et. al. (2008)), which is a variable selection by using the
2 levels orthogonal array. Our goal in diagnosis is to isolate an unusual causal
relationship. In our proposal, isolation of an unusual variable is used as the first step
to narrow down the unusual causal relationship.

2 Outline of 72-Q control charts and their application

T2-Q control charts are modifications of the multivariate control charts using Ma-
halanobis distance. The statistic 72, which is the Mahalanobis distance, is composed
of major Principal Component Scores (PCSs). On the other hand, the statistic Q,
which is the Euclidean distance, is composed of minor PCSs.

It is well known that the Mahalanobis distance D? in the p variables can be
expressed as PCS z (k= 1,2,...,p) in Equation (1).
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D*=(1/A)z + (/A3 +- -+ (1 Adm)zp, + -+ (1/Ap) 2, . (1)

where Ag (k =1,2,...,p) is the kth eigenvalue of the correlation coefficient matrix.
The T2 and Q statistic are modified slightly from the decomposition as shown in
Equation (1).
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Decomposition of the Mahalanobis distance has a statistical meaning. Consider
Equation (1). In the Mahalanobis distance D?, each minor PCS is divided by the
much smaller eigenvalue, respectively. However, the much smaller eigenvalues are
not so precise. This can lead to a much greater increment of type I error. On the other
hand, the Q statistic is not affected by the much smaller eigenvalues because it is not
Mahalanobis distance but Euclidean distance (see Nishina et al. (2011)). Especially,
when the number of variables becomes very large, the Mahalanobis distance D?
faces singularity problems. 72-Q control charts overcome this problem (see Kourti
(2005)).

Similarly, decomposition of Mahalanobis distance D? has a practical meaning.
The T2 and Q statistic have different roles in the process control, respectively. As
mentioned earlier, the 72 statistic consists of major PCS. This means that the T2
statistic can monitor usual process variation. Out of control in 72 charts indicates
that the usual process variation becomes large; however, at that time the correlative
structure does not change. On the other hand, the Q statistic can monitor unusual
process variation. Out of control in Q charts indicates that the correlative structure
changes. For example, process variation due to a parts deterioration is a usual
variation. Such a variation is monitored by T chart. Q charts have a role to control
other miscellaneous factors, which may make the correlative structure change.

In this paper, we focus on monitoring and diagnosis of causal relationships among
variables. Therefore, in discussing hereafter, Q charts have an important role. In the
simulation study of this paper, m is determined as follows:

m = argmin{dg — 1.0 | 4 > 1.0}.
k

The control lines (the control limits and the center line) of 72-Q control charts
are given as follows:
Control limits of T2 charts:

_mn+1)(n-1)

UCL,
n(n—m)

F,(m,n—m)

where F, (¢1, ¢2) is the upper 100a % percentile point of F distribution with (¢1, ¢2)
degrees of freedom and r is the sample size.
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Center line of T2 charts:

CL = mn+1)(n—-1)

nn—m-2)

The statistic Q can be approximated to the standard normal distribution by trans-
forming to the statistic ¢ as follows:

o 0il@Q/60" —1 ~62ho(hy — 1)/67)]
26212 ’
p

= > AL (i=123), hy=1-(20103/363).

r=m+1

Therefore, the control limits of Q charts using c statistic are obtained the same as
X control charts.

3 Proposals on diagnosis

3.1 Isolation of the unusual variable

As mentioned earlier, the first step in the diagnosis of the source of causal un-
usualness is to narrow down the unusual variables. We evaluate two methods, that
is, the contribution plots by Kourti and MacGregor (1996) and the MT method by
Tatebayashi et al. (2008).

3.1.1 Modified contribution plots

The contribution plots can be extracted from the underlying PCA model. As
shown in Equation (3), the statistic Q consists of PCSs. The k™ PCS of the ith
sample (#;z) can be decomposed as follows:

Lik = Wk1Xi1 T Wi2Xj2+ -+ WikpXip,

where x; (j =1,2,...,p) is the jth centralized (or normalized) variable and wy; (k =
1,2,...,p) is the element of eigenvector corresponding to the k™ largest eigenvalue
Ak. Therefore, the original contribution of the variable x; to the statistic Q can be
measured as shown in Equation (4).

p
D ey’ (G=12...p) @)

r=m+l1
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Higashide et al. (2014) gave slight modification for the original contribution plots
as shown in Equation (5).

p

Ci= D {Hrwyx) (5)

r=m+1

1) = {1 if sgn(t,) = sgn(w,;x;) ©)
0 if sgn(z,) # sgn(w,;x;)

Equation (6) shows an essential point of the modification. This means that the degree
to contribution of x;, which is responsible for making the absolute value |z | large,
is inflated.

3.1.2 Diagnosis of variables by MT system

The diagnosis of variables by the MT (Mahalanobis - Taguchi) system has been
originally utilized as a method for selecting the variables so as to detect an unusual
condition with more sensitivity. In the variable diagnosis the method is utilized to
narrow down the unusual variable.

In this method, the orthogonal array with 2 factor levels is used. The candidate
variables are assigned on each column; for example, in the case of using Lg orthog-
onal array and lining up four candidate variables x1, x5, x3 and x4 an assignment is
shown in Table 1. The level-0 means that the variable concerned is deleted and the
level-1 means vice versa; for example, the causal model supposed in No. 7 experiment
is that the variable x; and x, are retained but x3 and x4 are deleted.

The response is the Mahalanobis distance between the average of the usual dataset
and the i sample, which indicates the out of control, as follows:

D; = (xiy— %)’ 8¢, (Xir) — X))

where x;(;) and X;) is the i observation vector and the average of the data set
from the usual process, respectively; in addition the suffix (J) stands for “without
the J variable set corresponding to the level-0 in the orthogonal array.” Sy is the
submatrix of § (covariance matrix of the usual dataset) without the J variable set.

As the result of the factorial effects, the variable, which has the largest factorial
effect, is regarded as the unusual variable of the effect side in the unusual causal
relationship.
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Table 1: Assignment to Lg orthognal array for diagnosis of variables

No.| xi X2 X3 X4
1 0 0 0 0 0 0 0
2 0 0 0 1 1 1 1
3 0 1 1 0 0 1 1
4 0 1 1 1 1 0 0
5 1 0 1 0 1 0 1
6 1 0 1 1 0 1 0
7 1 1 0 0 1 1 0
8 1 1 0 1 0 0 1

3.2 Diagnosis of unusual causal relationship

In our proposal for diagnosis of unusual causal relationship, the fundamental
analysis is the Mahalanobis distance between the average of the dataset under a
supposed unusual causal model, X(,), and the it sample x;, which indicates the out
of control in Q chart:

Dy=(xi—%u) S (xi %)) . 7)

In the preceding step the unusual variable have been already isolated. In the next
step the unusual causal relationship should be isolated among the causal relation-
ships, which have the arrow line indicating the causality contained in the unusual
variable isolated in the preceding step. Fig. 1 shows a causal model. In the case of
Fig. 1, if the isolated unusual variable is X4, then the causal relationships to become
an unusual candidate are @4, @4y and @43.

Now let the supposed unusual causal relationships be u and let the path coefficient
of the causal relationship be a. Based on Equation (7), the following u* can be
determined. As the result, the causal relationship u* is isolated, that is, the unusual
model with the shortest Mahalanobis distance among the supposed unusual models
is regarded as the unusual causal relationship.

u* = argmin [Irgn(xi —Xw)’ S(a) ' (x; —-Xuw)]



Monitoring and diagnosis of causal relationships among variables 117

Fig. 1: An example of causal model

4 Examination of the proposed method by simulation

4.1 Simulation models and simulation experiments

We suppose the causal model shown in Fig. 1 again. The model is very simple,
consisting of four variables; however, has the three kinds of causal relationships,
which are the direct effect, indirect effect and the pseudo effect. The structural
equations shown in Fig. 1 are as follows:

X1 =¢
X2 = aZIXI + &
X;=anX|+apX,+es

X4 =an X1 +apX, + a43X2 +&3

where as and ¢s are path coefficients and random variables, respectively. Their vari-
ances, Var(g)s, are determined so that Var(X)s form a unit. The random numbers
are generated by NtRand of Mersenne twister. We suppose that one of the six paths
in the model changes to an unusual situation.

We examine the proposed method in unusual cases of the two patterns shown
in Table 2. As it is assumed that a unusual model has an unusual path coefficient,
we suppose the twelve unusual models shown in Table 2; for example, one unusual
model in the pattern 1 is that ap; = =2.1, @31 = @32 = @41 = @4z = @43 = 0.4. The
unusual models in Table 2 are determined so that the Q chart can detect the unusuality
with about 25% of detection power (ARL is about 4.0).
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Table 2: Unusual models in our simulation study

path pattern 1 pattern 2
coefficient | usual model | unusual model | usual model | unusual model

@] 0.4 2.1 0.6 2.2

sy 0.4 -2.1 0.7 -1

s 0.4 -2.1 0.4 -1.4

iy 0.4 2.2 0.2 -2.7

e 7% 0.4 2.2 -0.8 2

43 0.4 2.2 0.3 -2.9

Our simulation study is carried out as follows: the sample size for determining
the control limit, which is shown in Section 2, is 200. After constructing the control
limit, 200 data under a unusual model are generated. Whenever Q chart indicates out
of control, the unusual variable is isolated and then the unusual causal relationship
is isolated. This is a simulation set. The set is carried out in 100 trials.

Let C; and D; be the successful count of the isolation of the unusuality and
the count of searching the unusuality in the i set of simulation, respectively. The
performance index, which is called the success rate hereafter, is

N ®)

where D; is about 50.

4.2 Comparison of methods of isolating unusual variable

As described in Subsection 3.1, we introduce two methods for isolation of an
unusual variable. One is the modified contribution plots and the other is the diagnosis
of variables by MT system. In this section we compare the performance of the
methods. The performance is measured as the success rate shown in Equation (8).

The results of the simulation study (the success rate of the isolation) are shown in
Table 3. Table 3 indicates that the diagnosis of variables by MT system is better than
the modified contribution plots. The large difference of the performance appears in
two cases of pattern 2, in which @3; and a3; are unusual. The reason is that the
contribution plots are based on the correlation coefficient matrix. As known well,
the correlation does not necessarily represent the causality. We choose the diagnosis
of variables by the MT system.
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Table 3: Success rate of the isolation of unusual variable

unusual path pattern 1 pattern 2
: modified modified
coeflicient contribution plots | MT system | contribution plots | MT system
@) 0.985 0.814 0.931 0.893
@31 0.950 0.985 0.249 0.939
a3 0.948 0.985 0.491 0.954
28 0.874 0.993 0.957 0.960
au 0.884 0.996 0.868 0.964
3 0.848 0.993 0.945 0.977

4.3 Performance of the proposed method

Based on the results of Subsection 4.2, we choose MT method as the method
for isolating an unusual variable. Table 4 shows the performance of the proposed
method. The performance index in Table 4 is the success rate of the isolation of
the unusual causal relationship in the cases of the twelve unusual models shown in
Table 2.

Table 4 indicates that in the case of pattern 1 the success rates of the proposed
method are relatively high but the results of some models in the case of pattern 2 are
not so high. We examine the difference of the correlation coefficient matrix between
the usual condition and the unusual condition for an example with the unusual path
coefficient a43. The success rate of this case is lowest in all the unusual models
shown in Table 2. Table 5 shows the difference between the correlation coefficient
matrices.

Table 5 indicates that rj4 (correlation coeflicient between X; and X4) is quite
different between the usual and the unusual as well as r34, although a@43is unusual. It
should be noted that this introduces the low success rate of the isolation of unusual
relationships. The procedure for proposed method consists of the two steps, the
isolation of the unusual variable and the isolation of an unusual relationship. As
shown in this case, the proposed method may not isolate an unusual relationship and
may simply show the priority order of the search. Even if the success rate of the
isolation of unusual relationship is not so high, the unusual variable can be isolated.
It is a remarkable property. In practice, after isolating an unusual variable, a method
to search for unusuality in the order of the path with the small value of the Equation
(9), the Mahalanobis distance, is recommended.

min(x; — X))’ $(a)™ (i = Xaw). ©)
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Table 4: Success rate of the isolation of unusual causal relationship

unusual path

coefficient pattern 1 pattern 2
@21 0.814 0.893
;3| 0.824 0.631
@32 0.828 0.639
@41 0.742 0.628
@42 0.756 0.842
@43 0.703 0.589

Table 5: Difference of the correlation coeflicient matrices between the usual and the
unusual conditions (upper: usual causality; lower: unusual causality

X, X X; X,
X1 1.000 0.600 0.940 0.002
X> 0.600 1.000 0.820 -0.434
X3 0.940 0.820 1.000 -0.168
X4 0.002 -0.434 -0.168 1.000
X X X3 Xy
X 1.000 0.600 0.940 -0.857
X3 0.600 1.000 0.820 -0.871
X3 0.940 0.820 1.000 -0.960
Xy -0.857 -0.871 -0.960 1.000

5 Conclusive remarks

In this paper, we have proposed the diagnosis method in applying the 7>-Q charts.
In general, it is not easy to make a diagnosis even if the multi-variate control chart
indicates an out of control signal. Some methods have been proposed but the aim
of these methods is to isolate an unusual variable. In this paper, we can propose
the diagnosis method with the aim of isolating an unusual relationship using the

Mahalanobis distance.

In near future, we will try to apply the our proposed method to the process control

of the facilities collection process such as the semiconductor process.
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Distribution Free Bivariate Monitoring of
Dispersion

Ross Sparks and Subha Chakraborti

Abstract This paper focuses on evaluating practical approaches to monitoring the
dispersion for a wide range of positively distributed bivariate data. It plans to provide
good practical advice to those monitoring the dispersion of variables from skewed
distributions.

Key words: Asymmetric distributions,Statistical process control, Variance

1 Introduction

Sewerage treatment plants (STP) deal with volatile and noisy inputs ( e.g., see Hamed
et. al. 2004) and therefore need to regulate their treatment processes accordingly
(e.g., Choi & Park, 2001) to have effluent output that will do as little harm as
possible when discharged to the surrounding environment. STPs typically monitor
Biological Oxygen Demand, Chemical Oxygen Demand, Total Organic Carbon and
Total Suspended Solids (TSS) as well as Total Nitrogen, Ammonium Nitrogen,
Nitrate, Phosphorus, Temperature and pH. In addition it provides information on the
out-going effluent quality and treatment efficiency. The volatility in these variables
often provides us with information of the underlying control process of the STP. In
the STP application in this paper, the two variables we have near complete data on
are TSS and Total Residual Chlorine(TRC), and so we are going use these variables
to demonstrate processes for monitoring of bivariate volatility as an assessment of
control process of the STP (e.g, see Saby et.al. 2002). Although this example does not
solve the problem of monitoring the volatility of full STP process it does demonstrate
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it for the bivariate case before moving onto the more difficult multivariate case. This
bivariate case will be covered in the application section later after developing the
monitoring methodology.

Non-parametric charts are growing in popularity in the literature because control
measures often have asymmetric distributions and the distribution of the control
variables are generally unknown. In particular, environmental measures such as e-
coli, chlorophyll, nutrient loads, turbidity, etc are all positive right-skewed measures.
Often the log-normal distribution is assumed for these measures as a matter of
convenience (e.g., Sukumar et.al.,1992). The assumption that the variables are log-
normally distributed is inappropriate at times (e.g., see Dodds et.al.,1998). The
monitoring of log-normal distribution data is handled in two ways firstly on the
log-scale (which separates the mean and dispersion parameters, e.g., Morrison,
1958 and Joffe and Sichel, 1968), and secondly on the untransformed scale (Ferrell,
1958, Cheng and Xie, 2000). The option of transforming the data using a Box-Cox
transformation and then applying the S-chart has been demonstrated as unreliable,
particularly for flagging changes in dispersion (see Sparks and Chakraborti, 2016).
Therefore alternatives need to be investigated that are more reliable.

This paper therefore focuses on evaluating practical approaches to monitoring
the dispersion for a wide range of positively distributed bivariate data. It plans to
provide good practical advice to those monitoring variables which typically follow
an unknown skew distribution. In this paper we explore Lui’s(1990)’s data depth
function in R as a means of assessing outliers or out-of-control situations. As an
alternative to this methodology we explore regressing ordered statistics against their
expected values conditional on the data being in-control. Assume that we have a
rational subgroup of twenty observation, then we order these from smallest to largest
value and compare these to their expected values when the observations are drawn
from an in-control distribution. Let the ordered rational subgroup of size n for the
kth time period be denoted

(n 2) (n)
Xy Sxk S...xk .

Let the E(x,(f)) = pg) and therefore ,uil) < ,u,((z) <...< #210)'
Then we build the regression model
XE,’() =i+ ﬁk/l,(g) +eik .

Theoretically when the rational subgroup values are in-control then « is equal to
zero and S is equal to one. However we estimate the ;1]({’) ’s values using the Phase
I data and therefore these are not without error, and therefore ax =0 and B =1
is not always true in practice. In addition we need fairly large rational subgroups
to estimate these regression coefficients accurately. If this regression model is fitted
using only rational subgroup sample sizes of 10 or less then these estimates can vary
substantially from the values expected theoretically. Therefore we assume a rational
subgroup of 20 for the remainder of the paper but note that traditional rational
subgroups are size 20 are fairly rare in practice. Our focus on dispersion means we
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examine how larger By is compared to its expected value of one. If it is significantly
larger than one, then the rational subgroup has a larger standard deviation than the
in-control data. If it is significantly smaller than one, then the rational subgroup has
a smaller standard deviation than the in-control data.

2 Bivariate controls charts: monitoring changes in dispersion

Now we explore bivariate control charts with the aim of extending these to multi-
variate control charts for dispersion. The first idea was to look at data depth as a way
of flagging increases in dispersion.

2.1 Bivariate dispersion monitoring using data depth

A sample of 10000 training data of rational subgroups of twenty observations were
generated from one the distributions. This training data was used to estimate the
number of in-control points that are expected to have Lui (1990)’s data depth score
of zero where a depth of zero indicates an outlier. If we know that these outlying
points don’t cluster in a small region in bivariate space then this is likely to be an
outbreak in dispersion. In other words, too many extreme points that don’t cluster in
two dimensional space indicates an increase in dispersion. The Lui (1990)’s depth
score is not useful for assessing decreases in dispersion, but therefore can indicate
increases in dispersion if we can demonstrate that these are not related to a shift in
location. We decided to use the count of the number of Lui (1990)’s depth scores of
zeros in the rational subgroup as a way of flagging increases in dispersion recognizing
that this out-of-control criteria does not differentiate between changes in location
and changes in dispersion. Despite this drawback this statistic works comparative
well at flagging changes in dispersion as will be demonstrated later.

For normally distributed data in 10 000 simulation runs and a rational subgroup
of 20: twelve of 10000 rational subgroups had one observation with a depth of zero
and one with two zero. Therefore decision rule for out-of-control is taken as either:

1. Any rational subgroup with two or more observations from the rational sub-
groups of 20 observations have depth equal to zero or

2. Two or more consecutive rational subgroup samples with one depth equal to
Zero.

For in-control normally distributed data this provides 1 to 2 false discoveries in
10000 simulations. This same approach will be tried for all examples of bivariate
data. We demonstrate in Table 1 that these rules for flagging an increase in dispersion
works reasonable well.

The major issue with data depth measures is that it does not distinguish be-
tween changes in location and changes in dispersion, and the rules above fail to flag
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decreases in dispersion. The approach considered in the next section does differen-
tiate between changes in location and dispersion as well as differentiating between
increases and decreases in variation.

2.2 Bivariate approach using an extension of the robust regression
approach outline for univariate distributions

Establish the median order statistic value of these across all 1 000 rational subgroups
for both bivariate data (k = 1,2), i.e., denote these ,u;(l) < /15{2) <...< ,u,({") such that
u](j) = median(x%’,)c,xé’])c,...,x(ljo)OOk) for all j = 1,2,...,n. The median is selected
rather than the sample mean because it was more robust across the broad range of

distributions considered. The values
1 2
ui) S,ugc) <... S,ugl)

are the reference values as defined in the introduction section for the bivariate data
k = 1,2 which are used to gauge whether the dispersion of a rational subgroup has
increased.

For each of the ten thousand rational sub-groups (i) estimate the parameters of the

following the simple linear model the kth variable: xf]’{) = o + Bi ,u,(f )y ejx. Denote

these slope estimates /3 for simulated rational subgroups i = 1,...,10000. The me-
dian ordered rational subgroup values in the 10 000 simulated data are calculated for
both variables k = 1,2. These are used to establish significant increases in dispersion.
Next we outline the threshold necessary for delivering an acceptable false discovery
rate for flagging significant bivariate changes in dispersion. Denote

SORe)) RORNCD

1% il V2

/JgZ) /J%Z) (2) ('2)

X, =| ' 2 and X;=| o' %
) (n) ) ()

My Hy Xl %io

Using the usual quadratic form, we flag significant changes in dispersion when

P=(Bn-1pBn- XX (ﬁA” B 1) Jtr (XIX;) > h.
P \Bin-1 !

An alternative is flag significant changes in dispersion when

Q= (Bu—1pBn-1X;X, (gg:i) [tr (X[X;) > hy.

These statistics (P/Q) do not distinguish between increases and decreases in dis-
persion but if these are represented as a two dimensional plot of (5;; 8;2) with the
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control limit an ellipse as described in Sparks (1992) then diagnosing the nature of
the significant change is easy.

2.3 Transformation to a normal distribution

Here we consider using a Box-Cox transformation to normality and then use charts
derived from the normal distribution. The main advantage of this approach is that
the plan simply involves finding the appropriate Box-Cox transformation, and then
the design of the chart for the normal distribution applies. This is not as simple as
it sounds. For example, with log-normal data we know that the logarithm transform
is the appropriate transform if the correlated variables X; and X, = Xf Z where X
and Z are log-normal distributed. Then notice that X, is log-normal distributed. This
means that the thresholds for log(X) and log(X») = 1og(XfZ) = Blog(X)+log(Z)
is easy to simulate and deliver appropriate thresholds. This is not that easy when the
response variables select different transformations for the two variables X and X, to
individually approximate to normality. If f; and f; are the two transformations, then
we need an approximation that simulates the appropriate thresholds for the bivariate
normal approximation that will apply to bivariate variables fi(X;) and f2(X>).
Assume simulate the data X| = X and X; = 0.5X + Z but this is hidden (unknown),
then find E(f1(X1)) = u1, E(f2(X2)) = 2, Var (f1(X1)) = o1, Var (f2(X2)) = 03
and Cov(f1(X1), f2(X2)) = 012 and this provides us with the appropriate normal
distribution for setting up the thresholds for the control variables to follow. Although
this approach is feasible it at times fails to deliver a reasonable plan as we will see
later in the section discussing the simulated examples.

Mathematically if we knew the in-control covariance matrix X and the trans-
formed sample covariance matrix is S then a control variable could be a function of
the eigenvalues of X I'S. The difficulty is this is not a meaningful measure for the
control engineer. If we took the determinant of £y denoted || then this is a measure
of the volume of space the in-control data usually “occupies” in the multivariate
space, and the trace of ¢ denoted tr(Zy) is proportional to the perimeter of space the
data “occupies”. These are both meaningful measures of variation and therefore tr(S)
and |S| are meaningful statistics worth monitoring. We flag increases in dispersion
when either:

tr(S) > tr(Zo) + htr,upper or [S|> X+ hd,upper
and flagging a decrease in variation when
tI'(S) < tI'(E()) - htr,lower or |S| < |20| - hd,luwer

where hg upper and hg jower are positive values witha = tr or d. These thresholds are
trained to deliver a specified false alarm rate. This does mean that these thresholds
need to be trained as the in-control variance changes, but it is better to have a
meaningful measure for the control engineer to use than one that is not. These
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thresholds are trained using normally distributed data. All of these relate to the
eigenvalues of the sample covariance matrix or equivalently the singular values of the
singular value decomposition (svd) of the departures the observations are from their
sample means. These singular values are used because it limits the computational
effort involved in the control plans. The product and sum of svd singular values of
matrix [X; —X; X; — X,] are proportional to the volume and perimeter, respectively.
The thresholds for these are found by simulation based on the assumption that the
transformed data are normally distributed. If the distribution is known then we can do
better than this by simulating data from this known distribution to find the thresholds.

2.4 Some simulation results

All bivariate charts that were tried in this section are illustrated using Roussouw’s
bagplot in the appendix. These are distributed from a two parameter distribution de-
noted d(a, b). The bagplots in the appendix are constructed using 10 000 simulating
data using x ~ d(a,bl) and y ~ 0.5x + z where z ~ d(a,b2), and a, bl and b2 are
defined in the Table 1.

The simulation results are included in Table 1. The bivariate in-control data were
simulated using the distributions in red ink. Each simulation generated 10 000 inde-
pendent rational subgroups and recorded the number of alarms in 10 000 simulations.
The bivariate data (X, X») is simulated as follows:

X=X and X, =0.5X+Z where X and Z are simulated using a skewed distribution d(a, b)

The out-of-control simulated data are in black ink with either both control variables
changing when the distribution of X departs from the in-control distribution, or
for the second variable (X;) when only the Z variable changes from its in-control
distribution. The thresholds where trained using a bootstrap sample from a Phase I
dataset of 10 000 observation from the known but hidden distribution except for the
data depth method where the rules defined earlier were used. The in-control false
alarms where then checked using in-control data and these are reported in red ink
in Table 1, e.g. for log-normal data the false alarms are very similar as 9, 11 and
8 in 10000 simulations. For the log-normal we assumed that we knew that X; = X
and X, = 0.5X + Z and this helps improve the design of the bivariate control charts
otherwise it is difficult to get acceptable false alarm rates (e.g., if we don’t assume
this knowledge then the in-control false alarms are 66 on the high-side and 86 on
the low side for the measure of data volume and 47 on the high-side and 31 on
the low side for the measure of data perimeter). This can be consider the best case
scenario when the appropriate transformation to normality is known to be log. For
the log-normal case in Table 1, notice that the data depth measure was more efficient
at detecting the out-of-control situations than the measures of data volume and data
perimeter when the change occurs in the second variable only.
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We have only simulated out-of-control data with increased dispersion for the
rational subgroup because this is the usual out-control case. However we recognize
that this does not convey the full value for the robust regression method or the
approaches using the Box-Cox transformations which are capable of flagging reduced
dispersion as well. Firstly note that the Box-Cox transformation to normality plans
can’t always deliver a reasonable plan that adequately controls the in-control false
alarm rates. For example, note that the Inverse Gamma and Pareto2 distributions fail
to deliver reasonable plans based on normal approximations, i.e., Inverse Gamma
plan has false discovery rates out of 10 000 trials for high-side (low-side) of 0(9512)
for the volume (area) measure and 154(37) for the perimeter measures, respectively.
While the Pareto2 distribution example has 495(125) for the volume (area) measure
and 320(32) for the perimeter measure when we are aiming for (14)14. Therefore
these plans do not always provide a solution and for this reason it is not recommended
as a routinely acceptable approach. However, it may have merit if it is known that
the transformation to normality is appropriate as is the case for log-normal data.

The robust regression and depth measures seem to be good alternatives. Note that
when the change is consistent with the correlation structure (i.e., in the X variable)
then generally the robust regression methods is more efficient. While if it is in-
consistent with the correlation structure by the change being in the Z variable (and
therefore only in variable X3), then the data depth is generally more efficient. The
Pareto and Reverse Gumbel are exceptions to this rule. It seems as if a robust plan
should involve a combination of depth and robust regression. The advantage this has,
besides delivering a robust plan, are: firstly it will differentiate between a location
shift and an increase in dispersion, and secondly it will flag decreases in dispersion
via the robust regression method. There is not much of a difference between the two
robust regression plans but the Q statistic appears to have the slight edge over the
more traditional quadratic form. Although more work is needed on this topic but the
early signs are that depth measures and robust regression methods are worth further
investigations in follow-up research.

3 Example of Application

An application of bivariate control charts is in effluent monitoring of total suspended
solids (TSS) and total residual chlorine (TRC) at sewerage treatment plants. These
are typically not normally distributed (e.g., Park, 2007), and are routinely monitored
over time at all treatment plants. The data we have involves daily measures of TSS and
TRC from 1 July 1996 to 24 June 1999. The number of observations in this dataset
is not quite sufficient for both Phase I and Phase II SPC, therefore we took the first
half of the data and fitted a best Box-Cox transform of the data to normality and then
used a parametric bootstrap approach to set up the Phase I SPC process, and applied
this to the second half of the data. The best transform for TSS was to add 0.1 to this
variable and invert it, and the best transform of TRC is the cube root of this measure.
The correlation between these two variables is not high at 0.065, but nevertheless
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Table 1: The number of flags for increased (decreased) dispersion for the various
approaches; log-normal distribution

d(a,b) Box-Cox Transformation | Robust Robust Data depth
Log Log|regression regression (q) |(2 or more
Volume Perimeter |h = 6.259469 |h, = 5.33291 |depths=0 or
thresholds two
Upper Upper consecutive

(Lower) (Lower) one depth=0)
27.5601 10.9545

LN (u,o0) (7.5393) (5.6227)

X~LN(0,1), 9 719 11 8

Z ~ LN (0,V0.75) a7 (15)

X ~LN(0,1.25), 278 655|567 588 291

Z ~ LN(0,V0.75) ) )

X ~LN(0,1.5), 1728 3680(2205 2391 1756

Z ~ LN(0,V0.75) (0) (0)

X ~LN(0,1.75), 4063 7042(4480 4631 4236

Z ~ LN(0,V0.75) (0) (0)

X ~LN(0,2), 6504 8940|6413 6473 6180

Z ~ LN(0,0.75) (0) (0)

X~LN(0,1), 199 131|120 117 310

Z ~ LN (0,V1.25) ) (0)

X~LN(0,1), 537 325(251 244 1104

Z ~LN(O,V1.5) (0) 3)

X~LN(0, 1), 872 533|478 467 1757

Z ~ LN(0,V1.75) (0) (0)

X~LN(0, 1), 1400 886|909 811 3032

Z~LN(0,V2) 0 (0)

X~LN(0,1), 2028 1384|1558 1263 4006

Z ~ LN (0,V2.25) (0) (0)

X~LN(0O,1), 2646 1865|2145 1746 4918

Z ~ LN (0,V2.5) (0) (0)

X~LN(0, 1), 3165 242912820 2247 5612

Z ~ LN(0,V2.75) (0) (0)
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Table 2: The number of flags for increased (decreased) dispersion for the various
approaches; inverse Gaussian distribution

d(a,b) Box-Cox Transformation|Robust Robust Data depth
-0.06 -0.03 |regression regression (q)
Volume Perimeter|h = 3.09924 |h, =2.595764
thresholds
Upper Upper
(Lower) (Lower)

1.0464 6.8207
I1G(u, o) (0.3790) (6.4754)
X~IG(, 1), 16 914 10 9
Z ~1G(1,¥0.75) (3) (23)
X~IG(1,1), 98 6055 62 278
Z ~IG(1,V1.25) (0) (16)
X ~1G(1,1), 218 81|84 97 477
Z ~1G(1,V1.5) (0) (0)
X~I1G(1,1), 413 124|138 104 1619
Z~1G(1,V1.75) ) 3)
X~IG(1,1), 573 199]169 125 2750
Z ~1G(1,V2) (0) 3)
X ~IG(1,1), 890 312(231 18 3520
Z ~1G(1,v2.25) 1) 1)
X ~1G(1,1), 1086 384(325 178 3269
Z~1G(1,V2.5) (0) (0)
X~IG(, 1), 1086 384(325 178 3269
Z ~1G(1,V2.5) (0) 0)
X~IG(1,1), 3667 1889(603 467 8792
Z ~1G(1,V4.75) (0) (0)
X~IG(11), 6316 4993 (784 628 9931
Z ~1G(1,V8.75) (0) ()
X~IG2,1), 114 0]4491 4105 638
Z ~1G(1,¥0.75) (0) (2270)
X~IG@3,1), 308 0/7931 7726 2999
Z ~IG(1,Y0.75) (0) (4928)
X~1G(4,1), 0 08886 8697 3709
Z ~1G(1,Y0.75) (559) (6415)
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Table 3: The number of flags for increased (decreased) dispersion for the various
approaches; Weibull distribution

d(a,b) Box-Cox Transformation | Robust Robust Data depth
0.27 0.22|regression regression (gq)
Volume Perimeter|h = 1.707337 |h, = 1.470695
thresholds
Upper Upper
(Lower) (Lower)

7.8774 8.0077
WEI(u, o) (2.8452) (6.1948)
X~WEI(,1), 36 12|32 9 19
Z ~WEI(1,V0.75) (44) (20)
X~WEI(1.5,1), 134 649|701 321 130
Z ~WEI(1,v0.75) (56) o))
X~WEIQ2,1), 224 3433(6933 1287 950
Z ~WEI(1,Y0.75) (35) (0)
X~WEIQ2.5,1), 331 6598(8133 3255 2521
Z~WEI(1,V0.75)| (37 0
X ~WEIQ3,1), 514 86139500 6064 4402
Z~WEI(1,Y¥0.75)|  (35) )
X ~WEI(1,0.7), 922 469|1697 1434 1002
Z ~WEI(1,Y0.75) 3) (23)
X ~WEI(1,0.6), 2509 1346|3357 3193 2878
Z ~WEI(1,V0.75) 0) (24)
X ~WEI(,0.5), 5272 3328|5707 5581 5488
Z ~WEI(1,Y0.75) (35) (13)
X ~WEI(1,0.4), 8181 6015|7706 7595 7942
Z ~WEI(1,Y0.75) (0) (19)
X ~WEI(1,0.3), 9696 8447(9011 8906 9605
Z ~WEI(1,V0.75) (0) (14)

positively correlated. We construct bootstrap samples of TSS = 1/x—-0.13+0.023z
where x ~ n(3.6,1.259) and z ~ n(0,1) and TRC = log(y + 1.1) + 0.023z where
y ~ n(1.304,0.49) and the small positive correlation is induced by the normally
distributed variable z.

This is used to set up simulated data for training the bivariate process control
charts for the second half of the data. This bootstrap sample indicated 279 false
alarm signals in 10 000 in-control bootstrap samples for depth (this is higher false
alarm rate than we would like). The two robust regression procedures lead to identical
conclusions and therefore only one is reported. In these cases we were able to train
the methods to have a false alarm rate of 0.0027. The results are reported in Figure
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Table 4: The number of flags for increased (decreased) dispersion for the various
approaches; Gamma distribution

d(a,b) Box-Cox Transformation |Robust Robust Data depth
0.32 0.225|regression regression (q)
Volume Perimeter |h = 0.6425606 |h, = 0.5919475
thresholds
Upper Upper
(Lower) (Lower)

7.5292 8.8335
Ga(shape,rate) [(2.6899) (7.5664)
X ~Ga(3,2), 30 23|31 34 13
Z ~Ga(3,V1.75) ) 9)
X ~Ga(3,1.5), 99 1548|584 476 128
Z ~Ga(3,V1.75) 3) (0)
X ~Ga(3,1), 422 9466|6418 4960 2590
Z ~Ga3,V1.75) 0 (0)
X ~Ga(3,0.8), 746 9984|9089 8158 5429
Z ~Ga(3,V1.75) (0) (0)
X ~Ga(3,0.6), 1211 10000 {9947 9785 9127
Z ~Ga(3,V1.75) (0) (0)
X ~Ga(3,2), 94 142|202 219 33
Z ~Ga(3,V1.25) ®) )
X ~Ga(3,2), 175 4321606 657 152
Z~Ga(3,1) (€)) 0)
X ~Ga(3,2), 441 1370|1989 1960 718
Z ~ Ga(3,V0.75) (1 (0)
X ~Ga(3,2), 1026 4226|5354 5132 2300
Z ~Ga(3,v0.3) (0) (0)
X ~Ga(3,2), 2689 9202|9451 9322 7615
Z ~Ga(3,0.5) ) 14)

3. Notice that the robust regression approach only flags a change in dispersion for
rational subgroup for data starting on 1998-06-18 whereas data depth flags whenever
2 or more depths are zero in the rational subgroup (equal to or above the depth red
line in Figure 3) and when two consecutive rational subgroups with exact one depth
equal to zero (these are indicated by placing a cross at both the locations this occurs).
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Table 5: The number of flags for increased (decreased) dispersion for the various
approaches; Inverse Gamma distribution

d(a,b) Box-Cox Transformation|Robust Robust Data depth
-0.15 -0.2 |regression regression (q)
Volume Perimeter|h = 740.709 |h, = 659.1923
thresholds
Upper Upper
(Lower) (Lower)

2.3849 6.1934
1Ga(u,o) (0.8289) (4.4893)
X~1Ga(2,1), 0 154120 22 9
Z ~1Ga(2,V0.75)| (9512) (37)
X ~1Ga(2,1.25), Plan is not adequate 1143 1114 271
Z ~1Ga(2,V0.75)
X~I1Ga(2,1.5), 5331 5403 2365
Z ~1Ga(2,V0.75)
X~1Ga(2,1.75), 8813 8767 5636
Z ~ IGa(2,V0.75)
X~I1Ga(2,2), 9815 9819 8023
Z ~1Ga(2,V0.75)
X ~1Ga(2,2.25), 9973 9977 9408
Z ~1Ga(2,V0.75)
X~1Ga(2,1), 251 192 600
Z ~1Ga(2,V1.25)
X~I1Ga(2,1), 832 451 1732
Z ~1Ga(2,V1.5)
X~I1Ga(2,1), 1921 1027 3271
Z ~1Ga(2,V1.75)
X~1Ga(2,1), 3504 2873 4653
Z ~1Ga(2,V2)
X~1Ga(2,1), 5085 4363 5856
Z ~I1Ga(2,V2.25)
X~IGa(2,1), 6434 5894 6932
Z ~1Ga(2,V2.5)
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Table 6: The number of flags for increased (decreased) dispersion for the various
approaches; Pareto distribution

d(a,b) Box-Cox Transformation | Robust Robust Data depth
log log|regression regression (q)
Volume Perimeter|h = 74930.24 |h, = 39975.8
thresholds
Upper Upper

PARETO2=Pa | (Lower) (Lower)

76.9411 19.9683
Pa(u, o) (20.0488) (9.7517)
X ~Pa(2,1), 495 320(25 33 6
Z ~ Pa(2,V0.5) (125) (32)
X ~Pa(2,0.7), Plan is not adequate |75 110 80
Z ~ Pa(2,v0.5)
X ~ Pa(2,0.6), 265 278 341
Z ~ Pa(2,v0.5)
X ~ Pa(2,0.5), 964 1004 1165
Z ~ Pa(2,V0.5)
X ~Pa(2,0.4), 2572 3003 3152
Z ~ Pa(2,\0.5)
X ~Pa(2,0.3), 6433 6862 6294
Z ~ Pa(2,V0.5)
X ~Pa21), 277 250 29
Z ~ Pa(2,V0.3)
X ~Pa2,1), 1128 1140 118
Z ~ Pa(2,\0.2)
X ~Pa(2,1), 5097 5106 1510
Z ~ Pa(2,v0.1)

4 Concluding remarks

The distribution free method proposed in this paper based on ranks does not work
as well as the plan based on robust regression methods. The biggest disadvantage
with the robust regression approach is that many more numbers of rational subgroup
samples are needed in Phase I to set-up this plan for Phase II monitoring. Although
in many environmental settings data have been collected for decades and in several
applications such data would be sufficient to establish the plan and in these cases
data availability should not be a restriction. This is certainly the case in the Sydney
Waterways. If we train the methods for a false discover rate of 1 in 100 then we
could get away with smaller samples in the Phase I stage, and so more work is
needed in establishing the Phase I information needed to effectively design the
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Table 7: The number of flags for increased (decreased) dispersion for the various

approaches; Reverse Gumbel distribution

d(a,b) Box-Cox Transformation |Robust Robust Data depth
-2.68 -2.61|regression regression (q)
Volume Perimeter |h = 0.7894239 |h, = 0.6935926
thresholds
Upper Upper
(Lower) (Lower)

1.2774 0.4498
RG(u, o) (0.4452) (0.3397)
X ~RG(13,1), 9 33(27 28 8
Z ~RG(13,V1.5) (14) (23)
X ~RG(13,1.5), 363 668|1752 1277 1201
Z ~RG(13,V1.5) 1) (133)
X ~RG(13,2), 2380 2467|6631 5804 5307
Z ~RG(13,V1.5) ) (216)
X ~RG(13,3), 7423 6521(9818 9661 9072
Z ~RG(13,V1.5) 1) (189)
X ~RG(13,4), 9091 8442(9995 9986 9879
Z ~RG(13,V1.5) 1) (139)
X ~RG(13,5), 9577 9204 (10000 9999 9987
Z ~RG(13,V1.5) ) (130
X ~RG(13,1), 386 105|832 752 682
Z ~RG(13,V3) (0) 5)
X ~RG(13,1), 1309 1882301 2042 2161
Z ~ RG(13,V4) ) Q)
X ~RG(13,1), 4216 4895734 5065 5132
Z ~ RG(13,V6) (0) )
X ~RG(13,1), 6573 1052(8026 7412 6854
Z ~ RG(13,V3) (0) )
X ~RG(13,1), 8010 16939074 8641 7999
Z ~ RG(13,V10) (0) 2)

robust regression plan. The other advantage that the robust regression has is that
it distinguishes between increases in spread and decreases in spread, whereas data
depth can’t easily find reductions in dispersion. In addition, data depth will flag
changes in location and therefore does not distinguish between changes in location
and spread. The robust regression approach does. In terms of their performance
in detecting changes in dispersion quickly, there is little difference between the
approaches, with the differences mostly being small except in the cases of the Inverse
Gaussian distribution and the Inverse Gamma distribution. So the choice of which
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15

Robust regression slope estimate for log(FC)
1.0

Date

Fig. 1: Robust regression control chart applied to Faecal Coliform measures in
Sydney Harbour

method to apply is going to depend on the individual application. The relative
performance for the robust regression is encouraging and therefore this plan is worth
further investigation in settings that don’t only involve positive measures. If users
wish their monitoring plan to separate out the parameter influences on the process
measures then selecting the appropriate scale is important. This is demonstrated
by the log-normal distribution where the log-scale applying the S-chart only flag
changes in variance but not location.
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S Bivariate Distributions and their bagplots

Fig. 3: Log-normal distribution (X; ~LN(u=0,0 = 1) & X, = 0.5X; + Z where
Z ~LN(u=0,0 =v0.75)
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Fig. 4: Inverse Gaussian (X ~IG(u= 1,0 =1) & X, =0.5X; + Z where Z ~ IG(u =
1,0 =v0.75)

Fig. 5: Weibull distribution (X; ~ WEI(u = 1,0 = 1) & X, = 0.5X; + Z where
Z ~WEIl(u=1,0 =v0.75)
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Fig. 6: Gamma distribution (X; ~ Ga(shape = 3,rate =2) & X, = 0.5X| + Z where
Z ~ Ga(shape = 3,rate = V1.75)
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Fig. 7: Inverse Gamma distribution (X; ~ IGa(u =2,0 =2) & X =0.5X; + Z where
Z ~1Ga(u =2,0 = v0.75)
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Fig. 8: Pareto distribution (X; ~ PARETO2(u=2,0 =1) & X, =0.5X| + Z where
Z ~PARETO2(u=2,00 =V1.5)
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Fig. 9: Reverse Gumbel distribution (X; ~RG(u=13,0=1) & X, =0.5X; +Z
where Z ~RG(u = 13,0 = V1.5)



Monitoring of short series of dependent
observations using a control chart approach and
data mining techniques

Olgierd Hryniewicz and Katarzyna Kaczmarek

Abstract Many different control chart have been proposed during the last 30 years
for monitoring of processes with autocorrelated observations (measurements). The
majority of them are developed for monitoring residuals, i.e., differences between
the observed and predicted values of the monitored process. Unfortunately, statistical
properties of these chart are very sensitive to the accuracy of the estimated model of
the underlying process. In this paper we consider the case when the information from
the available data is not sufficient for good estimation of the model. Therefore, we use
the Bayesian concept of model averaging in order to improve model prediction. The
novelty of the proposed method consists in the usage of computational intelligence
methodology for the construction of alternative models and the calculation of their
prior probabilities (weights).

1 Introduction

Control charts were originally devised for the monitoring of production processes
when long series of quality-related measurements are observed. Later on, they have
also been successfully applied in cases of short production runs. Problem arise, how-
ever, when consecutive observations are statistically dependent. Pioneering works
in the area of process control in presence of dependent (autocorrelated) data, such
as Box, Jenkins & MacGregor (1974), were published in the 1970th. Since that
time many papers devoted to this problem have been published, and they can be, in
general, divided into two groups. Authors of the first group of papers, such as, e.g.,
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Vasilopoulos and Stamboulis Vasilopoulos & Stamboulis (1978), Montgomery and
Mastrangelo Montgomery & Mastrangelo (1991), Maragah and Woodall Maragah
& Woodall (1992), Yashchin Yashchin (1993), Schmid Schmid (1995) or Zhang
Zhang (1998), propose to adjust design parameters of classical control charts (She-
whart, CUSUM, EWMA) in order to accommodate the impact of autocorrelation
in data on chart’s statistical properties. The origin of the second group of papers is
the paper by Alwan and Roberts Alwan & Roberts (1988) who proposed a control
chart for residuals. In their approach a mathematical model of the observed process
has to be identified using the methodology developed for the analysis of time series.
The deterministic part of this model is used for the computation of predicted values
of observations, and differences between predicted and observed values of the pro-
cess, named residuals, are plotted on a control chart. Properties of different control
charts for residuals have been proposed by many authors, such as, e.g., Wardell et al.
Wardell, Moskowitz & Plante (1994), Zhang Zhang (1997), Kramer and Schmid
Kramer & Schmid (2000). Both approaches have been compared in many papers,
such as, e.g., Lu and Reynolds Lu & Reynolds (1999). It has to be noted, however,
that the applicability of the charts for residuals in SPC was a matter of discussion
(see, e.g. the paper by Runger Runger (2002)), but now this approach seems to be
prevailing. Recently, more complicated procedures have been proposed. For exam-
ple, the ARMA chart proposed by Jiang et al. Jiang, Tsui & Woodall (2000), the
chart proposed by Chin and Apley Chin & Apley (2006) based on second-order
linear filters, the chart proposed by Apley and Chin Apley & Chin (2007) based
on general linear filters or the PCA-based procedure for the monitoring multidimen-
sional processes proposed by De Ketelaere et al. De Ketelaere, Hubert & Schmitt
(2015).

A proper design of a control chart for autocorrelated data requires the knowledge
of the mathematical model of the monitored process. When series of observations
(production runs) are long enough to determine an appropriate model of dependence,
several solutions have already been proposed for the calculation of such character-
istics like the ARL. Even in this case, however, serious problems arise when we
want to calculate chart’s characteristics when the monitored process goes out of
control. The situation is even worse when the amount of available data is not suf-
ficient for the identification of the underlying model of dependence. In such a case
only few analytical results exist (see, e.g., the paper by Kramer and Schmid Kramer
& Schmid (2000) or the paper by Apley and Lee Apley & Lee (2008)). These
difficulties stem mainly from the fact that for imprecisely (or wrongly) identified
model of dependence not only observations, but residuals as well, are autocorre-
lated. Unfortunately, this happens in practice when, e.g., the monitored process is in
its prototype phase or when we monitor patients in a health-care system. The latter
example gives motivation for the research described in this paper.

It seems to be rather unquestionable that proper identification of the dependence
model is equivalent to finding a good predictor for future observations. When we
do not have enough data for building a good model, i.e., when the available time
series is too short, one can use methods developed by econometricians for prediction
purposes in short economic time series. In such situations they prefer to use Bayesian
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methods combined with the Markov Chain Monte Carlo simulation methodology. A
very good description of this approach can be found in the book by Geweke Geweke
(2005). What is specific in this approach is the concept of model averaging. The
Bayesian model in this approach contains not only the prior knowledge about model
parameters, but also a prior knowledge about several possible models that can be used
for prediction. In practice, non-informative priors are used, and MCMC simulations
are used for the evaluation of predictive posterior distributions. Hryniewicz and
Kaczmarek Hryniewicz & Kaczmarek (2014) proposed to use some computational
intelligence methods for the construction of the prior distribution on the pre-chosen
set of models. Their algorithm appears to be highly competitive when compared to
the best available algorithms used for the prediction in short time series. In this paper
we try to adopt a similar approach for the construction of Shewhart control charts
for residuals.

The paper is organized as follows. In the next section we describe the assumed
mathematical model of the monitored process, and present the algorithm for the
construction of the proposed XWAM chart. Section 3 is devoted to the description of
methods that have been used for building alternative models of the monitored process.
Simulation methods have been used for the evaluation of statistical properties of the
proposed control chart. Comprehensive experiments have been performed, but due to
the limited volume of this paper only some representative results have been described
in Section 4. The paper is concluded in the last section where we also outline possible
areas of future investigations.

2 Mathematical model and the design of an XWAM control chart

Control charts perform well when they are designed using sufficient amount of data.
In the case of classical control charts the amount of statistical data is sufficient for
design purposes if it allows to estimate process parameters with good precision. The
situation is much more difficult in the case of control charts for residuals. In this
case the data is used for the estimation of the underlying model of the process, and
the parameters of the probability distribution of residuals. In this section we propose
an alternative design of the X chart for residuals that can be used when available
samples are small.

2.1 Mathematical model

Consider random observations described by a series of random variables X1, X», .. ..
In the context of statistical quality control these random variables may describe
individual observations or observed values of sample statistics, such as, e.g., aver-
ages plotted on a Shewhart X-chart. The full mathematical description of such a
series can be done using a multivariate (possibly infinitely-dimensional) probability
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distribution. Unfortunately, in practice this usually cannot be done. Therefore, statis-
ticians introduced simpler and easier tractable mathematical models. based on the
notion of conditionality. In the most popular model of this kind the random variable
representing the current observation is represented as the sum of a deterministic part
depending on the observed values of previous observations and a random part whose
probability distribution does not depend upon the previously observed values, i.e.,

Xizf(xl,...,xi_1)+ei,i=l,.... (1)

In the simplest version of (1) we usually assume that random variables €;,i = 1,...
are mutually independent and identically distributed. On the other hand, we often

assume that the deterministic part f(xy,...,x;—1) has a form that assures stationarity
of the time series X1, X», . ... In this paper we make even stronger assumption that
Xi =ayXj-1t...+apXi—p + €, 2)

where €;,i = 1,... are normally distributed independent random variables with the
expected value equal to zero, and the same finite standard deviation. Thus, our
assumed model describes a classical autoregressive stochastic process of the pth
order AR(p). The comprehensive description of the AR(p) process can be found in
every textbook devoted to the analysis of time series, e.g., in the seminal book by
Box and Jenkins Box, Jenkins & Reinsel (2008) or a popular textbook by Brockwell
and Davis Brockwell & Davis (2002). In these books one can find the description
of more general models, such as, e.g., the ARM A(p, g) which are also special cases
of (1), and are widely used in the statistical analysis of time series.

Estimation of the model AR(p), given by (2), is relatively simple when we know
the order of the model p. In order to do this we have to calculate first p sample
autocorrelations ry,7y,...,7), defined as

n 3 G = PG = )
ri = — ——i=1...p 3)
(n—i) 2 (xe — 1)
where N is the number of observations (usually, it is assumed that n > 4p), and [

is its average. Then, the parameters ay, .. .,a, or the AR(p) model are calculated by
solving the Yule-Walker equations (see, Brockwell & Davis (2002))

ry=aytaxry+...taprp-1
rp) =apr +a2+...+aprp_2

“)

rp=airp-1+axrp2+...+ap,

In practice, however, we do not know the order of the autoregression process, so we
need to estimate p from data. In order to do this let us first define a random variable,
called the residual.

Zi=X;—(a1xi1+...+apx;_p),i=p+1,...,N. ®))
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The probability distribution of residuals is the same as the distribution of random
variables €;,i = 1,...1in (2), and its variance can be used as a measure of the accuracy
of predictions. For given sample data of size N the variance of residuals is decreasing
with the increasing values of p. However, the estimates of p models parameters
ai, .. .,ap become less precise, and thus the overall precision of prediction with future
data deteriorates. As the remedy to this effect several optimization criteria with a
penalty factor which discourages the fitting of models with too many parameters
have been proposed. In this research we use the BIC criterion proposed by Akaike
Akaike (1978) defined as

BIC = (n-p)In[n&2/(n—p)]+n(1 +InV2n) +pln[(z x2—n&?)/pl, (6)
t=1

where x; are process observations transformed in such a way that their expected
values are equal to zero, and 62 is the observed variance of residuals. The fitted
model, i.e., the estimated order p and parameters of the model 4y, . . .,d, minimizes
the value of BIC calculated according to (6).

It is a well known fact that the accuracy of prediction in time series strongly
depends upon the number of available observations. In Section 4 we will present
some numerical illustration of this effect. The problem begins, however, when the
number of available observations is strongly limited. In the context of SPC this means
that we have, e.g., to design a control chart for a short production run. In such a
case the accuracy of the estimated model of a monitored process may be completely
insufficient if we follow recommendations applicable in the case of a control chart
for independent observations.

The problem mentioned above arises in many areas when only short time series
are available, such as, e.g., in the case of economic data. In order to overcome this
econometricians proposed an empirical (objective) Bayesian approach to the analysis
of time series. One of the most important aspects of this approach is the averaging of
models. According to Geweke Geweke (2005) we define a set M = {M}, M>, ..., M}
of multiple competitive probabilistic models of a considered process. Then, the
posterior density of a vector of interest w (e.g, some consecutive predicted values of
a process) is defined as follows Geweke (2005)

J
ply, M) =" p(M;ly, M)p(wly, M;) )
=1

where y is a series of observations, p(w|y, M) is the posterior density of the vector of
interest conditional on model M;), and p(M;|y, M) are the prior model probability
distributions. In this paper we will use the concept of model averaging for the
construction of a control chart. Different AR(p) models will be used as competitive
probabilistic models of a monitored process, and their prior probabilities (weights)
will be computed using a methodology described in Section 3.
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2.2 Design of the XWAM control chart

SPC for processes with autocorrelated data using a control chart for residuals was
firstly proposed by Alwan and Roberts Alwan & Roberts (1988). Their methodology
is applicable for any class of processes, so it is also applicable for the AR(p) process
considered in this paper. According to the methodology proposed by Alwan and
Roberts Alwan & Roberts (1988) the deterministic part of (1) is estimated from
sample data, and then used for the calculation of residuals. This methodology is
also known under the name “filtering”. In our case it is the deterministic part of
the AR(p) process estimated according to the methodology described in Subsection
2.1 from a sample on n elements. We denote this estimated model as My, and its
parameters by a vector (ayp,...,ap,0). We assign to this estimated model a certain
weight wq € [0,1]. We also consider k competitive models M;,j = 1,...,k, each
described by a vector of parameters (aj, j""’ag,,j)' In general, any model with
known parameters can be used as a competitive one, but in this paper we restrict
ourselves to the models chosen according to the algorithm described in Section 3.
Let wll, .. .,w}( denote the weights assigned to models My, ..., M; by the algorithm
described in Section 3. In the construction of our control chart, coined XWAM (X
Weighted Average Model chart), to each competitive (alternative) model we will
assign a weight w; = (1 —wo)w;.,j =1,...,k.

When we model our process using k + 1 alternative models each process observa-
tion generates k + 1 residuals. In the case considered in this paper they are calculated
using the following formula

Zi,j = xi—(al,jxi_l +...+a,,j,jxl-_,,j),j =0,....k;i =p;+ 1,.... (8)

Let i, = max(po,...,px) + 1. For the calculation of the parameters of the XWAM
control chart we use n —i,,;,, + 1 weighted residuals calculated from the formula

k

* . .

e g WiZijsi = imins. .., 1. )
=0

The central line of the chart is calculated as the mean of zl?‘, and the control limits
are equal to to the mean plus/minus three standard deviations of z*, respectively.

The operation of the XWAM control chart is a classical one. First decision is
made after i,,;, observations. The weighted residual for the considered observation
is calculated according to (9), and compared to the control limits. An alarm is
generated when the weighted residual falls beyond the control limits.
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3 Similarity measures of series of observations

Finding one appropriate probabilistic model and estimating its parameters may be-
come a very challenging task for short series of observations. In this Section, we
explain the proposed approach of selecting k alternative models that describe the
monitored process. The selection is determined by distances learned between the
monitored process and the training series from the template database. The training
database consists of sample realizations of template predictive models. Within the
proposed approach, distances between the monitored process and the training series
are evaluated, and as a result of their aggregation, prior model probabilities (weights)
are established for the chosen k alternative models. This combination is inspired by
Bayesian averaging as extensively described by Geweke Geweke (2005).

3.1 Similarity measures of series of observations

The similiarity of two time series is evaluated by calculating the distance between
them. Within the proposed approach, the DTW (Dynamic Time Warping) measure
as introduced by Berndt and Clifford Berndt (1994) is adapted. DTW is the classical
elastic measure and enables to calculate the smallest distance between two series of
observations taking into account dilatation in time.

Let X = {x1,x2,...xny}and Z = {zy, 22, ..., zps } denote time series to be compared.
The distance d between two points x; and z;, the so called local cost function, is
defined as follows

d(i.j) = f(xizj) 20 (10)

The magnitude of the difference d(i,j) = |x; — z;| (Manhattan) or square of the
difference d(i,j) = (x; — z ]')2 (Euclidean) are some of the most common local cost
functions considered in applications.

The DTW distance is based on the following recursive relation, which defines a
cumulative distance g(i,j) fori € {1,..,N}and j € {1,...,M}

g(6,j) =d (i, j) +minlg(i—1,7),g(=1,j=1),8Gj-1)] an

The cumulative distance is the sum of the distance between current elements and the
minimum of the cumulative distances of the neighboring points. Two points (x;, z;)
and (x;., z;») on the N-by-M grid are called neighboring if (|i—i*|=1and |j—j=*|=
O)or(li—ix|=0and|j—j=*|=1).

When two compared series are of the same length the value of g(N, M) defines
the distance between them. However, when N # M the situation is more complicated,
and the elements of both series have to be aligned in some way. The alignment of the
elements from X and Z such that the distance between them is minimized is called
a warping path. The DTW problem is defined as a minimization of cumulative
distances over potential warping paths based on the cumulative distance for each
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path. This problem is solved using dynamic programming, and its complexity is
O(NM), and its solution is considered as the distance between two compared time
series.

In Figure ??, the performance of the Euclidean and DTW distances is compared
for exemplary series of observations from AR(-0,9), AR(-0,5) and AR(0,0) processes.

4 DTW |Euclidean
dist( AR (0), AR (-0.9)) | 3,7 3,7

3 dist( AR (0), AR (0.5)) | 3,5 41

2

1

0

1 2 3 4 5

1

2

3 —AR(-0.9) —AR(-0.5) —AR(0)

Fig. 1: Euclidean and DTW distances for exemplary series of observations

As observed, the DTW distance between series from AR(0,0) and AR(-0,9)
amounts to 3,7, whereas the distance between series from AR(0,0) and AR(-0,5)
is smaller, and amounts to 3,5. On the other hand, the Euclidean distance between
series from AR(0,0) and AR(-0,9) is also 3,7, but the distance between series from
AR(0,0) and AR(-0,5) results 4,1, which is contradictory to intuition.

Our experiments confirm the good properties of the DTW measure, especially for
time series with identified dilatation in time, because DTW seems to preserve trends.
For further reading, we refer to, e.g., the recent survey and experimental comparison
of representation methods and distance measures for time series data provided by
Wang et al. Wang et al. (2013). Wang et al. conclude that especially on small data
sets, elastic measures like DTW can be significantly more accurate than Euclidean
distance and other lock-step measures.

3.2 Construction of prior probabilities (weights)

Having defined the distance between 2 time series, the proposed method of selecting
k alternative models is explained. The input for the algorithm is the monitored process
v, the desired number of alternative models k and definitions of the AR processes to
be considered in the template database. We adapt stationary AR processes of different
orders as template models M. It needs to be stated, that in numerical experiments,
the order is usually assumed less or equal 2.
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The output of the algorithm is in form of definitions of alternative models
{My,..., My} to be considered in predictions of the monitored process and their
respective weights {wy, ..., wr} such that Zﬁzl wy = 1.

Algorithm 1 Building alternative models of the monitored process (BAM)

> Input:
: y - monitored process,
: p - max order of the AR process considered to build template database,
: s - number of sample time series from each of the template AR processes,
a - min difference between autoregressive coefficients of AR models in template database,
k - number of alternative models to be considered
> Output:
M, ..., M - alternative models to be considered for the monitored process,
wi, ..., Wi - weights for the alternative models
: procedure BAM(y, p, s, a, k)
9: [ « length(y)

R D

10: J <0

11: for order =0to p do > Step 1. Generation of template database

12: for0=-1+atoladd a do

13: if generateAR(length=/, order, 6) is stationary then

14: fori=1tos do

15: Yi.order.o < generateAR(length=/, order, 6) > 0 is a list of
autoregressive parameters for AR order greater or equal 2

16: J—J+1

17: for m=1toJ do » Step 2. Calculating similarity of monitored process y to time series
from the template database

18: fori=1tos do

19: dist,,,; < distanceDTW(y, Y., i)

20: dist,, < meanDistance(M,,,)

21: form=1toJ do > Step 3. Aggregating similarities to establish weights

22: My, ..., M;. « selectAlternativeModels(dist,,,, k)

23: Wi, ..., Wi« scaleWeights(M, k)

return M, ..., Mk, Wiy ooy Wi

Algorithm 1 depicts a high-level description of the proposed approach. It consists
of the following steps:
Step 1. Generation of template database Y s.
The template database consists of models {Mj, ..., M} that are stationary AR pro-
cesses of order less or equal p. For each of the J models (processes), its s realizations
(training time series) are generated and considered for similarity calculations. For the
clarity reasons, the length of generated series is the same as length of the considered
monitored process.
Step 2. Calculating distances between the monitored process y and the training time
series from the template database using the DTW distance.
For m € J and their realizations i € s, the distance between the training time series
and the considered monitored series of observations is calculated

disty,i = DTW (Ym,i»y) 12)
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Step 3. Aggregating similarities to establish weights corresponding to models
{My, ..., My}
The mean aggregation operator is considered to construct weights for each model
based on distances retrieved for each of the s sample time series. For model M,
where m € J having s realizations, the average distance between the training time
series and the considered monitored series of observations is calculated as follows

Z?:l dist,m
N

dist,, = (13)
Having evaluated the average distance for each of the template models {M;, ..., M},
the £ models with smallest distance are selected. Then, the prior weights {w1, ..., wi}
are calculated

dist;

= (14)
Sk, disty

Wi

4 Numerical experiments

In this paper we consider a Shewhart control chart whose parameters are designed
using information from relatively small samples. The effect of parameter estimation
on the properties of the classical Shewhart control chart has been investigated by
many authors. They found that estimated control limits, in general, are too wide. Thus,
the values of ARL are larger than expected, and special corrections are needed, such
as, e.g., proposed by Albers and Kallenberg Albers & Kallenberg (2004). The same
effect has been observed in the case of positively autocorrelated data. However, for
negatively autocorrelated data the control limits are too narrow, and the rate of false
alarms is too high. When we use a Shewhart control chart for residuals, and we have
enough data to estimate the underlying model of the process, and the variance of
residuals, sufficiently precisely, then the chart for residuals behaves like a classical
Shewhart control chart. However, when we do not have enough data, and this is a
usual case in practice, the value of ARL of the chart for residuals is, as it was proved
by Kramer and Schmid Kramer & Schmid (2000), smaller than in the case of the
classical Shewhart control chart applied for original (raw) observations. In order
to illustrate these well known features we have performed a simulation experiment
in which 10000 charts was designed, and for each of them 500 process runs were
simulated. W have performed this experiment for the ordinary Shewhart X chart for
individual observations, and for the Shewhart X-chart for residuals. The charts of
both types have been designed using the information coming from the sample of n
items. Note, that in the case of a control chart for residuals the underlying model
was estimated using a methodology described in Section 2. In order to compare both
charts we have computed four characteristics: average ARL (AvgARL), median ARL
(MedARL), average MRL (AvgMRL), and median MRL (MedMRL), where MRL
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is the median of observed run lengths. The results of the experiment are presented
in Table 1.

Table 1: Properties of control charts with independent observations

X-chart X-chart (residuals)
n |AvgARL MedARL AvgMRL MedMRL [AvgARL MedARL AvgMRL MedMRL
20 | 1811,2  306,1 1366,5  213,5 398.,9 67,8 300,5 48,0
30 | 1067,2 3322 753,7 231,0 363.3 114,5 2544 80,0
40 | 740,2 3354 515,7 233,775 | 295,1 137,2 205,6 96
50 | 642,1 349,5 446,8 242,0 302,9 162,7 210,9 114,0
100 | 472,8 358,1 328,5 249,5 329,0 2459 229,3 171,0
500 | 3883 366,7 269,8 255,0 360,1 340,1 250,9 237,25
1000| 379,7 368,7 263,5 256,0 366,6 357,0 255,3 248.,5
2000( 3742 369,1 259.8 256,0 3714 366,5 258,7 255

The results of simulations presented in Table 1 confirm many of well known
facts. First, consider the case of the X chart for direct, and independent, observations
(columns 2-5). The distribution of ARL’s (over a set of possible control charts)
for small samples is in this case extremely positively skewed. Averaging of ARL’s
and MRL’s yields for small samples strongly positively biased estimators of the
theoretical values of these characteristics (370,4 and 256,4, respectively). On the
other hand, medians of ARL’s and MRL’s are negatively biased, but this bias seems to
be visibly smaller. In both cases the bias results from imprecise estimation of control
limits. When we consider the X chart for residuals (columns 5-9) the situation
is different. In this case the uncertainty related to imprecisely calculated control
limits (positive bias) in combined with the uncertainty related to the computation of
residuals (negative, as it was proved in Kramer & Schmid (2000)). The total bias of
the estimators of ARL and MRL, based on averaging, is not a monotonic function
of the sample size n, and attains its minimum at n approximately equal to 40. On the
other hand, when we use estimators based on the medians of ARL’s and MRL’s the
negative bias is monotonically decreasing with the increase of sample sizes.

Extreme skewness of the distributions of ARL’s and MRL’s has a very negative
impact on the investigations based on computer simulations. If we use averages
(over a set of simulated control charts) for the estimation purposes even in the case
of thousands of simulated charts few outlying cases may dramatically change the
results of estimation. Therefore, one would prefer to use the median as the more
robust estimator of ARL’s and MRL’s. However, in the case of averages we have a
commonly accepted benchmark value, the ARL for an in-control state equal to 370,4,
but for the median of ARL’s such a benchmark does not exist. Therefore, in this paper
we will focus on the approach in which we use the average of ARL’s, noting that in
future research the approach with the median will be more appropriate.

The properties of the XWAM chart have been analyzed using extensive simulation
experiments. The outer loop of the experiment consisted of the generation of N¢
XWAM control charts, and for each chart Ng process runs have been generated in
the inner loop of the experiment. Then, four characteristics have been calculated:
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average ARL (AvgARL), median ARL (MedARL), average MRL (AvgMRL), and
median MRL (MedMRL), where MRL is the median of observed run lengths.

In order to illustrate the design of the proposed XWAM chart consider the case
when a chart has to be designed basing on 20 observations from a monitored process.
The data presented below has been generated from an autoregressive process of the
second order, AR(2), with the parameters 0,7 and -0,9.

-0,94 -1,35 -1,4 -0,34 0,71 0,14 —0,49 —1,08 1,41 2,25
-0,05 -2,74 -1,02 2,95 4,03 0,43 —2,67 —2,45 1,98 4,25

The autoregression model estimated from these data using the BIC criterion is the
AR(2) model with the parameters (0,6094 ,-0,8236). Using the algorithm described
in Section 3 we have found 5 best alternative models. All of them are AR(2) models
with parameters (-0,1 , -0,5) , (0,1,-0,4), (0,4, -0,7), (-0,5,-0,5) , and (0,3 , -0,7),
respectively. The weights assigned to these alternative models were approximately
the same (w;. =0,2,i = 1,...,5). The estimated model is different from the original
model used in simulations, but not too much. However, the alternative models are
not very close to the original one, as one could expect.

For the control chart designed using this sample and respective models of the
process we have generated, from the original (0,7 , -0,9) model, 500 runs of the
process. The values of its characteristics, ARL and MRL, are presented in Table 2
for different values of the weight w assigned to the estimated model.

Table 2: Chart in-control characteristics for different weights assigned to the esti-
mated model

w 1,0 09 08 07 06 05 0,4 03 02 01 00
ARL |21,064 28,208 38,23 58,062 94,53 178,13 341,562 776,1 2110 5496 16894
MRL| 15,0 19,5 28,0 42,5 68,0 128,0 270,0 546,5 1402 4045 10961

The results presented in Table 2 illustrate the role of alternative models. Their
inclusion widens the control limits, and thus increases the values of chart’s charac-
teristics such as ARL and MRL. Therefore, the inclusion of alternative models is
beneficiary only when the run lengths of a chart designed using an estimated model
are shorter than expected. In this particular case the optimal weight of the estimated
model seems to be close to 0,4. For bigger weights the number of false alarms is to
high, and on the other hand, when this weight is too small the control limits are too
wide, and alarms indicating deterioration of a process would be triggered too late.

The model’s parameters describing the sample considered above are not so much
different from the parameters used in simulations. However, when sample sizes are
small, it must not be the case. Consider, for example, the following sample that has
been generated using the same model.

-3,48 0,82 2,70 1,44 -1,72 -3,19 -0,91 3,01 2,07 0,74
-1,12 -0,12 -1,73 -0,25 -1,32 -2,3 1,48 6,52 3,13 -3,83
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The autoregression model estimated from these data using the BIC criterion is the
AR(2) model with the parameters (0,379 , -0,6094). Using the algorithm described in
Section 3 we have found 5 best alternative models, and all of them are AR(2) models
with parameters (0,8 , -0,8), (0,6 , -0,8), (0,9 , -0,6), (0,4 , -0,7), and (-0,7 , -0,4),
respectively. The weights assigned to these alternative models were approximately
the same (w;. =0,2,i =1,...,5). It has to be noted that in the case of this particular
sample the estimated model differs from the original one. However, 4 out of 5
alternative models look more similar to the original (the fifth is visibly different).

In Table 3 we present the results of a similar simulation experiment as in the case
of the first considered sample. The values of ARL and MRL are, in this case, very far
from expected when only the estimated model is taken into account. The best, i.e.,
the closest to the expected ones, values are obtained when we completely neglect
(w = 0) the model estimated from the sample.

Table 3: Chart in-control characteristics for different weights assigned to the esti-
mated model - extreme sample

w 10 09 08 07 06 05 04 03 02 01 00
ARL |26055 23463 21180 19640 17608 16224 14585 13210 12431 11590 10352
MRL|17688 15960 14540 13545 12230 11540 10256 9492 9133 8067 7083

The results presented in Tables 2—3 illustrate the operation of the proposed al-
gorithm for particular samples. More general properties of the proposed XWAM
control chart have been investigated in numerous simulation experiments for dif-
ferent models describing autocorrelation. In Tables 4-5 we present the average and
median values of ARL’s evaluated from 1000 generated control charts, and 500 pro-
cess runs generated for each control chart, i.e., from all together 500000 simulated
process runs. In all these runs the simulated process was in in-control state.

Table 4: Average in-control ARL for different weights assigned to the estimated
model, n=20

Model/w: 10 09 08 07 06 05 04 03 02 01 00
AR(-0,9) | 81,1 87,3 96,5 110,2 131,7 167,8 235,1 373,6 708,3 1498 2995
AR(-0,5) [327,8 327,9 332,3 341,7 356,1 377,7 407,5 450,9 509,6 587,0 693,3
AR(0) 368,9 397,3 4314 476,3 531,2 761,9 867.4 1007,9 1198 1422 1683
AR(0,5) |215,7 255,8 309,2 388,3 509,8 707 1035 1536 2286 3315 4545
AR(0,9) 87,5 147,9 656,9 1839 4108 6809 9812 13132 16619 20279 23821
AR(0,7,-0,9)| 77,5 91,3 154,2 712,4 1975 4408 8654 14067 20742 28182 35668

The results presented in Tables 4 — 5 are very interesting from many points of view.
First, let us notice that the values of averages ARL’s in the in-control state (Table 4)
are significantly different from the respective values of medians of averages (Table
5). This difference tells us that the number of samples (charts) used for the evaluation
of properties of the XWAM chart (1000), and the sample sizes used, are not sufficient
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Table 5: Median in-control ARL for different weights assigned to the estimated
model, n=20

Model/w: 1,0 09 08 07 06 05 04 03 02 01 00
AR(-0,9) |38,5 42,0 47,0 52,3 58,2 66,0 75,7 89,0 104,5 123,0 144,0
AR(-0,5) 52,9 58,2 64,0 71,1 80,8 94,3 108,7 126,1 149,7 184,2 220,2
AR(0) 70,7 76,4 82,1 89,9 98,4 117 129 147,1 171,4 191,7 217
AR(0,5) |[50,1 56,8 63,1 71,9 84,6 99,4 116,2 143,3 164,2 206,4 248,9
AR(0,9) (30,0 33,5 38,5 44,4 52,6 72,2 98,4 145,7 198,3 298,3 417,3
AR(0,7,-0,9)(25,8 31,3 41,2 59,8 92,8 164,1 285,8 570,6 1172 2698 7056

for precise estimation of ARL’s. Unfortunately, the simulation of XWAM charts is
time consuming (due to the time used for finding alternative models), and simulation
of a much larger number of considered charts is, unfortunately, infeasible. Therefore,
the results presented in this paper have, as for now, rather qualitative character.

The results presented in Tables 4-5 show how the concept of the XWAM control
chart works in practice when monitored processes are in the in-control state. What is
equally important, however, it’s the ability of a chart to detect shifts of a monitored
process. In this paper we consider only the shifts of the average value, measured in
units of standard deviation. In Table 6 we show the values of ARL for different shifts
when we use a sample of 20 elements, and the observations positively, but not very
strongly, correlated (p =0, 5).

Table 6: Average ARL for different weights assigned to the estimated model and
different shifts of the process level, p = 0,5, n=20

Shifyw:| 1,0 09 08 07 06 05 04 03 02 0,1 0,0
-3 104 97 91 86 82 79 77 176 15 15 7,6
2 26,5 259 256 253 253 25,6 26,2 273 289 31,2 345
-1 95,6 100,4 106,5 114,0 124,7 138,9 158,6 186,6 225,3 285,0 370,1
0 |215,7 241,7 272,4 310,2 357,1 418,3 498,7 611,6 779,0 1053,1 1491,6

1 92,3 98,2 105,1 114,8 127,3 144,7 169,6 205,4 265,3 355,8 495,6

2 25,8 25,1 24,8 248 250 255 264 27.8 302 33,5 390

3 10,1 94 88 83 79 77 15 44 173 14 7,7

From Table 6 it can be seen quite clearly that the XWAM chart has better discrimi-
native power, calculated as the quotient of the ARL in the out-of-control state (shifted
process) and the ARL in the in-control state. Respective values of the coefficient of
discriminative power are presented in Table 7. However, too large values of the ARL
for shifts of small and medium sizes are hardly acceptable. Therefore, we can set
parameter w to such value that the average time to a false alarm is not smaller than a
given value (e.g., equal to 370). In the considered case, such an “optimal” value of
w is equal to 0,6. One should also note that a simple widening of control limits for
a classical chart for residuals will increase the in-control ARL to the required value,
but also automatically increase the value of ARLs for shifted processes. In such a
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case, the average time to alarm signal for large shifts will be much greater than the

respective time for the proposed XWAM chart.

Table 7: Discriminative power of the XWAM chart for different shifts of the process
level, p = 0,5, n=20

Shift/w:{ 1,0 09 0,8 0,7 0,6 05 04 03 02 0,1 00
-3 (0,05 0,04 0,03 0,03 0,02 0,02 0,02 0,01 0,01 0,01 0,01
-2 (0,12 0,11 0,09 0,08 0,07 0,06 0,05 0,04 0,04 0,03 0,02
-1 10,44 0,42 0,39 0,37 0,29 0,33 0,32 0,31 0,29 0,27 0,25
0 1 1 1 1 1 1 1 1 1 1 1

1 0,43 0,41 0,39 0,37 0,36 0,35 0,34 0,34 0,34 0,34 0,33

2 10,12 0,10 0,09 0,08 0,07 0,06 0,05 0,05 0,04 0,03 0,03

3 10,05 0,04 0,03 0,03 0,02 0,02 0,01 0,01 0,01 0,01 0,01

Interesting case is presented in Tables 8-9. In these Tables we consider the case
of negative dependence of medium strength (p = —0,5). The “optimal” value of w is
the same as in the case of the positive dependence of similar strength. However, the
discriminative power is in this case much higher, and - what is somewhat surprising
- does not depend upon the value of w. Thus, by changing this value we act as if
we only change the y-axis scale of a chart. What is more interesting in this case,
however, is better discrimination of this chart in comparison to a classical Shewhart
X -chart for individual independent observations.

Table 8: Average ARL for different weights assigned to the estimated model and
different shifts of the process level, p = 0,5, n=20

Shift/w:| 1,0 09 08 07 06 05 04 03 02 01 00
-3 32 32 32 32 32 32 32 32 33 33 33
2 45 45 45 46 47 48 49 51 54 57 62
-1 21,0 22,4 21,9 22,7 23,77 25,1 27,0 294 32,5 37,0 432
0 |327,8 327,9 332,3 341,7 356,1 377,7 407,5 450,9 509,6 587,0 693,3

1 21,1 22,7 21,9 22,7 23,77 25,1 27,0 294 32,5 37,0 432

2 46 46 46 47 47 48 50 52 54 58 62

3 32 32 32 32 32 32 32 32 33 33 34

Finally, let’s consider the influence of a sample size on the performance of XWAM
chart. This problem is rather seldom considered in literature (see Koksal et al. (2008)
for more information. In Table 10 we present the comparison between the values
of ARL’s for two sample sizes, 20 and 50. The process used for comparisons is the
autoregressive process of the first order AR(0,9). We have deliberately chosen this
process, as in this case the performance of the classical X chart for residuals is, as
it was already noticed by many authors, very poor. Therefore, the question is if the
usage of the XWAM chart helps in this difficult case.

The results of simulations presented in columns 2 and 3 of Table 10 confirm
already known results that classical X charts for residuals perform very badly. The
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Table 9: Discriminative power of the XWAM chart for different shifts of the process
level, p = -0,5, n=20

Shiftw:| 1,0 0,9 0,8 0,7 0,6 0,5 04 03 02 0,1 00
-3 10,01 0,01 0,01 0,01 0,01 0,01 0,01 0,005 0,005 0,005 0,005
-2 10,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01
-1 0,06 0,07 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06
0 1 1 1 1 1 1 1 1 1 1 1

1 0,06 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,06 0,06 0,06

2 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01

3 10,01 0,01 0,01 0,01 0,01 0,01 0,01 0,005 0,005 0,005 0,005

Table 10: Values of ARL for different sample sizes, p = 0,9

w=1.0 w=0,8 w=0,7 w=0,6 w=0,5 w=0,4

Shift/n| 20 50 | 20 50| 20 50| 20 50 20 50 20 50
-3.0 64,5 36,9| 66,4 36,9(106,3 38,7|263,7 44,0 | 453,4 61,0 | 570,6 144,1
-2.0 67,7 45,8| 85,7 50,3{197,4 55,1|414,0 66,8 | 634,1 107,3| 932,7 280,2
-1.0 80,9 54,21126,0 66,7(285,1 75,1|525,4 97,2 | 961,5 172,3|1662,8 430,9
0,0 |87,558,5(146,2 73,1|376,5 88,0|1695,4 121,7|1386,7 232,9|2630,9 422,2
1,0 |78,0 55,4(135,1 66,8|395,4 78,1|718,9 100,9|1489,9 165,9(2576,1 330,0
2,0 59,6 46,6(102,7 50,9/307,3 55,8|597,6 64,7 |1027,9 84,6 |1804,9 146,0
3,0 39,9 37,0| 58,7 36,3|176,6 37,1|445,4 39,2 | 706,2 44,2 |1095,9 57,7

rate of false alarms is extremely high, and, on the other hand, average times to alarm
are also very high, even for very large shifts of process levels. This is also confirmed
in Table 11 where respective coefficients of discriminative power are displayed.

Table 11: Discriminative power of the XWAM chart for different sample sizes,
=09

w=1.0 w=0,8 w=0,7 w=0,6 w=0,5 w=0,4
Shift/n| 20 50 {20 50 |20 50|20 50 (20 50|20 50
-3,0 10,74 0,63|0,45 0,51(0,28 0,44{0,38 0,36|0,33 0,26|0,22 0,33
-2,0 10,77 0,78]0,59 0,69(0,52 0,63{0,60 0,55|0,46 0,46|0,35 0,66
-1,0 10,92 0,93|0,86 0,91(0,76 0,85(0,76 0,80|0,69 0,74|0,63 1,02
0 1,0 1,010 1,0({1,0 1,0{1,0 1,0{1,0 1,010 1,0
1,0 10,89 0,95(0,92 0,91(1,05 0,89(1,03 0,83|1,07 0,71|0,98 0,78
2,0 10,68 0,80|0,70 0,70{0,82 0,63]0,86 0,53|0,74 0,36(0,69 0,35
3,0 0,46 0,63|0,40 0,50(0,47 0,42|0,64 0,32{0,51 0,20{0,42 0,14

The performance of respective XWAM charts in this very unfavorable case is not
much better. If we look at the values of their ARL’s, and their respective coefficients
of discriminative power (displayed in bold for the “optimal” choice of w) we can see
that the discrimination power, in general, has been improved. However, the increase
of sample size has resulted in visibly better performance only in the case of positive
shifts of the process level. When such shifts are negative XWAM charts with smaller
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sample sizes perform, quite unexpectedly, better. The explanation of this rather
strange phenomenon needs further investigations. It has to be noted, however, that
in more favorable cases (not presented in this paper) positive effects of the increase
of sample size is more visible.

5 Conclusions

In the paper we have proposed a new method for the construction of the Shewhart X
control chart for residuals. The inspiration of the proposed methodology comes from
the concept of the Bayesian model averaging, already successfully applied by econo-
metricians in the analysis of economic short time series. The novelty of the proposed
approach consists in the new method for the calculation of weights. Following our
previous experience with prediction models for short time series, we propose to
compute these weights using methods of data mining. In this particular research we
use the methodology of Data Time Warping (DTW) for finding alternative models
for the considered sequence of observations. We use artificially generated template
time series, and find these series, and in consequence these models, our data are
similar to. Then, the degrees of similarity are used for the computation of model
weights. In this research the template time series have been generated from simple
autoregressive models. However, the proposed approach is more general, and allows
to use as a template any well identified time series.

In order to evaluate the proposed methodology we have performed many simula-
tion experiments. In this paper, due to a limit for its volume, we have presented the
results of only some of them. The presented results can be regarded as a positive
“proof of concept”. Control charts designed according to the proposed methodol-
ogy have better properties than traditionally designed Shewhart X control charts for
residuals. However, the properties of these improved charts are often unsatisfactory
from a practical point of view. Therefore, there is a need to apply the proposed
methodology for such control charts for residuals as EWMA or CUSUM, which
have been proved to perform better than the X chart.
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A Primer on SPC and Web Data

Erwin Saniga, Darwin Davis, James Lucas

Abstract In this paper we compare the website visitor data generated by a variety
of commercially available analytics packages and discuss issues of data accuracy,
consistency and unavailability of some important measures. We also discuss some
common and perhaps new SPC methods for monitoring website effectiveness using
this data.

1 Introduction

In this paper we investigate the use of statistical process control tools in monitoring
web site visitor data generated by a variety of commercially available analytics
packages. In doing this study we implemented several analytics packages on two
web sites currently in use. One has less than one hundred visitors per month while
the other has several thousand visitors per month.

We find there may be issues with data quality on particular analytics software
and outline possible reasons for this shortcoming. We provide a comparative table
of the software we employ based upon various characteristics that may be necessary
to provide information required to employ particular SPC monitoring tools. We also
show that useful information may be difficult to obtain on the analytics software
we employ. While our investigation is limited to a few popular analytics software
packages, some general conclusions may be drawn.
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Given the data available, some common process monitoring tools are described.
In addition, we investigate the use of Markov chains as a model for the flow of a
visitor through the website and discuss the value of monitoring this Markov chain
for changes over time or for determining the effectiveness of website interventions.
We also discuss a statistical tool for monitoring this variable.

2 The study

We implemented several popular analytics packages on two websites. The first was
a personal site experiencing less than 100 visits per month. The second was a subset
of a large commercial site experiencing more than 30,000 visits per month.

Our first interest in this study is to compare the results of the various analytics
software in terms of the accuracy of their reporting of the actual number of visitors
and the path they traversed through the site.

Table 1 compares the results of these counts for various analytics software, for
the small website, for a four week period.

Note that there are substantial differences in the count data of visitors between
the four analytics software packages. Comparing total users ( New + returning)
over the seven week period shows an average of 24.89 visits per week (new plus
returning users) across all software but averages of 26.85, 24.57,22 and 25.5 for the
four respective sites Google Analytics, w3 counter, statcounter and WP SLimstat
Analytics

We implemented three software analytics packages on the large commercial site
(Google Analytics, Clicky and Statcounter) over a three month period and obtained
the results depicted in Table 2.

Note again the disparity between the numbers of visitors reported by the three
software packages. (If we apply a c chart to this data we can find UCL= 36,758 and
LCL=35,617. One can see that 2 of the 3 outcomes outside the three sigma control
limits.

What are the reasons for this disparity? One might be where the tracking code
is installed on the site. One might investigate whether it is installed correctly. For
example, if it is installed near the bottom of the page of HTML code and the page
does not completely load then that particular visit may not be logged. On the other
hand if it is installed in the top of the page and the page does not completely load
then that may be counted as a visit.

A second reason for disparity might be that there are IP’s (Internet Protocol
Addresses) being blocked for bots (automated computer programs that enter the
site). For example Google Analytics filters out “known” bot traffic by default. It is a
complex process that is described by Sharif (2014). Further reading on the issue of
bots is described by Zeifman (2015).

A practical solution to this problem is to host one’s website on an internal server.
Then one can run one’s own counter of visits and other desired measures to ensure
that tracking was accurate. On one of our sites this code was implemented along
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with Google Analytics and it was found that the latter software reported roughly 30-
40% less traffic than the internal server logs would report. Nonetheless, the problem
remains messy. As S. Chimphlee, Salim, Ngadiman and W. Chimphlee (2006, p.
372)) note: “ Web log files contain a large amount of erroneous, misleading and
incomplete information”, and they recommend the elimination of items that are not
requested by the user, in particular, graphics.

One interest in this study is to analyze the capability of the analytics packages in
terms of their ability to provide the data in a form one can use in the process control
analyses one might find effective in monitoring websites.

One analysis we discuss is the use of a Markov Chain model to model the flow
of a visitor through the website. To build this model one needs to generate the flow
for each user and combine these for all users for a particular time period. Table 3
shows the transition matrices for several consecutive weeks for the small website.
This data was generated by the inefficient method of individually tracking each
user’s flow (where each user is identified by their IP address) and combining these
for each week’s data, a time consuming process. Of the four software packages we
investigated only Google Analytics and Statcounter enabled us to find this users flow
through the website. Nevertheless, we found that there are some problems with the
data obtained from Google Analytics.

One problem is that the users flow for the five week period as reported on the
users flow link in Google analytics was reported as 100% drop off by visitors after
they reached the home page of the small site. Since the data we report in Table 3
is generated by tabulating the flow of each user as identified by their [P address we
can argue that Table 3 data is correct insofar as users flow is concerned. (Although
Table 1 does show disparity between the count of visitors by software).

On the large site we have found that the user flow data on Google Analytics does
show visitor tracks throughout the website. We have observed, however, that this
data is incomplete. For example, on the large site the transition counts from one page
to the next are incomplete, being reported simply as some number of “other pages
visited” and is exhaustive when listed.

In summary, we advise caution when using the data generated by the various soft-
ware analytics packages. We have found a disparity between the results generated by
these packages and in one case an incomplete reporting of the results. While we have
identified some possible reasons why this disparity exists we wish to emphasize that
in practice one might wish to implement their own analytics code and methodology
to generate Web analytics data. Nonetheless, there is a data wrangling issue that
must be addressed when employing data for SPC from the commercially available
software we investigate.

3 Monitoring Web data

Software such as Google Analytics presents many different measures of users actions
on a particular Website. Consider as an example one of the common measures-new
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visitors to a Website. Many sites would find interest in monitoring this variable
as it indicates significant shifts in the public’s interest in their site The count of
new visitors is a count variable and can be monitored using a ¢ chart (see, e.g.,
Montgomery, 2005) or a Cusum chart for counts (see Lucas, 1985).

Alternatively, variables such as bounce rate may be important when monitoring
a commercial Website where purchases may be made. There, managers would be
interested in the proportion of people that travel to a particular product page and
“bounce” out before clicking on a purchase request. Obviously, a smaller bounce
rate here would be preferred and additionally, monitoring this bounce rate over
time would be advantageous as well. Another application would be to find if an
intervention to improve bounce rate was effective. Bounce rate is measured by a
proportion and thus can be monitored by a p chart or a binomial Cusum chart. See,
e.g. Montgomery(2005) or Hawkins and Olwell(1998).

In addition to signaling the occurrence of an event over time that is out of control or
statistically significant in this context, we have found that the use of Cusum plots for
these discrete variables can be of importance in identifying regimes where lower or
higher rates of counts or proportions occur. Saniga, Davis and Lucas (2009) illustrate
the use of these plots in an actual example. This reliance on visual information is
of great value in that long term regimes of higher or lower counts may be deemed
important to the user even though these regimes are not significant. In addition, this
visual presentation allows the communication of results to be done at a much higher
level than reporting that a shift in a CUSUM chart is significant, say.

One interesting type of monitoring not usually addressed is the monitoring of the
transition probability matrix of traffic through a site. Researchers have addressed the
issue of modeling traffic using Markov chains but little has been done on monitoring
these chains in an SPC sense. Some examples of modeling traffic research are the
use of a Markov model to predict where a user will visit on the site given a sequence
of pages the user has already visited. Chimphlee, Salim, Ngadiman, and Chimphlee
(2006) summarize some of this work and discuss prediction using higher order
Markov models other than the usual first order model.

Marques and Belo (2011) use Markov Chains to help identify usage profiles (i.e.,
understand how users are using the web resources provided by teachers). They do
not show a way to track changes in usage patterns or give statistical methods for
determining changes in website effectiveness.

Huang, et.al. (2004) study the use of continuous time models requiring the estima-
tion of both the transition probabilities and the expected transition rates, assuming
the time spent in a state follows an exponential distribution. The focus of their
research is building a model to make the following predictions:

* What page will a user visit next, and when will they transition to that page.
¢ The transition count from one web page to another.
* How many people with visit a web page within some period of time.

They do not, however, provide any tools for tracking changes in web site perfor-
mance.
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Zhu (2002) use an m-order Markov Model (assumes the users next step is only
dependent on the last m pages visited) to make link predictions that assist new
users as they navigate an adaptive web site. These m-order models lead to very
large, sparse transition matrices. A clustering algorithm is used to identify groups of
web pages with similar transition behaviors, which is then used with a compression
algorithm to create a smaller transition probability matrix that is denser that the
original transition matrix.

A key difference between our focus and what we see in much of the above literature
is as follows. Many articles are focused on prediction, such as which page will a
visitor will go to next. Researchers have built models for such predictions, some
based only on the page the user is now on, and some based on a longer history of
pages visited by the user. Our focus is not on prediction, but on monitoring website
quality/effectiveness. Tools developed for prediction do not seem to be of use for
monitoring quality and signaling changes. An essential element of monitoring for
quality/effectiveness is for the site owner to define the purpose of the site and how
effectiveness can best be measured.

For example, in our focus on SPC, one can use a Phase I approach to determine
the longer term average transition probabilities. These can be used to study and also
predict typical user flow through a site and use marketing methods, say, to take
advantage of this knowledge. One can use the method of Chatfield (1973) to test the
suitability of a kth order Markov chain as an appropriate model which will aid in
this process.

One can also use the resulting Markov chain in a Phase II sense. That is, it
would be of value to monitor the typical users flow through a site to determine
when change has occurred. This would be of value in Web redesign or in many
other applications one can envision. Tests that would be valuable in this context
are discussed by Anderson and Goodman (1957) who present methods to test if the
transition probabilities of a first order Markov chain are constant and are specified
numbers, and a test that the process is an ith order chain versus the alternative that it
is a jth order chain. They also find maximum likelihood estimates of the transition
probabilities.

Agresti( 2013) also presents inference methods for Markov chains.

For the small site on our study we present some weekly data illustrating the
transition probability matrices derived from the Statcounter analytics package. These
are presented for illustration purposes. In practice the determination of the sampling
interval (here it is a week) would be an important decision that would have to be
made in Phase I or Phase II studies. Generally, we would expect the sampling interval
would be long if no interventions to the Website are made. If an intervention were
to be made to redirect the flow of the users the inference methods of Anderson and
Goodman (1957) could be used to see if the intervention was effective in redirecting
users flow through the system.

Many different types of measures of user visits to a website are presented in
the various analytics packages we tested in this paper. A summary of some of the
common ones are presented in Table 4, which presents the variable of interest, the
measure of that variable, the type of control method recommended for monitoring,
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and the reference regarding design of that control method for the advanced user.
Most of these are self-explanatory except for the one labeled engagement which is a
frequency distribution of the number of sessions classified by session duration and
the number of page views by session duration.

4 Conclusions

We have employed several commercially available Web Analytics packages on two
websites and presented some data representing user visits to these sites as well as
users flow for one of the sites. Our observations are that some disparity exists between
the data generated by this software and that a data wrangling issue does exist in this
context.

We have also addressed the use of SPC tools for Phase I and II studies including
the use of Markov chain models to monitor website effectiveness.

Acknowledgements The authors thank Adam Sexton, Digital Media Specialist at the University
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Table 2: Visits to a Large Commercial Website as Recorded by Various Analytics Packages

Google Analytics Clicky StatCounter
Sessions/Visits 35,291 36,676 35,967

April 14 - May 5, 2016

Table 3.1a: Raw Data for April 25 - May 1, 2016

Future State
A B c D E F G H I ) DropOff

A 0 3 7 3 7 3 5 T T 7 11

B 0 ) 2 1 0 ) 0 2 0 | 11 0

c 7 1 ) ) 7 ) 0 0 o 12 1

v D 1 1 1 0 0 0 0 0 0 3 0
§ E 1 2 1 1 0 ) T 0 0 12 0
5 F 0 0 1 0 0 ) 0 0 ) 0 2
N G 2 0 1 1 0 0 0 0 1 0 1
= H 0 ) ) ) 1 ) 0 0 0 3 0
5 I T (T AR [ T L Pl T O 1
) 9 Sl 2 8 ) 0 1 ) 0 9

DropOff 0 0 0 0 0 0 0 0 0 0 1

Table 3.1b: Transition Probability Matrix for April 25 - May 1, 2016

Future State
A B C D E F G H | J Drop Off
A 0 0.158 | 0.105 | 0.079 | 0.053 | 0.079 | 0.132 | 0.026 | 0.026 | 0.053 0.289
B 0 0 0.125 | 0.063 0 0 0 0.125 0 0.688 0
C 0.087 | 0.043 0 0 0.304 0 0 0 0 0.522 0.043
B D 0.111 | 0.111 | 0.111 0 0 0 0 0 0 0.667 0
§ E 0.050 | 0.100 | 0.050 | 0.050 0 0 0.050 0 0 0.700 0
- F 0 0 0.333 0 0 0 0 0 0 0 0.667
5 G 0.333 0 0.167 | 0.167 0 0 0 0 0.167 0 0.167
e H 0 0 0 0 0.250 0 0 0 0 0.750 0
3 | 0.500 0 0 0 0 0 0 0 0 0 0.500
J 0.188 | 0.104 | 0.292 | 0.042 | 0.167 0 0 0.021 0 0 0.188
DropOff 0 0 0 0 0 0 0 0 0 0 1.000
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Table 3.2: Transition Probability Matrix for May 2 - May 8, 2016

Future State
A B c D E F G H I ) Drop Off
A 0 10111 ]0.111 0.222 02220111 0 0] 0222
B 0 0 o143 0 0 0 o 0857 o
c 0 ) 0 0 0 0 0 [Looo| o
v D
§ E 0 ) 0 0 0 0 0 |1000| O
4 F
3 G 0 [0500] 0 0 0 0 10500] 0 0
B H 0 0867 0 0 0 0 0 10333 o
3 I 0 ) 0 1,000 0 ) ) ) 0
) [G095 [0.143[0.190 0.286 0 ) ) 0| 0.286
DropOff 0 0 0 0 0 0 0 0 1.000

= There was no activity on these pages so the row probabilites cannot be estimated.
A transition probability matrix can be created by removing the yellow rows and columns.

Table 3.3: Transition Probability Matrix for May 9 - May 15, 2016

Future State
A B c D E F G H I ) Drop Off
A 0 ] 0.125 ] 0.125 | 0.063 | 0.063 ] 0.063 ] 0.125 0.125] 0.313
B 0 0 0 | 1000 © 0 0 0 0
c 022210 0 0 0 0 0 0657 | 0.111
v D 0 0 |0400] © 0 0 0 0600| O
3 E 0 0 0 0 0 0 0 1.000 0
g F [0333] 0 0 0 0 0 0333 0 | 0.333
N G [0333[ o0 [0333]0333] 0 0 0 0 0
- H
3 I
) 02501 0 1033310083] 0 10083 0 0 | 0.250
DropOff 0 0 0 0 0 0 0 0 1.000

= There was no activity on these pages so the row probabilites cannot be estimated.
A transition probability matrix can be created by removing the yellow rows and columns.
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Table 3.4: Transition Probability Matrix for May 16 - May 22, 2016
Future State
A B C D E F G H 1 J Drop Off
A 0 0.091 | 0.182 | 0.061 | 0.182 | 0.091 0 0.182 | 0.061 0 0.152
B 0 0 0.071 0 0.143 0 0 0 0 0.714 | 0.071
C 0 0.040 0 0.040 | 0.040 0 0 0 0 0.880 0
B D 0 0.125 0 0 0 0 0 0 0 0.875 0
9 E 0 0.053 | 0.053 0 0 0.026 | 0.053 0 0 0.789 | 0.026
2 F 0 0 0 0.286 0 0 0.571 0 0.143 0 0
5 G 0 0 0.167 0 0 0.333 0 0 0 0.167 | 0.333
= H 0 0.125 | 0.125 0 0.125 0 0 0 0 0.500 | 0.125
3 | 0 0 0 0 0 0.333 0 0 0 0.333 | 0.333
J 0.173 | 0.080 | 0.187 | 0.040 | 0.360 0 0 0.013 0 0 0.147
Drop Off 0 0 0 0 0 0 0 0 0 0 1.000
Table 4: Monitoring Methods for Web Analytics Data
Variable Measure Control Method Reference
New visitors Count CUSUM for Counts Lucas (1985)
Returning visitors Count CUSUM for Counts Lucas (1985)
Bounce rate Count CUSUM for Counts Lucas (1985)
Bounce rate Proportion CUSUM for Binomial Hawkins and Olwell (1998)
Users flow Transition Probability Matrix Markov chain Anderson and Goodman (1957)
Country of Origin Multinomial Multinomial Topalidou and Psarakis (2009)
Sex of visitor Proportion Binomial CUSUM Hawkins and Olwell (1998)
Duration of visit Mean CUSUM for a Mean Hawkins and Olwell (1998)
Engagement Multinomial Multinomial Topalidou and Psarakis (2009)
Visit length Multinomial Multinomial Topalidou and Psarakis (2009)
Visit length Mean CUSUM for a Mean Hawkins and Olwell (1998)
Browsers Multinomial Multinomial Topalidou and Psarakis (2009)
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1 Introduction

The first stage of a control chart implementation is the design of a control chart
for online process monitoring. While many alternative charts can be used for online
process monitoring, called Phase Il implementation of control charts, often Shewhart
control charts are suggested in Phase I implementations, where process parameters
are estimated to design a Phase II control chart.

The estimation process is a retrospective study where observations are investigated
all at once for a characterization of the process stability. Using an initial Phase I set of
subgroups of observations, parameter estimates are obtained and trial control limits
of the Shewhart control chart are determined. Out-of-control states of the process
are identified by using the signals of the chart, and observations corresponding to the
signals are eliminated. Parameter estimates are then revised by using the remaining
observations. Calculating the revised Shewhart control limits, further out-of-control
states of the process are identified (by using the signals of the revised control chart)
and removed. This process is iterated until all of the observations are within the
control limits. The final estimates are then used in designing the control chart for the
Phase II implementation.

Recently, a topic that deserved considerable attention from researchers is the ef-
fect of parameter estimation on the control chart properties. Interested readers are
referred to Jensen et al. (2006) for a review of the literature. In the studies, variability
due to estimation is taken into account. Assuming control chart designs with esti-
mated parameters, conditional and marginal performances in the Phase II of control
charts are evaluated and some recommendations on sample sizes are provided (see,
for example, Weill & Testik (2011), Testik (2007), Testik et al. (2006), Jones et al.
(2001)). It is emphasized that collecting representative samples of sufficient size
will ensure the desired Phase II performance. Nevertheless, these studies intrinsi-
cally considered that the Phase I observations are clean in the sense that they are
obtained from a statistically in-control process. On the other hand, some studies
considered robust estimators in Phase I (see, for example, Schoonhoven & Does
(2012), Zwetsloot et al. (2014)), while others proposed adjustments to Phase II con-
trol limits (see, for example, Albers & Kallenberg (2004, 2005)). However, research
on methods to obtain an in-control reference set of observations has received less
emphasis (Jones-Farmer et al., 2014), which is the topic considered in the following.

Simulations of the Shewhart control chart in Phase I implementations were per-
formed. To study the effects of the presence of assignable causes of variation in
the process, the initial Phase I data set for estimation was contaminated, such that
the means of a given percent of the subgroups were shifted. Iterations of Phase I
implementations were simulated for obtaining statistically in-control reference sets
of observations for parameter estimation. As a control factor, the control limits’
width of Shewhart control charts was altered. Performance metrics related to Phase I
implementations as well as parameter estimates are provided in the following.

The organization of the paper is as follows. The methodology, together with the
assumptions of the simulations, are described in Section 2. Simulation results and
interpretations are provided in Section 3, and the study is concluded in Section 4.
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2 Methodology and Assumptions for Phase I Simulations

In this study, the Phase I implementation steps were simulated by using the two-
sided X and s control charts. Suppose that m subgroups of size n observations on a
characteristic x are used at an iteration of a Phase I application. Let x be the subgroup
average,

X1+XxX2+--+Xx,

bl

n
and s be the subgroup standard deviation,

3 ’Z?zl(xi—f)z
- n—1 '

The upper control limit (UCL), center line (CL), and lower control limit (LCL) for
the x control chart are as follows;

ucL =3+ &5
caVn

CL=7%,

LcL=F - &5

where L is the distance of a control limit from the center line in terms of standard
deviation units (this is often selected to be 3 in conventional use), X is the average of
m subgroup averages,

M=

X,

=l

1
_mi

Il
—_

s is the average of m subgroup standard deviations,
1 m
S
oS

and ¢4 = c4(n) is a constant depending on n such that §/c4 is an unbiased estimator
of the process standard deviation o:  c4(n) = ¥V2/(n—1)I'(3) /F("T_l).

Since the standard deviation of s is o l—ci; UCL, CL, and LCL for the s
control chart are,
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respectively.

In the following, it is assumed that the in-control process observations can be mod-
eled as independent and identically distributed standard normal random variables
with mean po = 0 and standard deviation og = 1.

As a strategy of sampling, we consider rational subgroups and assume that con-
secutive samples are taken to minimize the chance of variability due to assignable
causes of variation within a subgroup, and to maximize the chance of variability
between subgroups when assignable causes of variation are present. Consequently,
in the simulations, process changes due to the presence of assignable causes were
represented as shifts in the mean between two successive subgroups, which affect
all the observations within the subgroup after the change. Note that this is the snap-
shot approach as discussed in Montgomery (2009). A second approach, called the
random sample approach, that assumes a random sample of all process output over
a sampling interval will be considered in another research, where a change in the
process will be allowed to affect only some of the observations in a subgroup.

In the simulations, an out-of-control process was modeled by a change only in the
mean from pg to a new level u;, while the standard deviation was kept constant. The
values tested for the out-of-control process subgroup means were 1,2, and 3. These
out-of-control states of the process were modeled as sustained shifts over time. Note
that, although it is common to assume large shifts of the mean for the out-of-control
process states in Phase I, here we also consider the effect of smaller mean shifts.

Considering m subgroups each having a size of n observations and a total of
N= mn observations in the Phase I data set, a percent ¢ of the total number of
observations were contaminated, such that the shifted subgroup means in the initial
set of Phase I subgroups was 0, 4, or 8 %. As a controllable factor, the distance L of
a control limit from the center line is varied from 1 to 5 with increments 0.1.

3 Performance Metrics and Simulation Results

Several metrics can be considered for the performance of a control chart in Phase I
implementations. Here, the following metrics were computed using the simulation
results for 100,000 replications:

» Average Number of Iterations (ANI), which was obtained by counting the number
of iterations performed to reach the final parameter estimates in each replication
and by taking the average of these.

e True Alarm Percentage (TAP), which was calculated as the ratio of the number of
true signals to the number of contaminated samples in each replication, averaged
over all replications.

* False Alarm Percentage (FAP), which was calculated as the ratio of the number
of false signals to the number of clean samples in each replication, averaged
over all replications.
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* Mean squared error (MSE), which was calculated as the square of the difference
of the final parameter estimate from its true value in a replication, averaged over
all replications.

Due to the similarity of the interpretations and to save some space, we provide
only some representative simulation results for ANI, TAP, FAP, and MSE for various
cases in the sequel.

We start with a discussion of Tables 1 to 6, which refer to the case of the number
of subgroups being m = 50. The ANI has a peak between the L values 1 to 2 for the
no shift case (Table 1) and all of the shifted mean cases (Tables 2—6). This is because
of the tight control limits, exceeded by many points. When the shift values pu; are
0 or 1, ANI approaches 1 with L in the interval 3 to 5, so that the estimation is
generally completed in one iteration, on average. Considering the shift value p; =2
but with n = 10 (Table 6), the minimum of ANI is achieved in the interval 3 to 4 for
L, where the minimum is approximately 2.

Now consider the simulation results for the TAP measuring the power of detecting
the shift, first with the shift value y; = 1 (Table 2). While more than 60 % of the out-
of-control subgroups are detected in a Phase I study with an L value in the interval
1 to 2, the true alarm percentage is around 21 % for L = 3. This signifies that with
the conventional 3 o~ limits, small shifts are mostly undetected. As L approaches 5,
the TAP approaches 0 indicating that the charts lose their capability to detect the
shift. On the other hand, for the shift value u; = 2, more than 99 % of the out-of-
control subgroups are detected with the L values in the interval 1 to 2 when n =5
(Table 3). With the conventional 3 o limits, this is greater than 91 % for both of the
contamination levels tested (Tables 3, 5). Yet, when n = 10 (Table 6), one can detect
almost all of the out-of-control subgroups. There is a clear performance advantage
in true signals when n = 10 compared to n = 5. As the shift size increases, say 3
(Table 4), the detection performance increases significantly. In the worst case with
L =5, TAP is greater than 93 %.

The FAP of the charts (size) under the different cases considered are all similar.
The FAP decreases monotonically as L gets larger. At L = 1, FAP is between 55—
60 %, and with L > 3, TAP is less than 1 %, indicating that false signals are rare.

The sensitivity of the MSE of the mean estimates to L can be observed from
the tables. It exhibits some kind of U-shaped pattern: we have a large MSE either
for small L (then too many in-control subgroups are removed from the Phase I data
set), or for large L (then contaminated subgroups are not detected). Larger shifts
in the mean result in smaller MSE values for a given value of L. This is because
of the increase of the detection performance of the chart with larger mean shifts.
However, for a given out-of-control shift and L value, the MSE can be larger with
the higher contamination percentage ¢ = 8 %, since some observations representing
the out-of-control process cannot be detected.

The MSEs of the standard deviation estimates increase as L decreases. This is
because less subgroups are used in the estimation. Since rational subgroups are
considered and the mean shifts are assumed to be between subgroups, standard
deviation estimates are not affected severely from shift sizes, for given L, n, and c.
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Table 1: ANI, TAP, FAP and MSE metrics with m = 50, n = 5, and shift =0 (c = 0)

for Phase I data sets.

m n pu c L FAP TAP ANI MSE, MSE,
50 5 0 0 50 0.002 1.001 4.023 2.640
4.9 0.002 1.001 4.032 2.644
4.8 0.002 1.001 4.000 2.656
4.7 0.003 1.002 4.014 2.652
4.6 0.005 1.002 4.010 2.637
4.5 0.007 1.003 3997 2.656
4.4 0.009 1.004 3983  2.637
43 0.014 1.007 4.015 2.659
4.2 0.017 1.009 4.001 2.634
4.1 0.024 1.012  4.020 2.670
4.0 0.033 1.017 4.018 2.666
39 0.046 1.023  4.020 2.667
3.8 0.063 1.031 4.053 2.657
3.7 0.087 1.043  4.013  2.704
3.6 0.113 1.055 4.037 2.686
35 0.156 1.075 4.019 2.729
34 0.210 1.100  4.064 2.753
33 0.285 1.133  4.052 2.770
32 0.378 1.172  4.069 2.776
3.1 0.515 1.228 4.106 2.816
3.0 0.684 1292 4177 2.889
29 0.908 1.373  4.180 2.950
2.8 1.196 1.467 4262 3.020
2.7 1.579 1.580 4.320 3.134
2.6 2.077 1.708 4.468  3.251
2.5 2.708 1.842 4539 3.441
24 3.542 1.995 4.686 3.648
2.3 4.638 2.154 4821 3922
22 6.013 2309  5.067 4.238
2.1 7.760 2460 5319 4.621
20 9.908 2594 5.622 5.071
1.9 12.556 2728 5999 5585
1.8 15.687 2.847 6381 6.013
1.7 19.279 2955 6.785 6.486
1.6 23.397 3.052 7331 6925
1.5 28.045 3.130 7.818 7.219
1.4 33.058 3.176 8266  7.319
1.3 38.662 3222 8.628 7.610
1.2 44.484 3226 9.046  7.495
1.1 50.593 3206 9209 7.376
1.0 56.888 3.143 9431 7.072

MSE,,/MSE = MSE of mean/standard deviation estimates X1, 000.
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Table 2: ANI, TAP, FAP and MSE metrics with m = 50, n = 5, ¢ = 4 % and shift = 1

for Phase I data sets.

m n u c¢ L FAP TAP ANI MSE, MSE,
50 5 1 4 50 0.002 0290 1.007 5.618 2.643
4.9 0.002 0344 1.008 5.573  2.629
4.8 0.002 0.484 1.011 5562  2.655
4.7 0.004 0.614 1.014 5.614 2.654
4.6 0.005 0.802 1.018 5.569 2.661
4.5 0.007 1.014 1.023 5.566 2.647
4.4 0.010 1.312 1.031 5.577 2.640
43 0.014 1.746 1.041 5.552  2.655
4.2 0.018 2.136 1.051 5.550 2.662
4.1 0.025 2730 1.065 5.520 2.660
4.0 0.035 3374 1.081 5453 2.666
39 0.048 4237 1.103 5.525 2.683
3.8 0.064 5232 1.128 5452 2.674
3.7 0.087 6.350 1.158 5433 2.692
3.6 0.119 7.774 1.196 5416 2.713
35 0.164 9.138 1.236 5.393 2.744
34 0218 11.160 1.288 5.369 2.751
33 0291 13.103 1.343 5316 2.777
32 0.395 15514 1.411 5315 2815
3.1 0.531 18.133 1.486 5.275 2.860
3.0 0.705 20908 1.567 5.318 2914
29 0944 24.144 1.660 5.280 2.992
2.8 1.243 27377 1754 5315 3.056
2.7 1.647 30968 1.857 5.331 3.183
2.6 2.140 35202 1.964 5360 3.275
2.5 2.794 39251 2.073 5459 3.509
24 3.639 43472 2.186 5.538  3.709
23 4748 47959 2302 5.675 3.989
2.2 6.148 52401 2417 5.828 4.303
2.1 7.885 56.833 2.532 6.078 4.727
2.0 10.058 61.265 2.647 6318 5.162
1.9 12.731 65.505 27769 6.693  5.675
1.8 15.822 69.529 2.874 7.087 6.134
1.7 19.423 73.245 2979 7479  6.540
1.6 23.581 77.073 3.063 7935 7.047
1.5 28.211 80.412 3.136 8.417  7.337
1.4 33.356 83.625 3.190 8971  7.550
1.3 38.808 86.227 3.213 9405  7.658
1.2 44.655 88.698 3.219 9.757  7.607
1.1 50.763 90.952 3.189 10.084  7.498
1.0 57.042 92.615 3.135 10.166  7.198

MSE,,/MSE = MSE of mean/standard deviation estimates X1, 000.
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Table 3: ANI, TAP, FAP and MSE metrics with m = 50, n = 5, ¢ = 4 % and shift =2

for Phase I data sets.

m n u c¢ L FAP TAP ANI MSE, MSE,
50 5 2 4 50 0.002 25.615 1.447 8.044 2.668
4.9 0.002 28.743 1.493 7.749  2.659
4.8 0.002 32228 1.544 7.513  2.690
4.7 0.005 35950 1.596 7.293  2.692
4.6 0.005 39.786 1.645 6974 2.700
4.5 0.008 43.713 1.695 6.724  2.690
4.4 0.011 47.729 1.743 6493  2.689
43 0.016 51.692 1.785 6.246 2.711
4.2 0.021 55.814 1.828 6.027 2.720
4.1 0.028 59.729 1.863 5.819 2.716
4.0 0.039 63.840 1.899 5.570 2.734
39 0.055 67385 1.926 5462 2.5l
3.8 0.072 71.234 1956 5.238 2.746
3.7 0.099 74.671 1976 5.082 2.767
3.6 0.135 77.853 1.993 4997 2.793
35 0.185 80.785 2.009 4.859 2.826
34 0.248 83.258 2.021 4.817 2.834
33 0.327 85.885 2.033 4.663 2.864
32 0.446 88.012 2.044 4.639 2.900
3.1 0.594 89.955 2.057 4.602 2.945
3.0 0.788 91.701 2.071 4.622 2.999
29 1.045 93.255 2.089 4.593 3.076
2.8 1.370 94.458 2.113 4.640 3.140
2.7 1.800 95.611 2.140 4.683 3.270
2.6 2328 96.467 2.181 4.746  3.357
2.5 3.012 97212 2229 4.868 3.594
24 3.887 97.705 2.293 4981 3.786
23 5.036 98312 2370 5.088 4.073
2.2 6.472 98.693 2.458 5.307 4.383
2.1 8.245 98993 2.557 5.584  4.805
2.0 10.457 99.251 2.668 5.833 5.241
1.9 13.150 99.460 2.780 6.232  5.745
1.8 16.276 99.589 2.885 6.654 6.201
1.7 19912 99.709 2990 7.126  6.607
1.6 24.083 99.788 3.073 7.624 7.114
1.5 28.719 99.843 3.144 8276 7.404
1.4 33.868 99.895 3.193 9.052 7.601
1.3 39.300 99.922 3213 9.699 7.713
1.2 45.119 99.946 3.215 10329  7.681
1.1 51.211 99.964 3.183 11.067 7.542
1.0 57.449 99979 3.127 11.625 7.254

MSE,,/MSE = MSE of mean/standard deviation estimates X1, 000.
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Table 4: ANI, TAP, FAP and MSE metrics with m =50, n =5, ¢ = 4 % and shift =3
for Phase I data sets.

m n u c¢ L FAP TAP  ANI MSE,I MSE,

50 5 3 4 50 0.002 93.588 2.024 4.673 2.746
4.9 0.002 94.754 2.024 4529 2.737
4.8 0.003 95.867 2.021 4.449 2.760
4.7 0.005 96.621 2.019 4429 2.756
4.6 0.006 97.362 2.016 4348 2.760
4.5 0.009 97954 2014 4281 2.746
4.4 0.012 98.388 2.012 4274 2.744
4.3 0.017 98.732 2.010 4.265 2.767
4.2 0.023  99.019 2.009 4252 2.767
4.1 0.031  99.277 2.008 4.230 2.763
4.0 0.043 99457 2.007 4.186 2.771
3.9 0.061  99.571 2.007 4241 2.787
3.8 0.081 99.715 2.007 4.213 2.780
3.7 0.110 99.786 2.009 4.197 2.794
3.6 0.149 99.830 2.010 4240 2.819
35 0.205 99.896 2.014 4217 2.845
34 0.274 99916 2.018 4.287 2.858
33 0.365 99.949 2.023 4228 2.883
32 0.492 99960 2.032 4277 2913
3.1 0.656 99973 2.045 4306 2.956
3.0 0.867 99.981 2.061 4392 3.012
2.9 1.144 99983 2.080 4.421 3.088
2.8 1.499 99991 2.109 4.506 3.150
2.7 1.963 99.994 2.143 4594 3282
2.6 2.528 99.998 2.191 4.693  3.369
2.5 3258 99.997 2245 4.851 3.607
2.4 4.184 100.000 2.315 4.989 3.801
2.3 5.398 100.000 2400 5.143 4.092
2.2 6.888 100.000 2491 5377 4.400
2.1 8.732 100.000 2.594 5.682  4.825
2.0 11.011 100.000 2.708 5.959 5.274
1.9 13.763 100.000 2.818 6.394 5.774
1.8 16.960 100.000 2.927 6.869 6.241
1.7 20.643 100.000 3.028 7.417 6.644
1.6 24.858 100.000 3.106 8.039  7.157
1.5 29.514 100.000 3.174 8.857 7.445
1.4 34.655 100.000 3.219 9.883  7.634
1.3 40.102 100.000 3.237 10.865 7.760
1.2 45.877 100.000 3.225 11925 7.721
1.1 51911 100.000 3.188 13.204 7.564
1.0 58.108 100.000 3.131 14.480 7.296

MSE,,/MSE,- = MSE of mean/standard deviation estimates X1, 000.
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Table 5: ANI, TAP, FAP and MSE metrics with m = 50, n =5, ¢ = 8 % and shift = 2
for Phase I data sets.

m n u c¢ L FAP TAP ANI MSEM MSE,

50 5 2 8 5.0 0.002 21.297 1.643 19.960 2.681
4.9 0.002 24.705 1.715 18.713 2.659
4.8 0.003 28.051 1.784 17.568 2.705
4.7 0.004 31.828 1.855 16.486 2.703
4.6 0.006 35.832 1.927 15.202 2.740
4.5 0.009 39.882 1.987 14.083 2.740
4.4 0.012 44200 2.048 12.850 2.736
4.3 0.017 48.321 2.096 11919 2.730
4.2 0.024 52772 2.142 10.889  2.788
4.1 0.035 57.050 2.181 9.977 2.775
4.0 0.049 61.282 2212 9.116 2.803
3.9 0.065 65.320 2.230 8.460 2.830
3.8 0.090 69.223 2245 7.813 2.833
3.7 0.120 73.054 2258 7.164 2.862
3.6 0.164 76410 2256 6.694 2.889
3.5 0.229 79.744 2260 6312 2901
34 0.304 82.572 2254 5961 2937
33 0.408 85.260 2.251 5718 2.961
3.2 0.548 87.542 2240 5478 2.995
3.1 0.730 89.608 2.235 5394 3.051
3.0 0960 91.407 2.236 5.247 3.106
29 1.273 92,929 2.233 5.209 3.192
2.8 1.659 94.270 2.245 5.126 3.291
2.7 2.146 95.351 2.261 5.205 3.378
2.6 2.782 96.271 2.290 5.257 3.570
2.5 3.574 97.045 2330 5.346 3.754
2.4 4.595 97.692 2.389 5.465 3.992
2.3 5.836 98.182 2.453 5.666 4.241
2.2 7.410 98.589 2.538 5.937 4.562
2.1 9.360 98911 2.631 6.252 4979
2.0 11.735 99.168 2.735 6.590 5.512
1.9 14.543 99.375 2.835 7.093  5.958
1.8 17.845 99.516 2938 7.669  6.432
1.7 21.606 99.648 3.032 8.386  6.981
1.6 25.880 99.731 3.114 9.274  17.365
1.5 30.588 99.793 3.174 10.303  7.690
1.4 35.638 99.844 3.196 11.463  7.882
1.3 41.189 99.891 3.221 13.104 8.003
1.2 46.905 99918 3.200 14.812 7.876
1.1 52900 99.940 3.163 16.743  7.813
1.0 59.015 99.959 3.097 19.088  7.545

MSE,,/MSE = MSE of mean/standard deviation estimates X1, 000.
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Table 6: ANI, TAP, FAP and MSE metrics with m = 50, n = 10, ¢ = 4% and shift =

2 for Phase I data sets.

m n u c¢ L FAP TAP ANl MSE,, MSE,
50 10 2 4 50 0.001  88.124 2.026 2496 1.179
4.9 0.001  89.961 2.026 2405 1.185
4.8 0.002 91.526 2.028 2356 1.188
4.7 0.002  93.113 2.025 2294 1.189
4.6 0.003 94395 2.024 2251 1.175
4.5 0.004 95403 2.022 2218 1.185
4.4 0.006 96339 2.019 2.195 1.194
43 0.009 97.161 2.017 2.160 1.193
4.2 0.015 97.718 2.015 2.159 1.189
4.1 0.018 98.205 2.013 2.141 1.195
4.0 0.026  98.595 2.012 2129 1.193
3.9 0.038 98.899 2.010 2.112 1.187
3.8 0.056 99.194 2.010 2.124 1.201
3.7 0.076  99.401 2.010 2.117 1.195
3.6 0.108 99.513 2.010 2.096 1.208
35 0.149 99.678 2.012 2.120 1.202
3.4 0.207 99.750 2.014 2.119 1.214
33 0.282 99.819 2.019 2.146 1.222
32 0.392 99.866 2.026 2.133  1.230
3.1 0.530 99910 2.034 2.153 1.248
3.0 0.718 99.935 2.047 2.180 1.257
29 0961 99954 2.062 2207 1.275
2.8 1.289  99.968 2.082 2235 1.301
2.7 1.722 99979 2.112 2291 1.338
2.6 2285 99988 2.144 2321 1372
2.5 2987 99994 2187 2383 1.417
2.4 3909 99.996 2237 2479 1475
23 5080 99.996 2.297 2569 1.539
2.2 6.531 99.998 2364 2.676 1.629
2.1 8316 99.997 2438 2.798 1.720
2.0 10.465 100.000 2.518 2950 1.825
1.9 13.014 100.000 2.596 3.144 1.933
1.8 16.057 100.000 2.675 3.362  2.045
1.7 19.602 100.000 2.756 3.585  2.180
1.6 23.622 100.000 2.831 3910 2312
1.5 28.225 100.000 2.895 4.252 2441
1.4 33.240 100.000 2.949 4.623 2.546
1.3 38.650 100.000 2.979 5.088  2.621
1.2 44515 100.000 3.002 5.662  2.681
1.1 50.665 100.000 2.998 6.202 2.717
1.0 57.024 100.000 2.974 6.849 2.737

MSE,,/MSE = MSE of mean/standard deviation estimates x1, 000.
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Table 7: L values corresponding to “minimum and 5 % upper” bound for the MSE
of the mean estimates with various m, c, and shift values y; where n =5.

n m u c Minimum MSE,, 5 % bound MSE,, L for L for
Minimum MSE,, 5 % bound MSE,

5 25 0 O 7.935 8.331 3.1 5.0
50 0 0 3.983 4.182 29 5.0
100 0 O 1.989 2.089 2.7 5.0
25 1 4 9.515 9.991 2.8 5.0
50 1 4 5.275 5.539 2.4 42
100 1 4 2915 3.061 22 33
25 2 4 9.215 9.676 2.5 35
50 2 4 4.593 4.823 2.6 34
100 2 4 2.298 2413 2.5 34
25 3 4 8.401 8.821 29 4.6
50 3 4 4.186 4.395 29 4.8
100 3 4 2.100 2.205 2.9 4.8
25 1 8 12.878 13.521 22 34
50 1 8 7.440 7.812 2.0 2.8
100 1 8 4.419 4.640 1.9 2.4
25 2 8 10.286 10.801 2.4 3.1
50 2 8 5.126 5.382 2.5 3.1
100 2 8 2.625 2.757 2.4 32
25 3 8 8.890 9.334 3.0 43
50 3 8 4.414 4.634 3.1 4.4
100 3 8 2.209 2.319 3.0 4.5
10 25 0 O 3.978 4.176 2.8 5.0
50 0 0 1.989 4.408 2.7 5.0
100 0 O 0.986 1.035 2.9 5.0
25 1 4 4.961 5.209 2.4 35
50 1 4 2.576 2.704 23 32
100 1 4 1.327 1.394 22 3.0
25 2 4 4.209 4.420 2.8 44
50 2 4 2.096 2.201 2.8 4.5
100 2 4 1.056 1.109 2.8 4.7
25 3 4 4.144 4.351 29 5.0
50 3 4 2.069 2.172 29 5.0
100 3 4 1.034 1.086 2.9 5.0
25 1 8 6.129 6.435 2.1 2.8
50 1 8 3.273 3.437 2.1 2.7
100 1 8 1.789 1.879 2.0 2.6
25 2 8 4.466 4.689 29 4.1
50 2 8 2213 2.324 3.0 42
100 2 8 1.112 1.168 2.8 44
25 3 8 4.336 4.553 32 5.0
50 3 8 2.160 2.267 32 5.0
100 3 8 1.082 1.136 34 5.0

MSE,, = MSE of mean estimates x 1, 000.



On the Phase I Shewhart Control Chart Limits 185

Table 8: L values corresponding to minimum and 5 % upper bound for the MSE of
the standard deviation estimates with various m, ¢, and shift values y; where n = 5.

n m u c Minimum MSE, 5 % bound MSE, L for L for
Minimum MSE, 5 % bound MSE-

5 25 0 0 5.258 5.521 33 5.0
50 0 0 2.634 2.765 3.1 5.0
100 0 O 1.317 1.383 3.1 5.0
25 1 4 5.275 5.539 34 5.0
50 1 4 2.629 2.760 32 5.0
100 1 4 1.315 1.381 32 5.0
25 2 4 5.344 5.611 35 5.0
50 2 4 2.659 2.792 34 5.0
100 2 4 1.338 1.405 33 5.0
25 3 4 5.476 5.750 32 5.0
50 3 4 2.737 2.874 32 5.0
100 3 4 1.369 1.437 33 5.0
25 1 8 5.272 5.535 34 5.0
50 1 8 2.610 2.740 35 5.0
100 1 8 1.314 1.379 32 5.0
25 2 8 5.378 5.646 39 5.0
50 2 8 2.659 2.792 3.8 5.0
100 2 8 1.342 1.409 3.7 5.0
25 3 8 5.709 5.995 33 5.0
50 3 8 2.824 2.965 32 5.0
100 3 8 1.427 1.499 32 5.0
10 25 0 O 2.253 2.366 2.9 5.0
50 0 0 1.137 1.194 2.9 5.0
100 0 O 0.569 0.597 2.7 5.0
25 1 4 2.260 2.373 32 5.0
50 1 4 1.134 1.191 3.0 5.0
100 1 4 0.568 0.596 2.8 5.0
25 2 4 2.336 2.453 3.0 5.0
50 2 4 1.175 1.234 3.1 5.0
100 2 4 0.587 0.616 3.0 5.0
25 3 4 2.350 2.467 3.0 5.0
50 3 4 1.179 1.238 3.1 5.0
100 3 4 0.587 0.617 3.0 5.0
25 1 8 2.262 2.375 33 5.0
50 1 8 1.141 1.198 3.1 5.0
100 1 8 0.569 0.597 2.9 5.0
25 2 8 2.438 2.560 3.0 5.0
50 2 8 1.227 1.289 2.9 5.0
100 2 8 0.611 0.641 32 5.0
25 3 8 2.455 2.578 3.1 5.0
50 3 8 1.236 1.298 2.9 5.0
100 3 8 0.616 0.647 32 5.0

MSE, = MSE of standard deviation estimates X 1, 000.
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Table 9: L values selected for approximately MSE optimal Phase I design for mean
estimation.

n=>5 L #intersecting intervals n=10 L # intersecting intervals

(out of 7) (out of 7)
m=25 3.1 7 m=25 32 6
m=50 3.1 6 m=50 32 6
m =100 3.0 6 m =100 2.9or3.0 5

The L values corresponding to the “minimum and 5 % upper deviation” bounds
for the MSE are presented in Table 7 for the mean estimates and in Table 8 for
the standard deviation estimates, for the combinations of m = 25,50, 100, n = 5, 10,
¢ =0,4,8%, and shift values p; = 0,1,2,3. The “upper 5 % deviation” bound is
considered here to identify intervals for L for a given m and n pair that yield close to
minimum MSE. To provide suggestions for practitioners, we searched for L values
that are robust over the considered contamination percentages ¢ = 4 and 8 %, shifts
0, 1, 2, and 3, as well as their combinations. Intervals for L values were obtained
for the 7 cases considered (1 in-control, and 3 out-of-control cases each with 2
contamination percentages) for each of the m and n pairs. In order to select a single
L value that is robust, a rule was developed such that the L value that satisfies most
if not all of the intervals was selected. Considering joint operation of x and s charts
with the use of same L value for both charts, L values that provide approximately
MSE optimal estimates of the mean for rational subgroups are provided in Table 9.

Overall, it becomes clear that the MSE optimal L values are often close to the
popular choice of 30 limits (L = 3.0), and such a choice is further supported in
view of having a low false alarm rate (see the above FAP results), and of having a
reasonable power to detect the moderate to large shifts (TAP results for p; = 2,3).
Table 7 indicates that the MSE optimal L should be slightly lower than 3.0 for
situations where the mean shift is expected to be of at most moderate extent.

4 Conclusions

Considering rational subgroups as the sampling strategy, Shewhart control charts
for the mean and standard deviation were considered in Phase I implementations.
The normal distribution was assumed as the model for the observations. Different
scenarios to represent practical situations were simulated and the results for the
selected performance metrics were provided. These performance metrics quantify
the computational efforts, false and true signals, and the accuracy of the estimates.
By varying the control chart design parameter L, robust L values that would perform
close to optimal in terms of the MSE criterion were searched. As a follow up study,
the evaluation of the Phase II performance of the control charts with the mean
and standard deviation estimates obtained by using alternative L values in Phase I
implementations is being conducted.
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Optimal Design of the Shiryaev—Roberts Chart:
Give Your Shiryaev—Roberts a Headstart

Aleksey S. Polunchenko

Abstract We offer a numerical study of the effect of headstarting on the performance
of a Shiryaev—Roberts (SR) chart set up to control the mean of a normal process. The
study is a natural extension of that previously carried out by Lucas & Crosier (1982)
for the CUSUM scheme. The Fast Initial Response (FIR) feature exhibited by a
headstarted CUSUM turns out to be also characteristic of an SR chart (re-)started
off a positive initial score. However, our main result is the observation that a FIR
SR with a carefully designed optimal headstart is not just faster to react to an
initial out-of-control situation, it is nearly the fastest uniformly, i.e., assuming the
process under surveillance is equally likely to go out of control effective any sample
number. The performance improvement is the greater, the fainter the change. We
explain the optimization strategy, and tabulate the optimal initial score, control limit,
and the corresponding “worst possible’” out-of-control Average Run Length (ARL),
considering mean-shifts of diverse magnitudes and a wide range of levels of the
in-control ARL.

1 Introduction

The general theme of this work is the optimal design of the Shiryaev—Roberts
(SR) chart originally proposed by Shiryaev (1961, 1963) and Roberts (1966), and
later generalized by Moustakides et al. (2011). Set up to detect a possible change
in the baseline mean of a series of independent samples Xj, X»,... drawn from a
normal unit-variance population at regular time intervals, the classical SR chart
involves sequential evaluation of the SR statistic { R, },, >0 using the recurrence R,, =
(I +Ry—1)exp{S,}, n=1,2,..., with Ry = 0, and where the quantity
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St (X -5) ()
is a numerical score that captures the severity of the deviation of the n-th sample point
X, from the target mean-value in either direction; the score function S,, assumes that
the intended (target) mean-value of the data is zero, but it is anticipated to change
abruptly and permanently to a known off-target value u # 0. The n-th observation
X, might represent a single reading or the average of a batch of observations from
a designated routine sampling plan. The chart triggers an alarm at the first stage,
S4, such that Rg, > A, where A > 0 is a control limit (detection threshold) set in
advance in accordance with the desired level of the false alarm risk; more formally,
Sa 2 min{n > 1: R, > A}, where A > 0 is given. Hence the process {X,},>1 is
considered to be in control until stage S4. The random variable, S4, referred to as
the run length, is the stage at which sampling stops and appropriate action is taken. A
brief account of the history of the SR chart was recently offered by Pollak (2009). For
an up-to-date summary of the classical as well as generalized SR charts’ optimality
properties, see, e.g., Polunchenko & Tartakovsky (2012).

Though nowhere nearly as known and as widespread as Page’s (1954) celebrated
CUSUM “inspection scheme”, the SR chart did receive some attention in the applied
literature. One of the earliest investigations of the chart’s characteristics is due
to Roberts (1966), who offered a performance comparison of the chart against a host
of other statistical process control procedures, including the CUSUM scheme and the
EWMA chart (also introduced by Roberts, 1959). A similar type of SR-vs-CUSUM
comparison (but with respect to a different criterion and for a different data model)
was also later performed by Mevorach & Pollak (1991). See also, e.g., Tartakovsky
& Ivanova (1992), Tartakovsky et al. (2009), and Moustakides et al. (2009). Certain
data-analytic advantages of the chart over the CUSUM scheme were pointed out
by Kenett & Pollak (1996). Kenett & Pollak (1986) provided an example of an
application of the SR chart in the area of software reliability.

In the (more theoretical) area of quickest change-point detection, the SR chart
received far more attention. To a large extent this is due to the fundamental work of
Shiryaev (1961, 1963) who proved that the chart solves a particular Bayesian version
of the quickest change-point detection problem; see also Girshick & Rubin (1952).
The chart then remained unnoticed until recently Pollak & Tartakovsky (2009)
and Shiryaev & Zryumov (2009) discovered that it solves yet another so-called
multi-cyclic or generalized Bayesian version of the quickest change-point detection
problem; the multi-cyclic setup is instrumental in such applications as cybersecu-
rity (see, e.g., Tartakovsky et al., 2013), financial monitoring (see, e.g., Pepelyshev
& Polunchenko, 2016), and economic design of control charts. This brought the
SR chart back into the spotlight. Polunchenko et al. (2016) performed a robustness
analysis of the SR chart’s multi-cyclic capabilities when the post-change distribu-
tion involves a misspecified parameter. Moustakides et al. (2011) observed that by
starting the SR statistic {R,},>0 off a positive initial value, i.e., setting Ry =r > 0,
the SR chart can be made nearly the best (in the minimax sense of Pollak, 1985).
Roughly, this means the SR chart is almost the fastest to react to a change in the
observations’ distribution when the corresponding unknown change-point is equally
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likely to be any point in time; see Section 2 for a formal definition. As a matter
of fact Polunchenko & Tartakovsky (2010) and Tartakovsky & Polunchenko (2010)
demonstrated that in two specific change-point scenarios the SR chart with a care-
fully designed headstart is the fastest (in the sense of Pollak, 1985). This result was
then extended by Tartakovsky et al. (2012) who proved that the SR chart whose
headstart is selected in a specific fashion is almost the best one can do (again, in
the sense of Pollak, 1985) asymptotically, as the false alarm risk tends to zero, in a
general change-point scenario.

In spite of the aforementioned strong theoretically established optimality prop-
erties of the SR chart, and the fact that no such properties are exhibited by either
the CUSUM scheme or the EWMA chart, applications of the SR chart in quality
control remain essentially nonexistent. In part, this may be due to the lack of existing
resources with pre-computed, for a variety of cases, optimal headstart and control
limit values. To the best of our knowledge, the work of Tartakovsky et al. (2009) and
that of Polunchenko & Sokolov (2014) have heretofore been the only sources with
such data (computed assuming the observations are exponential). This work’s goal is
to optimize the SR chart for yet another model, namely, the standard Gaussian model
widely used in the quality control literature as a testbed for charts’ performance anal-
ysis. The specific optimization strategy is presented in Section 2. The optimization
itself is carried out in Section 3 using the numerical framework developed by Mous-
takides et al. (2011) and then improved upon by Polunchenko et al. (2014b, 2014a).
The obtained optimal headstart and control limit values are reported in Section 3 as
well. Conclusions follow in Section 4.

2 The Shiryaev—Roberts Chart, Its Properties and Optimization

To control the mean of a standard Gaussian process, the headstarted tweak of the
classical SR chart proposed by Moustakides et al. (2011) operates by sequentially
updating the statistic {R},},,>0 via the recurrence

Ry=(1+R_)exp{Su), n=12,... with R} =r >0, )

where S, is the score function defined in (1); the initial score Ry =r >0 is a
design parameter also referred to as the headstart, which is the original terminology
of Lucas & Crosier (1982) who suggested to headstart the CUSUM scheme. The
corresponding run length is as follows:

S’ £min{n > 1: R, > A}, 3)

where A > 0 is the control limit (detection threshold) selected in advance so as to
keep the chart’s false alarm characteristics tolerably low. Note that if r = 0 then
the chart is the classical SR chart (with no headstart) of Shiryaev (1961, 1963) and
Roberts (1966). For this reason Tartakovsky et al. (2012) coined the term “Gener-
alized SR chart” (or the GSR chart for short) to refer to the headstarted SR chart
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defined by (2) and (3). It is also worth reiterating that the score function (1)—and
hence also the statistic (2)—are indifferent to the direction of the mean shift, i.e., the
sign of u # 0 is irrelevant.

It has been the custom in the quality control literature to assess the operating
characteristics of a control chart, with run length 7', by means of only two indices:
the in-control Average Run Length (ARL) and the out-of-control ARL. In this work,
we shall adapt the (more exhaustive) approach used in the quickest change-point
detection literature. Let Py (Ex ) denote the probability measure (expectation) induced
by the data {X, },,>1 assuming the change-point is at time moment k =0, 1,2,.. ., 0,
i.e., assuming the process {X,},>; is in-control until sample number k inclusive,
and is out-of-control starting from sample number k + 1 onward. The notation k =0
(k = o0) is to be understood as the case when the process under surveillance is out
of control ab initio (never, respectively).

The in-control characteristics of a control chart 7" are usually gauged by virtue of
the Average Run Length (ARL) to false alarm ARL(T) £ E[T] which is the average
number of samples taken by the chart before an erroneous out-of-control signal is
given; this is precisely what is known in the quality control literature as the in-control
ARL. It is apparent that the higher the ARL to false alarm, the lower the level of
the false alarm risk. For the GSR chart, the general inequality ARL(S)) > A-r
can be used to design A > 0 and r € [0, A] so as to have ARL(S’,) no lower than
a desired margin y > 1. It is of note that this inequality holds in general, whatever
the statistical structure of the observations be. A more accurate result is the asymp-
totic (as A — +00) approximation ARL(SI’L") ~ A/& —r, which is actually known to
be quite accurate even if A > 0 is not high; see, e.g., (Pollak, 1987, Theorem 1)
or Tartakovsky et al. (2012). Here ¢ denotes the so-called “limiting average expo-
nential overshoot”—a model-dependent constant (taking values between 0 and 1)
computable using nonlinear renewal-theoretic methods; see, e.g., Woodroofe (1982).
For the Gaussian model considered in this work it follows, e.g., from (Woodroofe,
1982, Example 3.1, pp. 32-33), that the following formula can be used:

2 1
&= Fexp{—Zmz_l ;(D(—g\/ﬁ)}, “4)
where

1 X t2
(D(x) = \/?f e 2 dt
T J -0

is the standard Gaussian cumulative distribution function. Note from the forego-
ing formula that £ is an even function of u # 0. The formula was put to use by
Woodroofe (1982) who computed ¢ for various values of u > 0; see (Woodroofe,
1982, Table 3.1, p. 33) for the obtained results.

To quantify the capabilities of a control chart 7 when the process is no longer
in control, Pollak (1985) suggested to use the “worst-case” (Supremum) Average
Detection Delay (SADD), conditional on no false alarm having been sounded. For-
mally,
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SADD(T) & max ADD.(T),
0<k<oco

where ADDy(T) 2 Ex[T — k|T > k], k = 0,1,2,.... Incidentally, the limiting ADD
value limg _,., ADDy (T') is known in the quality control literature as the steady-state
ARL.

Pollak’s (1985) criterion has a simple interpretation: for any fixed but finite
k=0,1,2,..., the condition T > k guarantees that it is an actual detection (not a false
alarm), so that each ADDy (T) is the average number of samples it takes the chart past
the change-point k to realize the process is not in control anymore, and because k is
unknown, it is reasonable to assume it equally likely to be any number (0, 1,2,...) and
consider the worst possible case, i.e., take the maximal of the ADD(T)’s. For the
CUSUM scheme with no headstart and for the classical SR chart (also headstart-free)
it can be shown that k = 0 is when the ADD is the highest, i.e., SADD(T) = ADDy(T).
As a result, it suffices to restrict attention to just ADDy(7), and it is this quantity
that the quality control community calls the out-of-control ARL. However, things
are not as simple when the chart has a positive headstart, and it is no longer obvious
which of the delays ADDy (Sg)’s for k =0,1,2,... is the highest. As a matter of fact
we shall see in the next section that the “bump” of the sequence {ADDg(S’)}k>0
has a highly unpredictable behavior in terms of its location on the time axis.

Let A(y) = {T: ARL(T) > y} be the class of control charts (identified with a
generic run length 7)) whose ARL to false alarm is at least as high as a desired pre-
set level v > 1. Pollak’s (1985) minimax change-point detection problem consists in
finding Top € A(y) such that SADD(Top) = mingeay) SADD(T) for any giveny > 1.
In general, this problem is still an open one, although there has been a continuous
effort to solve it. To that end, for at least two specific data models, the answer
was shown to be the GSR chart with “finetuned” threshold and headstart values;
see Polunchenko & Tartakovsky (2010) and Tartakovsky & Polunchenko (2010).
Moreover, for a general data model, the GSR chart (properly optimized) was also
shown (by Tartakovsky et al. 2012) to solve Pollak’s (1985) problem asymptotically
asy — +oo. Specifically, this means that if A and r are selected so that ARL(S’,) >y
with y > 1 given, i.e., S, € A(y), then

SADD(S}) - min SADD(T) \,0 as y = +oo, (5)

provided, however, that r/A — 0 as A — +o0; see Tartakovsky et al. (2012), who
also supply a high-order large-y expansion of SADD(S,). The foregoing is a strong
optimality property known in the literature on change-point detection as asymptotic
minimax optimality of order three, or asymptotic near minimaxity. It is noteworthy
that the CUSUM chart, whether headstarted or not, does not have such strong “nearly-
best” detection capabilities. Moreover, nor does the EWMA chart. Hence, our interest
in the GSR chart. To provide an idea as to the difference made by a positive headstart,
we remark that the classical SR chat (with zero headstart) is asymptotically (as y —
+00) minimax of order two, i.e., the difference SADD(S4) — minrea(,) SADD(T)
goes to a positive constant as y — +oo. Moreover, since the constant is the higher,
the fainter the change, giving an SR chart a positive headstart is especially beneficial
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when the out-of-control behavior of the process differs from its in-control behavior
only slightly.

Yet another strong optimality property of the GSR chart is its exact multi-cyclic
or generalized Bayesian optimality. Specifically, Pollak & Tartakovsky (2009) and
Shiryaev & Zryumov (2009) proved that the classical SR chart (with no headstart)
minimizes the so-called Integral ADD

IADD(T) = Z By [max{0,T — k1], ©6)
k=0

and the so-called Relative IADD (RIADD)

. N Poo (T > k)
RIADD(T) £ IADD(T)/ARL(T) = Y ———""2 ADDy(T), (7
44 ARL(T)

both inside the class A(y) defined above, for any y > 1. The meaning of this result
can be explained by analyzing the structure of the definition (7) of RIADD(T).
Specifically, on the one hand, the latter can be viewed as being the k-average of
the delays Ex[max{0,7 — k}], k =0,1,2,..., assuming that change-point k has an
improper uniform distribution on the set {0, 1,2, ...}. The improper uniformity of the
change-point is a core assumption of the generalized Bayesian change-point detection
problem. On the other hand, RIADD(T) can also be regarded as the k-average of
the ADDy(T)’s assuming that the probability mass function of k is given by the
ratio P (T > k)/ ARL(T), k =0, 1,2,..; note that Py (T > k) = P (T > k) for any
k=0,1,2,...,and that ARL(T) = ZZ":O P (T > k). For yet another, viz. multi-cyclic
interpretation, see Pollak & Tartakovsky (2009).

The RIADD-optimality of the classical SR chart was generalized in (Polunchenko
& Tartakovsky, 2010, Lemma 1) where it was shown that the GSR chart, whose
control limit A > 0 and headstart » > 0 are such that ARL(S,) > y fora giveny > 1,
minimizes the so-called Stationary ADD (STADD)

STADD(T) £ (r ADD(T) + IADD(T)) /(ARL(T) +r) 8)

inside class A(y), for any y > 1; recall that ITADD(T) is as in (6). Formally, for any y >
1, and any A > 0 and r > 0, it holds true that STADD(SZ) = ming ea) STADD(T),
provided that ARL(S’,) > v is satisfied. Also, observe that STADD(S’,) reduces to
RIADD(S',) when r = 0. It is also of note that STADD(T') is not the same as the
limit limy o ADDy (T).

An important “by-product” of (Polunchenko & Tartakovsky, 2010, Lemma 1)
is that the quantity STADD(S',) turns out to also provide a universal lowerbound
on the unknown value of minzcaq,) SADD(T), and this lowerbound is valid for
any y > 1 and r > 0 such that 82 € A(y); see (Polunchenko & Tartakovsky, 2010,
Theorem 1). Specifically, introducing SADD(S',) = STADD(S/,), the following
double inequality holds:
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SADD(S%) < min SADD(T) < SADD(SY}), )
TeA(y)

for any A > 0 and r > 0 such that ARL(S’,) > ¥, and any given y > 1; cf. (Mous-
takides et al., 2011, Inequality (2.12), p. 579).
A few important comments are now in order:

1. On the one hand, the double inequality (9), namely, its left part, implies that the
lowerbound SADD(S:‘) = STADD(SI’A), where STADD(T) is defined in (8),
can be used as a benchmark to get an idea as to how much room there is for
improvement in the way of SADD for a chart of interest. Should it so happen
that the SADD of the chart of interest with the ARL to false alarm level set to
y > 1 is only a tiny bit greater than SADD(S',) assuming ARL(S)) =y > 1,
then the chart is almost minimax optimal in the sense of Pollak (1985).

2. On the other hand, the double inequality (9) also suggests the following opti-
mization strategy for the GSR chart: for a given y > 1, pick the chart’s detection
threshold A > 0 and headstart » > 0 in such a way so as to make the difference
SADD(S',) — SADD(S’,) as close to zero as is possible without violating the
inequality ARL(S',) > y. More formally, the optimal detection threshold A* and
headstart r* values are to be selected as follows:

(r*,A") = argmin {SADD(S}) - SADD(S}) |, but ARL(S}) =7, (10)
r,A>0

where y > 1 is given; it goes without saying that both A* and r* are functions of
v > 1. The foregoing optimization strategy is originally due to Moustakides et al.
(2011), and, in this work, we shall adapt it as well.

3. As we shall demonstrate in the next section, if the GSR chart’s detection thresh-
old A and initial score r are set to A* and r*, respectively, where A* and r* are
as in (10) with y > 1 given, then, conditional on ARL(S’,) = v, the difference
SADD(S),) — SADD(S/,) is nearly zero, even if y > 1 is on the order of hun-
dreds. Therefore, the GSR chart’s third-order asymptotic optimality (5) does not
necessarily require vy to be large.

The constrained optimization problem (10) can be solved numerically, e.g., with
the aid of the numerical method proposed by Moustakides et al. (2011) and subse-
quently improved upon by Polunchenko et al. (2014b, 2014a). This is precisely the
object of the next section.

3 Experimental Results

The plan now is to employ the numerical framework of Moustakides et al. (2011)
and its improved version due to Polunchenko et al. (2014b, 2014a), and analyze
the performance of the GSR chart given by (2) and (3) under different parameter
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settings, including (and especially) the optimal choice given by the solution of the
constrained optimization problem (10).

We begin with an examination of the level of the ARL to false alarm, i.e.,
ARL(SI’A), treated as a function of the headstart r > 0, the detection threshold A > 0,
and the magnitude of the change in the mean u # 0. With regard to the latter, for
lack of space, let us consider only two cases: y = 0.2 and p = 0.5. The former may
be considered a faint change, while the latter is a moderate change. Figures 1 depict
ARL(S?) as a function of r € [0,A] and A € [0,1000]. Specifically, Figure 1a is for
p=0.2 and Figure 1b is for g = 0.5. As can be seen from either figure, the bivariate
function ARL(S,) is almost linear in A (with r fixed) as well as in r (with A fixed).
This is in perfect agreement with the aforementioned fact that ARL(S)) ~ A/ —r
where £ is given by (4). Since, according to (Woodroofe, 1982, Table 3.1, p. 33), the
value of & for u = 0.2 is roughly 0.89004 versus approximately 0.74762 for u = 0.5,
the sensitivity of the ARL to false alarm level to the detection threshold is higher,
the stronger the change. Figures 1 also include contours (shown as bold dark curves)
corresponding the different fixed levels y > 1 of the ARL to false alarm. Specifically,
each of the contours is the solution set (r,A) of the equation ARL(S’,) =y for
the appropriate value of y = {100,200, ...,900,1000}. These contours are important
because the process of optimization of the GSR chart begins with picking a value
for y > 1, and then, with ¥ > 1 set and fixed, restricting attention to only those
values of A >0 and r > 0 for which the constraint ARL(S’}) = y is satisfied. Due
to space limitations, in this work we shall consider only three values of y, namely,
v = {100,500, 1000}.

Let us next look at Figures 2 and 3 which show ADDy (S,) as a function of r > 0
and k =0,1,2,... under the constraint ARL(S:‘) =y with y = {100,500, 1000}.
Specifically, Figures 2 assume y = 0.2 while Figures 3 assume u = 0.5. With regard
to the level ¥ > 1 of the ARL to false alarm, Figures 2a and 3a assume y = 100,
Figures 2b and 3b are for y = 500, and Figures 2c and 3¢ assume y = 1000. There
are two important observations to make from either set of figures. First, it is evident
that giving the SR chart a positive headstart equips the chart with the Fast Initial
Response (FIR) feature: the chart becomes more sensitive to initial out-of-control
situations. However, the flip side of the FIR feature is that the chart gets slower in
situations when the process is initially in control but goes out of control later. It is
worth reiterating that in order to retain the level of the ARL to false alarm assigning
a higher value to the headstart is offset by an appropriate upward adjustment of the
control limit. The second observation is that the maximal ADD, i.e., SADD(S;) =
maxg<k<co ADDg(S,), is a sophisticated function of r, and the specific value of k
at which the maximum is attained is hard to predict. As an aside, it is worth pointing
out that the convergence of the ADDs to the steady-state regime is faster for u = 0.5
than for u = 0.2, which is consistent with one’s intuition.

To better illustrate the FIR feature at work, let us look at Figures 4 and 5, which
are effectively the projections of the 3D surfaces shown in Figures 2 and 3 onto the
(k, ADD;, (82))—plane, made for a selection of values of r. Specifically, Figures 4
assume u = 0.2 and Figures 4 are for i = 0.5. The corresponding levels y > 1 of the
ARL to false alarm are given in the figures’ subtitles. The figures clearly demonstrate
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that, as the headstart increases, the performance of the GSR chart for initial of early
out-of-control situation improves. However, the performance in situations when the
process goes out of control later degrades. The interesting question is whether it is
possible to optimize this tradeoff. This question is hard to answer properly without
getting the lowerbound SADD(S)) involved, as is done in Figures 6 and 7.

Specifically, Figures 6 and 7 provide an idea as to the manner in which SADD(S’
and SADD(S')) each depend on the headstart, assuming, as before, that every change
in the headstart is accompanied by the appropriate adjustment of the detection
threshold, so that the ARL to false alarm constraint is kept intact. More specifically,
Figures 6 correspond to ¢ = 0.2 and Figures 7 are for ¢ = 0.5. The respective levels
v of the ARL to false alarm are again given in the subtitles.

It is evident from the figures that, regardless of the contrastness of the shift in
the mean u # 0 and no matter the ARL to false alarm level y > 1, the lowerbound
is an upward arching smooth function of the initial score, and it has a distinct
maximum. The figures also clearly indicate that the maximal ADD as a function
of r has a minimum with the appearance of a down pointing cusp; the cusp is an
indication that the way the maximal element of the sequence { ADDy (Sg)}k >0 and
its location within the sequence depend on the headstart is highly nonlinear. The
essential observation is that the lowerbound appears to peak at approximately the
same (slightly smaller actually) headstart value as that at which the maximal ADD
is minimized. Moreover, although the maximal ADD’s minimum is higher than the
lowerbound’s maximum, the difference is not practically significant, even if y is as
low as 100, and is smaller, the higher the value of y. Therefore, any other chart with
the same level of the ARL to false alarm cannot possibly detect the shift in the mean
with a detection delay substantially lower than that delivered by the optimized GSR
chart, especially if the shift in the mean is contrast.

To draw a line under this section, in Tables 1 and 2, we give the optimal
headstart and detection threshold values that have been computed by solving
the constrained optimization problem (10) for y = {100,200,...,900,1000} and
u=1{0.1,0.2,...,0.9,1.0}. Recall also that our data model is symmetric with re-
spect to the sign of u # 0. The tables also include the corresponding SADD(S’))
and SADD(S’,) values. One can see from the tables that SADD(S’,) ~ SADD(S')),
which is to say that the detection capabilities of the optimized GSR chart are almost
the best. One can also see that the effect of headstarting is the stronger, the fainter
the anticipated shift in the mean. If the latter is fairly contrast, the optimal headstart
value is close to zero. In addition, the tables suggest that the optimal headstart value,
as a function of the ARL to false alarm level y > 1, has a finite limit as y — +co; the
convergence to the limiting value is the slower, the weaker the change. However, a
closed-form formula for this limiting value is prohibitively difficult to obtain.

4 Concluding Remarks

In summary we see that
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Table 2: Optimal headstart, »* > 0, control limit, A* > 0, maximal ADD, m>UU¢wwv, and the lowerbound, m>UU¢wa as functions of

the shift magnitude, u > 0, and the ARL to false alarm level, >Wh¢wwv =1vy > 1, for y = {600,700, 800,900, 1 000}.

ARL(S) =y Performance Change Magnitude (1 > 0)
A Characteristic|| 0.1 | 02 [ 03 ] 04 | 05 [ 06 | 07 [ 08 ] 09 | 1.0
r 176.63 | 66.94 | 35.24 [ 21.73 | 14.81 [ 10.78 | 8.19 | 6.45 | 5.2 | 4.28
600 A 732.41 [593.32]533.12]492.28459.31]430.56]404.61] 380.8 |358.73|338.18
SADD(S?) || 153.8 [76.46 | 46.95 | 32.26 | 23.77 [ 18.38 [ 14.71 [ 12.09 | 10.15 | 8.67
SADD(S?) || 153.71 [ 76.33 | 46.92 | 32.25 [ 23.77 [ 18.37 [ 14.71 | 12.09 | 10.15 | 8.67
r 186.49 | 69.53 [ 36.25 [ 22.32 | 15.21 | 11.06 | 8.42 | 6.61 | 5.34 | 4.39
700 A 836.06 |684.63[617.94[571.98]534.37]501.32[471.35[443.76[418.15[394.28
SADD(S?) || 168.37 | 81.58 | 49.59 | 33.87 [ 24.85 [ 19.15 [ 15.29 | 12.54 | 10.51 | 8.96
SADD(S?) || 167.32 | 81.47 | 49.57 | 33.86 | 24.85 [ 19.14 | 15.28 | 12.54 | 10.51 | 8.96
r 195.2 | 71.73 | 37.14 | 22.84 | 15.55 | 11.3 | 8.6 | 6.77 | 5.47 | 45
500 A* 938.62 [775.59|702.67[651.62[609.38|572.04]538.06[506.71]477.58]450.38
SADD(S?) || 180.76 | 86.16 | 51.94 | 35.29 [ 25.79 [ 19.82 [ 15.79 | 12.93 | 10.82 | 9.22
SADD(S?) || 179.75 | 86.06 | 51.92 | 35.28 [ 25.79 [ 19.82 | 15.79 | 12.93 | 10.82 | 9.22
r 202.99 | 73.65 | 37.93 | 23.31 | 15.86 | 11.53 | 8.78 | 6.91 | 5.57 | 4.59
500 A’ 1040.31[ 866.3 | 787.3 [731.22[684.37[642.75]604.77]569.66(536.98506.46
SADD(S?) [[ 192.18 | 90.3 | 54.04 | 36.55 | 26.64 [ 20.42 [ 16.24 | 13.28 | 11.1 | 9.4
SADD(S?) || 191.21 [ 90.21 | 54.03 | 36.55 | 26.63 [ 20.42 | 16.24 | 13.28 | 11.1 | 9.44
r 210.04 | 75.34 | 38.62 | 23.71 | 16.14 | 11.73 | 8.93 | 7.04 | 5.68 | 4.66
1000 A* 1141.3 [956.81[871.86/810.77[759.35]713.44]671.46] 632.6 [596.38]562.54
SADD(S?) [[202.79 [94.09 | 55.96 | 37.7 [27.39[20.96 [ 16.64 | 13.59 [ 11.35 | 9.65
SADD(S?) || 201.86 | 94.01 | 55.94 | 37.69 | 27.39 [ 20.95 | 16.64 | 13.59 | 11.35 | 9.64




Optimal Design of the Shiryaev—Roberts Chart 207

1. Starting an SR chart off a nonzero initial score lessens the ARL to false alarm,
so that the chart’s in-control performance is worse than when no headstart is
used. On the flip side, however, the chart becomes more sensitive to initial
out-of-control situations. This is precisely the FIR phenomenon.

2. The drop in the ARL to false alarm caused by a positive headstart value can be
compensated by an increase of the control limit. While this would negatively
affect the chart’s out-of-control performance, the magnitude of the effect appears
to be not substantial.

3. The FIR feature comes at the price of poorer performance in situations when
the process under surveillance is initially in control but goes out of control later.
In particular, if the process is not expected to shift out of control for a long
while, then no headstarting is necessary, because the SR chart’s steady-state
performance would degrade otherwise.

The same observations were previously made by Lucas & Crosier (1982) about
the CUSUM chart.

Our additional and more important contribution consists in a deeper investigation
of the headstart-vs-control-limit tradeoff: the overall performance of the GSR chart
optimized not only with respect to the headstart but also with respect to the control
limit proved to be nearly the best one can get amid complete uncertainty as to when
the observed process may go out of control. This is a direct implication of the GSR
chart’s strong optimality properties established by Pollak & Tartakovsky (2009),
Shiryaev & Zryumov (2009), Tartakovsky & Polunchenko (2010), Polunchenko
& Tartakovsky (2010), and by Tartakovsky et al. (2012). The optimal headstart
and control limit values, and the corresponding out-of-control performance and its
lowerbound, for a variety of cases, are given in Tables 1 and 2.

The benefits of optimizing the GSR chart are the greater, the fainter the change.
From a practical standpoint, this means that if one is interested in detecting a faint
change, then the GSR chart with optimally selected control limit and headstart is
the way to go. The size of the actual efficiency improvement can be estimated using
Tables 1 and 2. However, if the anticipated change to be detected is more or less
contrast, then the GSR chart, whether optimized or not, will not offer any substantial
advantage (in terms of the speed of detection) over the CUSUM scheme or the
EWMA chart.
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Optimal Designs of Unbalanced Nested Designs
for Determination of Measurement Precision

Seiichi Yasui and Yoshikazu Ojima

Abstract Precision of measurement results can be recognized as variance com-
ponents of random effect models. The variance components are estimated from
measurement results that are taken by conducting a collaborative assessment ex-
periment. The measurement results follow a statistical model of a nested design.
Although balanced nested designs are widely used, staggered nested designs, which
are one of unbalanced nested designs, have the statistical advantage that degrees of
freedom in all stages except for the top stage are equal. Thus, the balanced nested de-
signs do not necessarily have the better performance from the statistical viewpoints.
In this study, the D-optimal designs are identified in the general nested designs,
which including both balanced and unbalanced ones, with considering the practical
feasibility of collaborative assessment experiments as well.

1 Introduction

Nested designs are used to statistically determine precision of precision of measure-
ment results in ISO 5725-1 (1994). In this standard, precision of measurement is
defined as "the closeness of agreement between independent test results obtained
under stipulated condition". This definition implies that the precision depends on the
condition in which objects are measured. The important conditions are repeatabil-
ity and reproducibility conditions. Repeatability conditions define that "conditions
where independent test results are obtained with the same method on identical test
items in the same laboratory by the same operator using the same equipment within
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short intervals of time". Reproducibility conditions define that "conditions where
test results are obtained with the same method on identical test items in the different
laboratories by the different operators using the different equipment". In other word,
the repeatability condition means the condition in which dispersion of measurement
results is minimal, and the reproducibility condition means the condition in which
dispersion of measurement results is maximal in the range of our interest. The pre-
cisions under such conditions are called repeatability precision and reproducibility
condition, respectively.

These precisions are determined as the variance of measurement results that
are obtained from nested designs. Measurement results from nested designs are
expressed as hierarchically random effect models, and the precisions are usually
estimated by the linear combination of the variance component estimators based on
analysis of variance.

Although balanced nested designs are widely used, staggered nested designs,
which are one of unbalanced nested designs, have the statistical advantage that
degrees of freedom in all stages except for the top stage are equal. Thus, the balanced
nested designs do not necessarily have the better performance from the statistical
viewpoints, and there are favourable situations for unbalanced nested designs. In our
study, we focus on three stage nested designs, and the D-optimal designs with respect
to the estimation of repeatability, intermediate, and reproducibility precisions are
investigated in some situations regarding some magnitudes of variance components
and given sample sizes.

Goldsmith and Gaylor (1970) researched the optimal three stage nested designs for
the estimation precision of variance components with respect to A-, D-, and adjusted
(scaled) A-optimality. Goldsmith and Gaylor (1970), however, found optimal designs
under the quite restricted situation that sample size is multiples of twelve. It is
assumed that the three-stage nested design with twelve observations is replicated as
a block. We find D-designs for any sample size under the some variance component
configurations by our developing the effective algorithm to search all the unbalanced
nested designs in which all the degrees of freedom are non-zero.

In Section 2, we discuss the appropriate estimands to precision of measurements.
In Section 3, D-optimal designs for some sample sizes are shown under the some
variance component configurations, and Section 4 is the conclusion.

2 D-Optimality for Determination of Measurement Precisions

The statistical model for unbalanced nested designs with three stages is

Vijk = U+ @i + Bij + Eijik
= 1,...,61, j= l,...,b,‘, k= 1,...,}”,']'
a; ~i.i.d.N(0,02%), Bij ~i.i.d.N(0,0%), &ijx ~i.i.d.NO,0%), (D
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where u is a general mean (constant). The variances a'i, 0'%, and 0"25 are called
variance components, and the aim of using the nested designs is to estimate the
variance components.

The variance components are estimated through an analysis of variance (ANOVA)
which is widely used in practice. Such a estimation and its estimator are called
ANOVA estimation, and ANOVA estimator, respectively. An ANOVA table is shown
in Table 1. The /44, /4B, and [ pp in Table 1 are constants which are derived by Leone
et al. (1968) and Ojima (1984).

The ANOVA estimator of the variance components is the solution of the equation

as follows:
MSA Iaa lag 1 &;
MSB |=| 0 Igpgl||l 5% | 2
MSE 0 0 1/\6z

Let the coefficient matrix of the equation be L™!. Then, the ANOVA estimator is Lv
where v = (MSA, MSB, MSE)’, and the L is the inverse of the L' .

In the experiments to determine the precision of the measurement results, re-
peatability precision, intermediate precision, and reproducibility precision are the
important quantities as well as variance components. reproducibility precision, in-
termediate precision, and repeatability precision are statistically defined as follows:

o-i + o-% + 0'2E (reproducibility precision),

2,2 : iy
o +0g (intermediate precision),

0'% (repeatability precision),

respectively. Their ANOVA estimators are provided by replacing (o-i,o-lz;,a'lz;) to

their estimators (6'124, 6']23,6"2?). Thus, the estimator of these precisions can be ex-

pressed as CLv where
111
C=|011][. 3)
001

Each element of CLv in order from the top is the estimator of repeatability, interme-
diate precision, and reproducibility, respectevely. Note that the estimator of variance
components is expressed by matrix form as C = I, where the I is an identity matrix.

The variance-covariance matrix of CLv is CLV (v)L’C’. The determinate of the
matrix is

|ICLV(v)L'C’| = %W(V)L 4)
AA'BB
due to
1/1aa —=lap/(laalpp) (Uap—18B)/(laalsB)
L= O 1/lgB —1/lpp . &)
0 0 1
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Goldsmith and Gaylor (1970) provided the variances and the covariances of esti-
mators of variance components LV (v)L’ in three stage unbalanced nested designs.
Ojima (1984) demonstrated the derivation of the variances and the covariances of
sums of squares based on the canonical form induced by the orthogonal trans-
formation in three stage unbalanced nested design. From Ojima (1984), due to
the covariances Cov(SSA,SSE) =0 and Cov(SSB,SSE), the determinant of the
variance-covariance matrix of the estimators for the precisions is

MV(SSE) [V(SSA)V(SSB)—Cov(SSA,SSB)]. ©6)

The matrix C is able to be generalized in the assumption of the nonsingular. Then,
since the determinant of the variance-covariance matrix of the precision estimators is
the proportional to the equation (4), the D-optimal design for the general nonsingular
C is the same as that for the matrix (3). However, the matrix

110
C=|101
001

cannot be made sense because such estimators are not meaningful for the precision
of measurements. In particular, the lower rank matrix such as a 2 X 3 matrix results
in "without replication” in a certain stage. For example, If the matrix is

111
c={o11)
the replication in the third stage is not necessary, in other word, the design with ¢ =0

is available in this case, since it is only enough to estimate o-% + 0'%. Consequently,
we consider the D-optimal designs obtained by minimising the determinant (6).

Table 1: ANOVA Table

Source Sum of Squares degrees of free- Mean Square Expected Mean Square
dom

A SSA pa=a-1 MSA=SSA/pa 0L +Iapoy +1aac?

B SSB ¢p=b-a MSB=SSB/¢p o +Ilgpoy

A SSE ¢ =n-b MSE =SSE/¢g 0%
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3 D-Optimal Designs of Three Stage Nested Designs

The D-Optimal Designs in the general case where there is no restriction regarding
a, b;’s, and r;;’s are interesting in mathematics. However, in such a situation, the
unfeasible or unrealistic designs might be picked up as the optimal designs. In col-
laborative experiments to determine the precision of the measurements, the a is the
number of the participating laboratories, the b; is the number of the measurement
operators in the laboratory, and the r;; is the number of replications of the measure-
ment. For example, the design with a =2, by =5, and b, = 1 is too one-sided to
be practical, in which mainly a cost problem could occurs. Hence, we consider the
restricted designs that consist of the fundamental structures (dy, d», d3,d4) shown in
Figure 1.

The D-Optimal Design exists in the all the possible combinations of fundamental
structures such that all the degrees of freedom are positive (non-zero). For each given
number of observations n, such combinations are generated, and the determinant (6)
is calculated for each combination, and the D-Optimal Design for n observations is
identified.

The unbalanced nested design constituted from fundamental structures is denoted
as D = (my, my, ms,my), where m; is the number of the fundamental structure d; in
the D. Thus, the total number of observations #n is equal to 4m +3my +2m3 +m4. In
order that it is possible to estimate all the variance components, at least either d; or
d; is necessary in the D and two or more structures are drawn, which is m| +my > 1
and Z?z ,m; > 2. Hence, n = 4 is the minimum number of observations, and there
is only D = (0,1,0,1). In case of n =5, there are three possible designs which are
D) =(1,0,0,1), Dy =(0,1,1,0), and D3 = (0,1,0,2). Let optp (D;) be the value
of the formula (6) for the design D;. We calculate optp (D) = 55.73,0ptp (D7) =
61.41,0ptp(D3) =80.58 in 0 = 0% = o2 = 12, and D is identified as the optimal
design with n = 5 under the situation where all the variances in stages are one.

Figure 2 shows the list of optimal designs for each n (=5, 10,20,30,60) under the
several situations (o4, pg), where pa = 0% /o3 and pg = 0% /o %. For n > 20, the
balanced design or nearly balanced design for are optimal in situations where p4 < 2.
For n =20, the balanced design is optimal in any situation except for (p4, pp) = (8,8)
In the situation of (p4, pp) = (8,8), the staggered nested design is preferred.

The degrees of freedom for each optimal design are shown in Figure 3. The triplet
in Figure 3 denotes degrees of freedom (¢4, ¢, ¢E) of the optimal design. In case
of n = 10, though there are two different design in p4 < 8 and pp < 4, the sum of
degrees of freedom ¢4 + ¢ p is the same. The ¢4 is close to ¢p in all the situations,
and if the p4 and pp are larger, there is less difference among the degrees of freedom.

4 Conclusion

We obtain D-optimal designs for precious determination of precision of the measure-
ment under the 49 variance component configurations. In most of optimal designs,
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dl dZ d3 d4
1
2
3
. 2 2 2 1 1 1 1
n; 4 3 2 1
b, 2 2 2 1

Fig. 1: Fundamental Structures

balanced fundamental structures are dominant in the wide range of the configuration.
If variance components for both the first and second upper stages have so much larger
than the third stage variance component, the staggered nested designs are optimal.

The optimal designs in more general unbalanced nested designs should be found
and investigated in the future work. In general unbalanced cases, the number of can-
didate designs rapidly increase according to sample size. Combinatorial optimization
would invoked to solve the problem.
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0
n=5 0.125 0.25 0.5 1 2 4 8
0.125 (1,0,0,1) (1,0,0,1) (1,0,0,1) (0,1,1,0) (0,1,1,0) (0,1,1,0) (0,1,1,0)
025 (1,0,0,1) (1,0,0,1) (1,0,0,1) (0,1,1,0) (0,1,1,0) (0,1,1,0) (0,1,1,0)
0.5 (1,0,0,1) (1,0,0,1) (1,0,0,1) (0,1,1,0) (0,1,1,0) (0,1,1,0) (0,1,1,0)
P 1 (1,0,0,1) (1,0,0,1) (1,0,0,1) (1,0,0,1) (0,1,1,0) (0,1,1,0) (0,1,1,0)
2 (1,0,0,1) (1,0,0,1) (1,0,0,1) (1,0,0,1) (0,1,1,0) (0,1,1,0) (0,1,1,0)
4 (1,0,0,1) (1,0,0,1) (1,0,0,1) (1,00,1) (1,0,0,1) (0,1,1,0) (0,1,1,0)
8 (1,0,0,1) (1,0,0,1) (1,0,0,1) (1,0,0,1) (1,0,0,1) (0,1,1,0) (0,1,1,0)
P
n=10 0.125 0.25 0.5 1 2 4 3
0.125 (2,0,1,0) (2,0,1,0) (2,0,1,0) (2,0,1,0) (2,0,1,0) (2,0,1,0) (0,2,2,0)
025 (2,0,1,0) (2,0,1,0) (2,0,1,0) (2,0,1,0) (2,0,1,0) (2,0,1,0) (0,2,2,0)
0.5 (2,0,1,0) (2,0,1,0) (2,0,1,0) (2,0,1,0) (2,0,1,0) (2,0,1,0) (0,2,2,0)
P 1 (2,0,0,2) (2,0,0.2) (2,0,1,0) (2,0,1,0) (2,0,1,0) (2,0,1,0) (0,2,2,0)
2 (2,0,0,2) (2,0,0.2) (2,0,0,2) (2,0,1,0) (2,0,1,0) (2,0,1,0) (0,2,2,0)
4 (2,0,0,2) (2,0,0.2) (2,0,0,2) (2,00.2) (2,0,1,0) (2,0,1,0) (1,2,0,0)
8 (2,0,0,2) (2,0,02) (2,0,02) (2,0,0,2) (2,0,1,0) (2,0,1,0) (1,2,0,0)
I3
n=20 0.125 0.25 0.5 1 2 4 8
0.125 (5,0,0,0) (5,0,0,0) (5,0,0,0) (5,0,0,0) (5,0,0,0) (4,0,2,0) (4,0,2,0)
025 (5,0,0,0) (5.0,0,0) (5,0,0,0) (5,0,0,0) (5.0,0,0) (4,0,2,0) (4,0,2,0)
0.5 (5,0,0,0) (5.0,0,0) (5,0,0,0) (5,0,0,0) (5.0,0,0) (4,0,2,0) (4,0,2,0)
P 1 (5,0,0,0) (5.0,0,0) (5,0,0,0) (5,0,0,0) (5.0,0.0) (4,0,2,0) (4,0,2,0)
2 (5,0,0,0) (5,0,0,0) (5,0,0,0) (5,0,0,0) (5,0,0,0) (4,0,2,0) (4,0,2,0)
4 (5,0,0,0) (5.0,0,0) (5,0,0,0) (5,0,0,0) (5.0,0.0) (4,0,2,0) (3,2,1,0)
8 (5,0,0,0) (5.0,0,0) (5,0,0,0) (5,0,0,0) (5.0,0,0) (3,2,1,0) (0,6,1,0)
2
n=30 0.125 0.25 0.5 1 2 4 3
0.125 (7,0,1,0) (7,0,1,0) (7,0,1,0) (7,0,1,0) (7,0,1,0) (7,0,1,0) (7,0,1,0)
025 (7,0,1,0) (7,0,1,0) (7,0,1,0) (7,0,1,0) (7,0,1,0) (7,0,1,0) (7,0,1,0)
0.5 (7,0,0,2) (7.0,0.2) (7,0,1,0) (7,0,1,0) (7,0,1,0) (7,0,1,0) (7,0,1,0)
P 1 (7,0,0,2) (7,0,0.2) (7,0,0,2) (7,0,1,0) (7,0,1,0) (7,0,1,0) (7,0,1,0)
2 (7,0,0,2) (7,0,0.2) (7,0,0,2) (7,0,1,0) (7,0,1,0) (7,0,1,0) (7,0,1,0)
4 (7,0,0,2) (7,0,0.2) (7,0,0,2) (7,0,1,0) (7,0,1,0) (7,0,1,0) (7,0,1,0)
8 (7,0,0,2) (7.0,0.2) (7,0,0,2) (7,0,1,0) (7,0,1,0) (7,0,1,0) (0,10,0,0)
0
n=60 0.125 0.25 0.5 1 2 4 8
0.125 (15000 | (15000 | (15000 | 15000 [ 5000 | (15000 [ (15000
025 (15000 | (15000 | (15000 | 15000 | (15000 | (15000 | (15000
05 (15000 | (15000 | 15000 | 15000 | 15000 | (15000 | 15000
. 1 (15000 | (15000 | (15000 | 15000 | (15000 | (15000 | (15000
2 (15000 | (15000 | (15000 | 15000 [ (15000 | (15000 [ (15000
4 (15000 | (15000 | (15000 | 15000 | (15000 | (15000 | (15000
8 (15000) | (15000 | (15000 | 15000 | (15000 | (15000 | (02000

Fig. 2: Optimal Designs
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Py
n=5 0.125 0.25 0.5 1 2 4 8
0.125 (1,1,2) (1,1,2) (1,1,2) (1,2,1) (1,2,1) (1,2,1) 12,1
0.25 (1,1,2) (1,1,2) (1,1,2) (1,2,1) (1,2,1) (1,2,1) (1,2,1)
0.5 (1,1,2) (1,1,2) (1,1,2) (1,2,1) (1,2,1) (1,2,1) (1,2,1)
Pa 1 (1,1,2) (1,1.2) (1,1,2) (1,12) 12,1 (1,2,1) (L))
2 (1,1,2) (1,1,2) (1,1,2) (1,1,2) (1,2,1) (1,2,1) (1,2,1)
4 (1,1,2) (1,1,2) (1,1,2) (1,1,2) (1,1,2) (1,2,1) (1,2,1)
8 (1,1,2) (1,1.2) (1,1,2) (1,12) (1,1,2) 1,2,1) 12,1
Py
n=10 0.125 0.25 0.5 1 2 4 8
0.125 23.4) 234) 23.4) 234) 23.4) 234) 642
0.25 234) 234 23,4 234) 234) 234) (.42
0.5 2,3.4) 234 2,34 234 2,3.4) 234 (3,42
Pa 1 (324 324 23,4 234) 2,34) 234) (342
2 324 324 (324 234) 234) 234) (3,42
4 (324 (324 (324 (324) 23.4) 234) 234
8 (324 324 (32,4 (324 234) 234 234
Py
n =20 0.125 0.25 0.5 1 2 4 8
0.125 (4,5,10) (4,5,10) (4,5,10) (4,5,10) (4,5,10) (5,6,8) (5,6,8)
0.25 (4,5,10) (4,5,10) (4,5,10) (4,5,10) (4,5,10) (5,6,8) (5,6,8)
0.5 (4,5,10) (4,5,10) (4,5,10) (4,5,10) (4,5,10) (5,6,8) (5,6,8)
Pa 1 (4,5,10) (4,5,10) (4,5,10) (4,5,10) (4,5,10) (5,6,8) (5,6,8)
2 (4,5,10) (4,5,10) (4,5,10) (4,5,10) (4,5,10) (5,6,8) (568 |
4 (4,5,10) (4,5,10) (4,5,10) (4,5,10) (4,5,10) (5,6,8) (56,8
8 (4,5,10) (4,5,10) (4,5,10) (4,5,10) (4,5,10) (5,6,8) (6,7,6)
Py
n =30 0.125 0.25 0.5 1 2 4 8
0.125 (7,8,14) (7.8,14) (7,8,14) (7.8,14) (7,8,14) (7.8,14) (7,8,14)
0.25 (7,8,14) (7,8,14) (7,8,14) (7,8,14) (7,8,14) (7,8,14) (7,8,14)
0.5 (8,7,14) (7,0,0,2) (7,8,14) (7,8,14) (7,8,14) (7,8,14) (7,8,14)
Pa 1 (8,7,14) (8,7,14) (8,7,14) (7,8,14) (7,8,14) (7,8,14) (7,8,14)
2 (8,7,14) (8,7,14) (8,7,14) (7,8,14) (7,8,14) (7.8,14) (7,8,14)
4 (87,14 (8,7,14) (8,7,14) (7.8,14) (7,8,14) (7.8,14) (7,8,14)
8 (8,7,14) (8,7,14) (8,7,14) (7,8,14) (7,8,14) (7,8,14) (9,10,10)
Ps
n =60 0.125 0.25 0.5 1 2 4 8
0.125 (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30)
0.25 (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30)
0.5 (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30)
Pa 1 (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30)
2 (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30)
4 (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30)
8 (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (19,20,20)

Fig. 3: Degrees of freedom for each optimal design



On ARL-unbiased charts to monitor the traffic
intensity of a single server queue

Manuel Cabral Morais and Sven Knoth

Abstract We know too well that the effective operation of a queueing system requires
maintaining the traffic intensity p at a target value py.

This important measure of congestion can be monitored by using control charts,
such as the one found in the seminal work by Bhat and Rao (1972) or more recently
in Chen and Zhou (2015).

For all intents and purposes, this paper focus on three control statistics chosen by
Morais and Pacheco (2015a) for their simplicity, recursive and Markovian character:

* X,, the number of customers left behind in the M/G/1 system by the n'h
departing customer;

+ X,,, the number of customers seen in the GI/M/1 system by the n'" arriving
customer;

* W, the waiting time of the n’"

arriving customer to the GI/G/1 system.

Since an upward and a downward shift in p are associated with a deterioration and
an improvement (respectively) of the quality of service, the timely detection of these
changes is an imperative requirement, hence, begging for the use of ARL-unbiased
charts (Pignatiello et al., 1995), in the sense that they detect any shifts in the traffic
intensity sooner than they trigger a false alarm.

In this paper, we focus on the design of these type of charts for the traffic intensity
of the three single server queues mentioned above.
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1 Basic facts

The first contributions on queueing theory (QT) can be traced back to three pioneer-
ing papers by A.K. Erlang (1878-1929). Erlang (1909, 1917, 1920) were in any case
a response to concrete congestion problems arising in teletraffic.

Curiously, we have to leap to the late 1950s and 1960s for the earliest papers
referring to the statistical inference in QT: Clarke (1957) (resp. Benes, 1957) focused
on the MLE for A, u and the traffic intensity of a M /M /1 (resp. M /M /o) system,
p = A/ w; Cox (1965) and Lilliefors (1966) derived confidence intervals for the traffic
intensity of a M /M /1 system.

In the following decade, the seminal work by Bhat and Rao was published and
addressed the monitoring of the traffic intensity. Bhat and Rao (1972) proposed what
we consider a unusual chart for the traffic intensity of the M /G/1 (resp. GI/M /1)
queueing systems because:

e its rule to trigger a signal does not coincide with any of the ten sensitizing
rules for Shewhart control charts in Montgomery (2009, p. 197, Table 5.1), such
as the Western Electric run rules (Western Electric, 1956); the traffic intensity
is deemed out-of-control only if the control statistic exceeds (resp. does not
exceed) the upper (resp. lower) control limit ¢, (resp. ¢;) longer than a pre-
assigned number d,, (resp. d;) of consecutive transitions;

¢ the run length (RL) is not considered as a performance measure and the control
limits are not defined so as to achieve, for instance, a specific in-control average
run length (ARL);

* the control limit ¢, (resp. ¢;) is the smallest (resp. largest) nonnegative integer
for which the probability of having an observation above (resp. not above) ¢,
(resp. ¢;) is at most a,, (resp. a;), and the positive integer d,, (resp. dj) is such
that, when the control statistic has gone above (resp. not above) ¢, (resp. ¢p), it
returns to a state < ¢, (resp. > ¢;) in d,, (resp. d;) or fewer steps with probability
of atleast 1 — 3, (resp. 1 — B);

e the chart assumes that the system is observed under equilibrium or steady state
conditions.

The thorough review on regulation techniques for the traffic intensity in Morais
and Pacheco (2015b) led Morais and Pacheco (2015a) to add that the monitoring p
can be basically divided in categories depending on:

* the control statistic being used, e.g.

— the number of customers in the system at departure/arrival epochs (Bhat
and Rao, 1972, Rao et al., 1984, Shore, 2000, Chen et al., 2011, Zobu and
Saglam, 2013),

— the number of arrivals while the n™" customer is being served, etc. (Jain and
Templeton, 1989);

« the statistical technique used to detect changes in the traffic intensity
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— a control chart (Bhat and Rao, 1972, Shore, 2000, 2006, Chen et al., 2011,
Hung et al., 2012, Chen and Zhou, 2015),

— a sequential probability ratio test (Rao et al., 1984, Bhat, 1987, Jain and
Templeton, 1989, Jain, 2000, Zobu and Saglam, 2013),

— a general likelihood procedure (Jain, 1995).

1.1 Three control statistics: X, X, and W,

To monitor the traffic intensity of a single server queue and keep it at a target level
o, Morais and Pacheco (2015a) and Morais and Pacheco (2015b) used the three
following control statistics:

* X, the number of customers left behind in the M/G/1 system by the n'h
departing customer;

* X,,, the number of customers seen in the GI/M/1 system by the n'" arriving
customer;

* W,, the waiting time of the n'”* arriving customer to the GI/G/1 system.

These three control statistics have been chosen by Morais and Pacheco (2015a)
for their simplicity, recursive and Markovian character. Their recursive is apparent
if we note that these statistics can be rewritten as follows:

System Control statistic

M/G/1 Xp+1 = max{0, X, — 1} + Y4
GI/M/1 X1 =max{0, X, +1—Y,.1}
GI/G/1 Wit = max{0, Wy + Sps1 — Anst}

where

* Y, denotes the number of customers arriving during the service of the (n+1)*"
customer,

o A,H] represents the number of customers served between the arrivals of customers
nand (n+1),

* Su+1— Any+1 depends on the service time of the n’ h customer, S,,.1, and on the
time between the arrivals of customers n and (n+1), A1,

for n € Ng.

1.2 X, and the M/G/1 system

The reader should be reminded of some important facts: customers arrive to the
M /G/1 queueing system according to a Poisson process with rate A and are served
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one at a time by the single server; the service times are independent and identically
distributed (i.i.d.) positive random variables (r.v.), which are in turn independent of
the interarrival times; S, Fs(s) and E(S) = u‘l stand from now on for the service
time, its cumulative distribution function (c.d.f.) and expected value.

Kendall (1951) and Kendall (1953) note that {X,,, n € N} forms a discrete time
Markov chain (DTMC), termed the M /G /1 embedded Markov chain, with transition
probability matrix (TPM)

[ @0 @1 a2 a3 -+ ]
Qo) a] @y a3 -
0 Qg a) @ '
00 g a1 s

0 0 0 ap’

where «@; denotes the probability that exactly i customers arrive during a service
time S. In addition,

+00 1 i

i = f e A pgs), ieny @)
0 1!

(Adan and Resing, 2015, p. 63). Another revealing fact: Y, i Y,n € N, with

common probability function (p.f.) given by Py (i) = a;, i € Ny.

1.3 X,, and the GI/M/1 system

The GI/M /1 queueing system is characterized by: interarrival times that are i.i.d.
positive r.v. with common c.d.f. F4(a) and expected value E(A) = A7'; i.i.d. expo-
nentially distributed service times, with expected value x~' and independent of the
interarrival times.

Kendall (1951) established that {X,,, n € N} also forms a DTMC, the GI/M/1
embedded Markov chain, whose TPM is equal to

[Poo o O O O ---]

Prodr & 0 0 ---

g}
1l

Pro @2 &1 &9 O -

, 3)

D30 @3 &2 &1 &g
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where &; denotes the probability of serving i customers during an interarrival time
U given that the server remains busy during this interval. Please note that

i!

+00 i
Q; = f ere P e @), ie, @
0

and pio = 1= '_@;,i € Ny (Adan and Resing, 2015, p. 82). Expectedly, ¥, iid.

Y, n € N, with common p.f. Py(i) = &, i € Ny.

1.4 W, and the GI/G/1 system

This single-server queueing system is associated with: interarrival (resp. service)
times that are i.i.d. positive r.v. with common c.d.f. F4(a) (resp. Fs(s)) and mean
E(A) =271 (resp. E(S) = ,u‘l); service times are once more independent of the
interarrival times. N

{W,,, n € Ny} also forms a DTMC (Kendall, 1953) and S, — A, "~ S— A, n e N.

Bear in mind that this DTMC has a continuous state space R if the interarrival
or the service times are absolutely continuous r.v.

Following Morais and Pacheco (1998), we consider a discretized approximating
DTMC with:

* state space Np;

e its first state corresponding to the singleton {0};

e its state j associated with interval ((j — 1)A, jA], for j € N, where A denotes the
common range of all the intervals and is taken to be very small so as to improve
the approximation;

e the interval ((j — 1)A, jA] represented by point (j —1/2) A, for j e N.

The TPM of this approximating DTMC is given by

[ F(0) F(A)-F(0) FQ2A)-F(A)
F(4) F)-F(-2) F(2)-F(8) -
P P4 () F(R)-F(-2) -

=
Il

®)

where the c.d.f. F = Fs_4. Note that its first row differs slightly from the one following
Brook and Evans (1972) and used by Greenberg (1997) and Morais and Pacheco
(2015a), who considered that state j is associated with interval ((j —1/2)A, (j +
1/2)A], for j € Ny, and that the interval ((j — 1/2)A, (j + 1/2)A] is represented by
point j A, for j € Ny.
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1.5 A few special cases

We feel bound to point out that «;, &;, and Fs_4(¢) have fairly simple and closed
expressions for some typical queueing systems. This certainly proves to be convenient
if we want to describe in detail the run length performance of the associated control
charts.

If the service times of an M/G/1 queueing system have an Erlang distribution
with k (k € N) phases and probability density function (p.d.f.) given by

fs(s) = (k) sk te ™ s j(k = 1)), 520,

k+i-1\( p \({ k \* .
o= (57 () - e ©

(Feller, 1971, p. 57). In other words, Y has a negative binomial distribution with
parameters k and k(k + p)~!, when we are dealing with the M/E;/1 queueing
system.

then

If the GI/M/1 queueing system is associated with interarrival times with an
Erlang distribution with density

fala) = (kD)* a1 e ™ 9 (k—1)1, a>0,

Morais and Pacheco (2015a) adds that

1 —1 i k
a, = (F k )( P\ e, %)
k=1 J\k1+p) \k1+p

This is to say that ¥ has a negative binomial distribution with parameters k and
p (k™' + p)~!, for the Ex/M/1 queue.

When it comes to the GI/G/1 queueing system, the results derived by Nadarajah
and Kotz (2005), for the c.d.f. and p.d.f. of a linear combination (X + 8Y) of
exponential (X) and gamma (Y) independent r.v. (with @ > 0), come in handy.

For the M /M /1 queueing system with arrival rate 1 = 1/E(A) and service rate
u=1/E(S), Morais and Pacheco (2015a) wrote

pet x<0
Fsa(x)=9q M0 0~ (®)
1- e X> 0.

Similar calculations led Morais and Pacheco (2015a) to conclude that:

i ku \k
ex(kﬂu) , x<0 X (9)
X _

FGamma(k,ky) (x)+ ex (kﬂl:,/l> FGamma(k,k/t+/l) (x), x>0,

Fs_a(x) = [

for the M /E /1 queueing system; and
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FGamma(k,k/l) (=x)

ko
Fs_a(x) = —eH* (kﬁi ) FGamma(k,ka+)(—X), x < 0 (10)
- kA
1—e™* (k/l+;1) , x>0,

for the Ex /M /1 system. It is clear that Fs_4(x) depends upon both A4 and g, for all
these three queueing systems, therefore the entries of P will not depend exclusively
on p like P and P.

1.6 On the probability of null values of the control statistics

A closer look at the control statistics of the X,,—, )A(n— and W, —charts suggests that
they take null values quite frequently, as long as single server queueing systems are
able to reach equilibrium, that is, if the traffic intensity is less than one.

Firstly, when it comes to the monitoring the traffic intensity of a GI/G/1 queueing
system, we can certainly state that the “most frequent” value of W, is zero because
this statistic has an atom in that point and a continuous branch in R*.

Secondly, the limiting distribution of the number of customers seeninthe GI/M /1
queueing system by the n'”* arriving customer is geometric with parameter (1 - o),
where o is the root in the interval (0,1) of the following equation involving the
Laplace-Stieltjes transform of the common c.d.f. of the interarrival times:

o =Falp(l-0)] = f we'*‘““”“dFA(t) (11)
a=0

(Kleinrock, 1975, p. 251; Adan and Resing, 2015, p. 83). Thus, zero is surely the most
frequent value of the control statistic when the GI/M /1 system is in equilibrium.
Thirdly, the limiting probability generating function (p.g.f.) of the number of
customers left behind in the M /G/1 queueing system by the n'" departing customer
is equal to
(1-p)Fs[A(0-2)](1-2)
Fs[A(1-2)]-z

E(z%) = el <1, (12)
where Fg(f) = fs J:;o e '5dFs(s) is the Laplace-Stieltjes transform of the common
c.d.f. of the service times, according to Adan and Resing (2015, p. 65). Furthermore,
Cohen (1982, p. 238) adds that the limiting probability of zero is equal to (1 — p);
as a consequence the most frequent value of the control statistic X,, is surely zero
if p < 0.5 while dealing with a M/G/1 queueing system. Adan and Resing (2015,
p. 65) go on to say that inverting E(zX) is usually very difficult but, in case Fs(s)
is a quotient of polynomials in s (such as when the service times have an Erlang
distribution), the limiting p.g.f. can be decomposed into partial fractions, and the
associated limiting p.f. can be easily determined. For instance, if S has an Erlang
distribution with two phases and expected value 1/u then, after some algebraic
manipulation, we obtain
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l-p

EZY) = Lzl <1, (13)
(I1-z/z1)(1-z/22)
. 4| " 1\"] .
PX=i)=(1-p) —| - —| |,i€Np, (14)
i1—22 \22 21—22 \Z1
where z1 = (2/p+1/2)++2/p+1/4,20= 2/ p+1/2) =2/ p+ 1/4and z; 2o =4/ p*.
This specific limiting pf. leads us to conclude that

PX=0)>PX=1)if p2+4p—4 < 0, that is, if p < V8 =2 for the M/E>/1
queueing system in equilibrium.

Finally, the high frequency of zero when compared to other values of these
three control statistics plays an important role in the design of the X,,—, X,,— and
W, —charts. Indeed, if we are to set a chart to monitor the traffic intensity with a
reasonably large in-control ARL, the LCL has to be equal to zero and the chart is
inherently upper one-sided.

2 Detecting upward and downward shifts in the traffic intensity

Since many production and service systems can be modelled as queueing systems
(Chen and Zhou, 2015), control charts can be used to efficiently monitor their traffic
intensity. Keep in mind that downward (resp. upward) shifts in the traffic intensity
can correspond to a decreasing (resp. increasing) interest in the offered services, thus
calling for a timely detection.

The charts, whose performance we are going to describe at the end of this section,
give protection to both increases and decreases in the traffic intensity, unlike the
upper one-sided charts described by Chen and Zhou (2015) and Morais and Pacheco
(2015a) and designed to detect solely upward shifts in p.

2.1 Three upper one-sided charts for the traffic intensity

The traffic intensity is deemed larger from its target level pg if the control statistic
—beit X, X,, or W, (n € N) — is above an upper control limit. Furthermore, if the
monitoring of the traffic intensity started with an empty system, which is common
practice (Chen et al., 2011), then the number of samples taken until a signal is
triggered is given by

RL=min{neN:Z,>U|Zy=0}, (15)

where:

e Z, = X,,X,,W, is the control statistic we adopted to monitor p;
* U = Uz is a positive integer (resp. real) upper control limit in case Z, = X,, X,
(resp. Z, = Wy).
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According to Morais and Pacheco (2015a), RL denotes the identity of the first:

e departing (resp. arriving) customer who left behind (resp. found) in the M /G/1
(resp. GI/M /1) system a number of customers larger than U;
e arriving customer to the GI/G/1 system whose waiting time is above U.

In the X,,—chart case, the RL is related to the distribution of the time to absorption
of a DTMC with transient states {0, ...,U} and TPM represented in partitioned form

g g-on) (16)

where: Q = [pl-j]gjzo; I is the identity matrix with rank (U +1); 1 (resp. 07) is a
column vector (resp. row vector) of (U + 1) ones (resp. zeros).

When we deal with the X,,—chart we have to consider: the corresponding UCL,
U=Ug;Q= [ﬁij]gjzo-

Adopting the W,,—chart means the approximate distribution of the RL is related to
the time to absorption of a DTMC, say { W,,, n € Ny}, with transient states {0, 1, . . Ly
1, ¥} corresponding to {0} U {((j — )A, jAl, j =1,...,7}, where: U = Uy = J A, that
is to say U coincides with the upper limit of the last interval; j is a pre-specified large
positive integer leading to a very small range A=U/¥; Q = [ﬁi]-]{ =5 The resulting

X
approximate run length is also denoted by RL for mere convenience.

The exact ARL of the X,,— and X, —charts and the approximate ARL of the
W, —chart can be written as

ARL =¢] x I-Q)™' x1, (17)

where e, represents the (j + 1)™" vector of the orthonormal basis of RUx*+! RUx+!
and R¥*!, when Z,, = X,,, X, Wy.

2.2 A brief review of ARL-unbiased charts

The chart control limits should be set in a way that a peak of the ARL curve is
produced at the in-control situation, while maintaining a pre-specified in-control
ARL, say ARL*. A chart with the first feature was termed by Pignatiello et al.
(1995) an ARL-unbiased chart.

As put by Morais (2016a), considerable attention has been given to ARL-unbiased
charts for parameters of absolutely continuous quality characteristics. Here is a partial
list of works in chronological order: Uhlmann (1982, pp. 212-215), Krumbholz
(1992), Pignatiello et al. (1995), Ramalhoto and Morais (1995), Ramalhoto and
Morais (1999), Acosta-Mejia and Pignatiello (2000), Huwang et al. (2010), Knoth
(2010), Pascual (2010), Cheng and Chen (2011), Huang and Pascual (2011), Pascual
(2012), Knoth and Morais (2013), Knoth and Morais (2015), Guo et al. (2014),
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and Guo and Wang (2015). The control statistics being used are in most cases
independent, in contrast to the Markovian-type statistics X,,, Xn and W,,.

Existing ARL-unbiased designs involving discrete distributions are more re-
cent and scarcer. Yang and Arnold (2015) propose an ARL-unbiased exponentially
weighted moving average proportion chart to monitor the variance for process data
with non-normal or unknown distributions. Paulino et al. (2016a) explore the notions
of randomization of the emission of a signal and uniformly most powerful unbiased
tests (UMPU) to eliminate the bias of the ARL function of the c—chart for i.i.d.
Poisson counts and bring the in-control ARL exactly to a pre-specified value; this
same technique was used by Morais (2016a) to derive an ARL-unbiased np—chart,
and by Morais (2016b) to obtain ARL-unbiased counterparts of the geometric chart
and the cumulative count of conforming chart under group inspection. Paulino et al.
(2016b) derive an ARL-unbiased design to detect both increases and decreases in
the mean of first-order integer-valued autoregressive (INAR(1)) Poisson counts.

As for regulation techniques for the traffic intensity, it is our impression that
we did not stumble across any reference tackling the detection of both upward
and downward shifts by using a control chart or a combination of two one-sided
charts, SPRT or general likelihood procedures. Nonetheless, we ought to make a few
comments before we proceed with the description of the ARL-unbiased charts to
monitor the traffic intensity of single server queueing systems.

* Bhatand Rao (1972) do not use ARL as a performance measure and only provide
two tables for the limits (¢, c;) and (d,,d;), for the queueing systems M /E; /1
(k=1,2,3,4,5,10,15,00), pg = 0.1(0.1)0.9, and a; = @, = 0.01,0.05,0.1,0.25.
One of the things that strikes us most forcibly is that this control chart had the
potential to detect increases and decreases in the traffic intensity and was not
used with that particular purpose.

* Interestingly, Figure 6 of Chen and Zhou (2015), referring to the ARL compar-
ison between a CUSUM chart and a generalized likelihood ratio (GLR) chart,
has the ARL profiles of upper and lower one-sided charts for the traffic inten-
sity. Their combined use could have led to the detection of both upward and
downward shifts in the traffic intensity.

2.3 Deriving ARL-unbiased charts for the traffic intensity

In order to derive ARL-unbiased charts for the traffic intensity when the control
statistic is X;,, we can capitalize on the ARL-unbiased c—chart proposed by Paulino
et al. (2016b) for the mean of INAR(1) Poisson counts; after all the control statistic
employed by those authors and X, are governed by DTMC with discrete state spaces.

As a consequence, the ARL-unbiased chart used to monitor the traffic intensity
of the M/G/1 queueing system should trigger a signal at the n'”* departure with:

* probability one if the number of customers left behind by the n'" departing
customer, x,, is larger than the upper control limit U
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* probability y;, (resp. yy) if x,, is equal to L = 0 (resp. U).

As duly noted by Paulino et al. (2016b), randomizing the emission of a signal
means considering the sub-stochastic matrix Q = Q(yr,yy) given by

pLix=vyr) pri+v1 ... pru-1 pruX(=vyy)
praiX(I=vyL) pretret oo Pryiu-1 Praiu X =yu)

(18)

pu-1LX(=yL) pu-1rL+1 -.- pu-1u-1 pu-1uX(1=vyu)
purLX-vy) pura ... puvu-1r pvuxU-vyy)

Since X( = 0 the exact ARL is equal to ARL? = gg X [1-Q(yL,yu)I"! x 1. Even
though L =0, we used the iterative search procedure thoroughly described by Paulino
et al. (2016b) to obtain both control limits and the associated randomization proba-
bilities — to bring the in-control ARL to ARL* and to eliminate the bias of the ARL
function. This search procedure is omitted to keep this paper to a practical length.

Paulino et al. (2016a) note that the randomization of the emission of the signal
can be done in practice by simply using a software to generate a pseudo-random
number from a Bernoulli distribution with parameter y (resp. yy) every time the
control statistic equals L (resp. U).

Needless to say, the ARL-unbiased chart meant to control the traffic intensity of
the GI/M /1 system can be obtained in a similar fashion.

Like the X,,— and X,,— charts, the one meant to monitor the traffic intensity of a
GI/G/1 queue relies on a control statistic governed by a DTMC. There similarity
ends because we are now dealing with a nonnegative mixed control statistic. This
fact begs for another change: there is no need to randomize the emission of a signal
when W,, = U because this event has zero probability.

Since we are supposed to trigger a signal with probability y; when W, = L =0,
the sub-stochastic matrix is equal to

proix(I=yrL) Prr+t ... Pru-1 PLu
PraiX(I=yr) Prsirst --- Pretu-1 Pr+iu

Q(yr) = : : : : , (19)
pu-1LX(I=yL) Ppu-i1r+1 --- Pu-1u-1 Pu-1uU
pvrxU-vyL) Ppurst --- Puu-1 Puu

and the ARL is given by ARL? = gg x[I— ()()/L)]‘1 x 1 because Wy = 0.

Alternatively, we can obtain the ARL by solving an integral equation,! using the
collocation method that leads to higher accuracy than currently established methods
(Knoth, 2005) such as the Markov chain approach. For more details on this alternative
to the Markov chain approach, the reader is referred to Knoth (2005).

P L(z2)=1+(1-yL)XFs_a(-2) X L(0) + foufS,A (y —z) x L(y)dy, where L(z) represents
the ARL of the W,, —chart when W, = z; the default value of z is zero.
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As for the search procedure responsible for the obtention of vy and U, it follows
the same lines as the algorithm used by Knoth and Morais (2013, 2015) to obtain the
control limits of the ARL-unbiased EWMA—S? chart for the variance of a normally
distributed quality characteristic.

3 Preliminary results

Several programs for the statistical software system R (R Core Team, 2013) were
used to obtain the ARL-unbiased designs and the corresponding ARL profiles.

Tables 1-4 summarize the control limits, the randomization probabilities, and
the in-control and two out-of-control ARL values of the ARL-unbiased designs we
obtained, by considering the target value of the traffic intensity and the pre-specified
in-control ARL equal to pp = 0.1(0.1)0.9 and ARL* = 500. These ARL-unbiased
designs were obtained using the Markov chain approach (in the case of the X,,— and
)?n—charts) and the collocation method (in the case of the W,,—chart) and refer to
the control statistics (resp. queueing systems):

o Xy (M/M/1, M/E>/1 and M /E 0/1);

o X, (M/M/1, Ex/M/1 and Es/M/1);

e W, (M/M/1, M/E>/1 and E>/M /1, either with fixed arrival rate or with fixed
service rate).

The corresponding ARL-profiles can be found in Figures 1-4, for pg = 0.1,0.5,
0.9 and ARL* = 500. The profiles in Figures 1 and 2 (resp. Figures 3 and 4) were
obtained using the Markov chain approach (resp. the collocation method, with the
exception the last three in Figure 4; the Markov chain approach was used instead,
with (250 + 1) transient states).

The results in those tables and the plots in these figures suggest that we are indeed
dealing with charts with:

* in-control ARL very close to the pre-stipulated value ARL* = 500;
* ARL curves with a maximum when the traffic intensity is equal to its target
value py.

3.1 M/G/1 queueing system

Before we continue to comment on the results, we should remind the reader of a
known property of the M/G/1 queueing systems in equilibrium.

The expected number of customers left behind by a departing customer can be
obtained by using the Pollaczek-Khinchin mean-value formula (Kleinrock, 1975, p.
187), it is equal to p+[(1 + k)/(2k)] ><p2/(1 — p) when we are dealing with Ej
service times, and, thus, it is not severely affected by k&, in particular for small values
of the traffic intensity.
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Table 1: ARL-unbiased X, —chart: control limits, randomization probabilities, in-
control and out-of-control ARL values — pg = 0.1(0.1)0.9 and ARL* = 500.

System  po [L,U] (rL-yv) ARL(0.9500) ARL(po) ARL(1.0509)

M/M/1 0.1 [0,4] (0.002160,0.629778) 499.816 500.000 499.805
0.2 [0,5] (0.002377,0.302403) 499.466 500.000 499.418

0.3 [0,6] (0.002664,0.080576) 498.884 500.000 498.748

0.4 [0,8] (0.003044,0.445146) 497.977 500.000 497.669

. ] (0.003568,0.609947) 496.526 500.000 495.881
0.6 [0,12] (0.004332,0.214732) 494.133 500.000 492.841
0.7 [0,15] (0.005548,0.016981) 489.888 500.000 487.347
0.8 [0,21] (0.007769,0.929236) 481.579 500.000 476.808
0.9 [0,30] (0.013043,0.709996) 462.258 500.000 455.964

M/E>/1 0.1 [0,3] (0.002152,0.068181) 499.838 500.000 499.829
0.2 [0,4] (0.002370,0.082010) 499.497 500.000 499.454
0.3 [0,5] (0.002656,0.073351) 498.923 500.000 498.793
0.4 [0,7] (0.003041,0.968999) 497.982 500.000 497.664
0.5 [0,8] (0.003566,0.320705) 496.497 500.000 495.810
0.6 [0,10] (0.004342,0.423160) 493.949 500.000 492.499
0.7 [0,13] (0.005584,0.929120) 489.339 500.000 486.316
0.8 [0,17] (0.007876,0.687065) 480.059 500.000 473.905
0.9 [0,24] (0.013475,0.066710) 457.401 500.000 447.720

M/E0/1 0.1 [0,3] (0.002147,0.328369) 499.855 500.000 499.848
0.2 [0,4] (0.002365,0.931684) 499.519 500.000 499.479
0.3 [0,4] (0.002640,0.085670) 498.998 500.000 498.880
0.4 [0,5] (0.003024,0.183917) 498.072 500.000 497.768
0.5 [0,6] (0.003558,0.170932) 496.514 500.000 495.797
0.6 [0,7] (0.004350,0.004998) 493.773 500.000 492.141
0.7 [0,91 (0.005617,0.027111) 488.750 500.000 485.099
0.8 [0,13] (0.007995,0.946832) 478.189 500.000 469.929
0.9 [0,19] (0.014002,0.943674) 450.843 500.000 434.972

We believe that this last property is in part responsible for the apparent similarity
of ARL profiles in Figure 1, for the M/M /1, M/E, and M /E|py/1 systems and a
fixed target value pg, namely when p =0.1.

The ARL results in Table 1 and the plots in Figure 1 also suggest that the larger
the target value pg the quicker is the average detection time of small upward and
downward shifts in the traffic intensity by the X,,—chart.

It is interesting to confirm that all the LCL we obtained are equal to zero, unlike
the LCL of the ARL-unbiased charts with discrete control statistics derived so far
by Paulino et al. (2016a), Paulino et al. (2016b) and Morais (2016a,b).

Another striking feature of the ARL-unbiased X,,—chart: the values of vy - tend
to be much smaller than the ones of yy;. As a result, this chart is more prone to trigger
a signal when the control statistic is equal to the UCL than when the control statistic
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Table 2: ARL-unbiased X,,—chart: control limits, randomization probabilities, in-
control and out-of-control ARL values — pg = 0.1(0.1)0.9 and ARL* = 500.

System  po [L,U] L.yu) ARL(0.95p)) ARL(py) ARL(1.05p0)
M/MJ1 0.1 [0,4] (0.002160,0.634850)  499.816 500.000 499.805
02 [0,5] (0.002377,0.307742)  499.467 500.000 499.419
0.3 [0,6] (0.002664,0.086407)  4983.888 500.000 498.753
04 [0,8] (0.003043,0.464904)  497.985 500.000 497.681
0.5 [0,10] (0.003567,0.651244)  496.545 500.000 495914
0.6 [0,12] (0.004329,0.254463)  494.179 500.000 492.931
0.7 [0,15] (0.005541,0.068832)  490.009 500.000 487.605
0.8 [0,20] (0.007746,0.088495)  481.923 500.000 477.610
0.9 [0,29] (0.012936,0.221365)  463.558 500.000 458.852
E»/M/1 0.1 [0,3] (0.002039,0.876869)  499.898 500.000 499.886
02 [0,4] (0.002148,0.859637)  499.582 500.000 499.521
03 [0,5] (0.002323,0.731068)  499.016 500.000 498.846
04 [0,6] (0.002580,0.423089)  498.092 500.000 497.709
0.5 [0,7] (0.002955,0.065346)  496.559 500.000 495.751
0.6 [0,9] (0.003520,0.097782)  493.990 500.000 492.361
0.7 [0,12] (0.004438,0.304139)  489.378 500.000 486.143
0.8 [0,16] (0.006149,0.182911)  480.157 500.000 473.960
0.9 [0,24] (0.010323,0.532068)  458.093 500.000 449.697
Es/M/1 0.1 [0,2] (0.002004,0.238163)  499.973 500.000 499.967
02 [0,3] (0.002046,0.652609)  499.731 500.000 499.668
03 [0,4] (0.002148,0.925662)  499.178 500.000 498.977
04 [0,5] (0.002324,0.825244)  498.234 500.000 497.768
0.5 [0,6] (0.002600,0.408281)  496.673 500.000 495.704
0.6 [0,8] (0.003040,0.976148)  493.932 500.000 491.935
0.7 [0,10] (0.003771,0.442419)  489.010 500.000 484.988
0.8 [0,13] (0.005166,0.020108)  478.917 500.000 470.893
0.9 [0,20] (0.008666,0.133624)  453.910 500.000 441.644

takes a zero value. This follows from the need to achieve a fairly large in-control
ARL in the presence of very frequent zero values of the control statistic.

We can also add that larger target values of the traffic intensity require, expectedly,
larger upper control limits.

3.2 GI/M/1 queueing system

When it comes to the X,—chart for the traffic intensity of the M/M /1, E;/M/1
and E5/M/1 systems, though comparable for a fixed pg and different interarrival
time distributions, the ARL profiles are dissimilar for distinct target values pg, as

illustrated by Figure 2.
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Fig. 1: ARL profiles of the ARL-unbiased X,—chart — M/M/1, M/E>/1 and
M /Ego/1 systems with pp =0.1,0.5,0.9.

In addition, as the coefficients of variation k™! (k =1,2,5) of the interarrival
times become smaller and the times between consecutive arrivals become more
regular for a fixed target value pg, the smaller (resp. larger) is the detection speed
of the X,,—chart in the presence of small and medium (resp. small) size upward and
downward shifts in the traffic intensity, as illustrated by the ARL profiles in Figure
2 (resp. the out-of-control values in Table 2).

The ARL-unbiased design is also associated with null LCL in all cases and small
randomization probabilities y;, and therefore agrees with what has been previously
said and with the results referring to the M /G/1 queueing system.

We ought to note that the X,,— and X, —charts have similar performances when
it comes to the monitoring of the traffic intensity of the M /M /1 system, judging by
the corresponding ARL profiles in Figures 1 and 2.
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Fig. 2: ARL profiles of the ARL-unbiased X, —chart — M/M/1, E;/M/1 and
Es/M/1 systems with py =0.1,0.5,0.9.

3.3 Gl/G/1 queueing system

Since the RL of the W,,—chart explicitly depends upon the arrival and service rates,
the discussion of the results refers now to two scenarios:

« the traffic intensity changes due to change in A, while the service rate u is fixed;
» pis off-target as a result of a change in i, whereas the arrival rate A remains the
same.

In both scenarios the probability of triggering a signal when W,, = L = 0 does
not exceed 1.5% for any of the queueing systems we have considered, like the X,,—
and X,,—charts. The importance of this small randomization probability y; lies in
its ability to transform these three upper one-sided charts into monitoring schemes
that are capable of also detecting decreases in the traffic intensity.

The detection speed of the W, —chart becomes all the more clearer by looking at
the ARL profiles in figures 3 and 4:

» the ARL profiles change considerably with the target value pg, as they did for
the X,,— and X,,—charts;
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Table 3: ARL-unbiased W, —chart, FIXED SERVICE RATE: upper control limit, random-
ization probability, in-control and out-of-control ARL values — pg = 0.1(0.1)0.9
and ARL* = 500.

System  pg U VL ARL(0.9509) ARL(p9) ARL(1.05p0)

M/M/1 0.1 7.077585 0.002068 499.949 500.000 499.948
0.2 8.010018 0.002235 499.784 500.000 499.775
0.3 9.071026 0.002487 499.457 500.000 499.419
0.4 10.335393 0.002839 498.866 500.000 498.753
0.5 11.912665 0.003335 497.823 500.000 497.533
0.6 13.984468 0.004065 495.951 500.000 495.260
0.7 16.890639 0.005227 492.431 500.000 490.858
0.8 21.370674 0.007344 485.203 500.000 481.863
0.9 29.461491 0.012315 467.940 500.000 463.249

M/E>/1 0.1 4.738168 0.002095 499.925 500.001 499.923
0.2 5.563324 0.002287 499.715 500.004 499.700
0.3 6.471000 0.002556 499.325 500.018 499.267
0.4 7.538378 0.002921 498.656 500.057 498.489
0.5 8.863481 0.003433 497.519 500.141 497.091
0.6 10.604397 0.004186 495.507 500.287 494.476
0.7 13.058999 0.005393 491.640 500.463 489.260
0.8 16.890344 0.007621 483.295 500.541 478.126
0.9 24.001537 0.013020 462.104 500.351 454.016

E,/M/1 0.1 6.423954 0.002006 499.989 500.000 499.988
0.2 6.924320 0.002055 499.896 500.000 499.888
0.3 7.634301 0.002180 499.644 500.000 499.608
0.4 8.557287 0.002399 499.124 500.000 499.014
0.5 9.757652 0.002741 498.137 500.000 497.836
0.6 11.375281 0.003272 496.263 499.998 495.498
0.7 13.693802 0.004144 492.552 499.981 490.670
0.8 17.357791 0.005776 484.458 499.861 480.021
0.9 24.234818 0.009750 463.359 499.176 455.744

* when the service rate u is fixed, a change in p is due to an increase or decrease
of the arrival rate and it seems to be more easily detected if we are monitoring
the traffic intensity of the M /M /1 and M /E;/1 systems than the traffic intensity
of a E;/M/1 queueing system, judging by the corresponding plots in Figure 3;

* when A is fixed, the ARL profiles, in Figure 4, associated with the M/M/1
and M/E,/1 queueing systems are very similar for the same target value pg, as
we have previously mentioned in the discussion of the results concerning the
X,,—chart;

* itis also apparent from Figure 4 that the W,,—chart seems to take longer to detect
decreases in the traffic intensity of the E,/M /1 system with a fixed arrival rate
than in the one of the M /M /1 and M/E,/1 queueing systems;
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Table 4: ARL-unbiased W,,—chart, FIXED ARRIVAL RATE: upper control limit, random-
ization probability, in-control and out-of-control ARL values — pg = 0.1(0.1)0.9
and ARL* = 500.

System g U YL ARL(0.95p9) ARL(pp) ARL(1.05p0)

M/M/1 0.1 0911543 0.002198 499.505 500.000 499.400
0.2 1.979006 0.002441 498.848 500.000 498.588
0.3 3.253009 0.002750 497.952 500.000 497.459
0.4 4.810239 0.003154 496.688 500.000 495.834
0.5 6.773410 0.003706 494.831 500.000 493.402
0.6 9.353440 0.004506 491.943 500.000 489.572
0.7 12950170 0.005774 487.093 500.000 483.168
0.8 18.438763 0.008086 477.988 500.000 471.750
0.9 28.254818 0.013579 457.637 500.000 451.070

M/E>/1 0.1 0.590423 0.002200 499.457 500.005 499.316
0.2 1.333646 0.002447 498.749 500.020 498.394
0.3 2.263006 0.002760 497.807 500.060 497.118
04 3.437682 0.003171 496.511 500.139 495.293
0.5 4.957663 0.003733 494.626 500.274 492.561
0.6 6.999476 0.004552 491.651 500.457 488.201
0.7 9.904858 0.005855 486.438 500.627 480.699
0.8 14.440533 0.008257 476.086 500.640 466.788
0.9 22.823032 0.014126 451.630 500.372 440.513

E,/M/1 0.1 0.807873 0.002049 499.785 500.000 499.733
0.2 1.705269 0.002171 499.279 500.000 499.099
0.3 2.744663 0.002360 498.488 500.000 498.091
0.4 3.993489 0.002631 497.298 500.000 496.538
0.5 5554376 0.003021 495.473 500.000 494.093
0.6 7.602164 0.003604 492.532 499.995 490.061
0.7 10.471460 0.004549 487.399 499.964 482.958
0.8 14.911878 0.006309 477.243 499.786 469.420
0.9 23.098971 0.010632 452.652 498.926 442.630

* by comparing the ARL profiles in figures 3 and 4, we can conclude that a small
change in the traffic intensity seems to be detected more swiftly by the W,,—chart
if that decrease (resp. increase) in p is due to an increase (resp. a decrease) in the
service rate than to a decrease (resp. an increase) in the arrival rate, regardless
of the queueing system and the target value pg.

3.4 Mixed vs. discrete control statistics

We end this section with a brief discussion on whether or not the ARL-unbiased
W, —chart leads, in average, to swifter detections than its discrete counterparts,
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Fig. 3: ARL profiles of the ARL-unbiased W, —chart, FIXED SERVICE RATE —
M/M/1, M/E;/1 and E»/M /1 systems with py = 0.1,0.5,0.9.

the ARL-unbiased X,— and X, —charts, which require less bookkeeping and are
computationally less demanding as far as their design is concerned.

We limit the confrontations to the X,,— (resp. X,—) and W,—charts meant to
control the traffic intensity of the M/M/1 and M/E,/1 (resp. E»/M/1) queueing
systems.

Programs for Mathematica (Wolfram Research, Inc., 2015) were used to produce
Figure 5 (resp. 6), where we can find the plots of the percentage reduction in ARL,

[1 _ ARLy, (p)

ARLx, (p) ] x100%  (resp. [1 - ARLw, (p)/ARLy (p)]x 100%)

when the X,,—chart (resp. X n—chart) is replaced with the W, —chart. The curves were
drawn resorting to the Markov chain approach with (250 + 1) transient states.
Figures 5 and 6 suggest that the ARL profiles of both charts with discrete control
statistics compare unfavourably to the one of the W, —chart, as noted by Morais and
Pacheco (2015a), when the arrival rate has been fixed (dashed line).
It is also very interesting to see that the smaller the target value of the traffic
intensity, the larger seems to be the relative reduction in ARL due to the adoption
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Fig. 5: Plots of the relative ARL reduction, [ARLw, (p)/ARLx, (p) —1]x100% —
M /M1 (top) and M /E3/1 (bottom) systems with pg =0.1,0.5,0.9 and ARL* = 500;
fixed service (resp. arrival) rate corresponds to the solid (resp. dashed) lines.
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Fig. 6: Plots of the relative ARL reduction, [ARLw, (p)/ ARLXn (p) —11%x100% —
M /M1 (top) and E>/M /1 (bottom) systems with pg =0.1,0.5,0.9 and ARL* = 500;
fixed service (resp. arrival) rate corresponds to the solid (resp. dashed) lines.

of the W,,—chart. Thus, extra bookkeeping makes a worthwhile improvement to the
detection of shifts in the traffic intensity due to changes in the service rate when
PO = 0.1.

The solid lines in these two figures suggest that replacing the X,,— and X,,—charts
with a W,,—chart does not pay-off in terms of ARL performance, when the service
rate has been fixed. Strictly speaking, relying on the number of customers seen in the
queueing system by the departing or arriving customer seems to be more beneficial
than the waiting time of an arriving customer, when the shifts in the traffic intensity
are due entirely on changes in the arrival rate.

For instance, when the traffic intensity of a E;/M /1 queueing system shifts from
its target value pg = 0.1 to p = 0.6, then we would expect to see the first arriving
customer, who would have:

* to see at least 3 customers in upon arrival, to be approximately arrival number
30;

* to wait longer than U = 6.423954 time units until being served, to be roughly
arrival number 184.

This corresponds to a weighty 509% relative increase in the ARL of the X,,—chart.

The reader should be aware that in Santos (2016) there is also evidence that using
the upper one-sided W,,—chart, to monitor exclusively increases in the traffic intensity
when the arrival (resp. service) rate is unaltered, does (resp. does not) improve the
detection speed of charts based on discrete control statistics.

4 Final thoughts

The aim of this paper is two-fold.
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On the one hand, we intend to draw the attention of quality practitioners and
operation researchers alike to the use of control charts to monitor the traffic intensity
of (single-server) queueing systems.

On the other hand, we make a point of deriving three ARL-unbiased charts
associated with two discrete-valued and one mixed-valued control statistics. These
charts can be easily implemented and are designed in such way that:

e their in-control ARL take a pre-stipulated value ARL*;

e the associated ARL curves attain a maximum when the traffic intensity is on
target, thus it takes us less time (in average) to be alerted to any increase or
decrease of the traffic intensity than to run into a false alarm.

By relying on the randomization probabilities (resp. probability) y;, and yy (resp.
L) to trigger a signal when the control statistic is equal to the LCL or the UCL
(resp. LCL), the ARL-unbiased X,,— and X, —charts (reps. W,,—chart) for the traffic
intensity can definitively handle the curse of the null values of the control statistics
and still detect decreases in p in a timely fashion.

The preliminary results we obtained so far should be complemented with:

* further ARL-unbiased designs, namely referring to other interarrival time dis-
tributions such as the hyperexponential and hypoexponential, commonly used
in QT and in practice;

¢ additional comparisons between the two charts with discrete control statistics X,,
and X,, and the one that makes use of the waiting time W,,, in a scenario suggested
by Santos (2016) where the traffic intensity shifts from its target value pg to a
different value p; because the arrival and service rates change proportionally
from their target values Ao and ug to A1 = +/p1/po Ao and u; = +/po/pP1 Ko,
respectively; these comparisons should rely not only on ARL but also on the RL
percentage points and its standard deviation (SDRL).

A direction of future research comprises the derivation of ARL-unbiased versions
of the WZ, nL and sophisticated CUSUM charts proposed by Bhat and Rao (1972),
Chen et al. (2011) and Chen and Zhou (2015) (respectively), in order to detect
not only increases and but also decreases in the traffic intensity of (single-server)
queueing systems in an expedient manner.
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Statistical process monitoring of multivariate
time-between-events data: Problems and
possible solutions

Chenglong Li, Amitava Mukherjee, Qin Su, and Min Xie

Abstract In the recent years, a lot of attention is paid to univariate monitoring of
time-between-events. When the univariate problem is extended to a multivariate
situation, this study indicates that there is an emerging issue about the presence of
asynchronous observations. This brings the new statistical challenge due to the way
of data acquisition changes. This study also tries to give some possible solving ideas
for the monitoring and analysis of multivariate TBE data streams.

Key words: asynchronous observation; multivariate exponential distribution; sta-
tistical process monitoring; time-between-events

1 Introduction

Monitoring the time between certain consecutive events in a system is an important
research problem in the field of statistical process monitoring. In the recent years, host
of researchers have proposed a variety of Time-Between-Events (TBE) monitoring
schemes. This has become an increasingly popular research area in the dawning
years of the twenty-first century. Indeed, the term ‘system’ here could refer to various
processes, equipment or any entity of interest in a particular context, and as a result,
‘event’ may have different meanings in different contexts. For example, in the context
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of manufacturing, an event may refer to the occurrence of a nonconforming unit. In
the context of reliability testing, an event may indicate the failure of a component.
The occurrence of various events often results in a negative way and some have
hazardous consequences.

To monitor a complex system, we often need to take into account multiple aspects
of the system for an overall evaluation of its underlying operation condition. De-
pending upon different situations, these aspects could refer to concrete objects (e.g.,
interrelated subsystems, subunits, or components) and also could be immaterial such
as operating characteristics, features or behaviors. When a system is in the normal
state of operation, failures (of each subsystem or component) or abnormities (in
one or more operating characteristics or behaviors) are random event caused by, for
example, occasional sudden increase of stress and human error (Xie et al., 2002).
The occurrences of various discrete events of concern are often modeled by a mul-
tivariate Poisson process. Then, the time interval T = (x1, x2,...,x,) between these
events follows a multivariate exponential distribution (abbreviated MVE), writing
T ~ MVE(A) as a p-dimensional random variable. The most common form was
given by Marshall and Olkin (1967) as follows,

P
F(x1,x2,...,x,) = €xp —Z Aix;i— Z A;jmax(x;, Xx;)
i=1

i<j

- Z /lijkmax(xi,xj,xk)—...—/llz_”pmax(xl,xz,...,xp) .
i<j<k

Or we have a more compact notation expressed as

F(x1,x2,...,x,) = exp [—Z/ls max(x,-sl-)]

seS

where S denotes the set of vectors (sy,...,5,) and each s; =0 or 1 but (s1,...,5,) #
(0,...,0). For any vector s € S, max(x;s;) is the maximum of the x;’s for which
Si = 1.

Analogous to the univariate TBE monitoring problem taken into account in
Xie et al. (2002), Zhang et al. (2005), Khoo and Xie (2009), Qu et al. (2014),
among others, in this context of monitoring a complex system with multivariate
TBE data, the primary aim is to detect any change of the parameter A. Other than
those traditional studies on multivariate statistical process control (see for example,
Zou and Tsung, 2011, Aparisi et al., 2012, Wang and Reynolds, 2013, Li et al.,
2014), when monitoring multivariate time-between-events data, an emerging issue
is about the presence of asynchronous observations (i.e., time interval) with regard
to different dimensions. That is, the observations of different dimensions will not
be generated at the same time, because the occurrences of various events (e.g.,
the signals of failure of various subunits) are not synchronous. This issue will be
addressed in more detail later in this study. Accordingly, the challenge of statistical
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process monitoring of multivariate TBE data not only comes from the difficulty of
studying a multivariate non-normal distribution (rather than the commonly studied
multivariate normal distribution), but also the complexity due to the way of data
acquisition changes. Although people still can apply the traditional approach of
combining several univariate TBE control charts to each individual dimension, it is
known that this will lead to erroneous conclusions, even be misleading and inefficient.
Therefore, how to realize the monitoring and analysis of such multivariate data
streams is a real-life problem of significance, since such data are common in all
walks of life but have been rarely considered in the control chart literature. Motivated
by the actuality, this study will also attempt to provide some solving ideas.

2 Problem description

Consider a complex system that has p interrelated key subunits. For example, one
can imagine a running computer server as the system and the p key subunits are
such as CPU, RAM, HD, and GPU etc. Failures may happen to any subunit and
when a signal of failure occurs, we can promptly locate and know which subunit is
disabled, then fix or replace it. The respective time interval T between the failures
to each subunit follows MVE(Q). When the system operates in a perfect condition,
the distribution of T remains stable with the in-control rate parameter d¢. In this
context, it is assumed that the in-control A is known a priori. However, the system
could be disturbed by the unobservable occurrence of an assignable cause at some
random time, causing variations in rate parameter (especially the increasing shifts,
as one is usually more interested in detecting a decrease in the time interval).
Then, the statistical monitoring problem becomes similar to test the hypothesis,

Hy: Aj = Aoy forall i against Hj: A; > Ag,[;) with at least one strict inequality.

To implement a statistical process monitoring procedure, we need to collect the TBE
observations over time. As mentioned earlier, the time-to-failure observations with
regard to each subunit are not generated simultaneously, such that every time we
probably could only observe a single failure on one of those subunits, as shown in
Figure 1. When we observe the failure of the ith subunit, we have an exact observation
(i.e., exact surviving time) for this subunit. At the same time, however, we equiva-
lently have additional (p — 1) censored observations for other rest (p — 1) subunits,
because the rest (p — 1) subunits are still running. Note that, if the context is changed
to the manufacturing process, the object of study turns into a high-yield process
that produces a kind of products with p key quality characteristics. Nonconformities
may occur in any quality characteristic of the products in unpredictable ways and
the respective time T required to observe a nonconformity of various characteristics
approximatively follows MVE(Q).
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Fig. 1: The occurrences of the failures in the three subunits of a system (p = 3).

3 Possible solutions

Since the acquiring of these time-to-failure observations of various subunits is asyn-
chronous, when one failure is observed at this moment, in addition to this fresh
observation, other historical time-to-failure observations should also be considered
and used together for evaluating the underlying system state. These sequential ob-
servations need to be fused in a manner for statistical monitoring purpose.

The idea of a fusion-based monitoring technique is illustrated below via the sim-
plest case with only two subunits in a system: When we observe a failure of Subunit 2

T11 T12
Subunit 1 - - - -
T21 T22 T23
Subunit 2 % % %
t0 2 t3 t4 5
Time

Fig. 2: ...

at 3, we immediately have the latest time-to-failure observation 75, for Subunit 2. At
the same time, we also have the most recent time-to-failure observation 77; for Sub-
unit 1 which is, however, generated (3 —#1) ago. To evaluate the current surviving
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time of Subunit 1 fairly, both 771 and (3 —¢;) (treated as a right-censored obser-
vation) need to be considered at least (but more earlier time-to-failure observations
could also be incorporated with a proper weight). In general, if (13 —¢) is sufficiently
short (say, t3 —#1 ~ 0), we may only consider 7 1; if (#3 —#) is sufficiently large (say,
ts —t1 > T11), T11 becomes insignificant and we may only consider (3 —1).

Thus, a simple prediction for T},, is considered as

Tio=(1=9s—t1 | doq1))) - Tiy + 3 =11 | Adoyay) - (83— 11)

where () is a monotone increasing function between zero and one.

Also, to fairly combine the ‘observations’ from different subunits, we may con-
sider standardizing these observations with respective in-control rate parameter. For
example, the monitoring statistic at #3 may use a similar form as

2
v = \/(/lo;[z] Tp)* + (Ao Tha)

Plot Y3 against the specified control limit (i.e., LCL). If Y3 falls outside the control
limit, the system is declared out-of-control at #3. Then the operation of the system is
interrupted and an action plan is implemented. If not, the system is thought to be in
control, and the monitoring continues to the next failure (at ¢4). The horizontal axis
of the chart is the total failure number.

When the system has more than 2 subunits, the analysis procedure is compatible
but more cumbersome. The critical point of this fusion-based monitoring technique
is how to define the monotone increasing function ©#(-) and also determine the LCL.
This, of course, requires large amounts of simulation experiments to seek out suitable
options. In addition to the fusion-based monitoring technique, these observations can
also be fused through Bayesian theory to give a posterior probabilistic estimate of
the underlying system state. However, in this way, the corresponding formulation
and calculation will be much more complicated.

4 Conclusions

This study indicates the statistical challenge of monitoring multivariate TBE data.
Some possible solving ideas are given and the critical point of these solutions is also
outlined.
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Integrating Statistical and Machine Learning
Approaches in Improving Inspection Process

Tomomichi Suzuki, Tatsuya Iwasawa, Kenta Yoshida, Natsuki Sano, Mirai Tanaka

Abstract Nowadays, many products are manufactured in larger quantities and at
higher speed. Inspection processes also need to be operated at higher speed, without
loss of accuracy at detecting nonconforming products. Regarding inspection of
external appearances of the products, visual inspections have often been used in
many processes, which many of them are now replaced by automatic inspections
using sensors such as cameras. In this study, statistical tools and machine learning
methods are applied to improve accuracy of an actual automatic inspection process.

1 Introduction

Nowadays, many products are manufactured in larger quantities and at higher speed.
Inspection processes also need to be operated at higher speed, without loss of accu-
racy at detecting nonconforming products. Regarding inspection of external appear-
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ances of the products, visual inspections have often been used in many processes,
which many of them are now replaced by automatic inspections using sensors such
as cameras. In this study, statistical tools and machine learning methods are applied
to improve accuracy of an actual automatic inspection process.

2 Product and Data

2.1 Data

The product taken up in this study is a cylindrical metal product. The external
appearance is inspected automatically using the images taken by cameras installed
in the process. The characteristics (RGB values) of the original images are converted
into polar coordinates because the images are taken from above the product and
the nonconforming defects tend to appear concentrically. This concept is shown in
Figure 1.

original image  convert to polar
coordinates data in matrix

Fig. 1: Data used in analysis

Regarding accuracy of the actual inspection process, the probability of type 11
error was satisfactory but the probability of type I error needed improvement. In
other words, sensitivity was satisfactory but specificity was not. Since there will
be a need to detect nonconforming products which is more difficult to detect, the
objective of the study is not limited to reduce type I errors but also reduce type
II errors, in other words propose algorithms that improves overall accuracy of the
inspection process.

2.2 Defects

Detection of defects are not performed by directly analyzing rows and columns (i,
j) of the matrix data but by analyzing the waveform data. To detect defects, we also
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examine the characteristic waveforms. Figure 2 shows the waveform for an average
product height (i.e., the average of a row of matrix data).

Rew average
AydRRRYY
=
3
1

Fig. 2: Waveform data from sample product

Figure 2 shows a relatively large sample of a given defect, which contains high and
low points. Near row 470, the waveform suddenly dips because of defects. Defects
are betrayed not by the mean maximum or minimum but by sudden changes in the
numerical values. Thus, detecting small defects is difficult because they cause small
changes in these numerical values.

We define a non-defective product as a product that has very few or no defects
such as dents or blots. To investigate the accuracy of the inspection system, we
prepared artificial defective products by attaching a very small colored seal which
resembles the defects. The size of the seal is in three levels and there are four colors.

2.3 Extracting features and creating variables

One of the most important parts of this study is to extract features from the original
images and to create variables which will be used in later analyses. Many aspects of
the images need to be accommodated such as; the first data of each row is next to
the last data of the same row because the data are in polar coordinates, the position
of the product changes slightly among them each time they are being imaged, etc.

Some image processing techniques such as Gaussian filters and Laplacian filters
are used. The data for each column are considered as waveform data so that techniques
for time series analysis can be applied to extract the features. Quite a number of
variables were created as candidates for future analyses.
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3 Selection of variables by statistical approach

3.1 Application of design of experiments

As mentioned earlier, detecting small defects is difficult. Facilitating their detection
requires some type of preprocessing after polar conversion. However, we neither
know to what extent each method affects accuracy nor how to combine the different
methods to improve accuracy. We therefore introduce orthogonal arrays to test the
effect of many factors via a few experiments.

We use an L32 orthogonal array, run 32 experiments for each area of the product,
and calculate three accuracies from each experiment. The overall accuracy of each
experiment is defined to be the average of the three accuracies. We convert these
results by using the logit function and use them as characteristic values. After ana-
lyzing the variance, we determine the optimum level and the optimum combination
of methods for each product area.

The main effects and interactions considered are shown in Table 1. Previous
studies have shown that "feature quantity extraction with window" (FQEW) and
number of lags are especially effective in improving accuracy, so we insert four-level
FQEWs and lags into the orthogonal array. The first-level factor is "Used" and second
level is "Not used." If the first level is selected, then we use this method to calculate
the accuracy. If the second level is selected, we do not use this method to calculate
the accuracy.

Table 1: Factors investigated.

Symbol Factor Levels
A Overlap Use / Not Use
B Nonlinear density conversion Use / Not Use
C  Gaussian filter Use / Not Use
D  Laplacian filter Use / Not Use
H Maximum value Use / Not Use
P Minimum value Use / Not Use
J Variance Use / Not Use
K  Kurtosis Use / Not Use
L Skewness Use / Not Use
M  Range Use / Not Use
N  EHOG feature quantity Use / Not Use
O  Texture characteristic quantity Use / Not Use
F  Statistic from a row Variance / Maximum
E  FQEW (size of window) 10x1 /20x1 / 10x4 / 20x4
G Number of lags 0/1/3/5

In this study, we calculate the accuracy by using SVM (support vector machine).
To analyze how to combine preprocessing and feature-extraction methods, we use a
distinction method, which dispenses with variable selection. We therefore introduce
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the SVM. The preprocessing methods, feature-extraction methods, and SVM are
explained below.

3.2 Results of DOE

The factors significant in the analysis of the data in Area Iwere B, C, E, F, G,
H, K, M, and O. The estimate of the accuracy was 85.7% with the confidence
interval {83.2%, 87.9%}. The factors significant in the analysis of the data in Area
2 were E, F, G, H, K, M, and N. The estimate of the accuracy was 85.6% with the
confidence interval {81.4%, 89.0%}. The factors significant in the analysis of the
data in Area 3 were D, E, F, G, P, K, and M. The estimate of the accuracy was 90.8%
with the confidence interval {88.5%, 92.7%}. Note that the results of the optimum
combination of methods differs among areas.

Areal gives anoisy and dark image because it is near the bottom of the product and
far from the camera. To reduce noise and create a brighter image, we apply a Gaussian
filter and nonlinear density conversion. The matrix of data of Areal has 21 columns,
whereas that of Area2 has 14 columns. Defects are sufficiently detectable from
waveform data created by using small windows in the FQEW method. Conversely,
the matrix of data for Area3 contains over twice as many columns as do the matrices
of areas| and 2. Thus, defects are not sufficiently detectable when waveform data
are created using a 10x1 window in the FQEW method. However, if the window
size is too large, the noise increases in Areal. Thus, a 20x1 window is optimal
for Area3. The Laplacian filter is used in the optimum combination of methods for
Area3 because defects are not sufficiently detectable within the waveform data when
using only the FQEW method.

These results showed considerable improvement over the current system.

4 Defect detection by machine learning approach

This section concerns the classifiers applied in this study: Bagging, AdaBoost, and
Random Forest. Regarding Bagging and AdaBoost, we applied decision trees (DTs)
and neural networks (NNs) as weak classifiers. The details of these classifiers are
described below.

4.1 Bagging

Bagging, along with AdaBoost and Random Forest described below, is one of the
methods of so-called Ensemble classification, algorithms that provide classifiers that
have essentially high generalization ability by combining multiple classifiers that lack
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such ability (Hirai (2012)). Bagging is an ensemble classification method in which
the outputs of test data of a class are determined by majority vote of multiple weak
classifiers, after letting these weak classifiers learn by using bootstrap samples of
training data. The two classes in this study are non-defective and defective products.
The structure of Bagging is shown in Figure 3. To provide further details of ensemble
classification, DT is generally applied as a weak classifier.

Bootstrap sample 1 ootstrapsample 2, M
“Non-defocts “Defocts “Non-defective’
L )
Y
Majority voting

Fig. 3: Structure of bagging

4.2 AdaBoost

AdaBoost is one of the Boosting methods, whose algorithms train multiple serially
cascaded weak classifier’s, with each weak classifier trained individually. In Ad-
aBoost, heaviness is assigned to training data according to the training result of a
weak classifier, and as a result of minimizing the heaviness of missed training data,
the later the weak classifier trains, the more it concentrates on training data that are
missed many times.

4.3 Random forest

The Random Forest method improves Bagging by applying DTs as weak classifiers
and can create a large variety of DTs in which each correlation coefficient is not
high, by selecting a definite number of features at random used in classification at
non-terminal nodes. The DTs in Random Forest increase at the dividing point, and
the reduction of the Gini coefficient in selected features is maximized. We designed
preprocessing and feature extracting processes based on variable importance from
Random Forest, which can be evaluated by calculating Average for the reduction of
the Gini coefficient of each feature in each node of all the weak classifiers.
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4.4 Discussion of weak classifiers

DTs are generally applied as weak classifiers in Bagging and AdaBoost. In this
study, we aimed to construct classifiers that have high generalization ability by using
classifiers other than DTs as weak classifiers. When using the new weak classifiers, we
selected logistic regression and neural networks in which the number of hidden units
is only one as its candidates so that products can be inspected as quickly as possible.
From the results of discriminating products exclusively of DTs, logistic regression,
or neural networks, we decided to construct Bagging- and AdaBoost-applied neural
networks as weak classifiers. Similarly, Sano (2003) constructed AdaBoost-applied
neural networks as weak classifiers, and verified its precision.

4.5 Results of defect detection

In this section, we compare and discuss the discrimination result of each area, ap-
plying five classifiers: Random Forest, Bagging and AdaBoost-applied DTs as weak
classifiers, Bagging and AdaBoost-applied neural networks in which the number
of hidden units is only one, and using the features extracted in preprocessing and
feature extraction. In addition, we conducted three-fold cross-validation to evaluate
their generalization ability. The discrimination results of each area are shown in
Figures 4, 5 and 6. The values with each point refer to the correct answer rate.
From the figures, the correct answer rate of AdaBoost (NN) is the highest in
Areas 1 and 2. In Area 3, the correct answer rates of Random Forest and Bagging
(NN) are equivalent, but the beta error of Bagging (NN) is slightly smaller than
that of Random Forest. Therefore, we evaluated Bagging (NN) as the classifier that
can discriminate products most precisely. Regardless of the kind of weak classifier,
we found that AdaBoost can discriminate products more precisely than Bagging in
Areas 1 and 2; on the other hand, we could not find whether Bagging or AdaBoost
is a better classifier for discriminating products, because the correct answer rate
of AdaBoost for the case of applying DT as a weak classifier is better than that of
Bagging. However, the correct answer rate of Bagging for the case of applying NN as
a weak classifier is better than that of AdaBoost. Here are some reasons to consider.
In Area 3, there are fewer data than in Areas 1 and 2, because of the narrowness of
the analysis range. In addition, it is difficult to see the defective parts, as a result of
the distance from the analyzed part to the camera, with the result that the defective
parts are photographed smaller in Area 3. We could make the most of AdaBoost’s
algorithm by reasoning that the training errors achieve relatively large value because
of the difficulty of detecting defective parts in Areas 1 and 2; however, the training
errors in Area 3 area are very low, and hence, there is no basis for choosing between
Bagging and AdaBoost. In addition, the discrimination precision in Area 2 is the
worst in this study, because on the manufacturing line, the products are discriminated
one by one at high speed and are irradiated by green light to verify the location of
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the analysis part that appears just in the product interior in Area 2, which is caused
by misclassification.
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Fig. 6: Results of Area 3

5 Summary

Combination of statistical and machine learning approches are applied in order to
improve an insepection process. In variable selection stage, orthogonal arrays which
is one of the popular tools in design of experiments are used. In defect detection stage,
classification methods of machine learning techniques are used. Results showed
considerable improvement over the current system.
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A MGF Based Approximation to Cumulative
Exposure Models

Watalu Yamamoto and Lu Jin

Abstract Online monitoring data contains various measurements of the activity of
the system. The amounts of works are also measured in various ways. When we
model the reliability of a system, the intensity or the risk of failure events, we need
to choose a time scale. Though there should be genuine time scales for each failure
phenomenon, the field data including online monitoring data may not be able to
provide evidence for them. There are many uncontrollable factors in the field. Many
variables are monotone increasing and highly correlated with each other within a
system. Yet they also represent the differences among systems. This article tries to
build a bridge between two useful approaches, alternative time scale ( Kordonsky
and Gertsbakh (1997), Duchesne and Lawless (2002)) and cumulative exposure
model ( Hong and Meeker (2013)), by assuming the stationarity of the increments
of these measurements within a system.

Key words: Time-scale, cumulative exposure model, accelerated lifetime model,
approximation, moment generating function.

1 Time Scales

When there are more than one variables, 7o, 71, T, . . ., Tp, to measure the lifetime of a
system or a product, the problem of time scale identification arises. Farewell and Cox
(1975) were possibly the first authors to investigate combining multiple time scales
to obtain a more suitable time scale in the context of life testing. Oakes (1995)
defined the notion of collapsibility of the time scale and proposed a parametric
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inference for choosing time scales and failure distributions. This problem was also
investigated by Kordonsky and Gertsbakh (1993, 1995a,b, 1997). They consider so
called the linear time scale model,

Up = Bolo+ 1T+ + BpTp,

and investigate properties by estimating parameters with minimum coefficient of
variation. The choice of the estimating criterion was made because it is scale invari-
ant. In their studies, the parameter space is restricted as

®L={ﬂ;,3kSO,kzO,...,pandZ,Bkzl}_ (1)
3

There are also another class of time scale,
Uy =TOTP .. Tl" .

This is called the multiplicative time scale model. This is actually a log linear time
scale model in that

Tty T =exp {BoTo+ piTi+-++ BpT, | 2)

where Ty = logTy, k =0,1,...,p. Duchesne and Lawless (2000) called these models
as alternative time scales. Duchesne and Lawless (2002) proposed a semiparametric
approach to estimate the parameters of time scale models under the assumption of
collapsibility proposed by Oakes (1995). These models are well served for selecting
the best time scale model when the measurements are done only when products are
failed or censored.

Recently there is literature on the assessing the reliability of products under
continuous on-line surveillance. Hong and Meeker (2013) propose to hire Nelson’s
cumulative damage model to model the effect of use rate variation onto the lifetime
of a product and predict the lifetime distribution by estimating the use rate process.
Hong, Duan, Meeker, Stanley, and Gu (2015) model a physical degradation process
using the dynamic measurements of the environmental conditions. They apply a
smoothing regression technique to estimate the trends of degradation paths. We
believe that the cumulative damage model is also useful for the problem of time
scales.

2 Cumulative Exposure Time Scales

A general cumulative damage model is specified by a pair of formulas, the cumulative
damage,
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T
U (T) |3 ~ f D (s5:9,) ds 3)
0

and the distribution on the cumulative damage scale,
U(T) ~F(u). “)
H; is the history up to time ¢,
H,={N(5),0<s<t;x(s),0<s <t} %)

where N (¢) is the counting process and x (s) is the covariate process which are the
measurements on the conditions of the product and/or around the product. Generally
the damage at time ¢, D (¢; H;) could depend on the history up to time ¢, H,. However
itis difficult to model in such a flexible way. So we restrict ourselves to model lifetime
data with continuous monitoring as

D(s;Hs) =D (s;x(s5)). (6)

We believe this is a version of collapsibility for time scale modeling under continuous
surveillance.

For the simplicity of the argument, we focus on “no-covariate-situation.” All
covariates are assumed to be the increments of individual time scale varaibles. It is
also assumed that X, (#) = 1 for all products and for any ¢. So fOT Xo (s)ds is the
lifetime on the chronological time scale. Since the problem of interest here is the
identification of the best time scale, all X () have marginal distributions with

E[Xx (s)]=1. @)

Under these assumtions, D (s;x (s)) can assess whether the variations of any xy (¢)
makes the lifetime longer or shorter.
There are two primary choices of parameteric models. One is the linear model,

Dp (t:x(1)) = Boxo () + Brx1 (1) +- -+ Bpx, (1). ®)

This model is derived from a general model by approximating with Taylor expansion
around x = 1,

oD
Dr(t;x() = Dy (tg; 1) + —
L(6:x(0) ~ Dy (19;1) ;(m

(xx=1). €))
1

X =

This model coincides with the linear time scale model. But there is one difference.
The parameter space need not be positive.
Another is the multiplicative model,

D (1% (1)) = exp (BoTo (1) + BLE1 (1) +-++ By %) (1)), (10)
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where X (t) = log xx (¢). This model is derived from a general model by approxi-
mating the logarithm with Taylor expansion around x =1,

0D
OXx

log Dy (1% (1)) ~ log D (r0: D)+ ) | (%) (11)
k

=0

Unlike the first model, this s not the same as the multiplicative time scale model.

3 Parameter Estimation

We assume that the online monitoring system collects the sample path of its covariate
process X; «, the time of event #; and the type of event ¢;, from each system to be
monitored. ¢6; = 1 indicates that the system is failed and §; = O for censored. The
contribution of this system to the log-likelihood is

logL; = 6; B'x; (t;)
+6;logg (U (t:; B X0 ) ;0)
+(1-6)1og{l-G (U (t;; B|Xix);0)}.

where B’x; (t;) is log AU (t; B|X; « ) /Ot evaluated at ¢ = t;. Hereafter we abbreviate
Uc (li;ﬂ |DCI-,O<,) as U;.
The score vector consists of

0 0U(ti;ﬂ|xioo) 0
—logL; =6;x; (¢ 6 ——————= —1 ;0
9B og x; () + 9B Em ogg (u )u:U[
aU(li;ﬂlxim) 0
1-6;,) ———————= —log{l - ;
+(1-6;) 9B Em og{ G(M,e)}u:Ui
and
0 0
G_HIOgLi = (5i6—010gé’(Ui,9)

+(1—6,~);—010g{1—G(Ui;0)}.

The observed Fisher information matrix consists of
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2 aZU is xioo
9 TlogLizéiM ilogg(u;l9)
oBop 0BIp ou u=U;
aZU ti; xioo
+(1_6i)¢r’) ilog{l—G(u;H)} .
0BopT  u w0
ou (l‘i;ﬂ|xim) 0 0
) S ;
+6 o8 9g | o ogg (u O)u:Ui
6U(t,~;,B|DC,~oo) 0 d 0
06— — | ——1log{1 -G (u;60
* 0B op" | dusg et G )}u=ui
2 62
——1o Li=(5i—10 Ui;0
00007 ° 006" g8 (Ui:6)

62
+(1-6;) ——=log{1 -G (U;;80
( l)aoaoT g { (Ui;0)}

and also off-diagonal components

AU (ti; B|Xi,e0 )

ou aBT

9% 01| o0
——logL;=6;— | —lo u;0
26087 = ’60[ A

AU (ti: B X0 )
apr

The first derivatives and second derivatives with respect to 6 are readily available on
many packages or software which help us in fitting parametric lifetime distributions
to the failure data with censoring. However the derivatives with respect to the
components of parameter B requires numerical integration for each system, every
time we need to evaluate.

12)

oo
+(1=6) 2 [alog{l—G(u;O)}

u:U,-

4 Cumulative Exposure Model and Empirical Moment
Generating Function

We would like to allow cumulative exposure model by Hong and Meeker (2013)
to be more useful for applications. To achieve this goal, we restrict our attention to
cases with covariates related to the works of the systems and also the time variables
only.

We focus on the integral processes of work amounts among many types of co-
variates. If the covariate process X; o, is stationary,

t
U =1 [ e (B7x(9)ds (13)
0
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is a nonparametric estimate of the joint moment generating function of the marginal
distributions of X (7),

Mx (B) = E [exp (B"X () ]. (14)

Under certain regularity conditions for the existence of the moment generating
function, this estimate, also called as the empirical moment generating function, is
the consistent estimate of the underlying moment generating function.

Once the empirical moment generating function of the covariate process is esti-
mated as My (B), we could approximate the cumulative exposure as

U(t; BlXiwo ) = Mx (B)1. (15)

This approximation also establishes the relationship between the cumulative expo-
sure model and the accelerated lifetime model. The empirical moment generating
function My ( B) serves as an acceleration factor for the latter.

The marginal distribution is much easier to identify than the simultaneous dis-
tributions. For example, if the covariate processes are stationary and are distributed
marginally with multivariate normal distribution, we can reduce the amount of cal-
culation for U by substituting the estimates of mean vector u and covariance matrix
Y to calculate the moment generating function. Then the estimates of the first two
moments, jz and 3 are plugged into the joint moment generating function and have

N 1 ~
Mx (B) = exp (ﬂTﬁ+§ﬂT2ﬁ). (16)

We note that the model by Hong and Meeker (2013) allows us to assess the effects
of covariates of a wider class than the class we assume. The covariate processes and
the integral processes of which need no be positive or monotone for their purposes.

5 Approximations of Empirical Moment Generating Function

The amount of computation required for the evaluation of My (B) for a given B is
same as that for the evaluation of U (¢; B]|X;.« ). The estimation of the cumulative
exposure model needs the evaluation of this function for each individual product
within the online monitoring data. If we want to monitor the changes in fitting of
the model regularly, the total amount of computation for this model grows at every
moment we receive a new record. So it is very useful to invent the decreasing in the
amount of computation.

The simplest way is Taylor series approximation of the moment generating func-
tion. If the moment generating function exists, it has the Taylor series expansion

1
My (B)=1+B p+ B (uu" +3) B+ (a7
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around the origin of the space of B. The first order approximation of the moment
generating function is

M, (B)=1+B"p. (18)

A moment estimator of y is the vector of sample means of x; (#)’s. This approxima-
tion holds under the first order stationarity where the expected values of covariates
do not depend on time, i.e. eX; (t) = y;.

The second order approximation gives another formula

. 1
My (B)=1+p" p+ 5" (up" +%) B. (19)

This approximation holds under the second order stationarity where the covari-
ance functions as well as autocorrelation functions do not depend on time. Further
expansions are also possible.

If the marginal distribution is unimodal and symmetric, an approximation by
normal distribution could be considered.

- 1
Mg (B) = exp (ﬁTu - EBTZB) (20)

If the covariates are conditionally independent with each other within a system,
the joint moment generating function is a product of the moment generating functions
of the marginal distributions of each covariate. So we have another identification by

vix (B) = | Mx; (). @)
J

There are also other ways of approximations. We state two of them. One is the
combination of a rough grid and multilinear interpolation. By preparing the values
of Mx (B) for the set of pre-specified points B, ..., Bx. the multilinear interpolation
is obtained as

Mi(B) =) NeMx (B), (22)
k
where Ny is the normalizing quantity which depends on both B and the set of points
{Bi-- - Bk}
Another way is to have the random set of points {8;,..., Bx} and construct mul-

tidimensional spline interpolation by multiple adaptive regression splines (Friedman

(1991)) or generalized additive models (Hastie and Tibshirani (2004)). We note
that though there are many flexible and useful interpolation techniques, they tend to
re-increase the amount of computation.
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New results for two-sided CUSUM-Shewhart
control charts

Sven Knoth

Abstract Already Yashchin (1985b), and of course Lucas (1982) three years earlier,
studied CUSUM chart supplemented by Shewhart limits. Interestingly, Yashchin
(1985b) proposed to calibrate the detecting scheme via Po,(RL > K) > 1 — « for the
run length (stopping time) RL in the in-control case. Calculating the RL distribution
or related quantities such as the ARL are slightly complicated numerical tasks. Simi-
larly to Capizzi and Masarotto (2010) we deploy less common numerical techniques
(Clenshaw-Curtis quadrature, collocation) to determine the ARL and other RL based
measures. Note that the two-sided CUSUM chart consisting of two one-sided charts
leads to a more demanding numerical problem than the single two-sided EWMA
chart.

1 Introduction

It is a more or less established pattern, that Shewhart charts are powerful tools to de-
tect large changes quickly, while the more complex EWMA (exponentially weighted
moving average) or CUSUM (cumulative sum) charts are well suited to signal small
and medium size changes. All three have been on the market for a long time now —
Shewhart (1926), Roberts (1959) and Page (1954) initiated the research and usage a
long time ago. Then a combination of the simple and among the three most popular
device, the Shewhart chart, with one of the more subtle siblings seems to be a good
idea. To the best of our knowledge, Westgard et al. (1977) introduced it into statistical
process control (SPC) literature. For an application in clinical chemistry, they pro-
posed Shewhart-CUSUM combinations. However, their two-sided CUSUM chart is
not the well-known pair of two one-sided schemes. It resembles a CUSUM pheno-
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type which was described later on in Crosier (1986) explicitly. Moreover, Westgard
et al. (1977) provided an unorthodox presentation of CUSUM charts, calculated
an operations characteristic look-alike measure via 1/ARL (average run length) and
performed many Monte-Carlo studies to provide, eventually, nomograms for further
application of the new scheme. Afterwards, Lucas (1982) and Yashchin (1985b)
discussed the combination of two-sided Shewhart charts with the more common
construction of a two-sided CUSUM procedure by running two one-sided charts.
Both authors discussed as well one-sided designs. While Lucas (1982) calculated
the zero-state ARL for normal distribution by modifying the popular Markov chain
approximation, did Yashchin (1985b) a more elaborated study by dealing with the
zero- and steady-state ARL and RL quantiles for normal, y? (normal variance) and
Poisson data. He utilized Markov chain approximation too. More publications re-
garding distributions different to normal are Abel (1990) for Poisson, Morais and
Pacheco (2006) and Henning et al. (2015) for binomial and Qu et al. (2011) for expo-
nentially distributed data. For the more popular normal case, Starks (1988), Blacksell
et al. (1994), and Gibbons (1999) reported application cases, while Reynolds and
Stoumbos (2005) and Abujiya et al. (2013) provided more methodological insights
and developments. This is, of course, not a complete list of references. Definitely,
CUSUM-Shewhart combos became part of standard quality literature, see, for ex-
ample, Montgomery (2009), chapter 9.1.5. But it is not a popular strand of SPC
research. In particular, the calculation of the ARL was not questioned after its first
treatment in Lucas (1982) and Lucas (1982). This is, more or less, the aim of this
contribution. We start with the simpler case of one-sided combos, before the subtle
two-sided scheme is analyzed. Examples are provided, technical details moved into
the Appendix, and some conclusions complete the paper.

2 One-sided CUSUM-Shewhart chart for mean

Henceforth, denote {X;} a sequence of independent and normally distributed data
with mean u which is under risk to change, and with some known and fixed variance
o that is set to 1 without loosing generality. In this section, we are interested in
detecting increases in the mean from po = 0 to u; = 6 > 0. This is done by combining
the very popular Shewhart X chart and one of the more known “modern” competitors,
the CUSUM chart. First, some math is collected to provide the necessary notions.

Shewhart rule €5 =inf{i > 1: X; > cs}.
Zo=120=0, Z; =max{0,Z;,_ + X; — k},
CUSUMrule ¢, =inf{i > 1: Z; > h}.
combo rule £ = min{lg,{.}.
ARL =E,({).
ARL function L(z) = E,(€|z0=2).
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The terms ARL and ARL function label the well-known Average Run Length both
universally and as function of the initializing value zo. Apparently, the CUSUM-
Shewhart combo consists of three parameters, the alarm thresholds c¢g (Shewhart) and
h (CUSUM), and CUSUM’s reference value k, which is typically set to (o + u1)/2 =
6/2. In all, they control the detection performance of the combo. Typically, some in
advance chosen large false alarm level, here denoted by A, and several prominent
shifts, ¢, are utilized to find an effective triple (cs,h, k) so that Ez(£) = A, and
{Es(£)}, in some way, are minimized.

Proper choice of c¢g implies k < cs < h+ k. For cs < k, the above combo is re-
duced to a pure Shewhart chart. This is due to the fact that as long as the Shewhart
component is not signaling, hence X, < cs < k, the CUSUM statistic Z,, will not
increase. Thus the Shewhart component will never signal after the CUSUM compo-
nent. Moreover, a CUSUM chart with 2 = 0 and k > 0 is equivalent to a Shewhart
chart (by setting k = cg). Therefore, the reference value k of a proper (2 > 0) CUSUM

30

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 1: CUSUM setup: Relationship between reference value k and threshold & for an in-control
ARL 1000. Admissible k values belong to the interval (0, ®~! (1 —1/1000) = 3.09).

chart is smaller than the alarm threshold cs with the same in-control ARL. On the
other hand, if 4+ k < c¢g then the combo resembles a single CUSUM chart. Namely,
any X, that triggers a Shewhart chart alarm is now larger than &+ k so that the
corresponding Z,, > Z,,_1 + X,, —k > Z,,_; + h > h. Hence, the CUSUM component
signals too. Basically, the k < c¢g < h + k condition is needed for technical reasons.
For a standalone CUSUM chart, Figure 1 illustrates the relationship between k
and 4 for an in-control ARL of 1000. The reference value k is usually much smaller
than the Shewhart threshold cg. The actual interval of admissible cg values is even
tighter — the lower limit is given by the threshold of a standalone Shewhart chart,
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20

Fig. 2: Combinations of Shewhart threshold cs and CUSUM’s h (k € {1,0.5,0.2,0.1}) for an
overall in-control ARL 1000.

the normal quantile ®~!(1 - 1/A), the upper one by the threshold / of a standalone
CUSUM chart increased by k:

O ' (1-1/A) < ¢s < haone (k, A) + k. (1)

In the sequel we assume that (1) is fulfilled. From Figure 2 we see that for small
k < 1, the interval could be even more tightened, because for cg > 4.5 the threshold
h does not really change anymore.

Let £ = ¢s — k with 0 < & < h. Then the ARL function of the combo solves the
following integral equation:

min{h,e+s}
L(s)=1 +<D(k—S)£(0)+f plz+k—-5)L(z)dz. 2)
0

The functions ®() and ¢() constitute the cumulative distribution and probability
density function of a standard normal distribution. Replacing the upper integral
limit with the constant value % leads to the well-known equation from Page (1954),
Lucas (1976), Vance (1986). Numerical solution of the above integral equation
with an integral limit depending on the argument s is not straightforward. See,
for instance, Capizzi and Masarotto (2010) for a similar treatment of the EWMA-
Shewhart combo. They applied an aptly chosen Clenshaw-Curtis quadrature to obtain
satisfying numerical accuracy. Here, we want to exercise collocation with piecewise
defined Chebyshev polynomials — see Knoth (2006) for their successful usage in
case of calculating the ARL of CUSUM charts deploying the sample variance S2.
First, we decompose the interval [0, /] in r subintervals.
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[0,A]1=[0,A—(r=1De]U(h—=(r—-Deh—-(r-2)e]U...U(h—g,h].

The integer r is determined from r = [h/e] = [h/(cs — k)]. From Figure 3 one

gf
=
| o -
0
)
= 0.1
o~ k 0.2
\ — \ \ \
3.0 3.5 4.0 4.5 5.0
cs

Fig. 3: The number of intervals, r = [h/(cs — k)1, for combinations of Shewhart threshold cs,
CUSUM’s h (k € {1,0.5,0.2,0.1}), and in-control ARL 1000.

concludes, that for large k = 1 (and k = 0.5 too), the value r = 2 seems to be the
typical value, at least for the chosen A = 1000. Returning to the subinterval design
we ascertain that except the usually shorter first one, all subintervals have the same
width &. The Chebyshev polynomials are defined on all these r intervals accordingly.
The collocation framework is described for the simple case r = 2 — the general
case is given in the Appendix. Essentially, we distinguish for £(s) the intervals
O<s<h-gor h—e<s <h. The constant £(0) seems to be another value to be
calculated, but because of the continuity of the ARL function it is covered by the first
interval. Now, we approximate £L(s) on the mentioned intervals with two different
linear combinations of Chebyshev polynomials up to order N — 1, namely with

N N

chjle(s) and Zcijzj(S)

j=1 j=1

For £(0) we could use
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N h-&
LO)=1+0(HK)LO)+ ) a1 f e(z+k)T1j(2) dz
j=1 0

N &
+Zc2jf e(z+k)T(z)dz
=1 h-¢&

(vanishes if h = 2¢g)

For the two intervals we obtain

O<s<h-s:

N N h-&
ZCUTU(S) = 1+q)(k—S)£(0)+ Cljf 90(Z+k—S)T1j(Z)dZ
j=1 0

Jj=1
N &+s

+Zczjf e(z+k—5)Tj(z)dz
7= h-¢&

h—e<s<h:

N N h-&
Zcijgj(S) =1+D(k—-15)L(0) +chj£ e(z+k—s)T;(2)dz
j=1

=1
N h
+ Z Cljf p(z+k—5)T;(z)dz
=1 h—-&

As already mentioned, we derive

N N

LO) = e (0) = Y ery (=1

J=1 J=1

so that, eventually, a linear equation system with dimension 2N has to be solved.

2.1 Examples for one-sided designs

In order to demonstrate the numerical performance of the collocation design, we look
firstly at one configuration utilized in Yashchin (1985b): k = 1,7 =3, cs = 3.5. Conse-
quently, » = [3/(3.5—-1)] = 2. With n = 10 (matrix dimension 20) we obtain the final
ARL approximation, 1510.0 (Monte Carlo with 10° replicates resulted in 1509.94
with s.e. 0.048), which differs considerably from the value from Yashchin (1985b) in
the table printed as Figure 4, 1507.3. To illustrate potential accuracy issues, we study
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the more elaborated results from Lucas (1982) and consider k = 0.25 (the smaller
k the more severe are the accuracy problems), 2 = 8 and cs = 4 which results in
& =3.75 and r = 3 intervals. In Figure 4 the related ARL approximations are plotted
versus matrix dimension. In Figure 4(a) we display besides the “raw” Markov chain

— raw
-=== Lucas (1982)

-------- Brook/Evans (1972)
Lucas/Saceucci (1990)

728
|
724.5

726
|

724.0

ARL approx.
722 724
|
ARL approx.
23
|

20
723.0

T

20 40 60 80 100 0 10 20 30 40 50

matrix dimension, N matrix dimension, 3N

(a) Markov chain (b) Collocation

Fig. 4: (In-control) ARL approximation vs. matrix dimension; k = 0.25,h = 8,cs = 4.

values three popular frameworks to improve convergence — the designs deployed by
Lucas (1982), Brook and Evans (1972) and Lucas and Saccucci (1990). These utilize
4, 3 and 5 single Markov chain results, respectively, and combine them by the same
linear model. For the sake of visibility, we omit some segments for the highly varying
profile following Brook and Evans (1972). From Figure 4(a) and (b) we conclude
that collocation is more powerful in terms of accuracy. The two bullets mark the
selections of N used in Lucas (1982) and for the comparison done in Table 1. In
Figure 5 we illustrate the complete ARL function, based on collocation. The three
intervals are marked. Moreover, we want to compare the highly accurate numerical
procedure with the Markov chain based results in Lucas (1982). From Lucas (1982),
Table 2/Part 3 we take some numbers from the first block. Note that Lucas (1982)
calculated his results adjusting all entries within the transition matrix of the Markov
chain which correspond to an observation that would violate the Shewhart limit
cs. Then, by calculating the ARL approximation for 10, 20, 30 and 40 states and
plugging in the results into a simple regression model, he obtained the final results
which surprisingly well match the collocation based numbers.

Two further figures illustrate the detection performance of the combo in terms
of the zero-state ARL. Thereby, we consider two different k € {0.5,0.2}. Three
different cs are selected: 5, 10 or 20 percent within the interval of admissible
cs measured from the lower bound (threshold of the standalone Shewhart chart
3.090 and, for example, 3.214, 3.338, 3.586 for k = 0.5). From the profiles in
Figure 6 we conclude that for smaller k& the impact of cg is more specific. For both
k in {0.2,0.5}, unquestionably, adding a Shewhart limit improves considerably the
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Fig. 6: ARL performance of different Shewhart/CUSUM combos and standalone charts.

detection performance for changes larger than 2.5. In summary, it looks like a handy
improvement of the prim CUSUM procedure.

3 Two-sided case

First prominent discussions of two-sided CUSUM’s ARL are Lucas and Crosier
(1982) and Yashchin (1985a,b). Before we return to them in more detail, we introduce

further notation:
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Table 1: Some ARL results from Table 2/Part 3 (upper entry) in Lucas (1982) vs. collocation

(middle entry) and Monte Carlo simulation (lower entry, 10° rep.).

parameters shift &

h k c¢s| 000 025 050 075 100 150 200 250

3.00

202.1 48.19 20.16 11.94 8.344 5.062 3.461 2471
6 025 3 |202.0 48.17 20.16 11.93 8340 5.058 3.458 2.469
202.0 48.17 20.15 11.93 8340 5.058 3.458 2.469

1.820
1.819
1.819

241.7 50.79 20.77 1229 8.640 5384 3.852 2910
6 025 352418 50.81 20.77 1229 8.642 5.387 3.855 2914
241.8 50.81 20.77 1229 8.642 5.387 3.855 2914

2.239
2.244
2.244

249.7 51.27 20.89 1236 8.713 5487 4.013 3.143
6 025 4 |249.7 5128 20.89 1236 8.712 5487 4.013 3.142
249.7 51.27 20.89 1236 8.712 5487 4.013 3.142

2.525
2.525
2.525

3958 73.98 27.04 1542 10.58 6.194 4.045 2.733
8 025 3 |396.0 74.02 27.05 1543 1058 6.196 4.045 2.732
396.0 74.02 27.05 1543 10.58 6.196 4.045 2.732

1.912
1.911
1.911

6464 82.12 2844 16.17 1120 6.835 4.760 3.451
8§ 025 35|6455 8212 2843 16.17 11.20 6.834 4.760 3.450
6455 82.12 2843 16.17 11.20 6.834 4.760 3.450

2511
2.511
2.511

7252 8375 2872 1634 1136 7.051 5.082 3.888
8§ 025 4 |723.6 8374 2872 1634 1136 7.048 5.078 3.883
723.6 83.74 28.72 1634 1136 7.048 5.078 3.882

3.010
3.005
3.005

5713 101.7 33.68 18.75 12.68 7.202 4.509 2.903
10 025 3 [571.7 101.7 33.68 18.74 12.68 7.202 4.511 2.905
571.7 101.7 33.68 18.74 12.68 7.202 4.511 2.905

1.955
1.956
1.956

1441 1199 36.09 20.00 13.71 8.222 5.584 3.897
10 025 35| 1436 1199 36.10 20.01 13.71 8.227 5.591 3.904
1436 1199 36.10 20.01 13.71 8.227 5.591 3.904

2.706
2.711
2711

1974 124.0 36.62 2031 13.99 8596 6.119 4.586
10 025 4 | 1956 1240 36.62 2031 13.99 8.594 6.116 4.583
1956 124.0 36.62 20.31 1399 8.594 6.116 4.583

3.445
3.441
3.441

Shewhart rule ¢ =inf{i > 1 :|X;| > cs}.
Zy =25 =0, Z; =max{0,Z;_ + X, -k},
upper CUSUM rule ¢/ =inf{n>1:Z} > h}.
Zy =2z,=0, Z, =max{0,Z,_, - X,, — k},
lower CUSUM rule ¢, =inf{n >1:Z, > h}.
2-sided CUSUM rule £@ = min{¢],(.}.

combo rule £? = min{fg),ff)} .
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Note that we restrict ourselves to the simple and quite popular CUSUM setup where
both reference values (k) and thresholds (&) are equal. The validity of the here
presented findings for the general case has to be proved yet.

Now, we consider the ARL function for the two-sided CUSUM chart alone, 6’22).
By writing L(s*,s7) for the corresponding ARL function, we report the following
ARL integral equation, which was derived by considering the values of X (within the
usual total probability arguments) and not, as common, the values of the CUSUM
statistic:

h+k—s*
Lists)=1+ f o) L5t +x— k.0)dax

max{k—s*,s™—k}

+(O(k -5t —D(s™ —k))L(0,0) (vanishes if 2k < s*+s7)

min{k—s*,s"—k}
+f e(x) L0, s —x—k)dx

h—k+s~

min{s~—k,h+k—s"}
+f o) L(GsT+x—k,s”—x—k)dx.
m

ax{k—s*,—-h—k+s~}

It turns out that it is reasonable to distinguish the cases (i) s* +s~ < 2k, (ii) 2k <
sT+s7 < h+2k and (iii) h+2k < st + s~ < 2h. Starting with (i), we write

h+k-s*
L(sT,s7)=1 +f e(x)L(sT+x—k,0)dx
k

—st

+(D(k—sT)-D(s~ —k))L(0,0)

sT—k
+f (X)L, s —x—k)dx.

h—k+s~

Hence, for s* +s~ < 2k, the ARL function is driven exclusively from £ (-,0), £(0,-),
and £(0,0). For slightly larger s + s~, case (ii), we observe

h+k—s*
L(stsT)=1 +f e(x)L(sT+x—k,0)dx

s -k
+f () LT +x—k,sT—x—k)dx
k

—st

k—s™
+f w(x) L0, s" —x—k)dx.

h—k+s~

And the most simple and practically less important case, (iii), yields the following
identity:

h+k-s*
L(s",57) = 1+f e(xX)L(sT+x—k,s"—x—k)dx.
—h—k+s~
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Conveniently, the arguments of £ () in case (iii) do not appear in the integrals of cases
(i) and (ii). Hence, to determine the ARL for all possible head-starts, it is sufficient
to solve (i) and (ii). Then we deploy the fact that in case (iii) the sum of arguments
in £() under the integral is s + s~ — 2k, hence the original s* + s~ is shrunk. This is
already smaller than /2 + 2k or another observation has to be considered. In the most
extreme case, s* + s~ =2h, [h/(2k) — 1] steps has to be taken. Finally, by using the
solution of L(s*,s™) for s™ + s~ < h+2k, one iterates up to the initial extreme pair
(st,57).

From Lucas and Crosier (1982) we take the much nicer formula eq. (A.1) for
st 45~ < h+2k — hence (i) and (ii), but not (iii) — to link L(s*,s~) to the ARL
function of the simpler one-sided CUSUM chart

LEEHL O+ L)L (sT)-LH0)L7(0)

Ls%s7) = Z70)+ £-(0)

3)

It turns out that it solves the integral equation (i)+(ii). Moreover, the restriction
introduced by Lucas and Crosier (1982) does not block the simple calculation of the
ARL for even more extreme head-start values as in case (iii). As already mentioned,
by using the solution for the less extreme values from (i)+(ii) and some quadrature
rule based iteration procedure for the integrals, the complete set of possible head-start
values could be treated.

Now, we want to modify the integral equation framework in order to incorporate
the impact of the additional Shewhart limit cs. Essentially, max{—cg,lower} and
min{cs,upper} replace the original limits lower and upper. Second, in case (ii)
only the limits of integrals with £(-,0) or £(0, -) are changed. In case (i), this is true
by construction.

Could it be possible that using the results from the previous section and formula
(3) would work? Starting with (i) and re-writing the corresponding integral equation
results in:

min{h+k-s*,cg}
L(sT,s7) =CD(k—s+).£(0,0)+f e(x)L(sT+x—k,0)dx
k—s*
min{h+k—s",cs }
+CD(k—s_)£(0,0)+f ©(=x)L(0,s" +x—k) dx
k—s~
+1-2£(0,0).
From (3) we derive:
_ L70)L(0)
LO0=FEor -0
v LTGT)L7(0) o L0 L (s7)
L= o0 YT o0

Impact to first line:
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L7(0)
LH(0)+L(0)

min{h+k-s*,cs}

DO(k-st)LT(0) +f

(X)L (sT+x—k)dx
k—s*
If we substitute x = z+ k — s in (2), then we obtain
min{h+k—s,cs }
L(s)= 1+(I)(k—s).£(0)+f e(x)L(s+x—k)dx, )
k—s

so that the line under analysis simplifies heavily to

L7O0)(L(sT)-1)

LY0)+ L7(0)

and accordingly the second line to

LTO)(L ()1
LEO0)+L7(0)

For the second line we made use of ¢(—x) = ¢(x) in the in-control case (6 = 0),
while for § # 0 we have to change the sign of ¢, hence ¢s(—x) = p_s(x). All together
resembles (the “1” consumes the disturbing parts of the above two ratios)

L)L)+ L (s)LT0)-LT(0)L(0)
L)+ L7(0)

which confirms (3).

Similar ideas are used for case (ii) which is described in the appendix. Essentially,
(3) remains valid.

Hence, the zero-state ARL of a two-sided Shewhart-CUSUM scheme could be
calculated as for the standalone two-sided CUSUM chart by deploying the nice
formula (A.1) in Lucas and Crosier (1982) — here (3).

3.1 Examples for two-sided designs

Again we start with a result from Yashchin (1985b). We re-collect some numbers
from Yashchin’s Figure 6 and new results in Table 2. Both, the results by Yashchin

Table 2: Two-sided CUSUM-Shewhart ARL results from Yashchin (1985b) and new
ones, numerical and Monte Carlo (109 rep.); k=1, h=4,cs =3.5.

zl  zy | Yashchin (1985b) | numerical | MC  MC s.e.

0 0 753.6 754.98 | 754.98  0.024
1.63 1.63 725.3 726.45 | 726.46  0.024
1.63 1.83 718.1 719.30 | 719.32  0.024




New results for two-sided CUSUM-Shewhart control charts 281

(1985b) and the new ones look convincing. The first ones, because despite being 30
years old they are quite close to the true values, and the last ones while being nicely
matched by the Monte Carlo confirmation runs. Turning to similar calculations in
Lucas (1982), we have to face two problems. First, Lucas’ results seem to be less
accurate than Yashchin’s ones. Second, the new results based on “believing” the
nice rule (3) differ to the Monte Carlo derived results. All significant (5 % level)
differences are marked with bold letters. Of course, the differences are really small.
But it was claimed that our new approach is highly accurate. It is less surprising that
the accuracy problems vanish for increasing Shewhart limit cg, because the combo

Table 3: Some ARL results from Table 2/Part 1 (upper entry) in Lucas (1982) vs. collocation
(middle entry) and Monte Carlo simulation (lower entry, 10° rep.).

parameters shift &
h k ¢s| 000 025 050 075 1.00 150 200 250 3.00

99.05 4551 19.86 11.81 8.244 4974 3382 2419 1.789
6 025 3 |101.0 46.12 20.05 11.92 8338 5.058 3.458 2.469 1.819
101.0 46.13 20.05 11.92 8.338 5.058 3.458 2469 1.819
121.6 49.78 20.79 1231 8.667 5419 3.901 2977 2319
6 025 35|1209 49.63 20.75 12.29 8.641 5.387 3.855 2914 2244
1209 49.63 20.75 1229 8.641 5.387 3.855 2914 2244
124.8 50.22 20.86 12.35 8.704 5.474 3.990 3.105 2473
6 025 4 |1249 5024 2087 1236 8.712 5487 4.013 3.142 2525
124.8 50.24 20.88 1236 8.712 5.487 4.013 3.142 2.525
188.9 68.01 26.08 1496 1024 5933 3.855 2.640 1.893
8 025 3 |198.0 70.76 26.88 1540 10.58 6.196 4.045 2.732 10911
198.1 70.82 26.89 1541 10.58 6.196 4.045 2.732 10911
3254 81.65 28.51 1623 11.25 6.894 4.829 3.520 2.567
8§ 025 353228 81.19 2841 16.17 1120 6.834 4.760 3.450 2.511
322.8 81.20 2841 16.17 11.20 6.834 4.760 3.450 2511
361.4 83.27 28.69 1632 1134 7.021 5.034 3.820 2.942
8 025 4 |361.8 8330 28.71 1634 1136 7.048 5.078 3.883 3.005
361.8 8330 28.71 1634 1136 7.048 5.078 3.883 3.005
301.5 1019 3492 1949 1325 7.628 4.797 3.032 1.987
10 025 3 [285.8 96.02 3341 18.71 12.67 7.202 4511 2.905 1.956
286.0 96.17 33.44 18.72 12.67 7.202 4.511 2904 1.956
704.1 1172 3572 19.78 13.49 7958 5.263 3.585 2511
10 025 357181 118.6 36.06 20.00 13.71 8.227 5591 3904 2.711
718.2 118.6 36.06 20.00 13.71 8.227 5.591 3.904 2.711
975.5 1244 36.73 20.36 14.03 8.651 6.224 4.759 3.682
10 025 4 | 9783 1237 36.61 2031 1399 8.594 6.116 4.583 3.441
978.3 1237 36.61 2031 13.99 8594 6.116 4.583 3.441

becomes more similar to a pure CUSUM scheme, where the validity of (3) is well
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established. The accuracy problems are more pronounced for the head start results
in Table 4 — the head start is set to half of the alarm threshold /.. Hence, the here

Table 4: Some ARL results from Table 2/Part 2 (upper entry) in Lucas (1982) vs. collocation
(middle entry) and Monte Carlo simulation (lower entry, 10 rep.); CUSUM part with head-start at

h/2.

Sven Knoth

parameters

shift &

h k

Ccs

0.00

0.25

0.50

0.75

1.00

1.50

2.00

2.50

3.00

6 025

79.33
81.47
81.49

33.53
34.15
34.17

12.94
13.08
13.08

7.219
7.286
7.287

4.951
5.004
5.005

3.063
3.125
3.125

2.228
2.310
2310

1.752
1.846
1.846

1.453
1.538
1.538

6 025

3.5

96.75
96.66
96.67

36.33
36.35
36.35

13.34
13.33
13.33

7.366
7.361
7.361

5.053
5.048
5.049

3.175
3.168
3.168

2.391
2.371
2.371

1.983
1.932
1.932

1.732
1.638
1.638

6 025

99.14
99.63
99.63

36.57
36.72
36.72

13.35
13.37
13.37

7.364
7.371
7.371

5.048
5.053
5.053

3.166
3.169
3.169

2.374
2.372
2.372

1.952
1.932
1.932

1.684
1.638
1.638

8 025

161.9
171.8
171.9

51.10
53.62
53.68

16.63
17.15
17.16

8.959
9.201
9.203

6.070
6.247
6.247

3.667
3.815
3.815

2.585
2.722
2722

1.954
2.068
2.068

1.550
1.630
1.630

8 025

3.5

278.3
2774
2775

60.74
60.58
60.58

17.77
17.72
17.72

9.406
9.377
9.377

6.385
6.363
6.363

3.951
3.931
3.930

2.881
2.871
2.871

2.233
2.254
2.254

1.774
1.838
1.838

8 025

306.4
3104
3104

61.72
61.96
61.96

17.80
17.82
17.82

9.402
9.409
9.409

6.379
6.387
6.387

3.949
3.962
3.962

2.897
2.927
2.928

2.290
2.355
2.355

1.895
1.992
1.992

10 0.25

275.8
261.0
261.2

78.59
73.72
73.89

21.93
20.95
20.98

11.49
11.04
11.05

7.777
7.452
7.452

4.765
4.478
4.478

3.412
3.123
3.123

2.560
2.306
2.306

1.926
1.757
1.757

10 0.25

35

633.5
650.3
650.4

87.78
89.18
89.22

21.73
2191
21.91

11.26
11.36
11.36

7.574
7.667
7.668

4.575
4.691
4.692

3.231
3.381
3.380

2.426
2.598
2.598

1.880
2.041
2.041

10 0.25

877.2
884.3
884.3

92.93
92.65
92.65

22.16
22.09
22.09

11.45
11.42
11.42

7.732
7.715
7.715

4.772
4.752
4.752

3.514
3.475
3.475

2.785
2.738
2.738

2.241
2.225
2.225

presented method provides quite good approximations, but they do not attain the
traditional accuracy of ARL integral equation related methods. Some “root cause
analysis” should be done to identify the actual reason for the deviations and to

develop some guide lines, when the simple (3) is really valid.
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4 Conclusions

New numerical methods are presented that provide high and medium accuracy for the
ARL of one- and two-sided CUSUM-Shewhart schemes, respectively, for detecting
changes in the normal mean over a broad range of potential shifts. After some
necessary hardening of the implementation, we will apply these new algorithms to
identify useful CUSUM-Shewhart setups for control charting practice.

5 Appendix

5.1 Collocation design for more than r = 2 intervals

N h-&
L(0)=1+d(k)L(0) +Zc1jf @(z+k)Tj(z)dz
j=1 0

N &
+ Yo f (z+K)Ty;(2)dz
=1 h-&

(vanishes if h = 2&)

O<s<h-eg:

N

N h-¢&
3 el Tijs) = 1+ 0k =) LO)+ Y ey fo oz +k—$)Ti;(2)dz
Jj=1

Jj=l1
N E+s

ey f (e +k -T2 () d
j=1 h-&

h—-eg<s<h:

N N h-(r-le
D e Taj(s) =1+ Bk - 5) L(0)+ cljf @(z+k=-3)Ti;(z)dz
= = 0
N h—(i-2)&
+Zczj @(z+k-5)Tj(z)dz
=1 h-(r-le
N +5

+ZC3_;L @(z+k—-s)T3j(z)dz

=1 (r-2)e

h-(r-m+l)e<s<h-(r-m)e, m=12,....r—1:
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N
D CmjTmj(s) =1 -0k —5) L(0) =

h-(r-l)e
(’ljf ()0(Z+k—S)T1j(Z)dZ
J=1 0

Mz

~.
I

+

N h-(r-s)e
Z‘”f P(z+k-35)Ty;(z)dz
h-

25=1 (r-s+l)e

Ms

)
Il

+

™M=z

cm+1Jf @(z+k=5)Tm+1,j(z)dz
1 h—(r-m+l)e

~.
1l

h-2e<s<h-g:

N

N h-(r-l)e
Zc,_l,jT,_u(s)—l—d)(k—s)L(O)=Zcuf0 ¢pz+k-s)Tj(z)dz

j=1 !

~.
Il

qu

h—-(r-2)e
"fo P(z+k—3)Ts;(2) dz
h—-(r-l)e

J

N h-&
+Zc,_1,jf p(z+k—5)T,-1,(z)dz
= h-2¢e

N e+s
+Zcrjf p(z+k-5)T,j(z)dz
=1 h-&

h-g<s <h:

N N h—(r-1)e
DT =1=0G=5)1 L0 = Yoy [ perk=o)Ti;@d

j=1 Jj=1

h—-(r-2)e
ey f o(z+k—3)Ts (2) dz
h—

(r-le

Mz

1

<.
I

N h-&
+ZC”1*ff p(z+k-5)T,_1,j(z)dz
= h-2&

N h
+Zcrjf p(z+k—5)T,;(z)dz
J= h-&

h—-eg<s<h:

N

N h—(r-1)e
Zcrorj (5)=1-D(k—5)L(0) = Z cij j; p(z+k=-s)Tj(z)dz.
Jj=1

J=1
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5.2 Two-sided CUSUM-Shewhart, case (ii)

More or less the same arithmetics is utilized as for case (i). Recall the shape of the
integral equation for case (ii), that is for 2k < s* + s~ < h+2k:

h+k-s*
L(st,sT)=1 +f e(x)L(sT+x—k,0)dx

——k

s~ —k
+f () L(sT+x—k,s”—x—k)dx
k

—st

k—s*
+f e(x)LO,s" —x—k)dx.

h—k+s~

First we plug (3) into and transform the second line

s~k
f o) L(sT+x—k,s”—x—k)dx
k

L7(0) sk
LH0)+L7(0) J—g
£+(0) sT—k
LH0)+ L7(0) Jy—gr
_LOLO)
L50)+ L(0) Jy_y+

(X)L (sT+x—k)dx
()L (s —x—k)dx
p(x)dx,

with the last integral subsequently reduced to @ (s~ — k) — ®(k —s™). We rewrite the
first line as for case (i) and merge, borrowing £7(0)/(L*(0) + L7(0)),

L7(0)
L+(0)+£L(0)
L7(0)
L)+ L-(0)
L7(0) sk
LH0)+L7(0) Jye
L (0) min{h+k-s*,cs }

T+ L70) Jy s

O(k—s)LT(0)
(X)L (sT+x—k)dx

(X)L (sT+x—k)dx

to get

LT(sHL(0)

L*(0)+L7(0)
by applying again (4). Exploiting ®(s™ — k) = 1 —®(k —s~) we proceed in a similar
way with the third line by collecting after transforming both integrals as in the first
case
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L7(0)
LH0)+L(0)
L7(0)
LH0)+L(0)
. L+ (O) k—s*
LH0)+L7(0) Js-«
_£+ (0) min{h+k—s",cs }

L)+ L7(0) Jr—s+

D(k-s7)L(0)
(X)L (s +x—-k)dx

(X)L (s +x—-k)dx

which results in
L7 (s7)LT(0)
L0+ L0

The two “borrowed” terms

Lo, Lo
LTO0)+L-(0) L*0)+L(0)

are compensated with the 1 on the right-hand side of the original equation. The last
remaining term forms together with the two others

L)L)+ L7 (s7)LTO0)—LH(0)L(0)
£7(0)+ £-(0) '
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An Empirical Bayes Approach for Detecting
Changes in the Basal Body Temperature

Giovanna Capizzi and Guido Masarotto

Abstract During a normal menstrual cycle, the basal body temperature (BBT) rises
around the day of the ovulation. The shift is small; it can be abrupt or gradual and
it typically persists almost until the end of the cycle. Detecting the beginning of the
BBT rise is an important problem in infertility management, natural family planning
and, also, in those medical studies using the day of the BBT rise as a proxy of the day
of the ovulation. Traditionally, either some simple run-rules or a CUSUM control
chart have been used for detecting such a shift. However, both these approaches
do not take into account the information available from the previous cycles of the
same woman, or from cycles of other women. Further, the existing procedures do
not provide any information on the uncertainty of the detection, and are not robust
with respect to some phenomena, such as a fever attack producing outliers in the
temperature measurements. In order to overcome these drawbacks, in the paper, we
investigate a solution based on the empirical Bayesian paradigm. Real data will be
used to illustrate the performance of the suggested approach.

1 Introduction

The basal body temperature (BBT) is the lowest body temperature in a 24-hour
period. In clinical practice, it is usually estimated by a temperature measurement
immediately after awakening and before any physical activity.
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In women, the BBT exhibits a typical biphasic behaviour. In particular, during
normal menstrual cycles, the BBT slightly increases around the middle of the cycle,
and remains to the new level almost until the end. Many studies have correlated the
changes in the BBT with other events in the menstrual cycle and established that
the rise in the temperature level is due to ovulation (see Marshall, 1963, Moghissi,
1976). Hence, detection of BBT shifts is important in infertile management and
natural family planning (e.g. Keck et al, 2007, McVeigh et al, 2013, Furuya et al,
2013, Ecochard et al, 2015). Further, since neglecting the menstrual cycle phase
has been shown to cause misinterpretation of some laboratory tests, including many
important cardio-metabolic biomarkers (e.g. Schisterman et al, 2014), BBT has been
used to guide the correct interpretation of the test results. The time of the BBT rise
has also been used in many scientific investigations requiring a proxy of the time of
ovulation (e.g. Dunson et al, 1999, Colombo and Masarotto, 2000, Bigelow et al,
2004, Bortot et al, 2010, Tenan et al, 2014, 2016, Faustmann et al, 2016)).

Visual detection of the BBT shift is challenging for many menstrual cycles.
Indeed, (i) the signal to detect can be as low as two times the precision of a standard
thermometer; (ii) the initial level, size and pattern (e.g. abrupt vs gradual) of the
temperature shift and the variability within a particular cycle, vary from cycle to
cycle and from woman to woman; (iii) missing values and anomalous observations
are often present. For this reason, the use of run-rules, like the “three over six rule”
that signals the BBT rise the first time three consecutive temperatures are above the
level of the immediately preceding six recordings, or CUSUM control charts have
been suggested (see Marshall, 1968, Royston and Abrams, 1980, Royston, 1991).
However, these traditional approaches do not use the information on the previous
cycles of the same woman and their performance is heavily affected by missing or
anomalous data. Further, they do not provide any information on the uncertainty of
the detection.

In this paper, we propose and investigate an empirical Bayes approach which
combines the information provided for a particular cycle by the BBT with the
information on the possible time of the BBT shift provided by the previous cycles
of the same woman, and also by the cycles of other women. The proposed method
is very low-demanding from a computational point of view, and, hence, it can also
be implemented on handheld electronic devices. Observe that, while we only focus
on the BBT, we believe that our approach can also be useful to detect changes of
other menstrual parameters, like the concentration of ovulation-related hormones in
the urine.

2 Two databases

To investigate the properties of our method, we use the following two databases.

LONDON: The database, which includes more than 36000 temperature charts pro-
vided by about 1800 women, is fully described by Miolo et al (1994). The data
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were collected in England and Wales by the Catholic Marriage Advisory Council
under the supervision of a scientific committee.

FERTILI: The database, which includes information on more than 7000 men-
strual cycles provided by more than 800 women, is described by Colombo
and Masarotto (2000). The data have been collected, in six European countries,
during a multicentre study on daily fecundability. It contains not only informa-
tion on the BBT but also on the timing of the sexual intercourses during the
menstrual cycle.

From the two databases, we selected menstrual cycles with the following character-
istics: (i) length longer than 9 days; (ii) percentage of missing temperatures inferior
to 25%. The size of the subsets selected according to (i)-(ii) are

Women Cycles
LONDON 1769 26295
FERTILI 769 6865

We use LONDON as a training dataset to estimate some characteristics of menstrual
cycles and BBTs. FERTILI is used for festing the method, and in particular studying
the relationship between the BBT rise, as detected by our procedure, and the time of
the ovulation.

Observe that both databases only include healthy women. Hence, our results can
only be generalized to the corresponding population.

3 An empirical Bayes approach

3.1 Notations

Denote the length (in days) of the jth menstrual cycle for the ith woman by /; ;,
and the number of days preceding the BBT shift by 7; ;. Since long preovulatory
phases are very rare, if not physiologically impossible, we suppose that 7; ; < 7,4
for some suitable integer 7,,,,. In the following, in order to simplify the notation,
we also write 7; ; = Tjax + 1 to indicate that cycle j is monophasic. Further, the
BBT behaviour during the final part of long cycles can be anomalous (for example,
apparently long cycles can be due to a conception followed by an early miscarriage).
Hence, we only consider the temperatures observed at or before day

l:j = min(lmax,li’j)
with Trax < lmax- The choice of 7,4 and [, is discussed in Subsection 3.5.
Furthermore, denote with

— Vij,a the BBT measurement on the dth day of the jth cycle for the ith woman;
= Yija=ij1---»Yija) the vector containing all the BBTs collected up to day
d of the same cycle;



292 Giovanna Capizzi and Guido Masarotto

= Hij = (in it o Vil e »e o lij-1Yij-11- - Yij-11, ;- )’ the vector
UL B i, j-1

containing all information on the the ith woman gathered beforej‘the Jjth cycle.

Note that, when describing our proposal, we assume that no temperature is missing.
However, our method can be easily adapted to take into account the presence of
missing data. Indeed, missing temperatures are very common in the databases used
to empirically test the procedure (see Sections 2 and 4).

To avoid the introduction of many symbols, we use p(-) to indicate the density
or probability function of its arguments. In particular, the density function of Y, ; 4
is written as p(Y; j 4|7, j,9 ;) where ¢; ; denotes all the parameters, different from
7;,j, needed to specify the BBT distribution, e.g., the mean and variance of the
temperatures before and after the raise, the proportion of anovulatory cycles, etc.
Since ¢ ; is completely arbitrary and can also be infinite-dimensional, our notation
does not impose any restriction on the BBT distribution. Observe, that ¥9; ; could
have a hierarchical structure of the type

dij= @597,

ie.,d; j could comprise parameters, 0:.‘, which are common to the different cycles of
a woman, and parameters, 0:’.‘, which are specific of the jth cycle. However, in the
following, this hierarchical structure will not be exploited. Since 7; ; and #; ; vary
from cycle to cycle and from woman to woman, we assume that they are random
variables.

3.2 The ideal solution

3.2.1 On-line detection

Consider the problem of sequentially monitoring the temperatures of the jth men-
strual cycle for the ith women with the aim of detecting as fast as possible the BBT
shift. In particular, suppose that on the dthday,2 < d < l*] no shift has been signaled
yet.

On day d, all the information available on the beginning of the BBT rise are
summarized by the conditional probabilities

ﬂi,j(}"ld):PI"(Ti,jZ}’lYi’j’d,Hi,j) r= l,...,Tmax+l. (1)

In particular, we can signal that the shift has already occured using a rule of the type

d-1
Pr(ti; <dlYijaHij) = ) mi(rld) > 1-a )
r=1

where 0 < @ < 1 is a small risk of false detection which can be chosen on the basis
of the particular application. Further, the mode, mean, or median of this conditional
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distribution can be used as a point estimate of 7; ;, and the entire distribution (or a
summary measure of its dispersion) provides information about the uncertainty on
Tij-

It is possible to show that

i, (r)BF, j(d|r)

mij(rld) = 3)
" 1+ 3% mi,j(s)[BF;;(d]s) — 1]
where
7Ti,j(r) = PI'(T,"]' = V|Hi,j) (4)
and
Yi id|Ti ~:r,H,~
BF,-,,-(d|r) — p( ,],dl ] ,])
‘ p(Yijalti; > dH;;)
B fP(Yi,j,d|Ti,j =rd; ) )p@; |t =r,H;;)dd;; 5)
[ P(Yijaltiy > d.9:i )p@i |ty > dHj)dd; ;.
Indeed,
=Y gH;
7Ti,j(r|d) - P( i,] l,j,d' l,J)

p(YijalH; ;)
B 7y (Np(Yijalt;=rH;j)
Y4 1 (9p(Yijalt; = s, H; ;) +Pr(i; > dH; )p(Yijaltij > d.Hi )

Equation (3) can be obtained dividing the numerator and denominator by p(Y; j al7;,; >
d,H; ;) and substituting Pr(t; ; > d|H; ;) with 1 - ZY | i, (8).

3.2.2 Off-line detection

Consider now the problem of detecting the BBT shift using all the information on
the jth menstrual cycle for the ith woman available on day l* + 1. Observe that on
this day, we know all the temperatures of the jth cycle we plan to use, and we also
know whether the (/7 * )th was or not the last day of the jth cycle, i.e., if the bleeding
marking the starting of the next menstrual cycle occured at / *, +1.

Regarding the inference on 7; ;, the quantities of interest are

— — : *
PI'(TI',j = rlTi,j < li,j or Ti,j = Tmax + laYi,j,l,-,_,»’Hi,j) if li,j = li,j

7r”(r|l +1)= .
PI‘(Ti,j = rlYi,j,li*j’Hi,j) if l:} * li,j

Indeed, if I* is equal to the length of the cycle /; ;, we know that either the number
of days precedlng the BBT shift is less than /; ;, or the cycle is monophasic.
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These conditional probabilities can be computed using the formula

s (r)BF (17 ;1r)

i |7+ 1) = 2 . ©
l + ZSL:1 ﬂ:j(s)[BFi,j(dB) - 1]
where, when I}, = 1; j,
7 i (r
* 1. —1 l,j() iflSr<li,]’0rr=Tmax+l
()= 22y g () + 70 j (Tnax + 1) - O
0 otherwise

while, when ll*j #1ij,

71'2}(1‘)271',',]‘(1’) (r=1,..,Tmax + 1). ®)

3.2.3 Comment

Equations (3)-(5) and (6)-(8) show that the only ingredients needed for computing
the conditional probabilities n; ;(r|d) are:

1. the prior probabilities n; ;(r), i.e., the distribution of the number of days before
the BBT rise 7; ;, given the BBT of the previous cycles, when no observation on
the jth cycle has been gathered.

2. The Bayes factors BF; ;(d|r), i.e., a measure of how much the data Y; ; 4 support
the hypothesis

Ho={7;=r} )]

with respect to the hypothesis
H1={Ti’j>d}. (10)

Observe that BF; ;(d|r) is similar to the classical likelihood-ratio test statis-
tic. The main difference consists in the way the nuisance parameters ¥; ; are
eliminated, i.e., by integrating (not maximizing) over the parameter space.

In the following subsections, we suggest reasonable approximations of these two
“ingredients”.

3.3 Distribution of the number of days preceding the BBT rise
Regarding the distribution of 7; ;, we obtained encouraging results assuming that:

(i) For the ith woman, the number of days preceding the BBT rise, 7;;, j = 1,2,...,
are independently and identically distributed (i.i.d.) such that
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p(Ti,jzr)=ﬂi,r, (r=1..,Tmax + 1),

where ;. are parameters, depending on the characteristics of the ith woman
such that

Tmax+1

Bir=>0 and Z Bir=1.

r=1

(ii)) Bi=(Bit,.--»Bir,..+1) hasaDirichlet distribution , i.e.,

Tmax+1
F(Ai+--+4q,,.+1)

PB) = ) A, )

A-—1
Bir

r=1

where A = (Ay,...,4+,,,.+1) is a vector of non-negative parameters. Hence, for
rns=1,...,Tmax + 1,7 £ 5,

/Jr(1 _/Jr)

HrHs
R —_— 11
1+7n (i

E(Bir) = pr, var(Bir) = L+7

COV(ﬁ[,r, ﬁi,s) ==

where u, = A, /nandnp=A1+---+ 4 The estimation of A is discussed in

Subsection 3.5.

Tmax *

Under assumptions (i) and (ii),
7 j(r) =E(BirHij) r=1.. Tpax+1.
The computation is immediate for j = 1 and gives
ma(r)=w r=1L.. Tpax+1.

Since the Dirichlet distribution is the conjugate prior of a multinomial distribution,
it is possible to show that p(8;|H; 7) is a mixture of 7, + 1 Dirichlet distributions,
and, in particular, that

Tmax+1

pBiMi2) = > 7k (rlif + Dp(BilTin), (12)

r=1

where p(B;|7;,1) is the density of a Dirichlet random variable with parameters A +e; ;.
Here, e; ; denotes vector of length 7,4, + 1 with the (7; ;)th element equal to one and
all the others equal to zero. In the same way, it is possible to show that p(8;|H; 3) is
a mixture of (Tyqx + 1)? Dirichlet distributions, p(BilH; 4) of (Tyax + 1) Dirichlet
distributions, etc..

As time increases, the computational burden also increases due to the related
explosion of the number of mixture components. For this reason, following an idea
often found in the literature on non-linear time-series filtering (see Prado and West,
2010, Barber, 2012), we suggest to replace mixtures (12) with a single Dirichlet
distribution determined minimizing the Kullback-Leibler divergence, i.e., to recur-
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sively approximate the conditional density p(B8;|H; ;), and its expected value m; ;(-),
using the following algorithm:

Assumption. For eachi and j, pretend that §; given H; ; has a Dirichlet distribution
with parameters A; j = (i j1,- - Ai jrmar+1) -

Initialization. Set 4;1 = A.

Updating. Onthe firstday of the jthcycle, j =2,3,..., compute the “new” parameters
A; ; minimizing

Tmax+1

[logr(/li,j,r) - /li,j,rui,j,r] —logl'(Aij++Aijrpac+)  (13)

r=1
where

ﬂ'i,j—l(r”:j_l)
Uijr =Y (Aij-1,) =+ Aijoi+ + A jolrpe ) — ——
Aij-1,r

with ¢ (-) denoting the digamma function, i.e., the derivative of the logarithm
of the gamma function. Indeed, it is possible to show that minimizing (13) is
equivalent to minimizing the Kullback-Leibler divergence between

— the density of a Dirichlet distribution of parameters A; ;, and
— the density of the mixture (12), with A replaced by A; ;_; and e; | by e; ;_i.

For minimizing (13), we implemented a Newton-Raphson algorithm similar to
that proposed by Sklar (2014) for computing the maximum likelihood estimate
of the parameters of a Dirichlet distribution.

Approximation of the prior probabilities. Set

Aijr

i (r) = .
Aij -+ i fr o+l

3.4 Test-based Bayes factors

Two approaches can be followed for computing the Bayes factors BF; j(d|r):

1. Full model-based Bayes factors: this approach requires the specification of the
“extra” parameters #; ;, including their woman-to-woman and within-woman
variation, and the density function p(¥; ; 4|7 ;, 9 ;). It also requires the com-
putation of the conditional distributions p(7; ;% ;|H; ;) and of the integrals in
).

2. Test-based Bayes factors: using this approach, we must choose a suitable test
statistic for the hypothesis system (9)-(10); then, the Bayes factors are compute
summarizing the evidence provided by the test statistic (see Johnson, 2005,
2008, Yuan and Johnson, 2008, Held et al, 2015).
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Table 1: Kass and Raftery (1995) scale of interpretation of a Bayes factor and
corresponding values of W; ;(d|r) when wg = 0.

Strength of the evidence in favour of the
alternative hypothesis

Standardized Wilcoxon

Bayes factor L
test statistic

negative <1 <0

not worth more than a bare mention 1to3 0t00.67
positive 31020 0.67 to 1.67
strong 20 to 150 1.67 t0 2.48
very strong > 150 >2.48

In principle, the first approach may offer a better efficiency. However, in the present
context, it would be inevitably based on arbitrary and simplistic assumptions. For
these reasons, and because we believe that the efficiency loss would be modest,
given the high BBT variability, we have decided to follow the second approach.
In particular, we obtained good results using Bayes factors based on the Wilcoxon
rank-sum test statistics.

Let v; j 1,...,vij,a be the ranks of the observations y; j 1,...,¥; jq. If there are
tied observations, give to tied observations the average of the ranks for which those
observations are competing. Further, define for 1 <r < d,

L1 vigs —p(d,r)

W; i(dlr) = o(dr)

where u(r,d) and o (d,r) are such that
E(W,-,j(dlr)) =0 and var(Wi’j(dIr)) =1

when y;j1,...,¥ija are iid. (see Hollander et al (2014), p. 118). Let w =
E(W; ;(d|r)). The hypothesis system (9)-(10) roughly corresponds to the system

Hy:w<wy vs. H:w>wg

where wg > 0 is a constant whose choice will be discussed in Subsection 3.5.
Assuming a non-informative (improper) prior distribution for w,

p(w) occonstant  for — oo < w < oo,
and pretending that W; ;(d|r) ~ N(w, 1), we obtain the Bayes factor

Pr(w > wo|W; ;(d|r)) _ 1-®(W; ;(d|r) —wo)
Pr(w < wo|W; ;(d|r)) O (W, ;(d|r) —wo)

BF; ;(d|r) = (1<r<d) (14)

where @(-) is the cumulative distribution function of a standard normal random
variable. Further, we define BF; j(d|r) = 1 for r > d. As shown by Table 1, formula

(14) essentially “translates” the evidence provided by the Wilcoxon test statistic into
that often used for the Bayes factors.
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r

Fig. 1: Maximum likelihood estimates of A (database: LONDON, [,,,4x = 35, Trnax =
34).

3.5 Implementation

The practical implementation of the suggested approach requires the selection of:

— a: the risk of giving false alarms when the detection rule (2) is used.

— Lnax and T,,4x: the maximum number of BBT measurements to consider and
the maximum number of days preceding the BBT shift (see Subsection 3.1).

— A: the parameters of the Dirichlet distribution describing the heterogeneity be-
tween women of the distribution of 7; ; (see Subsection 3.3).

— wy: the threshold used in the definition of the Bayes factors (14).

We believe that the choice of « should strongly depend on the particular application.
For example, in natural family planning, the detection of the BBT raise is used to
mark the end of the so-called “fertile window”, i.e., the end of the days in which the
woman is fertile. When a false detection occurs, some fertile days are declared as
infertile resulting in an increase risk of an undesired pregnancy. It is not difficult to
understand that different women/couples can have a different attitude with respect to
this risk. In any case, in all the examples shown in the next Section, we use @ = 0.05.

On the basis of the study by Guo et al (2006), we suggest to set [, = 35. Observe
that according to Guo et al (2006), this value approximately corresponds to
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mean + 2 X standard deviation

of the distribution of the lengths of “normal menstrual cycles”.
In our opinion, the choice of 7,4 and A should be handled simultaneously. In
particular, using the training database LONDON, we estimated 4 maximizing

Tmax+1

é’zZlog Z 7 (r) B (U5 1r).
i,j

r=1

Under the reasonable hypothesis that, when the cycle is monophasic, the BBT
distribution does not depend on A, maximizing ¢ is equivalent to maximizing the
log-likelihood function. Indeed, the latter is equal to

Zlogp(Yi,j,l:j |Hij)
LJ

Tmax+1
= Zlog Z ﬂ;fj(r)P(Yi,j,li*f |7i,; =r,H;j)
i,j r=1 ’
Tmax+] p(Yijx 17ij =r Hij)
—Zlog Z ar(r) s +
Y e B p(Yi,j,li’:j I7i,j = Tmax + 1, H j)

Zlogp(Yi,j,li*J I7i,j = Tmax + 1, H; j)
ij
= €+ZIOgP(Yi,j,lifj ITij = Tmax + 1, Hi j).
ij

The estimates, computed assuming 7,4, = 34, are shown in Figure 1. Observe that
A, is practically zero when 30 < r < 34. Hence, the choice of 7,4, seems to be
reasonable. The estimated value of n = A1 +---+ A, is 0.901. Such a small value
points to a high heterogeneity of 8; among women (see equation (11)).

Finally, wo should be selected to balance the probability to detect real BBT
changes with that of signaling false changes. Indeed, w¢ can be viewed as a penal-
ization applied to the evidence against the null hypothesis provided by the Wilcoxon
test statistic W; ;(d|r). A large value of wg decreases the Bayes factors BF; ;(d|r),
and, hence, reduces the number of false detections, but also the ability to detect real
shifts. For this reason, we suggest to select wg on the basis of the data. In particular,
as documented in the next Section, we obtained good results using

W (d) -z ))

wo = zymax|0,min| 1,
22-21

with

1 1
] -1 -1
Wl('j'.ax(d):mraxWi,j(d,r),zl =0 (l_ﬁ) and ZQZCD (l_ﬁ)
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2 2 W/ (d)

Fig. 2: An adaptive choice of wq

Note that (i) the suggested value of wg decreases with the maximum of the test
statistics used on the dth day (see Figure 2); (ii) z; and z» can be viewed as a (very
rough) Bonferroni-based approximation to the median and the 75% percentile of the
distribution of the maximum when there is no change.

4 Some Empirical Results

4.1 Examples

Figure 3 illustrates the prospective application of the proposed method. In particular,

— The first panel displays the BBTs observed during a menstrual cycle. The cycle
lasted 28 days (/; ; = 28). Note the missing temperature on day 2. The cycle is
clearly biphasic, with a shift occuring around day 15.

— In the second panel, the conditional probabilities Pr(t;; < d|Y; ; 4, H; ) are

plotted as a function of the day of the cycle d. Note that this probabilities only
depends on the temperatures up to the dth day, i.e., they are appropriate for on-
line monitoring (see Subsection (3.2)). These probabilities have been computed
using a prior distribution 7; ; (-) proportional to the estimated As shown in Figure
1.
For this cycle, Pr(t;; < d|Y; j 4, H;, ;) is very small for d < 15. Then, it abruptly
increases. In particular, it exceeds the threshold 0.95, shown by the dashed line,
from day 18 onwards. Hence, if a rule of type (2) is used, with @ = 0.05, the
method signals the BBT shift on day 18.

— In the third panel, the conditional probabilities r; j(r|d = 18) are displayed as a
function of the day r. These probabilities, which only depend on the temperatures
available on the day of the alarm, strongly suggest that the BBT shift occured
from day 12 to 17 and that the 15th day is the most probable.
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Fig. 3: Sequential detection of the BBT shift in a particular menstrual cycle.

Figures 4-6 illustrate the learning of the woman characteristics proposed in Sub-

section 3.3. In particular,

— Figure 4 shows the temperatures collected during five consecutive menstrual

cycles.

Figure 5 displays the corresponding Bayes factors BF (ll?fj.lr) computed using
all the cycle temperatures.

Figures 4 and 5 suggest that, for the considered woman, the BBT typically starts
to increasing around days 19 —20.

Figure 6 shows the prior probabilities 7; ; (), j = 1,...,5. For the first cycle (j =
1), no prior information on the woman is available. Hence, the prior probabilities
are proportional to the As displayed by Figure 1. However, for the successive
cycles (j > 1), the prior probabilities take into account the information gathered
during the previous cycles. Observe that, coherently with the evidence shown by
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cycle 1
37.2 =
37.0 =
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T T T T
0 10 20 30
day

Fig. 4: BBT measurements in five consecutive menstrual cycles of the same woman.

Figures 4 and 5, the mode of the prior distribution shifts from 15 to 19, and that,
in general, the m; ;(r) probabilities progressively increase for r close to r = 19,
and decrease when r is close to 15.

4.2 What are we detecting?

In this Subsection, using the FERTILI database, we investigate the relationship
between the day of the BBT shift, determined using the proposed approach, and the
day of the ovulation. Results suggest that the conditional probabilities r; j(rldl?:].)
describe not only the uncertainty about the time of the BBT shift but also about the
time of the ovulation. Here, dzj denotes the day of the signal, i.e.,
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Fig. 5: Bayes factors for the five menstrual cycles shown in Figure 4.
d:] = 1I1f{2 <d< l:j . PI'(Ti’j < dIYi,j,d7Hi,j) > 1—(1’}.
Let

— C;j = 1 if conception occurs in cycle j for couple i, and C;; = 0 otherwise;

— x;j,a = 1 if there was intercourse on day d, d = 1,...,!; ; of the same cycle, and
xi,j,a = 0 otherwise. In order to simplify the notation, we also define x; ; 4 = 0
ifd<0Oord> li,j.

The Barrett-Marshall-Schwartz model is a biologically plausible model used to relate
the sexual intercourse pattern X; ; = (x; 1, ..., X;,j, I )’ and an ovulation marker, like
7;,j, to the probability of conception (see Barrett and Marshall, 1969, Schwartz et al,
1980, Dunson et al, 1999, Colombo and Masarotto, 2000, Dunson and Weinberg,
2000, Dunson, 2001, Dunson et al, 2001, Bigelow et al, 2004). This model assumes
that sperm introduced into the reproductive tract on different days commingle and
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Fig. 6: Prior probabilities m; ; (r) for the five menstrual cycles shown in Figure 4.

then compete independently to fertilize the ovum. According to the model,

Pr(Cij = 11¢ 7. Xij) = & {1 -[a —pr)x"""’”'f”} (15)

r=—u
where

— 0 <& <1 represents the probability that factors unrelated to the timing of
intercourse are favorable for conception. It is often referred to the probability
of cycle viability, and used to capture the fertility heterogeneity among couples.
In particular, we assume that &; is distributed as a beta random variable with
parameters {1 and {5.

— u > 0and v > 0 describe the width of the fertile window around 7; ;; days outside
the interval [7; ; —u; 7; ; +v] are assumed infertile.
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- 0<p, <1, r=—u,...,v, represent the probabilities that conception would have
resulted from intercourse on the (7; ; +r)th day, if the cycle were viable. Observe
that &; p, is the probability that conception would result from intercourse only
on the (7;; +r)th day.

In practice, we know the temperatures y; ; 4, not 7; ;. However, combining equations
(1) and (15), we obtain
Pr(Cij =116 Y jar »Hijp Xi)
Tmax ﬂl,](r|d:j)

= Pr(Cij = 1&, 77 =7, X 5).
Z 1—7Ti,j(Tmax+1|d;-kj) r( " |§ T =r ’J)

r=1

Last expression is similar to the mixture model for fecundability introduced by
Dunson and Weinberg (2000) and Dunson et al (2001) for taking into account the
measurement errors of one or more ovulation markers. The main difference is that
using our approach the error distribution is known and cycle-specific.

Assuming, as it is usually done, that the conception indicators C; ; are condition-
ally independent given the viability probabilities &;, parameters {1, {2, P—u,-- -5 Pv
can be estimated maximizing the likelihood function. Figure 7 displays the esti-
mates computed from the FERTILI database. It is interesting to observe that the
day-specific probabilities p, are very close to zero when r < —4 and r > 0. Indeed,
if we estimate u and v using the information criterion BIC, we obtain #i = —4 and
» = 0. Hence, the fertile window is essentially given by the intervals [7; ; —4;7; ;].
But this finding is what we expect if 7; ; is the day of the ovulation. In addition, the
level and pattern of the day-specific probabilities of conception, around 7; ;, are very
similar to those around the ovulation day estimated by Dunson et al (2001) using
the data from the North Carolina Early Pregnancy Study. In that study, the ovulation
was estimated for each menstrual cycle using measures of estrogen and progesterone
metabolites and lutenizing hormone in the urine. Hence, our tentative conclusion
is that, the conditional probabilities 7; ; (r|dZ.), available on the day of the signal,
describe not only the uncertainty about the BBT shift but, at least approximately,
also the uncertainty about the day of the ovulation.

5 Conclusions

We have suggested a new method, applicable both prospectively and retrospectively,
for detecting the BBT rise, during a menstrual cycle. The approach combines prior
information provided by the previous cycles with the information on the BBT of the
current cycle. A distinctive aspect of our proposal consists in providing not only an
estimate of the time of the shift but also an estimate of the distribution of the error
committed in determining the BBT shift.

Future research will include the comparison of our methods with other suggested
in the literature and the inclusion of possible covariates, e.g., the age of the woman.
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(a) Day-specific probabilities of pregnancy.
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Fig. 7: Barrett-Marshall-Schwartz fecundability model. Panel (a) shows, for a couple
with average viability, the maximum-likelihood estimates of the probabilities that
conception would result from intercourse only on the (; ; +7) day. Panel (b) shows
the maximum-likelihood estimate of the density function of the cycle viability &;.
Solid lines: estimates obtained using u = —8 and v = 3. Dashed lines: estimates
obtained selecting the fertile window using the information criterion BIC (& = —4
and v = 0).
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A Generalized Likelihood Ratio Test for
Monitoring Profile Data

Yang Liu, JunJia Zhu and Dennis K. J. Lin

Abstract Profile data emerges when the quality of a product or process is char-
acterized by a functional relationship among (input and output) variables. In this
paper, it is assumed that each profile has one response variable Y, one explanatory
variable x, and the functional relationship between these two variables can be rather
arbitrary. We propose a general method based on the Generalized Likelihood Ratio
Test (GLRT) to perform Phase II monitoring of profile data. Unlike existing methods
in profile monitoring area, the proposed method uses nonparametric regression to
estimate the on-line profiles and thus does not require any functional form for the
profiles. Both Shewhart-type and EWMA-type control charts are considered. The
average run length (ARL) performance of the proposed method is studied by using a
nonlinear profile dataset. It is shown that the proposed GLRT-based control chart can
efficiently detect both location and dispersion shifts of the on-line profiles from the
baseline profile. An upper control limit (UCL) corresponding to a desired in-control
ARL value is constructed.

Key words: Average Run Length; Generalized Likelihood Ratio Test; Nonparamet-
ric Regression; Profile Monitoring; Statistical Process Control

1 Introduction

In statistical process control (SPC) applications, the quality of a process can often be
adequately described by a univariate quality characteristic. Sometimes it needs to be
characterized by a relationship between two or more variables, however. Specifically,
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the system engineer has one main variable of interest (the response variable Y) and
one or more environmental variables or control variables (the explanatory variable
x’s). In such situations, to monitor the quality of the process is to monitor the
relationship or "profile" between Y and x’s. The profile data is also referred as
"waveform signal" or "signature" in some literatures. The application of statistical
process control techniques on the profile data is called profile monitoring. Profile
monitoring is inevitable when the variability of the response variable ¥ cannot be
adequately explained by the values of Y themselves.

Here, we focus on monitoring relationship between Y and x. Both variables are
assumed to be continuous. In a profile n pairs of (¥, x) are observed. The observed
Y; (=1,2,...,n) is believed to be the function f(x;) plus a random error €;, which is
assumed as a random variable with mean 0 and a constant variance (¢-2). Under the
settings above, monitoring the profiles is equivalent to monitoring both the change
of the function f(-) and the change of the distribution of ¢;.

Profile monitoring methods and applications, like many applications in control
charts, can also be divided into two phases: Phase I and Phase II. In Phase I ap-
plications, one analyzes a set of historical profile data. The main goals in Phase I
applications are (1) to understand the variation in a process over time; (2) to evaluate
the process stability; and (3) to model the in-control process performance. The eval-
uation of Phase I methods is mainly focused on assessing the probability of signal
(POS) studies, i.e. the probability of giving at least one out-of-control signal when
applying the control chart to the historical profile dataset.

In Phase II applications, one is interested in monitoring the process using on-line
data. The goal is to detect shifts in the process from the baseline profile obtained in
Phase I as quickly as possible. The evaluation of Phase II methods is mainly focused
on the run-length distribution, where the run length is the number of samples taken
before an out-of-control signal is given. The average run length (ARL) is often used
to compare the performance of competing control charts in Phase II.

The main focus here is on Phase I monitoring of profiles. A general method based
on Generalized Likelihood Ratio Test (GLRT) is proposed to detect the shift of the
on-line profiles from the baseline profile. The existing methods in profile monitor-
ing describe the profile function via parametric models. Therefore monitoring the
profiles becomes monitoring the shift of parameters in the model. However, fixing
the profile data to a specific parametric model is sometimes unrealistic and could be
burdensome. The proposed control charts use nonparametric regression to estimate
the on-line profiles and thus does not require any functional form for the profiles. It
is flexible for many practical situations.

The remainder of this paper is organized as follows: in Section 2, the preliminary
statistical method is discussed. The Shewhart-type and EWMA-type control charts
are then considered and the details are discussed in Section 3. In Section 4, the
application of the proposed control chart is illustrated by a vertical density profile
(VDP) dataset of nonlinear profiles. In Section 5, the ARL performance of the
proposed control chart is demonstrated using the VDP data again. This paper is
finished with conclusions and discussion in Section 6.
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2 Preliminary

2.1 Modeling for Phase II Monitoring of Profiles

The profile (the relationship between the response variable Y and the explanatory
variable x) can usually be described as the following theoretical relationship:

Y=f(x)+e, i=12..,n, (1)

where f(x;) is the mean function, € is the random error, and »n is the number of
points within a profile.

The simplest profile is the so-called linear profile, where the mean function
is a simple linear regression function: f(x;) = Bo+ $1X; and the random error
€; ~N(0, 0'2), fori =1,2,...,n. The existing literatures focus on monitoring the linear
profiles, see, for example, Kang and Albin (2000), Kim et al (2003), Mahmoud and
Woodall (2004),Zhang et al(2009) and Xu et al(2012).

Figure 1 shows a typical example of a non-linear on-line profile. For the nonlinear
profiles, one can either use parametric model to describe the relationship, or more
naturally, model the profile in a nonparametric way.

Building a statistical model to appropriately describe the mean function of non-
linear profile is a main task in Phase I application of profile monitoring. The system
engineer needs to carefully distinguish the in-control profiles from the out-of-control
profiles and use only the group of in-control profiles to build up the statistical model.
Sometimes the mean function f(x) already has a built-in parametric form due to the
inherent nature of the production process of the profile. Only the in-control profiles
are needed to estimate the parameter for Phase II use. However, in many cases the
mean function are too complicated to be modeled by any parametric models. In
this situation, if the sample size n within each profile is sufficiently large, then one
solution is to use nonparametric regression methods.

In Phase II application, one assume that a "baseline" profile has been built and
the goal is to compare the on-line profile data with the baseline profile, i.e. one is
testing:

Ho: Y =fo(x)+eo, € ~N(O07),
Hi: Y=fix)+e, e ~NOoD. )
where fy(x) is the baseline profile function, which is known (in either parametric

or nonparametric form), and f;(x) is the on-line profile function, which needs to be
estimated.
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Fig. 1: An Example of Non-Linear Profile

2.2 Likelihood Ratio Test (LRT)

If a parametric function is used to model both the baseline profile fo(x) and the
on-line profile fi(x), then likelihood ratio test (LRT) is a straightforward approach
to perform Phase II test for the departure of on-line profiles from the baseline.
Likelihood ratio test is a commonly used statistical hypothesis test for testing the
departure of a vector of parameter values from their hypothetical values. Define ®
as a vector of parameters that are used in the parametric model. To test the null
hypothesis : Hy : 6 € ®g against the alternative hypothesis H; : 6 € ® where © # O,

the LRT statistic is defined as:
L(@|Y|x:0€06
A1) = SURLLEIY1x 0 € @)
sup{L(0|Y|x:0 € 0)}

A likelihood ratio test has any rejection region of the form {A(x) < c}, where c is
any number satisfying 0 < ¢ < 1 (Casella and Berger 2002). Among all tests with a



A Generalized Likelihood Ratio Test for Monitoring Profile Data 313

given probability of Type-I error, the likelihood ratio test is shown to minimize the
probability of a Type-II error (Rice 1995).

The Likelihood Ratio Test can also be used if nonparametric regression model is
used for on-line profiles, as long as the maximum likelihood estimator (MLE) for the
nonparametric regression is available. Fan et al. (2001) gave one example of using
LRT to test if the model function is linear. Suppose under model (1) with €; being
a sequence of independent and identically distributed (iid) random variables from
N(0,0?%), one wants to test Hy : f(x) = Bo+ B1x against H : f(x) # Bo+ B1x. Let
(Bo, B1) be the maximum likelihood estimator (MLE) under H, and f mLE(.) be the
nonparametric MLE function under H; obtained by minimizing 3" ,(¥; — f (x;))?
(subject to the support of the parameter space for the nonparametric regression). The
logarithm of the conditional maximum likelihood ratio statistic is then:

. n, S (Y- Bo-Pixi)?
An:fn( )_gn(H):_IO ~ )
ML A Y

The asymptotic distribution of 21,, under null hypothesis is a y? distribution
with appropriate degrees of freedom. This properties can be used to set up the upper
control limit (UCL) for the control chart to be used for profile monitoring.

2.3 Generalized Likelihood Ratio Test (GLRT)

However, likelihood ratio test is not always applicable when nonparametric regres-
sion is used. Fan et al. (2001) pointed out that, in general, MLESs under nonparametric
regression models can be difficult to obtain. They proposed a new method to replace
the maximum likelihood estimator under the alternative nonparametric model, lead-
ing to the generalized likelihood ratio

Ap =€ (Hy) = €n(Ho), 3)

where €, (H}) is the log-likelihood with unknown regression function replaced by
a reasonable nonparametric regression function. The A, is called the generalized
likelihood ratio test (in short GLRT) statistic.

Fan et al. (2001) showed that similar to the LRT statistics, the GLRT statistics also
have the so-called "Wilks-type phenomenon", i.e., their asymptotic null distribution
are independent of nuisance parameters. Because of this property, the null distribu-
tion of the GLRT statistic does not have to be derived theoretically. Instead, one can
simply simulate the null distributions. This makes the generalized likelihood ratio
test powerful and suitable for many practical situations. It will be discussed (later in
this paper) that parametric bootstrap Monte-Carlo simulation can be used to obtain
the null distribution of the GLRT statistic, which is shown to be nearly ,\(2.
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3 Proposed Control Charts

In Phase II monitoring of profile data, it is assumed that the baseline profile and
the in-control variance have been appropriately estimated. A sequence of tests is
conducted to check whether the on-line profile is different from the baseline profile.
Both Shewhart-type control charts and EWMA-type control charts based on GLRT
will be discussed.

3.1 Derivation of the GLRT statistic for Profile Monitoring

The null and alternative hypotheses is shown in (2). To distinguish Hy and Hy, it is
assumed that either fy(x) # f1(x), or o9 # 01, or both. In Phase II, fo(x) and o
are known, while f;(x) and o1 need to be estimated.

The likelihood functions under Hy and H; are:

n
Under Hy : g, = (ﬁm)) exp (—27'_3 Z?zl(Yi—fo(Xi))z),

n ~
Under Hy: 1, = () e (=5 S 06 = fix)?),

where fo(x;) is the value of ¥; given x; based on the baseline profile; fl (x;) is the
estimated value of ¥; given x; based on the on-line profile and ¢*;? is the estimated
variance for the on-line profile (this is obtained by a nonparametric regression
method, such as spline or local linear regression method).

Define RSSy = Y7, (Y; — fo(x:))* and RSS; = 37 (Y — f1(x:))% the log-
likelihoods will be:

1
Under Hy : £y, = —nlog V2 — n log(r(z) — ——RSS), and
2 20’3
1
Under H; : £y, = —nlog V2r - E10go°12 - —2RSS1
2 207

RSS] _ n

n 2"

=—-nlog V2rr - glog
The generalized likelihood ratio test (GLRT) statistic to be used in our proposed
control chart is then:

n

2

A=l —fCH, =

n RSS| n
n 2

1
logog + rrzRSSO -3 log . 4)
0
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3.2 Shewhart-type Control Chart

Shewhart-type control chart treats each individual profile as independent entry and
thus is ideal for detecting isolated spike shift (outliers) and large sustained step
shift of profile parameters. Once an on-line (linear) profile is established, one can
calculate the GLRT statistic A and compare it to an upper control limit (UCL), which
is associated with a pre-defined type-I error rate (@). The lower control limit (LCL)
for Shewhart-type GLRT control chart is usually set as 0.

The UCL is obtained via the empirical null distribution of the GLRT statistic.
This can be done by a parametric bootstrap Monte-Carlo simulation, as described
below:

Step 1: Generate an on-line profile under the null hypothesis, and obtain the
estimate of the GLRT statistic A for this profile;

Step 2: Repeat step 1 many times to obtain the empirical distribution of A;

Step 3: Use the 100(1 — @)th percentile of the empirical distribution of A as the
UCL.

3.3 EWMA-type Control Chart

EWMA-type control charts make use of both current profile and all previous profiles
to generate the test statistic, and thus are more efficient in detecting small sustained
shift (change point). An EWMA-type control chart based on GLRT can be built by
defining:

EWMA; =04;+(1-0)EWMA;_y, 5)

where i > 1 and 0 < 8 < 1 is a smoothing constant. The initial value EW M Ay is set
as the mean value of A under Hy, which can be estimated by a bootstrap Monte-Carlo
simulation introduced above.

The LCL for the EWMA-type control chart is set as 0 and the UCL can be
determined by Monte-Carlo simulations (Yeh et al, 2004) according to a pre-specified
a. Compared with the Shewhart chart, the EWMA chart has a complicated settings.
Thus its UCL is difficult to obtain. The UCL of EWMA control chart for monitoring
x” random variables has been thoroughly studied in the literatures, however (Knoth
2005). The theoretical UCL for a pre-specified @, when the random variable being
monitored is a y? random variable, can be evaluated by an R package called spc.
The desired UCL for EWMA-type GLRT chat can be estimated either by using
bi-sectional search method or by approximation method, as discussed below.

Bi-sectional Search Method:

The bi-sectional algorithm is a commonly used computational algorithm in
searching for solutions in non-linear equations. The Bi-sectional search for desired
UCL for EWMA-type GLRT chart can be done in the following steps:
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Step 1: Select a temporary value for the lower limit of UCL (UCL;) and a tempo-
rary value for the upper limit of UCL (UCL,,), then calculate the corresponding
ARL estimate for these two limits: ARL; and ARL,, respectively. It is desirable
that ARL; < ARL;c < ARL,,, where ARL ¢ stands for the in-control ARL.

Step 2: Let UCL;,,, = average(UCL;, UCL,), then calculate the corresponding
ARL estimate ARL;,p. If ARL;p > ARLjc, thenassign UCL,, = UCLy,p and
ARL, = ARL;yp. Otherwise, assign UCL; = UCLp and ARL; = ARL .

Step 3: If the absolute value of |[ARL,, — ARL;]| is less than a pre-defined thresh-
old, the convergence criteria met and the desired UCL = average(UCL;, UCL,,),
otherwise go back to Step 2.

Note that since the calculation of the ARL for EWMA-type chart can be time
consuming, the initial value of UCL,, in Step 1 should not be large.

Our empirical experience indicates that the bi-sectional search method works
well in finding the desired UCL for EWMA-type GLRT charts when the simulation
size to calculate the ARL values is large. In our simulation we use 5000 Monte-
Carlo runs to estimate the ARL values when the ARL.IC is set as 20 (correspond
to @ = 0.05). The simulation size, however, should increase accordingly when the
desired ARLjc value increases. The larger the simulation size, the more accurate
the desired UCL. Note that the computational time will also increase exponentially.
So the bi-sectional search could be slow in convergence, especially when the ARL;¢
value and the simulation size are large.We thus propose an approximation method to
overcome the computational problem by taking advantage of the simulated empirical
LRT statistics. The approximation method is based on the estimated mean of the
GLRT statistic under the null hypothesis. The R codes for estimation of the UCL are
given in the Appendix. The algorithm can be outlined in the following steps.

Step 1. Simulate the empirical distribution of A.

Step 2. Let df,pprox €qual to the sample mean of the simulated A’s.

Step 3. Use the R package spc to calculate the UCL corresponding to a desired
in-control ARL for y? random variable with degrees of freedom equals to

dfappr()x .

The approximation method can be regard as a quick-and-dirty way to find the
UCL for a given in-control ARL. If the « value is relatively large (such as 0.05), then
the approximation works fairly well. However, for smaller « values (such as 0.001
which correspond to larger in-control ARLs) the use of the approximation method
should be cautious since it tends to overestimate the UCL values.

To study the distribution of the GLRT statistic under the null hypothesis, a
quantile-quantile plot (QQ plot) of the GLRT statistic under Hy against y*> Random
variables with df = mean(GLRT) is given as Figure 2. The empirical 100(1 — a)%th
percentile of GLRT statistic are also plotted as reference lines. It can been seen that
for @ > 0.05 the quantiles of the GLRT statistic under Hy are almost identical to
their counterparts of the y? random variables. But the GLRT statistic tend to have
larger values for the tail of its distribution.
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QQ plot of the GLRT statistic against chi*2 RV
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Fig. 2: QQ Plot of the GLRT Statistic against y> Random variables with df =
mean(GLRT)

4 An Illustrative Example

The vertical density profile (VDP) dataset reported in Walker and Wright (2002)
(available at the website http://bus.utk.edu/stat/walker/VDP/Allstack.
TXT) is discussed here for illustration of the proposed method. For the VDP data, the
density of the wood board (Y) is measured by using a profilometer that uses a laser
device to take measurements at fixed depths (x) across the depth of the thickness of
the board. The first VDP profile, for example, is displayed in Figure 1.

Williams et al. (2003) used a parametric nonlinear "bathtub-shape" function to
model the VDP data:

al(xi—d)?' +c x;>d
ar(d—x)P2+c x; <d

f(xi’é) = {


http://bus.utk.edu/stat/walker/VDP/Allstack.TXT
http://bus.utk.edu/stat/walker/VDP/Allstack.TXT
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where B = (ay,az,b1,by,¢,d)’. The parameters a; and a; determine the width of
the "bathtub"; b and b, determine the flatness of the "bathtub"; ¢ is the bottom of
the "bathtub"; and d is the center of the "bathtub". Furthermore, it is assumed that
€ ~ Normal(0,0?). Note that if nonparametric regression model is used to build
the baseline profile, the proposed GLRT chart still works. However, the parametric
baseline profile model does give us more flexibility in manipulating the shifts of
out-of-control profiles.

The parameter estimates based on the first VDP profile from Williams et al. (2003)
are B = (ay,az, by, by, c,d)’ = (5708,3921,5.14,4.87,46.0,0.313)’. These values are
used to build the baseline profile. In addition, the in-control variance is set as
o?=0.12

We first demonstrate the situation of random shifts (random outliers). Two outlier
profiles are randomly generated out of ten on-line profiles. For each on-line profile the
GLRT statistic is calculated against the baseline profile. The Shewhart-type GLRT
control chart is plotted in Figure 3(a). The UCLs correspond to @ = 0.05 is ploted,
which corresponds to in-control ARL value of 20. The UCL is estimated based on
1,000,000 runs of parametric bootstrap Monte-Carlo simulations.

Plot of the Shewhart-GLRT statistic with siumlated VDP profile Plot of the EWMA-GLRT statistic with siumlated VDP profile

Shiftofal = 0 - -~ Shewhart UCL with alpha = 0.05 shiftofat = 0
Shiftota2 = 0 “o

5
Shiftofd - 0
Shiftof sigma = 1 Shiftof sigma = 1

GLRT statistic
0

EWMA-GLAT statistc
4

Index Index
Outer Profie id = 5.8 Outler Profie id = 7.8,9, 10

(a) Shewhart-type GLRT Chart for Isolated (b) EWMA-type GLRT Chart for Sustained
Shifts Step Shifts

Fig. 3: GLRT-based Control Chart on Simulated VDP Data

For parameter  the shifted parameter is defined as S,curar = AB + Brc, while
for the variance parameter o it is defined as o gcruar = Ao * oy In Figure 3(a) the
two outliers (#5 and #8) have the same shift in parameter ¢ which shifts from the
in-control value 46 to 46.05. It is clear that the Shewhart-type GLRT control chart
can efficiently detect these two outliers.

Next, we demonstrate the situation of substantial shifts. Four out-of-control on-
line profiles (profile # 7 through #10) are generated after six in-control profiles
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(profile #1 through #6). The EWMA-type GLRT control chart is plotted in Figure
3(b). Again, the a is set at 0.05, and the four sustained step shift profiles have the same
shift in parameter ¢ from the in-control value 46 to 46.05. The UCLs obtained using
both bisectional search and approximation method are used. It can be seen that the
EWMA-type easily detect those four out-of-control profiles, and their corresponding
EWMA-GLRT statistic are increasing over time.

5 ARL Performance of the Proposed Chart

In Phase II applications of control charts, the performance of proposed control chart
is typically evaluated by the study of its run length distribution. Especially, the
average run length (ARL) under in-control and various out-of-control situations has
been a major criteria in evaluating the effectiveness of control charts (see also, Wang
and Lin, 2016).

Following the settings in the previous section, the "bathtub-shape" function is
used to describe the baseline VDP profile and test the ARL performance of the
proposed control chart under various out-of-control situations. The in-control ARL
is 20. The ARLs of Shewhart-type GLRT chart are estimated by 1,000,000 runs of
Monte Carlo simulations, while the ARLs of EWMA-type GLRT chart are estimated
by 10,000 runs of simulations. Again, for EWMA-type control chart, the UCLs
obtained from both bisectional search method (referred as UCL1) and approximation
method (referred as UCL2) are used. The following shifts will be studied in details:
ar = ar+Aq, b1 = b1 +Ap,c > c+AL,d—>d+Ag,and 0 — Aso.

Shift of Parameter a,:

For VDP data, the parameter a; and a, determine the width of the "bathtub".
Since a; and a; are symmetric in the bathtub formula, only a; is used to test the
ARL performance of the proposed chart. With all other parameters unchanged, we
shift a; — a1 +A,,, with Ay, =5, 10, ..., 100.

The estimated ARL of the proposed GLRT chart for shift of parameter a is listed
in Table 1 and plotted in Figure 4. As one can see, the EWMA-type GLRT chart
outperform (with smaller out-of-control ARL) the Shewhart-type GLRT chart, when
the shift is small. With the increasing of the level of the shift, the performances of
these two types of charts become very close. It is noted that for the EWMA-type
GLRT control chart using UCL obtained by approximation method (UCL2) tend to
over estimate ARL a little bit than that using UCL obtained by bisectional search
method (UCL1), in both in-control and out-of-control case. However the difference
between these two methods become almost unnoticeable when shift gets larger.

Shift of Parameter by, ¢, d, and o:

* The parameter b and b, determine the flatness of the "bathtub". Since b, and b,
are symmetric in the formula, only b; is used to test the ARL performance of the
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ARL of GLRT Chart based on VDP data
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Fig. 4: Plot of the ARL Estimate of the Proposed GLRT Control Chart (For parameter
ay shift of VDP profile)

proposed chart. With all other parameters unchanged, we shift by — by + Ay,
with Ap, = 0.001, 0.002, ..., 0.01.

* The parameter ¢ determine the bottom of the "bathtub". So a shift of the pa-
rameter ¢ yields a vertical shift of the whole "bathtub" curve. With all other
parameters unchanged, we shift c — ¢+ A, with A, = 0.005, 0.01, ..., 0.05.

» The parameter d determine the center of the "bathtub". So a shift of the parameter
d yields a horizontal shift of the whole "bathtub” curve. With all other parameters
unchanged, we shift d — d + A4, with A; = 0.0001, 0.0002, ..., 0.0005.

* While the other parameters determine the mean value (location) of the in-control
VDP profile, the parameter o determine the dispersion of the in-control profile.

* The proposed control chart is designed to monitor the shift of dispersion param-
eter also. With all other parameters unchanged, we shift o — A, 0, with A, =
1.05, 1.1, ..., 1.4.

The estimated ARL of the proposed GLRT charts in monitoring the shifts of those
four parameters (b, c, d, and o) are displayed in Figure 5. The general pattern of
these ARL performances is similar to Figure 4 as discussed above.
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Table 1: ARL Estimate of the Proposed GLRT Control Chart (For parameter a; shift
of VDP profile)

A, Shewhart-type EWMA-type (UCL2) EWMA-type (UCL1)

0 19.67 21.12 20.16
5 19.26 19.72 18.77
10 17.40 16.86 15.60
15 15.23 12.28 11.86
20 12.06 8.87 8.45
25 9.24 6.17 5.93
30 6.82 4.50 4.31
35 4.94 3.41 3.23
40 3.57 2.59 2.50
45 2.65 2.12 2.03
50 2.03 1.74 1.68
55 1.61 1.49 1.44
60 1.35 1.32 1.28
65 1.19 1.18 1.16
70 1.10 1.10 1.09
75 1.04 1.05 1.04
80 1.02 1.02 1.02
85 1.01 1.01 1.01
90 1.00 1.00 1.00
95 1.00 1.00 1.00
100 1.00 1.00 1.00

In summary, the proposed GLRT-based control charts can efficiently monitor
various types of shift (both location and dispersion) of the on-line profiles from
the baseline profile. The cases in which the system has multiple parameter shifts
simultaneously are also studied in our simulation. The results are similar to those of
the single parameter shift cases so they are omitted in this paper. Within the scope of
our simulation, the ARL performance of the EWMA-type GLRT chart is (slightly)
better than that of the Shewhart-type GLRT chat.

6 Conclusions and Discussions

In this paper, we develop the control chart based on generalized likelihood ratio test
(GLRT) statistic to monitor profile data. The proposed method uses nonparametric
regression and thus there is no restriction on the functional form of the profiles. The
proposed control chart is mainly used in Phase II applications, i.e. in detecting the
shift of on-line profiles from the baseline profile.

Both Shewhart-type and EWMA-type control charts are discussed. Finding the
UCL associated with the desired in-control ARL for the proposed GLRT-based chart
can sometimes be computationally challenge, especially for EWMA-type LRT-based
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chart. The process in finding the desired UCL for the proposed GLRT-based chart
are discussed. The UCL for Shewhart-type GLRT chart is obtained by parametric
bootstrap Monte-Carlo simulation. The UCL of EWMA-type GLRT chart can be
obtained by either bisectional search method or approximation method.

Using a "bathtub-shape" function to model a real-life VDP nonlinear profile, we
demonstrate the ARL performance of the proposed control charts. The simulation
results show that the proposed control chart can efficiently detect various types of
shifts of on-line profiles. Especially, the EWMA-type chart outperform the Shewhart-
type GLRT chart in giving out-of-control signals when the shifts of on-line profiles
are small.

The proposed GLRT statistic is based on using nonparametric regression method
to estimate the mean function of the on-line profiles. When nonparametric regression
is used, it is critical to determine the bandwidth of estimation. In this paper, the
default cross validation (CV) method is used to determine the bandwidth. The effect
of bandwidth on the ARL performance of the proposed control charts worths further
investigation. Also note that the smoothing spline is used here. Other nonparametric
regression methods can be used in a similare manner.
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Appendix

Estimation of the UCL for EWMA-type GLRT Chart

We assume the reader is familiar with R, a free statistical analysis software. Almost
everything related with R can be found on its official website at http://www.
r-project.org/ or on CRAN (The Comprehensive R Archive Network) athttp:
//lib.stat.cmu.edu/R/CRAN/.

The spc package contributed by Sven Knoth is downloadable at the CRAN web-
sitehttp://lib.stat.cmu.edu/R/CRAN/web/packages/spc/index.html. In
this package Dr. Knoth provides many useful functions in SPC area such as calcu-
lating the ARL for a corresponding UCL or vise versa, for EWMA or CUSUM
control chart in monitoring process means or variances. The specific function in spc
package that needs to be used to calculate UCL for EWMA-type GLRT control chart
is called sewma.crit. To install the spc package, one simply type the command
"install.packages("spc")" and then choose a CRAN mirror site. The install

process will be finished automatically.
The calculation of the UCL using approximation method can be done using the
following command lines:

> library(spc) ## Load the spc package

> theta <- 0.2 ## This is the smooth parameter in EWMA chart

> ARL.IC <- 1/alpha ## This the in-control ARL Value

> parm <- 19.57086 ## This is the estimated mean of GLRT statistic

> UCL.EWMA <- sewma.crit(l=theta, LO=ARL.IC, sigma®=sqrt(parm),
cu=NULL ,hs=parm,df=parm) [[2]]

> UCL.EWMA

[1] 21.89268

The first line load the spc package; the next two lines give values of the 6
(smoothing parameter) value and the in-control ARL value; then let the parm equal
to the estimated mean value of the GLRT statistic (obtained by parametric boot-
strap Monte-Carlo simulation); finally use the sewma . crit function to calculate the
desired UCL corresponding to the in-control ARL.


http://www.r-project.org/
http://www.r-project.org/
http://lib.stat.cmu.edu/R/CRAN/
http://lib.stat.cmu.edu/R/CRAN/
http://lib.stat.cmu.edu/R/CRAN/web/packages/spc/index.html
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1 Introduction

In the last 30 years monitoring problems have been discussed in many areas like,
e.g., in economics (Frisén (2008)), medicine (Kass-Hout and Zhang (2010)), envi-
ronmental sciences (Chou (2004)). It has turned out that there are many further topics
beyond engineering, the original field of applications (e.g., Montgomery (2009)). In
order to apply control charts to these new areas it was necessary to adapt the idea
behind control schemes to these processes and sometimes to extend and modify the
original approaches. In many situations the underlying processes are time series, the
data have a memory and the variables are no longer independent.

In nearly all of these papers the underlying time series is assumed to be (weakly)
stationary in the in-control state. Nowadays, it is mostly distinguished between resid-
ual charts and modified schemes in literature. Residual charts are based on the idea
to transform the original data such that the transformed variables are independent.
Then the well-known approaches of statistical process control for independent and
identically distributed random variables can be applied to the transformed quantities.
In contrast, modified schemes are making use of the original observations. They are
obtained by taking into account the probability structure of the underlying time series
process. Residual charts have been discussed among others by Alwan and Roberts
(1988), Wardell et al (1994a,b), Lu and Reynolds (1999), modified charts are subject
of, e.g., Nikiforov (1975) and Schmid (1995, 1997a,b).

In many applications, however, especially in economics, frequently the process
of interest turns out to be close to non-stationarity or it is even non-stationary.
It is not oscillating around a common mean or its variance and autocovariances
are changing over time, respectively. The existing techniques fail while monitoring
such processes. Therefore, it is important to have tools that can correctly detect
changes in non-stationary processes. Monitoring non-stationary processes is a new
field and it has not yet received much attention up to now. Of course it is impossible
to distinguish between a non-stationary process and a non-stationary process with
change if no information on the probability structure on the underlying in-control
non-stationary process is given.

Schmid and Steland (2000) applied nonparametric kernel control charts to a
non-stationary process to analyze whether its derivative has significantly changed.
Nonparametric procedures for monitoring time series have been proposed by, e.g.,
Steland (2002, 2005, 2007, 2010). Triantafyllopoulos and Bersimis (2016) proposed
a Bayesian approach to monitor a possibly non-stationary process. A parametric
approach was chosen by Lazariv and Schmid (2015). They used state-space models
for modeling the underlying in-control process. These processes are very flexible and
allow the modeling of a large family of non-stationary processes. Several control
charts for detecting a mean shift were derived.

In the current paper we want to discuss various techniques for deriving control
charts for non-stationary processes. Nonparametric techniques are not considered.
One approach is based on differencing, i.e. the original data are transformed by suc-
cessively calculating the differences of two successive observations. This procedure
is applied until the resulting process is stationary. Such an approach is frequently
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applied in econometrics and related to monitoring it has been studied among others
by Steland (2005, 2007) to detect a change in a unit root process (see, e.g., Hayashi
(2000)). Similar to residual charts for stationary processes this technique is based on
suitably transforming the original data, here to a stationary process. Another attempt
is to directly describe the possibly non-stationary in-control process by a stochastic
model and to derive charts by making use of the probability structure of the un-
derlying process using the likelihood approach, the Shiryaev-Roberts method, etc.
Here we consider this attempt as well. As in Lazariv and Schmid (2015) state-space
models are used to model the in-control process but instead of a mean shift model
we consider a more general out-of-control situation covering, e.g., mean drifts as
well. In this paper the resulting charts are compared with the charts obtained by
differencing. The underlying process is a random walk with drift.

2 Handling Non-Stationary Processes

In practice there are different attempts to handle non-stationary processes. In eco-
nomics a popular approach is to transform the original process in a suitable way. If
the underlying process is a unit root process differencing is a widely applied proce-
dure (e.g., Hayashi (2000)). This approach is briefly described in the next section.
Another possibility is of course to directly model the non-stationary process by a
suitable model. Here state-space models are frequently applied since they are on the
one side very flexible and on the other side there exist computational techniques such
that the statistical analysis of these processes can be done in fast time.

2.1 Unit Root Problems

One of the major issues in finance is how to model the probability distribution of
stock prices. In many areas of finance the standard model is the random walk in
discrete time or its counterpart in continuous time, the Brownian motion (Ruppert
(2004)). This means in discrete time that it holds

Yt:Yt—1+8t’ tZl (1)

with ¥y = yo. The differences between two successive observations, here {&;}, are
usually assumed to follow a white noise process. In the following, however, {&,} may
be a (weakly) stationary process. Now it may happen that after some time the process
drifts away. In finance it is important to detect such a drift as early as possible. This
situation can be described by the following change point model

Y for 1<t<rt
X; = . (2
Y+(t—-1+1)a for t>71



330 Taras Lazariv and Wolfgang Schmid

Here {X,} denotes the observed process and {Y;} the target (in-control) process. T is
the unknown position of the change point. In the in-control state, i.e. for T = oo, the
observed process is a random walk and in the out-of-control situation it is a random
walk with drift.

Now the target process may have a deterministic trend as well. In that case

V=Y 1 +Br+e, 121 3)

with ¥y = yo. This is a random walk with deterministic trend. Applying (2) the
out-of-control process describes a random walk with deterministic trend and drift.

An example of such a behaviour is presented in Figure 1 where the daily closing
prices of Facebook from May 18, 2012 to May 29, 2016 are plotted. The blue line
shows the possible in-control behaviour.

FB stock price
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60
1
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40

May 18 2012 Nov 012012 May 012013 Nov012013 May012014 Nov032014 May012015 Nov022015 Apr29 2016

Fig. 1: Facebook share price with estimated trend (@ = 0.1171 in the out-of-control
period).
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2.2 State-Space Models

State-space models have been widely used in engineering. In recent years more
applications in economics can be found (Durbin and Koopman (2012)). State-space
models are quite flexible and cover a huge variety of processes.

We suppose that the in-control process {Y,} is a p-dimensional time series fol-
lowing a state-space model, i.e. {Y,} satisfies the following set of equations

Y. =G, S;+W,, t=12,.., where (4a)
St+1 = FtSt +Vta = 1,2,.... (4b)

The equation (4a) is called observation equation. The process {Y,} is obtained from
{S;} by applying a linear transformation and adding a random noise variable W;.
The state equation (4b) is g-dimensional and it describes the evolution of the state
S; over time.

In the next sections we will assume that

(A1) Letforallt > 1

v , , ,
E(th)zo, E(V,V)=Q, EW,W!)=R,, E(V,W)=U,.

{Q,}, {R;}, and {U,} are specified sequences of ¢ X g, p X p and g X p matrices,
respectively.

(A2)  Let S, (V,W)), (V5 W)),.. beuncorrelated.

(A3) LetE(YoV;,)=0and E(YoW;)=0forallz > 1.

The parameter matrices Fy, Gy, Qy, R, U, are defined very generally. However, in
many applications they are not time-varying and many notations can be simplified
and the index 7 in that case is omitted.

The best one-step ahead linear predictor S’t of §; given Yy,..., ¥;_; and the
corresponding error covariance matrices Q; = E ((Sr -8)(S,-8 ,)’) for model (4)
can be calculated using the Kalman recursions (Brockwell and Davis (2009)) as

St+1 =tht+®tAt_l(Yt_Gtgt) (5)
with

At = GtQtG; +Rt
(':‘)t:FtQtG;'f‘Ut (6)
Q41 = FtQtF; +0; _OtAt_le;

for t > 1 and the starting conditions

8, = P(811Y0), Q1 = E(8:8]) - E(8,8)).
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Here P(S|Y() denotes the projection of the i-th component S;; of §| on the span
of Y 0-

In order to start the Kalman filter it is necessary to know the mean and the covari-
ance matrix of §;. In our simulation study we fix these values. In practice, however,
they are unknown and have to be suitably determined. Various proposals have been
made to do this (see, e.g., Koopman (1997) and Durbin and Koopman (2012)).

S;+1 can be rewritten as a linear combination of Yj,...,Y;

'
SH—I = ZAt+1,ij +a;11(Yo) (N
Jj=1

with A1 = (E,.-.Ej+1)®,-A;1 andE, =F,—O,A;'G,.a;.1(Yo) = (E,---E1) §,
is a function of Y.

Similarly can be obtained the best linear predictor )4 . of ¥, given Yy,..., Y,_y,
using the presentation (7)

t—1
?t:Gtgtzth,ij—'_bf(YO) (3
=1

fOI‘t 2 1 Wlth Bl,j = GlAt,j and bt(Y()) = Gta,(Yo).
Let X, denote the covariance matrix of ¥, — f/,. Then it holds that for r > 1

E[ = GtQ[G; + Rl'

In the paper we assume that the parameters of the target process are known.
In practice, however, they should be estimated using historical data. The influence
of parameter estimation is an important question, but we will not discuss it in the
present paper.

2.3 Modeling the Out-of-Control Process

In the following we want to consider a more general change-point model

Y, f 1<t
X,={’ o isi=T ©)

Yy+D;ra for t>71

where D; ; denotes a known p X p matrix and a € RP an unknown parameter vector.
Choosing D; ; = (t— 7+ 1)I we obtain the above drift model and setting D; ; =1 a
mean shift model is obtained. Here I stands for the p X p unity matrix. Of course it
is also possible to take the standard deviation of the process into account. Then, e.g.,
we have to choose Dy, = diag(VVar(Y;1),...A/Var(Y;p)) for the shift model (see
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Lazariv and Schmid (2015)). Of course it is also possible that there are components
with a drift and others with a shift what can be handled by the approach as well.

3 Control Charts for Non-Stationary Processes

There are different approaches to derive control charts for non-stationary processes.
The easiest attempt is to transform the original data such that the transformed data
follow a stationary process. Then all well-known procedures for stationary processes
can be applied to the transformed quantities. This method is briefly described in
the next section. In Section 3.2 and Section 3.3 we introduce control charts for
the generalized change point model assuming the in—control process is a state-
space model. In Section 3.2 the charts are obtained by applying the likelihood
ratio approach, the sequential probability ratio method and the Shiryaev-Roberts
procedures. These charts depend on the unknown parameter a which has to be
replaced in practice by a suitable reference value. In Section 3.3 the generalized
procedures are considered where the corresponding probability density is as well
maximized over a so that the resulting chart does not depend on a.

3.1 The Transformation Approach

The transformation method works similar than the residual approach for stationary
processes. This method works well for unit root problems. In that case the differences
of two successive observations are calculated until the resulting process is stationary.
If, e.g., the in-control process is a simple univariate unit root process as in (1) and
the out-of-control process is a drift model as in (2) then

& for 1<t<r

(=}
I
e

s

X::XI_XI—I :{
g+a for t>71

Thus differencing leads to the problem to detect a shift in a stationary problem which
has been intensively discussed in literature (e.g., Hayashi (2000)). This procedure
can be applied to more unit root problems as well. However, it is restricted to a
certain limited family of time series.

3.2 Control Charts with Reference Parameters for State-Space
Models

Here we want to consider the problem of monitoring for more general non-stationary
processes. We consider processes which can be described by a state-space process
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in the in-control state. This model class is chosen because it is able to describe many
types of non-stationary processes including unit root processes. Moreover, recursive
procedures are available for the statistical analysis of these processes which makes
them quite attractive in practice since the computational calculations can be done in
reasonable time.

Lazariv and Schmid (2015) introduced several control charts for state-space mod-
els if a mean shift is present. Using the (generalized) likelihood ratio approach, the
(generalized) sequential probability ratio test and the (generalized) Shiryaev-Roberts
procedure they obtained control schemes with and without reference parameters. In
an extensive simulation study all these charts were compared with each other.

Here we extend their approach to the change point model (9). Replacing the
matrix D, = diag(VVar(Y;1),...4/Var(Y;p)) in Lazariv and Schmid (2015) by an
arbitrary known matrix D, ., t > 7, it is possible to obtain control charts for further
out-of-control situations like, e.g., drifts, drifts and shifts, etc.. This approach is
briefly sketched in the following. In order to determine the likelihood function we
need additional assumptions. It is demanded that (A1) and (A3) are fulfilled and
additionally
(A2*) Let 81, (V], W), (V,,W))’,... be independent.

(Ad) Let 81, (V,W7})’, (V,,W))’,... be normally distributed.
(AS5) Let X, have a full rank for all £ > 1.
For more details we refer to Lazariv and Schmid (2015).

Let us rewrite the densities of X1,..., X, in the in-control (fj) and in the out-of-

control (f;) states. Then it holds that

n -172 n
1 & I o
FoXis . X) = (zm—npﬂ(]‘[detz,) exp{—E D Xi-X)E (X, —X,>},
t=1 t=1

(10)
where X, = G;Q;G, + R, stands for the error covariance matrix and X, is the best
linear one-step predictor

t—1
X, =b(Xo)+ ) By X, (11)
j=1

fort > 1.
According to the change-point model defined in (2) the likelihood function is
given by

fT(X17'-~3Xn) :f()(Xl"-wX‘r—l’X‘r_DT,Ta,-u,Xn_Dn,‘ra) (]2)

n

n -1/2
1 N N
= (27r)*np/2 (l—[ detZ,) exp {_E Z(Z, - zt)/z‘,;l (Z, - Z,)},
=1

=1
where

th

X; for 1<t<rt
X,-D;;a for 7<t<n’
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and

t-1 t-1 t-1
2, =b,(Zy) +ZB;,ij = b;(Xy) +ZBt,ij _ZBt,ijvTa
J=1 J=1 J=t

~
—_

t—1

X,-) B, ;Djra=X,-G, ) A ;D;ra=X,~G/H, afort>1

Jj=t J=t
with
0 for 1<t<rt
H, =41l . 13
LT > At,ij,T for 7<t<n (13)
Jj=T

Thus we get with M, = G;H;  — D; ; that

75 _ X, -X, for 1<r<t
CYTX, -X,+ M ca for t<t<n

3.2.1 The Likelihood Ratio chart

The likelihood ratio (LR) approach is often used to derive control statistics for
different types of target processes. Schmid (1997a) constructed a mean chart and
Lazariv et al (2013) a variance chart for a univariate stationary process using the LR
method. The idea behind it is to consider for some fixed sample size n the testing
problem that under Hy the process is in-control (7 > n) while under the alternative
hypothesis a change occurs at time position 7 (1 < 7 < n).

For detailed derivation of the control statistic follows similar as in Lazariv and
Schmid (2015). Here only the final results are presented. The run length of the LR
chart is given by

Nipgr(c;a*) =inf{n € N: max{0, —g,..r(a*)} > c}. (14)
where

<i<n

t=i

n R 1 .
gn:Lr(@) = lmin (Z ((Xt_Xt+§Mt,ia) X, 1Mt,ia)>~

Here a* denotes a reference value for the unknown shift a.

3.2.2 The Sequential Probability Ratio Chart

The sequential probability ratio test (SPRT) was introduced by Wald (1947). It was
used by Page (1954) to derive a mean chart for independent samples. Lazariv and
Schmid (2015) derived a SPRT chart for a mean shift assuming the in-control process
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to be a state-space model. Following Lazariv and Schmid (2015) we get that the run
length of the SPRT chart is equal to

Nsprr(c,a”) =inf{n e N : Ofg?ljn{gn;SPRT(a*) - gi.sprr (@)} > ¢} (15)

where

n
gusprr(@) == ) (X, =X, +1M,10)L;' M, a.

t=1

and go.sprr = 0. As above a* is a reference value of the unknown parameter a.
Note that the control statistic can be recursively calculated what dramatically
simplifies its determination.

3.2.3 The Shiryaev-Roberts Chart

In this section we present the control chart based on a Shiryaev-Roberts (SR) proce-
dure (Shiryaev (1963), Roberts (1966)) for detecting changes in state-space models
(see also Lazariv and Schmid (2015)). Its run length is equal to

Nsr(c,a”) =inf{n e N: g, sr(a*) > c} (16)
with
n n
gusr(@) = ) exp {—Z(xt - X+ %Mt,TaYz;lMt,fa} :

7=1 =1

3.3 Control Charts without Reference Parameters for State-Space
Processes

One of the main problems of the control charts with a reference or smoothing pa-
rameter concerns the a priori choice of these quantities. The optimal choice depends
on the unknown quantities of the out-of-control model like, e.g., the size of the shift.
Since frequently such information is not available the choice of the reference value
is sometimes like a lottery. For that reasons statements about the robustness of the
charts with respect to the choice of the reference parameter are important. Another
possibility is the choice of the generalized likelihood function where the maximum
over the unknown shift a is taken as well. Consequently the quantity

Suplong(X1,.. :Xn) — max,
a#0

is considered where the likelihood is maximized over all possible sizes of the shift.
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This is the idea behind the Generalized LR (GLR), Generalized SPRT (GSPRT)
and Generalized Modified SR (GMSR) schemes. The details are presented below.
The derivation of the charts follows with the same arguments as in Lazariv and
Schmid (2015)) where, however, the quantity D, must be replaced by D; .. For that
reason we do not want to focus on the derivation of the results and we will directly
give the final result.

3.3.1 The GLR Chart

The run length of GLR chart is given by

Ngrr(c) =inf {n € N : max {0,
n
| I ~
112?;1(_;(Xt ~ X+ 5Myi8i) Y, 1Mt,ia,-,n)} > c}, (17)

where d. 5 is the solution of the equation

n n
(Z M,z M,,T)am = M XX -X)).
=7 t=7

3.3.2 GSPRT Chart

In that case the run length is obtained as

Ngsprr(c) =inf {n EN: Mmax. (8n:GSPRT — &i:GSPRT) > C} (18)

where

n R 1 e 3
8n:GSPRT = _Z(Xt -X:+ EMt,lan) £ 'M,,a,
=1

and @, = aj .

3.3.3 GMSR Chart

The generalization of the SR chart leads to the problem that the maximum over
exponential sums must be calculated. In order to avoid this problem we consider the
sum over the individual likelihoods. This leads to

NGumsr(c) =inf{neN:afl'S'na; >C} (19)

where a’, is any solution of the equation §,a = —§,, and
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(Xt_Xt)/Et_lM[’i, Sn:ZZM;,lE;IMI’l'

i i=1 t=i

S, =

n n

i=1t

4 Comparison Study

In this section we want to compare the above discussed control charts. We focus on
a univariate in-control process. Here we present our results for a unit root process as
defined in (1) with yo = 0 and {&,} independent and standard normally distributed.
The out-of-control process is given by the drift model (2).

4.1 Comparison Study based on the Average Run Length

First, the average run length (ARL) is used as a performance measure. The in-
control ARL is set equal to 500. The control limits for all charts were determined
such that this calibration is fulfilled. After that the out-of-control ARL of all charts
is compared with each other. In our study the reference value a* takes values within
the set {0.5,1.0,...,3.0}. Moreover, an EWMA chart is applied to the first differences.
The possible values of the smoothing parameter are lying in the set {0.1,0.2,...,1.0}.
Since there is no explicit formula for the ARL available it is estimated within a
simulation study based on 10° independent samples.

The results of our simulation study are given in the following table. The table
shows the smallest out-of-control ARL over all reference values and smoothing
parameters chart for a fixed drift size.

a | LR | SPRT | SR | GLR |GSPRT | GMSR | EWMA

0.5 ]25.00(0.5)25.76(0.5)] 29.00(0.5)] 36.34] 17.77] 64.71]24.31(0.1)
1.0 | 9.13(1.0)| 9.151.0)| 9.73(1.5)| 11.90] 626 33.36] 8.86(0.2)
1.5 | 4.83(1.5)| 4.84(1.5)| 5.022.0)| 621 344 22.48| 4.80(0.3)
20 | 3.082.0) 3.062.0)| 3.132.0)| 4.01 230]  16.92| 3.13(0.4)
25 | 21625 2.152.5)| 2.203.00] 2.80 1.72|  13.55| 2.23(0.6)
30 | 1.633.0) 1.643.0)| 1.643.0)|  2.15 139  11.30] 1.68(0.7)

Table 1: ARLs for all control charts

The overall best scheme is the GSPRT scheme. It dominates all other schemes.
Among the other charts the difference chart behaves the best for small drifts while
for larger drifts the LR and the SPRT scheme dominate. The SR scheme is slightly
worse than the LR and SPRT approach but a little bit better than the EWMA chart
applied to the differences if the drift is large. It is interesting that the best LR and
SPRT chart is the chart where the reference value is equal to the true drift size. The
GLR chart behaves worse than the other schemes. However, the overall worst scheme
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is the GMSR chart whose out-of-control ARL is much larger than those of the other
charts.

4.2 Comparison Study based on the Average Delay

The disadvantage of the ARL consists in the fact that the change is assumed to occur
already at the first time point (7 = 1). This is rarely the case in practice. Therefore
the average detection delay (AD) is frequently used as an alternative performance
criterion. The average delay is equal to the average number of observations from the
shift at position 7 to the time point of the signal. In Table 2 the ARL and the average
delay for T = 50 are given for all considered charts.

a | LR SPRT SR GLR GSPRT GMSR EWMA

T=1 2590 25.84 29.00 3634 17.77 6471 2431
7=50 2203 2195 21.18 3159 31.08 4277 22.82
T=1 4.83 4.84 5.02 6.21 344 2248 4.80
7 =50 3.58 3.60 3.50 4.76 854 12.11 3.72

0.5

1.5

Table 2: Average delays of all control charts

In literature mostly the limit of the average delay for T — oo and the worst average
delay over all 7 are taken as performance measures. A further analysis shows that
except the GSPRT chart the worst average delay over 1 < 7 < 50 is always already
attained at 7 = 1, i.e. it is equal to the ARL. For these schemes the average delay is
decreasing in 7. Thus we get the same ranking as for the ARL. The GSPRT chart
behaves completely different since the average delay is increasing with 7 and the
results are worse. The chart seems to favor changes at the beginning but has problems
to detect changes at later time points. If we consider the value of the average delay at
7 =50 the SR scheme turns out to be the best. It is slightly better than the LR and the
SPRT scheme which are slightly better than the EWMA approach. The results for
the generalized charts are worse. The best generalized procedure for small changes
is the GSPRT approach while for medium changes the GLR chart is better than the
GSPRT attempt. The GMSR chart behaves much worse.

4.3 Robustness Study with Respect to the Choice of the Reference
Value

Up to now we have always considered for a fixed change the minimal ARL and the
minimal average delay over all reference values and smoothing parameters. However,
in most cases the practitioner does not know the true magnitude of the change. How
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good are the charts if instead of the best reference value and best smoothing parameter
another value is taken? Here a robustness study is of importance. In Table 3 we give
the worst average delay if a* is chosen directly smaller (above) or larger (below) than
the value leading to the minimum ARL. Note that in our analysis we have chosen
a* €{0.5,1.0,...,3.0} and 1 € {0.1,0.2,..,1.0}. For example, the optimal choice of
a* for the LR chart is a* = 1.5 if the expected shift is a = 1.5. In this case we get
an average run length of 4.83. The direct neighbours of a* = 1.5 are 1.0 and 2.0. If
one chooses a* = 1.0 the ARL is 5.15 (6.63 percent worth, above). For the choice
a* =2.0 we obtain ARL = 5.04 (4.50 percent worth, below).

a | LR | SPRT | SR | GLR |GSPRT | GMSR | EWMA
05 |2590035)[2584(05)[29.0005)]  36.34] 17.77]  64.71[24.310.1)
P | +18.26%| +19.27%|  +1.19% - - —| +22.86%
+6.63%| +5.98%| +1.29% = - | +1.13%
15 | 4.83(15)| 4.84(1.5)| 50200  621|  3.44| 22.48| 4.80(0.3)
+4.50%|  +4.37%| +11.84% - - - +3.93%

Table 3: Influence of the wrong choice of reference parameter, for all control charts

The table shows that the charts react different on the choice of a*. Nevertheless,
the out-of-control ARLS are in all cases smaller than those of the GLR and the
GMSR chart. Thus a small deviation from the optimal choice leads to acceptable
results and there is no need to apply a generalized chart.

If, however, we consider the worst average run length over all possible values of
a* and for a fixed value of a the results of the EWMA, LR, SPRT and SR chart are
very bad. Assuming a = 0.5 the worst ARL for the SPRT (EWMA) chart is 87.54
(115.11) and it is attained at a* = 3.0 (1 = 1.0). For a = 1.5 we get 6.90 (11.86) for
the SPRT (EWMA) scheme. These values are much worse than those of the GLR
chart which must be favoured in that case.

4.4 Conclusions

Summarizing the above results we can give the following recommendations. We do
not recommend the use of the GMSR chart since the results are in general much worse
than those of the other schemes. The reason may be that instead of maximizing the
sum of the likelihoods we considered the maximization of the sum of the logarithms
of the likelihoods. This may lead to the deterioration. Moreover, the GSPRT scheme
must be carefully applied since it favours changes at the beginning and it has huge
problems to detect a change at a later time point.

If some information about the magnitude of the change is known then either the
LR chart or the SPRT chart should be applied. If no information about the change is
known the GLR chart provides the best results.
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5 Challenges and Problems

The monitoring of non-stationary processes is a challenging task and it has to be
carefully done since there are many hidden problems. Lazariv and Schmid (2015)
showed that for some processes and change-point models the expectation of the run
length does not exist. This is a very important issue since the ARL is the most popular
measure for the performance of control charts. We want to address this problem in
this paper and check if the same issue arises for the present change-point model (9).

For this purpose we have calculated a table of frequencies, namely that the in-
control run length will fall into certain intervals (see Table 4). The table shows the
relative frequencies (in percent) of P(N(c) =i) fori=1,...,5, P(1000-i < N(c) <
1000-(i+1)) fori=1,...,5and P(5000 < N(c) < 10000). The results are based on
simulating 10° independent random samples of a unit root process.

[ LR[ SPRT]  SR| GLR]
0.00] 000 0.00] 0.1
0.00] 001] 000] 0.04
005|003 000] 005
0.09] 007 000 0.09
007 o0a11] 002] 005

| | W —|| ~

[1000, 2000] 11.15 11.56 11.54 11.14

[2000, 3000] 157 153 176]  1.10
[3000, 4000] 021] 020 020] 009
[4000, 5000] 001] 003 000] 0.0

[5000, 10000] 0.00 0.00 0.00 0.00

Table 4: Distributions of the in-control run lengths of the considered charts

The table shows that there is no evidence of heavy tails. The Hill and the Pickands
plot (see, e.g., Resnick (2007)) are presented for the run length of the SPRT chart
in order to analyze the tail behavior and to check the existence of the expectation
of the run length. The run length is estimated within a simulation study using 10°
repetitions. Figure 2 shows that the tail index is definitely larger than 1, which implies
that the expectation of the run length exists.

Note that this result is different to the findings of Lazariv and Schmid (2015) where
it was found that the average run lengths do not exist. How can this be explained? Of
course in the present paper another out-of-control case is studied in the comparison
study and for that reason other control statistics are used. Nevertheless, this result is
a little bit surprising.

A closer look on the structure of the control statistics shows that the matrix M; ,
heavily influences the control statistics of all control charts ((14), (15), (16), (17),
(18) and (19)). The problem is that for the change-point model in Lazariv and Schmid
(2015) the matrix M, . tends to O as a function of ¢ and for fixed 7 because of the
quantity D;. D; models the variance of the target process in the univariate case and it
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seems to tend to infinity for a target process as in Lazariv and Schmid (2015). In this
paper, however, the quantity D, , depends on 7 as well and it holds that M; , = —1,
i.e. it is constant.

6 Summary

In the present paper we discuss different attempts for monitoring non-stationary pro-
cesses. We consider the transformation method where the original data are suitably
transformed to a stationary process, e.g., by detrending or differencing. Then all
well-known control charts for stationary processes can be applied to the transformed
quantities. The problem of this procedure is that it only works for special type of
processes like, e.g., unit root processes. Another approach (see, e.g., Lazariv and
Schmid (2015)) is to use the probability structure of the underlying process to derive
control charts. Here the in-control process is assumed to be a multivariate state-space
process. The considered change point is quite general including drifts and shifts in
the components. Using the likelihood ratio, the sequential probability ratio and the
Shiryaev-Roberts procedure control charts with a reference vector are derived. Ap-
plying the generalized likelihood ratio, the generalized sequential probability ratio
and the generalized modified Shiryaev-Roberts procedure control schemes without
reference values are obtained.

All charts are compared with each other assuming that the in-control process
is a unit root process and that a linear drift in the process may occur. Different
performance criteria are used to evaluate the introduced charts. Despite the average
run length, the worst average delay and the limit of the average delay are considered.
Moreover, it is analyzed, how the charts with a reference value react if not the optimal
reference value leading to the smallest ARL is used but another, which is close to the
optimal one or more far away. It is shown that the LR and the SPRT chart should be
favored if some knowledges on the expected drift are given. Else, if no information
about the drift is given, the GLR chart provides the best results.

In Lazariv and Schmid (2015) it was shown that the average run length of the
introduced charts does not exist. Our approach is a generalization of the attempt of
Lazariv and Schmid (2015). Using the Hill plot and the Pickands plot the tails of
the run lengths of the introduced charts is analyzed and it is concluded that in the
present case the average run length exists. The reason for the different behaviour lies
in the consideration of another out-of-control model.
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Phase I Distribution-Free Analysis with the R
Package dfphasel

Giovanna Capizzi and Guido Masarotto

Abstract Phase I distribution-free methods have received an increasing attention in
the recent statistical process monitoring literature. Indeed, violations of distributional
assumptions may largely degrade the performance and sensitivity of parametric
Phase I methods. For example, the real false alarm probability, i.e., the probability
to declare unstable a process that is actually stable, may be substantially larger than
the desired value. Thus, several researchers recommend to test the shape of the
underlying IC distribution only after process stability has been established using a
distribution-free control chart. In the paper, we describe the R package dfphasel
which provides an implementation of many of recently suggested Phase I distribution-
free methods. Indeed, becouse of the relatively high computational complexity of
some of these methods, we believe that their diffusion can be helpfully encouraged
supporting practitioners with an easy-to-use dedicated software. The use of the
package is illustrated with real data from an oil refinery.

1 Introduction

Control charts are well known techniques used in statistical process monitoring
(SPM) to establish whether a process is “in-control” (IC) or “out-of-control” (OC),
i.e. whether it is operating under random or assignable causes of variations that need
to be detected as soon as possible (Montgomery, 2009, Qiu, 2013). Control charts are
conceived and designed differently according to the full or partial knowledge on the
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underlying IC process distribution. When a full knowledge on process distribution,
and on all its parameters, is available, data are prospectively charted in Phase II
for promptly detecting an OC situation. However, whether either the underlying IC
distribution or some parameters of that distribution are unknown, a Phase I analysis
is conducted to characterize process variation under stable conditions and estimate
a set of accurate control limits for on-line monitoring in Phase II.

Phase I control charts aim to test retrospectively whether observations on a
univariate (on multivariate) quality characteristic X, collected in m subgroups each
of size n > 1, all come from a common IC distribution or from a distribution
whose parameters have changed. In recent years, attention and emphasis for Phase
I analysis have progressively grown among researchers and users becouse of some
critical aspects and issues of SPM that, when not appropriately faced and addressed
in Phase I, can seriously degrade the performance of Phase II control charts (see,
for example, Chakraborti et al, 2009, Jones-Farmer et al, 2014, Capizzi, 2015). One
of the most challenging tasks in Phase I is evaluating process stability with respect
to a specified parametric model. Indeed, the uncertainty on the correct specification
of the underlying IC model makes parametric control charts quite unpredictable in
terms of their ability to distinguish true OC points from IC points coming from a
misspecified IC process distribution. Hence, when the specification of a correct IC
statistical model is a point of concern, the identification of OC conditions without any
apriori selection of a model can be more useful to practitioners. For all these reasons,
researchers recently stressed the importance of using distribution-free control charts
in Phase I (see for example Jones-Farmer et al, 2009, Jones-Farmer and Champ, 2010,
Graham et al, 2010, Human et al, 2010, Bell et al, 2014, Capizzi and Masarotto,
2013b, Cheng and Shiau, 2015, Capizzi, 2015, Woodal, 2016).

Despite of their documented effectiveness in Phase I, there is still some reluctance
to practically apply distribution-free procedures, because they are based on control
statistics not very familiar to practitioners and because their practical design and
implementation can show some mathematical and/or computational complexity. The
availability of an easy-to-use software implementing recent nonparametric Phase I
proposals can make their usage much more appealing to practitioners.

Thus, in this paper we illustrate the R package dfphasel implemented to per-
form the Phase I analysis of either univariate or multivariate data. The package
complements the functionalities offered by other R packages such as qcc (Scrucca,
2004), changepoint (Killick and Eckley, 2014), cpm (Ross, 2015), and spc (Knoth,
2016). The dfphasel package covers the design and use of different distribution-
free procedures recently proposed for testing the stability of process location and
variation. It also implements the combination of some distribution-free Phase I meth-
ods, originally conceived to test for the stability of only one of these two process
parameters. All methods implemented in the package attain a desired false alarm
probability (FAP) with no assumption on the underlying probability distribution of
quality characteristics.

The paper is organized as follows. In Section 2, we briefly argue why the SPM
literature has recently been paying increasing attention to a distribution-free approach
to Phase I analysis. Then, in Section 3, the main approaches to the distribution-
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free Phase I analysis of univariate and multivariate data are shortly reviewed, also
outlining some possible drawbacks in their design and implementation, above all
in the multivariate framework. Some details on the dfphasel package are given in
Section 4. In Section 5, an example is discussed. Some concluding remarks are given
in Section 6.

2 Why Distribution-Free Methods in Phase 1?

Performances of Phase I methods are usually evaluated in terms of alarm probabili-
ties. In particular, the control limits of Phase I control charts are determined so that,
at least approximately, the FAP, i.e., the overall probability of giving at least one false
alarm, attains a nominal value. Control limits are often computed under the assump-
tion of a known underlying probability distribution, such as normal, exponential,
gamma, etc. However, as anticipated in the Introduction, in Phase I stability with
respect to a parametric model is often tested when a little information is available to
validate distributional assumptions. A misspecification of the underlying IC process
distribution may result in inflated false alarm probabilities but also in an incorrect
classification of an observation as an “outlier” or “out-of-control”. Indeed:

1. The attained FAP can be very different from the nominal value when the real
process distribution deviates from the assumed parametric model. For example in
the univariate case, when m = 50 and n = 5, the attained FAP of a retrospective
Shewhart X-S control chart, designed to give a FAP equal to 0.05 under the
normality assumption, is equal to 0.528 and 0.749 when Phase I data actually
come from a Student’s 75 and an Exponential, respectively. The IC performance
is even more degraded in the multivariate framework. For example a 72 control
chart designed to give a FAP equal to 0.05 for multivariate normally distributed
data, provides an attained FAP equal to 0.72 (m=50, n=5) and 0.97 (m=100 and
n =5) when is is applied to data coming from a five dimensional Student’s #3.
Even when more Phase I data are available (m=100 and n=10), the attained FAP
reaches an unacceptably high value equal to 0.87.

2. On the other hand, the classification of an observation as an “outlier” strictly
depends on the strength of its evidence against the model chosen as more appro-
priate for representing a stable process. The standard Phase I practice, consisting
in iteratively identifying, removing OC points and recomputing control limits,
leads to a “reference” sub-sample easily consistent with the hypothesized para-
metric model but not necessarily representative of the true stable underlying
probability distribution (see Capizzi, 2015, for an example and additional dis-
cussions).
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3 Distribution-Free Phase I Control Charts: a Brief Review

A distribution-free (or nonparametric) control chart is defined in terms of its IC
behaviour. If the IC properties are the same for (at least) all continuous distributions,
the resulting control charts are called distribution-free (see Chakraborti et al, 2001,
Chakraborti, 2007, Chakraborti et al, 2009, Chakraborti, 2011, for some reviews
covering much of the recent SPM nonparametric literature).

Two possibile approaches can be followed for implementing a distribution-free
Phase I analysis.

1. Plot distribution-free control statistics, such as mean ranks, sign statistics or
median-based statistics. This approach has been adopted for example by Jones-
Farmer et al (2009), Jones-Farmer and Champ (2010) and Graham et al (2010).
When compared with control charts based on standard control statistics, such as
the standard Shewhart-type X and S control charts, this approach can produce
an inferior performance in the normal or nearly normal case which, however,
is compensated by an efficiency gain when the process distribution strongly
deviates from the normal assumption. A practical disadvantage associated with
this approach is the need to learn and use “new” summary statistics not very
familiar to users. Further, it is difficult to generalize distribution-free statistics,
such as those based on the ranks, to the multivariate framework. Indeed, such a
generalization only involves the family of elliptical IC probability distributions
(see Oja, 2010 for a general discussion and Bell et al, 2014 and Cheng and Shiau,
2015 for two specific proposals).

2. Plot well-known control statistics, such as the subgroup means or the Hotelling
T?s, but modify the control limits to account for the possible non-normality
of the process distribution. According to this approach, the distribution-free
design of control charts doe not require, also in the multivariate framework,
any specification of the underlying process distribution. The control limits,
computed via a resampling method (booststrap, permutation, etc.) are able,
exactly or approximately, to guarantee the desired FAP both in the normal
and nonnormal scenarios. The limits can be quickly computed also using a
low-end personal computer. In particular, in dfphasel, we mainly consider
the permutation approach since it is able to exactly achieve a prescribed FAP
regardless of the underlying process distribution, at least for indipendent and
identically distributed observations. Furthermore, at least in many practical
scenarios, there is no performance loss in using the permutation-based limits.
Indeed, a Monte Carlo study showed that the considered approach enjoys an
“oracle property”, i.e., the resulting schemes perform at least as well as if the
shape of the process distribution were known a priori and used to compute the
control limits (e.g. Capizzi and Masarotto, 2013a).
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Table 1: Phase I methods implemented in package dfphasel.

1. UNIVARIATE METHODS

a. Shewhart-type control charts
(i) X control chart (Montgomery, 2009, chapter 6), with permutation-based control
limits.
(ii) S control chart (Montgomery, 2009, chapter 6), with permutation-based control
limits.
(iii) Rank-based control chart for location (Jones-Farmer et al, 2009).
(iv) Rank-based control chart for scale (Jones-Farmer and Champ, 2010).
(v) Balanced combination of (i)-(ii) or (iii)-(iv) for simultaneously testing location and
scale and giving a desired overall FAP (Capizzi, 2015).
b. Methods for change-point detection
Sullivan and Woodall (1996) chart, adapted also to subgrouped data, with permutation-
based limits (see also Qiu, 2013, chapter 6).
c. Hybrid
RS/P method (Capizzi and Masarotto, 2013b).

2. MULTIVARIATE METHODS

a. Shewhart-type control charts
(i) Hotelling T2 control chart, with permutation-based control limits. (Montgomery,
2009, chapter 11, equation 11.19).
(ii) Normal likelihood control chart for monitoring process variability, with permutation-
based control limits. (Montgomery, 2009, chapter 11, equation 11.34).
(iii) Analogous of (i) and (ii) but based on spatial signs or ranks (Oja, 2010).
(iv) Balanced combination of the previous Shewhart-type schemes.
b. Methods for change-point detection
(i) Sullivan and Woodall (2000) control chart, adapted also to subgrouped data, with
permutation-based limits (see also Qiu, 2013, chapter 6 and 7).
(ii) Analogous control charts based on the marginal ranks (Lung-Yut-Fong et al, 2011)
or spatial signs or ranks (Oja, 2010).

4 The dfphasel Package

Table 1 summarizes the Phase I methods implemented in the package dfphasel.
The package is written in R. The more computational demanding procedures have
been written in C++ using Rcpp interface (Eddelbuettel, 2013).

Control statistics in Table 1 can be based on several estimates of the common pro-
cess parameters. For example, as illustrated in Section 5, the multivariate Shewhart
control chart can be based on the classical estimates of the multivariate location and
variability (e.g. Montgomery, 2009, equations 11.17a-c) but also on the highly ro-
bust minimum covariance determinant (MCD) estimate (Maronna et al, 2006, Jensen
et al, 2007).

The package addresses the standard univariate and multivariate framework. How-
ever, as shown in Section 5, it can also be used in more complex situations where
the monitored variables can be suitable features “extracted” from the original data,
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such as principal components, model parameters, etc. Nevertheless, in order to guar-
antee the validy of the implemented Phase I procedures, the “extraction” must be
equivariant under a permutation of the original data.

The choice of the implemented methods reflects the idea that the detection of
location and/or scale changes is of particular interest in most applications. Observe,
that dfphase1 also allows to implement two simultaneous control charts originally
designed to detect separately location and scale shifts. As discussed by Capizzi
(2015), the control limits of the two charts are adjusted so that

(a) The overall FAP is guaranteed, i.e.,
Prob(one or both of the two charts give a false signal) = FAP,.

where FAP is a desired value of the FAP.
(b) The FAP is evenly balanced between the two charts, i.e.,

Prob (first chart gives a false signal) = Prob(second chart gives a false signal).

The R functions are easy to use. The only needed arguments are the Phase I data,
organized as follows.

— Univariate control charts: an n X m matrix, where n and m are the size of each
subgroups and the number of subgroups, respectively. A vector of length m is
accepted in the case of individual data, i.e., when n = 1.

— Multivariate control charts: a p X nXm array, where p denotes the number of
monitored variables. A p X m matrix is accepted in the case of individual data.

5 An Example

5.1 Description of the data
The package can be loaded during an R session using
> library(dfphasel)

To illustrate its use, we consider a dataset of 564 near-infrared (NIR) gasoline
spectra measured at wavelengths from 900 to 1700 nm (in 2 nm intervals). In
particular, 12 gasoline samples have been collected each day for a period of 47
(consecutive) days in an oil refinery. The command

> NIR <- as.matrix(read.table("NIR"))

loads in memory a matrix, named NIR, of dimension
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> dim(NIR)
[1] 564 401

containing the spectra (one for each row). Note that the values are the logarithms of
the absorbances.

Following the suggestions of the production engineers, each day is handled as a
rational subsample. Hence, we assume that the dataset comprises
>m <- 47
subgroups of observations, each of size

>n <- 12

Figure 1, showing the spectra collected during the first day, has been obtained
with the following commands.

> wavelength <- rep(seq(900,1700,by=2),rep(12,401))
> samples <- reorder(rep(1:12,401),

+ rep(c(9:12,5:8,1:4),401))
> xyplot(NIR[1:12,]~wavelength|samples, type="1",
+ xlab="nm", ylab=expression(log(Absorbance)))

Here, we are clearly facing a profile monitoring problem. As often done with
functional data (see Ramsay and Silverman, 2005, and Ramsay et al, 2009, for a
general discussion; Yu et al, 2012, for a specific application to SPM), we reduce the
dimensionality of data via principal component analysis (PCA). Observe that

1. When NC components are retained, PCA provides the following “regression-
like” representation of the ith NIR spectrum

NC
NIR; (nm) = pu(nm) + Z x; ;j€j(nm) +r;(nm)
j=1

where x; ; is the jth principal component, and NIR; (nm), u(nm), &;(nm) and
r;(nm) are the logarithm of the absorbance, the log-absorbance mean, the jth
eigenvector and the residual term for the nmth wavelength. Hence, because for
spectra data, such as the gasoline spectra, the eigenvalues are relatively smooth
functions (see Figure 3), testing for the stability of the principal components x; ;
over time is similar to testing for the stability of the coefficients of a (mixed)
regression model describing the profiles.
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Fig. 1: The gasoline NIR spectra collected during the first day.

2. Atleastin its standard implementation, the principal components are equivariant
under a (row) permutation of the original dataset. Hence, permutation- and rank-
based Phase I methods mantain their distribution-free properties.

The scree plot of the NIR data, obtained with the command

> plot(pca <- prcomp(NIR),main="")

and displayed in Figure 2, suggests to retain the first 4 principal components. Figure
3, displaying the corresponding eigenvectors, can be obained using the following
commands.
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Fig. 2: Scree plot of the gasoline NIR spectra.

> wavelength <- rep(seq(900,1700,by=2),4)

> eigv <- gl(4,401,labels=4:1)

> xyplot(pca$rotation[,1l:4]~wavelength|eigv, type="1",
+ xlab="nm",ylab=expression(log(Absorbance)),
+ layout=c(1,4))

As often done in SPM, we also retain the additional variable

1
=— |ri (nm)],
401 nm=900,...,1700

o
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Fig. 3: First four eigenvectors of the gasoline near-infrared spectra.

which reflects the size of the residual term. The following code “extracts” the first 4
principal components, computes “Q” and, as required by dfphasel, organizes the
results in a 5 X n X m array,

> fitted <- t(tcrossprod(pca$rotation[,1:4],pca$x[,1:4])
+ +pca$center)

> r <- NIR-fitted

> x <- array(rbind(t(pca$x[,1:4]),rowMeans(abs(r))),

+ c(5,n,m))

> dimnames(x) <- list(c(paste("PCA",1:4,sep=""),"Q"),

+ NULL,NULL)
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Fig. 4: Combination of an Hotelling 72 control chart (upper panel) and a control
chart for monitoring the stability of the covariance matrix (lower panel).

5.2 Phase I analysis

The mshewhart function can be used to obtain different multivariate Shewhart
control charts (see Table 1). When the data array is the only argument,

> u <- mshewhart(x)

the function provides the graph displayed in Figure 4. The two panels show the
standard control statistics used for monitoring the stability of the mean and dispersion
of a multivariate normal distribution, respectively (see Montgomery, 2009, equations
11.19 and 11.34). However, the control limits
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> u$limits

[1] 25.65993 74.66964

are computed by permutation so that the desired FAP is guaranteed for every multi-
variate distribution.

In dfphasel, the default value of the FAP is 5%, but, as illustrated in the
following, it can be easily changed by users using the FAP argument.

Figure 4 suggests that the dispersion was probably OC during days 35, 36 and 37.
Then, observe that control statistics of days 32, 33 and 34 are below the limit but
larger than the values of the other “in-control” days (see the lower panel). This fact
is even more evident replacing the standard estimates of multivariate location and
dispersion (e.g. Montgomery, 2009, equations 11.17a-c) with the high-breakdown
MCD estimates (e.g. Maronna et al, 2006, chapter 6). Indeed, Figures 6 and 7 show
that, when the observations collected on days 35, 36 and 37 are deleted, days 32, 33
and 34 are flagged as OC for the dispersion.

In dfphasel, alternative estimates of process parameters can be used adding the
optional argument loc. scatter in the call to mshewhart. The output is illustrated
in Figure 5.

> mshewhart(x,loc.scatter="MCD")
Figures 6 and 7 are produced using the following commands.

> mshewhart(x[,,-(35:37)1)
> mshewhart(x[,,-(35:37)],loc.scatter="MCD")

As illustrated by the following code, multivariate Shewhart-type control charts
based on the spatial signs or ranks can be obtained using the score argument.

> mshewhart (x,score="Spatial Signs")
> mshewhart (x,score="Spatial Ranks")

Results, displayed in Figures 8 and 9, show that the control statistics based on these
two transformations fail to detect any OC situation.

The four principal components and the additional variable Q are expected to
be (more or less) independent. Hence, for these data, process stability can be also
tested applying separately one or more univariate Phase I control charts to the five
variables. For reason of space, we will show only the application of three different
schemes to the second principal component.

The shewhart function can be used to plot some univariate Shewhart-type control
charts. The command
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Fig. 5: Combination of an Hotelling 72 control chart (upper panel) and a control
chart for monitoring the stability of the covariance matrix (lower panel) based on the
MCD estimates.

> shewhart(x[2,,],FAP=0.01)

produces Figure 10 displaying the combined X — S control chart with limits computed
by permutation.

The stat argument of the dfphasel function can be used to select the control
statistic[s]. For example, the command

> shewhart(x[2,,],stat="Rank")
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Fig. 6: Combination of an Hotelling 72 control chart (upper panel) and a control
chart for monitoring the stability of the covariance matrix (lower panel): days 35, 36
and 37 have been deleted.

“asks” for the two rank-based control charts proposed by Jones-Farmer et al (2009)
and Jones-Farmer and Champ (2010) for monitoring the univariate location and
dispersion, respectively. The corresponding output is shown in Figure 11.

The rsp function implements the RS/P method suggested by Capizzi and
Masarotto (2013b). Figure 12 can be obtained with the following command.

> rsp(x[2,,]1)

Figures 10-12 indicate an increased variability of the second principal component
for days from 32 to 37. Similar results have also been observed for the third and fourth
principal components (but not for the first component and Q).
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Fig. 7: Combination of an Hotelling 72 control chart (upper panel) and a control
chart for monitoring the stability of the covariance matrix (lower panel) based on the
MCD estimates: days 35, 36 and 37 have been deleted.

Globally speaking, the application of univariate and multivariate control charts
signals the presence of an OC condition in the interval [32;37]. The unstability
was attributed to a transitory malfunction of the automatic process adjustments. By
deleting data collected in these days, the hypothesis of a stable process is accepted.
Hence, observations up to day 31 and after day 37 can be used to study the process
capability and design a Phase II control chart for prospectively monitoring the
process.
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Fig. 8: Multivariate Shewhart control charts based on the spatial signs for testing for
the stability of location (upper panel) and dispersion (lower panel) over time.

6 Conclusions

We have illustrated the structure and the use of an R package developed for the
distribution-free Phase I analysis of univariate and multivariate data. After some
additional testing, and the implementation of further methods, the package will be
available from the The Comprehensive R Archive Network (CRAN).
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Fig. 9: Multivariate Shewhart control charts based on the spatial ranks for testing for
the stability of location (upper panel) and dispersion (lower panel) over time.
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Big Data Analytics and System Monitoring &
Management

Kwok Leung Tsui and Yang Zhao

Abstract Due to the advancement of computation power and data storage/collection
technologies, the field of data modelling and applications have been evolving rapidly
over the last two decades, with different buzz words as knowledge discovery in
databases (KDD), data mining (DM), business analytics, big data analytic, etc.
There are tremendous opportunities in interdisciplinary research and education in
data science, system informatics, and big data analytics; as well as in complex
systems optimization and management in various industries of finance, healthcare,
transportation, and energy, etc. In this paper, we will present our views and experi-
ence in the evolution of big data analytics, challenges and opportunities, and some
applications in system monitoring and management.

Key words: Big data analytics; system surveillance; prognostics and health man-
agement; large scale simulation

1 Introduction

With the fast development of information technology, social media, data collection
capacity and data storage, big data analytics field is now rapidly expanding in all
science and engineering domains. Real-world applications such as telecommunica-
tions, health care, pharmaceutical or financial businesses generate massive amounts
of data round the clock (del Rio et al., 2014). Taking web social media alone for in-
stance, today’s customer is estimated to generate 2.5 quintillion bytes of data per day
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between tweets, likes, comments, blogs, videos and images (Strong, 2015). These
big data streams contain enormous information stored in the form of hidden patterns
and unknown correlations. Analyzing big data that was previously untapped and
inaccessible enables new insights resulting in better and faster decisions.

The process of examining big data to uncover hidden patterns, unknown correla-
tions and other insights is referred to as big data analytics (SAS Institute Inc., 2012).
The primary goal of big data analytics is to help make intelligent decisions through
analyzing large data streams from multiple sources. Big data analytics has benefited
many industries in various aspects, and created many opportunities for research (Rus-
som, 2014, Wu et al., 2014, Chen et al., 2012). At the same time, more challenges
have been raised along with opportunities, such as increased noise in large data,
and under-developed policy for protecting individual privacy and security (Hilbert,
2016).

System monitoring and management refers to the framework of continuous
surveillance, analysis and interpretation of related data for system maintenance,
management and strategic planing. This framework is essential to ensure that the
entire system is stable and in control. The concept of system is generally defined as
‘an organized set of detailed methods, procedures and routines created to carry out
a specific activity or solve a problem’, and has been successfully applied to many
domains, ranging from mechanical systems to public health systems (Tsui et al.,
2008, 2014, Plett, 2006). Like many other applications and research fields, big data
analytics has permeated in the domains of system monitoring and management,
and has been verified to be an effective approach in practice, such as syndromic
surveillance (Manyika et al., 2011, Ginsberg et al., 2009), electronics-rich system
management (Pecht and Jaai, 2010), emergency departments simulation and opti-
mization in medical system (Guo et al., 2016) and mass transit planning (Wang et al.,
2014).

This paper attempts to review the issues associated with big data analytics in a
general sense, by discussing the evolution of big data analytics, categorizing data
types based on the data sources and collection processes, and providing some insights
on research opportunities and challenges brought by big data. Specifically, we provide
an overview and discussion on system monitoring and management driven by big
data analytics.

2 Evolution of big data analytics

The origins of big data analytics can be traced back to 1970s or before, when research
communities in computer science (CS) and statistics, such as machine learning and
statistical computing played a major role in data mining. In the following decade, the
scale and volume of data had grown dramatically due to the capability of computing
power and automation. To distinguish these large data from the conventional ones,
they were referred to as ‘very large data base(VLDB)’ or ‘massive data (MD)
sets’ among the CS and statistics research communities. In 1990s, we witnessed an



Big Data Analytics and System Monitoring & Management 371

unprecedentedly fast development and maturation of the methodology and theoretical
foundations of data analytics across various disciplines from data mining, statistical
learning, to knowledge discovery in database (KDD), and we label this as the first
wave of big data analytics. In this period, most of the development of data analytics
activities fell primarily in the realm of academic.

Humans have never stopped pushing the boundary of their knowledges forward.
After the first wave, the giant success in methodology and theory development of data
analytics quickly traveled to every corner of the research world, and even industry.
More and more people realized the value of big data, and discovered the potential
to change and improve society and humans lives. Since 2000, big data analytics
has successfully developed in a lot more disciplines, such as business analytics
(in business and management schools); and informatics in science and engineering
(including bioinformatics, health informatics, systems informatics, etc.). We label
this period the second wave, during which there was a parallel development in big
data analytics among academic, education and industry. Figure 1 depicts the brief
history we discussed above, which provides a clear picture of the evolution of big
data analytics.
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Fig. 1: A brief history of big data analytics
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3 Opportunities and risks of big data analytics

3.1 Active and passive data

Data sources are critical to the effectiveness of data analytics. Depending on the
sources and collecting processes, we divide big data into two main categories:
Active data and passive data.

Active data (or primary data) refer to the data that are collected to study the
scientific, health, engineering or business problems at hand, through a well-designed
or planned data generation or collection mechanism for the purpose of study. This
is similar to Design of Experiment (DOE) study in manufacturing applications.
Examples of active data can be found in many applications, such as digital survey
of the sky in astronomy, monitoring and surveillance in risk management in finance
and banking industry, sensor data for prognostics and systems health management
(PHM), transportation management, computer and communications management,
etc.

On the contrary, passive data (or secondary data) refer to the data that are readily
available or naturally collected for various other purposes but are potentially useful
for addressing our current questions of interest. This is similar to production data in
manufacturing applications. Examples of passive data include customer transaction
data, electronic medical records, web searches, social media data, etc.

In real applications, active and passive data are complementary to each other.
It is most effective to make use of both active data and passive data in real life
data analytics applications. In the next section, we will present some data analytics
examples which take advantage of both data types.

3.2 Opportunities of big data analytics research

The availability of big data in many new areas introduces new research opportunities
in statistical modeling. In particular, enormous and detailed data at various locations
and time domains make it possible to develop models for both population and
individual levels. For example, Alyass et al. (2015) provided a thorough discussion
on the feasibility and challenges of personalized medicine. A global approach to
personalized medicine might be to model population heterogeneity in real time, as
well as to integrate and manage various data sources and types to improve patient
treatment. Another example is to develop in-situ automotive prognostics by tracking
and analyzing user-specific driving records over the life of an automobile (Ji et al.,
2013).

An integration of active and passive big data leads to a new challenge in big
data analytics. Instead of solely relying on active data, researchers are now trying to
incorporate existing passive data that might enhance the models for data analytics,
prediction and decision making. For example, in wind turbine applications, engi-
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neers attemped to improve wind power prediction by integrating wind speed (active
data) and environmental factors (passive data), such as wind direction, air density,
humidity, turbulence intensity, etc (Lee et al., 2015). In public health applications,
one would like to improve the accuracy of predicting weekly counts for influenza
like illness (ILI) by integrating ILI activity reports (active data) from Centers for
Disease Control & Prevention (CDC) and internet search data (passive data) (Yang
et al.,, 2015).

There are a lot more research opportunities, such as design of sensor locations,
development of new modeling methods for incorporating web data as predictor
variables and scaling with large data size and dimensionality, forecasting with process
parameters, etc.

3.3 Risks in big data analytics

While big data creates a lot of opportunities, we should be aware of the potential
risks as well.

Below we illustrate the opportunity and risk of big data analytics through the
famous Google Flu Trend (GFT) example. GFT is a data analytics model developed
by Google for predicting weekly reported ILI rate using instant query data (Lazer
etal., 2014, Ginsberg et al., 2009). ILI is defined as a influenza like clinical syndrome,
such as fever and cough, without a known cause. It is regarded as an indicator of
influenza activity level around the region. CDC reports weekly ILI rates in the US
with state-level detail, but there is always a one to three weeks delay in the report.
It is recognized that a timely detection of acute disease outbreak means more days
gained, more lives saved and more resources saved. Therefore, an accurate prediction
of ILI before CDC'’s release report would be helpful for developing intervention
strategies and remedies. In 2008, researchers from Google developed a web service
GFT, claiming that they could accurately predict (nowcast) the ILI rate by modeling
instant search queries. However, as reported in Lazer et al. (2014), Butler (2013),
GFT failed by predicting more than double the proportion of doctor visits for ILI
than the CDC report in the 2012-2013 season. Figure 2 depicts the trend of GFT
prediction on ILI and actual CDC data over time (Lazer et al., 2014). As shown
in Figure 2, GFT reported overly high flu prevalence from 21 August 2011 to 1
September 2013.

GFT’s failure highlights a number of potential risks in prediction and forecasting
models based on big data analytics. For example, the number of predictive variables
can change over time, the impact of individual variables may change as well, and
thus it is important to update the prediction model over time. In fact, the GFT
prediction model has run ever since 2009, with a few changes announced in October
2013 (Ginsberg et al., 2009). GFT’s failure has led to a large number of research
papers aiming at improving the prediction performance of GFT (Copeland and et al.,
2013, Yang et al., 2015, Santillana et al., 2014). One representative method is ARGO
proposed by Yang et al. (2015), which not only incoprates the seasonality in historical
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Fig. 2: GFT overestimation in the 2012-2013 season (Lazer et al., 2014)

ILI rates, but also captures changes in peoples’s online search behavior over time.
Comparing GFT’s failure and all the subsequent revisions including ARGO in ILI
prediction, there are some lessons we can learn. First, it is important to investigate
and understand why the search terms are predictive. Second, inference relying on
big data sources only may be misleading, one should investigate information from
big data together with traditional knowledge.

In addition to the GFT example, there are plenty of other examples that illustrate
the potential risks of big data analytics. In medical research, one has reported that
forty percent of the experiments reported in research journal can not be reproduced.
In finance hedge fund companies, many consultants have claimed that they have
outperformed the market by applying their investment models to historical data. The
truth is that their claimed successes were mainly caused by noises rather than signals
most of the time.

4 Big data analytics in system monitoring and management

In this section, we will discuss some applications in system monitoring and man-
agement through big data analytics. Specifically, we will illustrate the role of big
data analytics in three application domains, namely public health and healthcare
surveillance, prognostics and systems health management (PHM), and large-scale
simulations.

4.1 Public health and healthcare surveillance

Public health surveillance aims to systematically collect, analyze, and interpret public
health data to understand trends; detect changes in disease incidence and death rates;
and plan, implement, and evaluate public health practices (Tsui et al., 2008). Big
data provides great promise for public health, as certain critical activities, such as
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monitoring population health status and evaluating population-based health service
quality, require the ability to collect volumes of information, rapidly interpret data,
and monitor data for long periods of time (Thorpe and Gray, 2015).

At population level, traditional public health data includes information from vital
statistics registries and hospital admission statistics. In the last few decades, more
health data has been assimilated from electronic medical records, over the counter
(OTC) drug purchase records, geographical positioning systems, social media and
beyond (Wyber et al., 2015). At individual level, personal health data has been
diversified and enriched as well. New techniques, such as wireless wearable elec-
trocardiogram (ECG) sensor and wearable glucose monitor enable the cost-effective
collection of abundant detailed personal health information (Zheng et al., 2014).
These new data sources, together with traditional ones, provide great opportunities
for developing effective systems for improving healthcare and public health surveil-
lance. Below we will address three common surveillance systems.

4.1.1 Syndromic surveillance

The objective of syndromic surveillance is to make early detection of disease out-
breaks (natural or an intended bioattack) by monitoring data that is related to the
outbreak, such as influenza-like illness (ILI) symptoms, over-the-counter (OTC)
drug sales, hospital telephone hotline calls, and emergency room visits (Tsui et al.,
2008). The data streams are usually in temporal, spatial or spatiotemporal form. By
monitoring various disease-related indicators, an outbreak can be detected earlier
than by conventional reporting of confirmed cases, so that countermeasures can be
implemented effectively (Rolka et al., 2007, Shmueli and Burkom, 2010).

As an example of syndromic surveillance, Figure 3 shows the time series plots
of syndromic data taken from a large Maryland county during influenza season
of 2004 (Rolka et al., 2007). The plot depicts the trend of several disease-related
indicators, including counts of respiratory diagnoses from visits to civilian physician
offices (‘Office Visits’), military clinic visits (‘MILITARY”), hospital emergency
departments (‘ED-UI’ and ‘ED ILI’), and sales of related OTC remedies (‘OTC’).
As shown in Figure 3, there is a sharp rise among the indicator beginning in late
November 2003, which is confirmed by positive laboratory influenza tests. It should
be noted that the September increase in OTC sales is not consistent with the other
data streams. In fact, there were sporadic influenza cases documented in October and
early November, which were reflected by OTC sales while not by the clinical visits.

Early detection of outbreaks is not trivial in multivariate data streams environ-
ment. Decision making involves analytics in terms of which data sources or combi-
nations to test, which algorithm to use, how to define an outbreak with respect to
numerous types of outbreak patterns, etc. Various independent syndromic surveil-
lance systems have been developed, such as Electronic Surveillance System for the
Early Notification of Community-Based Epidemics (ESSENCE) (Manyika et al.,
2011), Early Aberration Reporting System (EARS) (Hutwagner et al., 2003) and
GFT (Ginsberg et al., 2009). A detailed review concerning syndromic surveillance
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Fig. 3: An example of respiratory syndrome data (Rolka et al., 2007)

systems can be found in (Tsui et al., 2008) and (Yan et al., 2006). However, as pointed
out by Tsui et al. (2013), how to integrate disparate data sources as well as unify
with other surveillance systems to provide accurate detection of outbreaks remains
a major challenge for the existing syndromic surveillance systems.

4.1.2 Public health surveillance

The objective of public health surveillance is to examine trends, detect changes in
disease incidence and death rates, and to plan, implement, and evaluate public health
practice by systematically collecting, analyzing, and interpreting public health data
(chronic or infectious diseases).

Understanding the challenges to nations’ public health system and how those
challenges are shifting over time is of crucial importance for policymaker to es-
tablish effective strategies. In general, databases containing sufficient information
about mobility and mortality across regions, time, age, and gender are prerequisite
for informed analytics. Many public health organizations have made great efforts
to maintain such databases, such as the Global Burden of Disease (GBD) project
by the World Health Organization (WHO) for quantifying health loss from hun-
dreds of diseases, injuries, and risk factors (Forouzanfar et al., 2015), and a wide
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array of disease database by the Centers for Disease Control and Prevention (CDC)
(http://www.cdc.gov/DataStatistics/).

In public health surveillance, the volume and velocity of data streams have been
dramatically growing since the last decades. Taking the sample-based mortality
surveillance system in China as an example, the surveillance population has increased
from 6% to 24% of the Chinese population from 1978 to 2013 (Liu et al., 2016). In
spite of data volume, the advanced information technology has made the collection of
cause-of-death data in a more timely manner. Since 2008, information on individual
deaths in all population catchment areas in China has been reported in real time via
a Internet-based reporting system (Wang et al., 2008).

The availability of public health big data may provide a comprehensive picture
of health system status in terms of what causes significant change in population,
what the underlying risks are, how the pattern of health loss changes, etc. Plenty of
efforts have been done for monitoring and evaluating population’s health by taking
advantage of public health big data. For example, GBD 2013 Mortality and Causes
of Death Collaborators (2015) provided a systematic analysis of the levels and trends
for age-sex-specific all-cause and cause-specific mortality for 240 causes of death;
Zhou et al. (2015) studied the effect of ambient air pollution on adult respiratory
mortality in China at city level; and Pluemper and Neumayer (2006) investigated the
impact of armed conflict on gender structure in life expectancy.

4.1.3 Personal health surveillance

The objective of personal health surveillance is to monitor personal health perfor-
mance, such as medical history, real-time health information and vital signs, for
understanding individual health conditions, early detection of health risks and pro-
viding effective medical care to individuals.

In the field of personal health surveillance, the big data approach may facilitate the
development of effective medical care system and enable more precise management
of individuals to improve the health of entire populations. Researchers have been
actively seeking for innovative solutions that could improve the quality of patient
care via big data analytics.

One example is the use of unobtrusive sensing and wearable devices for personal
health monitoring. For patients, the devices can provide real-time information and
facilitate timely remote intervention to acute events such as stroke and heart attack.
This type of implementation would be effective particularly in rural areas where
expert treatment may be unavailable (Zheng et al., 2014). Additionally, for healthy
population, unobtrusive and wearable monitoring can track their health and fitness
closely, which will enable detecting any health risk and facilitating the implementa-
tion of preventive measures at an earlier stage.

At population level, the data collected at individual level can be aggregated for
understanding and evaluating the medical care effectiveness of entire cohort. Various
analytics methods have been proposed for monitoring patient disease conditions,
such as sets-based methods (Chen, 1978) and risk adjustment methods (Steiner
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et al., 2000). Woodall (2006) provides detailed discussions of these methods for
healthcare applications.

4.2 Prognostics and systems health management (PHM)

PHM is the process of real time monitoring and accessing the extent of deviation
and degradation of a system for predicting its future ‘effective reliability’ (Pecht and
Jaai, 2010). In recent years, PHM has emerged as an essential approach for achieving
competitive advantages in the global market by improving reliability, maintainabil-
ity, safety, and affordability (Tsui et al., 2014). In industrial and system engineering,
modern systems are often built with overwhelming complexities. Monitoring com-
ponent performance through sensors (e.g. vibration, current/voltage, etc.) have been
widely deployed within these systems, which enable monitoring data streams at both
macro and micro scale.

Evaluating system reliability by analyzing the monitoring data in real time is cru-
cial for managing system. Taking battery management system (BMS) as an example,
BMS plays a vital role in improving battery performance and optimizing system
operation in a safe and reliable manner. Various sensors are installed in the battery
pack for data acquisition at the monitoring layer, and then the real-time collected
data are used to maintain the system safety and determine the battery state (Xing
etal., 2011). Battery state, mainly including state of health (SOH) and state of charge
(SOCQ), is indicator of the health status of batteries, which can be used for determin-
ing the charge time, discharge strategy, cell equalization, and thermal management
among the cells. Plenty of research works have been done for system monitoring
and maintenance in BMS, such as remaining useful life (RUL) prediction (He et al.,
2011, Si, 2015, Saha et al., 2009) and state of charge (SOC) estimation (Chen et al.,
2014, Omar et al., 2013, Plett, 2006). A comprehensive review on PHM approaches
in BMS and electronics-rich systems can be found in the work of Plett (2006) and
Xing et al. (2011).

Besides BMS, there are many PHM applications taking advantage of large mon-
itoring data streams. For example, fault diagnosis on gear crack development (Lei
and Zuo, 2009, You et al., 2010), predicting RUL of rotational bearings (Chen and
Tsui, 2013, Mahamad et al., 2010) and equipment maintenance in large-scale smart
manufacturing facilities (O’Donovan et al., 2015).

4.3 Large-scale simulation for public safety and disaster
management

Real time data streams have become more and more available across pervasive public
networks, which creates opportunities in intelligent management and operation under
emergencies. Large-scale simulation, as a powerful tool for imitating the operation of
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a real-world process or system, has been significantly advanced by the accessibility
of big data for system representation and simulation model development. Large-scale
simulation is of crucial importance in many applications, such as public safety and
disaster management, where the in-situ data during emergency are difficult to collect,
and tremendous cost is involved.

One example is simulating large-scale crowd evacuation under emergencies. Liu
et al. (2013) proposed a simulation approach for detailed analysis of passenger
flows and assessing the crowdedness level of metro stations based on field surveys.
Wang et al. (2015) studied and quantified the impact of the crowd physiological
and psychological factors on large-scale evacuation, and provided a probabilistic
description of crowd route selection. Developing such simulation model requires
an extensive understanding of human behaviors and ambient environment, such as
effective analysis of personnel movement, overall traffic situation during evacuation,
as well as uncertainties in individual behavioral reactions under pressure and tension
(Liu et al., 2014, 2015). All these factors play an important role in evaluating
evacuation plans and predicting evacuation time under emergencies.

Another example is simulating disease propagation in spatiotemporal domain,
which provides a useful tool for establishing and evaluating preventive strategies.
Figure 4 shows a simulated map for disease propagation in Atlanta metropolitan area.
The size and color coding of the circles represent the proportion of infected people
in the county, which will grow over time. It illustrates advent event scenarios with
respect to spatial locations, enabling graphical display of various key disease spread
and severity in a systematic and aggregate format, and analysis on the correlations
of diseases with symptoms, such as age groups, contact history and cluster events.
With advanced syndromic surveillance techniques and real-time monitoring data,
the dynamical spatiotemporal spread of disease can be simulated precisely. Many
simulation models and methods have been proposed for studying disease propagation.
For example, Wong et al. (2016) developed a simulation model of an influenza
pandemic with a localized population structure to study the effect of individual
school closure strategies on influenza pandemic in Hong Kong. More example of
disease spread simulation approaches can be found in the work of Angulo et al.
(2013), Perez and Dragicevic (2009) and Yang et al. (2011).

5 Conclusions

Nowadays, the concept of big data is prevailing in many application and research
domains. In this paper, we reviewed the evolution of big data analytics and discussed
its research opportunities and challenges. Based on the data sources and collecting
processes, we divide the types of big data into two main categories, i.e. active data
and passive data. In real applications, active and passive data are complementary
to each other. It is most effective to make use of both active data and passive data
in real life data analytics applications. For illustration purpose, we discussed and
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Fig. 4: A simulated maps for disease propagation in Atlanta metropolitan area

illustrated some applications in systems monitoring and management through big
data analytics.

While there exist challenges and barriers, big data analytics has drawn much
attention from researchers and practitioner in many fields. It is clear that it will
continue to grow in new dimensions and areas under different challenges. This will
provide opportunities and risks to academics and industries.
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1 Introduction

With multivariate processes, it may happen that some quality variables are more
expensive and/or difficult to measure than the other ones, or they may demand much
more time to measure. Their measurement may even be destructive. Aparisi et al.
(2012) give as an example a process of producing an electronic component, whose
quality variables are two easily measured voltages and a third voltage which is the
voltage that will burn it.

For monitoring such processes, the variable dimension approach was recently
proposed. The idea is to measure always (at each sampling time) the “non-expensive”
variables and to measure the expensive ones only when the values of the non-
expensive variables give some level of evidence that the the process may be out of
control.

The approach can lead to significant savings in sampling costs (the gain de-
pending, of course, on the ratio between the costs of measuring the “expensive”
and the “inexpensive” variables). In many cases, the variable dimension approach,
contradicting the intuition, may also result in faster detection of special causes.

The general principle of the approach has been formalized concretely in a number
of process control charts proposals, which differ in their specific forms. The first one
to appear was the variable-dimension T2 (VDT2) chart (Aparisi et al., 2012). The
purpose of this paper is to review and compare the several variants of the approach.

The procedure bears much similarity with the one of variable parameters (or
adaptive) control charts, pioneered by Reynolds et al. (1988); other examples, far
from being exhaustive, are Costa (1999); and, regarding the T2 chart, Aparisi (1996)
and Aparisi and Haro (2001). In these, the sample size and/or the sampling inter-
val and/or other parameter of the control chart (such as the control limits or the
smoothing parameter in EWMA schemes) are made variable according to the most
recent sample information. The variable dimension approach differs though from the
variable parameters approach in that it is not the sample size or sampling interval
or control limits that are made dynamically variable, but rather the very variables
being measured (thus the denomination “variable dimension”).

Note that there is a difference between the variable dimension approach and all
previous approaches that aim to reduce the dimensionality of the variable space, such
as principal components (Jackson, 1980, 2003), latent variables or PLS methods,
which are mostly used in the chemical industry (Kourti and MacGregor, 1996;
Nomikos and MacGregor, 1995; Ferrer, 2007, 2014), the U 2 chart (Runger, 1996)
and other similar approaches (Bodnar and Schmid, 2005). Namely, all approaches
cited, although reducing the dimension of the space considered for process control,
require nevertheless measuring all variables (in the original high dimension space)
prior to the transformation that leads to the dimensionality reduction. The variable
dimension approach aims to reduce the number of variables actually measured. The
goals are different, as the underlying assumptions or context. The motivation of the
previous approaches cited is the difficulty in interpreting and/or analyzing a huge
number of variables (whereas there may be no problem in measuring them; for
instance, the PLS approach is typically applied in data-rich environments in which



The Variable-Dimension Approach in Multivariate SPC 387

sensors Easily provide measurements of many variables with a high frequency). On
the other hand, the variable-dimension approach is devised for situations in which,
even if the number of variables may be small, some variables are much more costly
to measure than the other ones.

An approach whose motivation is closer to the one of the variable-dimension ap-
proach is the variable selection method proposed by Gonzélez and Sanchez (2010);
with this, however, the dimensionality reduction is permanent: some variables are
never measured. In the variable-dimension approach the number of variables mea-
sured is, as its name says, variable, in an adaptive way — that is, according to the
information provided by the last sample statistic.

Four process control charts based on the approach have been developed. They
are described, in chronological order, in the next four sections. The final section
summarizes the main points.

2 The variable-dimension 72 (VDT2) control chart

The VDT?2 chart, developed by Aparisi et al. (2012), is one-sided. In its most general
version, it has a pair of upper control limits (CL; and CL;) and a pair of warning
limits (w; and w,), where the subscript “1” refers to the samples that have only the
p1 variables that are cheap and easy to measure and the subscript “2” refers to the
samples that have all the p variables. When the sample has only p; variables, the T2
statistic is computed only with the corresponding covariance submatrix.

When the sampling point (Tiz,i = 1,2), exceeds the corresponding control limit,
the process is declared out of control; when w; < Tl.2 < C; the next sample is taken
with all p variables, and when Tl.2 < w;, the next sample is taken with only the p;
“inexpensive” variables.

The analysis of a large spectrum of cases in the paper showed that the deterioration
in performance was negligible when the warning limits were made equal (w; = wy =
w); also, CL; could be made equal to infinity without significant effect on the chart
performance. Making CL; equal to infinity is equivalent to have no control limit
for samples with p; variables, and implies that a signal cannot occur with a sample
with the p; variables. The performance is not impaired though, because this enables
tightening the control limit (relatively to the CL, of the chart with two control
limits) since a false alarm cannot occur either with p; variables. On average, this
compensates for the delay imposed by the need of a sample with p variables to have
a signal: the resulting average run length is practically not reduced. The result of
having only one control limit and one warning limit is a simpler control chart to
operate and understand by the practitioners.

For the details, the reader is referred to the paper (Aparisi et al., 2012).

The analysis showed that the VDT?2 chart can considerably reduce the sampling
costs and, quite surprisingly, even reduce the out-of-control ARL. This apparently
paradoxical result can be ascribed to the aforementioned tightening of the control
limit; this bears some analogy with the greater efficiency of adaptive control charts
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relative to fixed parameter charts, which comes from a better allocation of sampling
effort. Another way of viewing this, as suggested by the editor of the journal, is that
the chart has some kind of memory, since another sample point is needed for a signal
when a T2 value from a sample with p; variables exceeds the warning limit. This
constitutes a sort of “run rule”.

For preserving space, we do not reproduce here the three pages of tables of the
given reference, but the results were that in most cases analyzed the VDT2 chart
exhibited an out-of-control ARL shorter than even the ARL of the 72 chart on all p
variables, together with a significant reduction in the sampling cost (the p variables
having to be measured only part of the times). This refers to optimized designs. A
computer program running in Windows and with a user-friendly interface was made
available for such optimization. The percentage of times all variables are measured
is thus a result of the optimization, and depends on the shifts in the mean vector used
for optimization. Only for very small shifts (for which the T chart is quite inefficient
though) this percentage is high as 70 or 80%; for large shifts it can be as low as 5%.
It is quite relevant (ranging from 10 to 50%) for moderate shifts.

For moderate shifts, the reduction in the ARL provided by the variable-dimension
approach is substantial; only for large shifts (that are quickly signalled even by the
T? chart) there is no reduction or even a small increase, but this also results in small
ARLs, of the order of 2 or less. On the other hand, these are cases where samples
with all the variables are taken less than 20% of the times, and often less than
10%. In addition, a sensitivity analysis has shown a considerable robustness of the
optimal solutions with respect to the choice of the shifts for which to perform the
optimization.

3 The double-dimension 72 (DDT2) control chart

An idea that naturally comes to the mind is “When the sampling point exceeds the
warning limit, why to wait for the next sampling time to measure the costly variables?
Why not to measure them immediately?”

This idea has an intuitive appeal, by the analogy it bears (in operational terms)
with double-sampling procedures (although with a distinction that is similar to the
one between the VDT?2 chart and variable-parameter control charts, namely that
what is being increased is the number of variables rather than the sample size.
At each sampling time, a sample is initially taken with p; variables only and the
corresponding T2 statistic (Tgl) is calculated; it this is not sufficient to make a
decision on the state of the process, then the “expensive” p — p; remaining variables
are measured, the overall T2 statistic based on the p dimensions (TI%) is calculated
and compared with another control limit. The performance of the so-called double-
dimension T* (DDT2) chart was investigated by Epprecht et al. (2013).

The DDT2 chart has, as double-sampling plans and double-sampling control
charts (Croasdale, 1974; Daudin, 1992; Steiner, 1999; Costa and De Magalhies,
2005; Rodrigues et al., 2011; and, specifically for the 72 chart, Champ and Aparisi,
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2008), a pair of thresholds for Tgl obtained from the initial sample with p; variables
(in the case, a warning limit w and a control limit UCL,,) and a control limit for the
statistic TI% obtained from the full dimension sample. The expensive variables are
only measured when w < Tgl <UCL,,.

The mathematical model for obtaining the ARLs of the DDT?2 chart is conceptu-
ally more involved than the one for obtaining the ARLs of the VDT?2 chart since it
requires as an intermediate step the distribution of the difference Tl% - Tgl .

Similarly to with the VDT2 chart in Aparisi et al. (2012), a user-friendly program
was also made available for optimization of the design of the DDT2 chart, and used
for performance and sensitivity analyses. The analyses have shown that, however
appealing the idea of not waiting for the next sampling time to measure the costly
variables could be, the DDT?2 chart did not reveal itself more efficient than the VDT2
chart: it presented in general ARLs similar to or larger than the ones of the VDT2
chart for the same shifts. Only in a very few cases the DDT2 chart ARLs were
smaller, but not significantly. We will not linger on the DDT?2 chart, for this reason.

Given the good results of the variable dimension approach (proven reduction in
sampling costs, often accompanied by reduction in the out-of-control ARLs), a natu-
ral follow-up to the work on the VDT?2 and DDT2 charts would be the investigation of
more efficient versions of them. In particular, their performance, although good and
even superior to the one of the 72 chart on all variables, is poor for small shifts. Since
the VDT?2 chart exhibited equal or better performance than the DDT?2 chart, two ex-
tensions have been proposed to it: a variable sample size version of it, the VSSVDT2
chart (Aparisi et al., 2014) and an EWMA version of it, the VDEWMA-T2 chart
(Epprecht et al., 2016). These are described next.

4 The variable-sample-size variable-dimension 7% (VSSVDT?2)
control chart

The VSSVDT?2 control chart (Aparisi et al., 2014) combines, as its name indicates,
the variable-dimension approach with the variable-sample-size (VSS) procedure
proposed by Prabhu et al. (1993) and by Costa (1994). Several other VSS charts
were proposed thereafter, being of particular interest in our context the VSST2 chart
by Aparisi (1996).

The idea underlying the VSSVDT?2 chart is the same of adaptive charts in general:
to intensify inspection when there is more evidence that the process may be out of
control (and to reduce it otherwise, in order not to increase the average inspection
effort). For this purpose, the chart is constructed with two control limits, CL,, and
CL,, and a (single) warning limit, w. When the T? statistic of a sample exceeds the
warning limit (but not the respective control limit), the next sample is taken with all
p variables and sample size ny; when it does not exceed w, the next sample is taken
with only the p; “non-expensive” variables and sample size n;. Given a specified
average sample size ng, n; < ng < np. When using only p; variables and sample size
ny, the control limit to be considered is CL,, and, when using all p variables and
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sample size ny, the control limit to be considered is CL,. The very first sample, for
the beginning of the monitoring or for resuming it after an alarm and intervention in
the process, can be taken with p; variables and sample size n; or with all p variables
and sample size ny; this is an operational decision. In the paper cited, the authors
considered that this first sample is of small dimension and size.

The chart is illustrated in the picture below, reproduced from Aparisi et al. (2014).

T2
CLp sznz,p
CLp1 /
Tznl'pl Tznl,pl 4 Next sample: p and n,
n2,p

Tl

./
Next sample: p1 and n1
Tznz,p

Sample

Fig. 1: VSSVDT?2 chart from Aparisi et al. (2014).

Similarly to the VDT2 chart, the performance analysis revealed that very often
the control limit for samples with p; variables can be eliminated without any effect
of practical significance on the performance of the VSSVDT?2 chart. This makes the
chart operationally simpler.

The optimization of the design of the chart is more complex (or more computa-
tionally intensive) than the ones of the VDT2 and DDT?2 charts, because the number
of decision variables is larger: ny, ny, CL,, (and CL for the chart with two control
limits), w. Four or five parameters. And to the constraint on the ARL, constraints
are added on the average sample size (which should equal a specified value n() and
on the maximum value acceptable for the larger sample size ny. A program has
also been developed, using a Markov chain model for the calculations and genetic
algorithms for the optimization.

In contrast with the VDT2 and the DDT?2 control charts, in which the economy
is sampling costs is a straightforward function of the proportion of samples with
p variables (so that this proportion can be used as a measure of the gain in sam-
pling cost), with the VSSVDT2 chart, this gain is not so directly related with that
proportion, because the samples with p variables have larger size. The expected (or
average) cost of a sample is given by

Jep

A =
s 100

Cp(a-ny—ny)+ny-Cp,
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where a is the ratio between the costs Cp,, of measuring p variables, and Cp,, of
measuring p; variables. Therefore, denoting by %p the percentage of times (samples)
with p variables, the percent economy in sampling cost (relative to the 72 chart)
achieved with the VSSVDT?2 chart can be straightforwardly derived as

Y%op - (a-np —ny)+ 100n;
np-a

This ratio tends to the lower bound %p - n2/ny when a tends to infinity.
The ACS of the VSSVDT?2 chart with average sample size ng is higher than the
ACS of the VDT?2 chart with (fixed) sample size ng. The ratio between them is

%op-(a-ny—ny)+100n;
Yop - no(a— 1)+ 100ny

which tends to n/ny when a tends to infinity.

These costs should be taken into account when deciding between using or not
a VSSVDT2 chart. The performance analysis has shown that the VSSVDT2 chart
provides great improvement in the ARL performance of the (fixed sample size)
VDT?2 chart: depending on the shifts considered, the ARLs can be reduced in 44%
to 83%. This benefit should be balanced against the costs, which vary according to
ni, np and a.

Again, a complete and more concrete picture of the performance of the VSSVDT?2
chart would require a large number of tables, which are not pertinent here, but are
available in Aparisi et al. (2014). We just summarize below a couple of additional
conclusions of the performance analysis in that paper.

The ARL performance of the VSSVDT?2 chart can never match the ARL perfor-
mance of the VSST?Z chart on all p variables (in contrast with the VDT2 chart, which
outperforms the 72 chart on all p variables). But the cost of the VSST? chart on all
p variables is larger, and the ARL differences are small. So, the VSSVDT?2 chart
remains an interesting option when a is large.

For large process shifts the VDT?2 chart shows better, equal or very close perfor-
mance to the one of the VSSVDT?2 chart and becomes then the best choice, given its
smaller sampling cost.

The higher cost of the VSSVDT?2 chart relative to the VDT2 chart motivates
investigating other enhancements to the VDT2 chart that do not increase its sampling
cost. The EWMA procedure is one of the approaches known to speed up the detection
of small to moderate shifts, with no increase in the cost of sampling (for a same value
of %p) and is operationally simpler than adaptive procedures (such as the VSS one).
An EWMA version of the VDT2 chart is the subject of the next section.
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5 The variable-dimension EWMA 72 (VDEWMA-T2) control
chart

The traditional multivariate EWMA chart is the MEWMA chart by Lowry et al.
(1992). In this chart, at every sampling time, first the measures of all variables
are smoothed separately, yielding (or rather updating) as many EWMA statistics as
different variables, and then these EWMA statistics are combined into a single T2
statistic. In that paper, the choice of proceeding to the smoothing first was justified
by the performance analysis, carried out by the authors, of this procedure and of
the alternative procedure of smoothing the 72 statistics of the successive samples,
that would be computed for each sample prior to being entered into a single EWMA
recursive expression. The analysis had shown that smoothing the data first led to
faster detection of shifts in the process mean.

With the variable-dimension approach, however, it wouldn’t make sense to smooth
the successive values of the costly variables that would have been measured at
irregular time intervals (skipping different numbers of sampling intervals), and,
moreover, to compute 7 statistics combining the EWMA values obtained this way
(as if they were meaningful) with EWMA values of variables that would have
been measured at regular time intervals. For this reason, the VDEWMA-T? chart
(Epprecht et al., 2016) computes the 72 values first and next smooths them.

A difficulty remains, nevertheless: how to combine 77 values from samples of
different dimensions (77 values with different degrees of freedom) in a single EWMA
statistic? The solution found was to scale these statistics, or to reduce them to a same
measurement unit, so that they become comparable. Namely, a probability integral
transformation is made, which is simply to compute the value of the cdf of the 7?2
value of each sample, that is, to compute FTﬁl (T?) in the case of the samples with

p1 variables and FT,% (T?) in the case of the samples with p variables, where FTIZ )
P

and FT,E(') denote the cdfs of the in-control T2 statistic from samples with p; and
with p variables, respectively. These are measures of the statistical evidence that
the process might be off-target. Next, to make easier the operation of the chart, the
cumulative probabilities thus obtained is converted to a Z score, by use of the inverse
cumulative standard normal distribution. The normal distribution was chosen just
for convenience; the point is that the result is a value of the N(0,1) distribution
that has the same exceedance probability as the 77 value obtained from the sample,
regardless of the number of variables in it. These Z values can then be smoothed in
an EWMA statistic.

To avoid extra operational complexity, and given the findings in Aparisi et al.
(2012) that the VDT?2 chart with only one control limit and one warning line per-
formed in practice as well as the chart with two control limts and two warning lines,
the EWMA procedure was applied with just one control limit and one warning line.
Also, a reflecting boundary (lower bound for the EWMA statistic) was added to
make the chart more sensitive to shifts in the process mean. The use of such bounds
for one-sided EWMA charts was proven effective by Gan (1993) and adopted since
by other authors.
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A VDEWMA-T2 chart is depicted below, where the big dots correspond to sample
points from samples with all p variables.

Er

CLe 9

WE ‘\/ \./

Fig. 2: VDEWMA-T?2 chart.

The chart operation is as follows: at every sampling time, a sample is taken. It will
consist of measures of only the subset of p; “inexpensive” variables if the previous
point fell below the warning line; and it will consist of measures of all the variables if
the previous point fell between the warning line and the control limit. A point above
the control limt is signal; the first sample after a signal (after investigation for special
causes and resuming the monitoring) may consist of measures of only the subset of
p) variables or of measures of all the variables; this is up to the user, a decision of
practical nature. The performance analysis in Epprecht et al. (2016) considered that
it would consist only of measures of the subset of p; variables, for economy and
because after the intervention it is more likely that the process is in control.

Taken the sample, the 77 statistic is computed, either with p; — 1 or with p —
1 degrees fo freedom (according to the sample dimension) and the cumulative
probability of that 7% value is converted to a Z score by:

=07 (Fe(T]1))
It is the Z score which is smoothed into an EWMA statistic:
E; =max{B,rz; + (1 -r)E;_}

where r is the smoothing constant and Ey = B.
After a signal and intervention, when resuming the monitoring, the EWMA is
returned to the initial value Ey = B.
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A difference between the single control limit of this chart and the single control
limit of the VDT2 chart is that the latter is active only with samples of p variables,
whereas the former is always active. This makes sense because it applies to an
EWMA value that combines data from several samples, of both dimensions (p;
and p), and which had been put to a same “scale” through the probability integral
transformation (computation of the corresponding cumulative probability) and Z
score.

Just for register, the authors had analyzed another EWMA scheme, consisting
of two charts: a VDT2 chart (with only one control limit and one warning line)
combined with an EWMA chart on the Z score, computed the same way as indicated
above. The differences are that the decision for switching from p; to p variables (and
vice-versa) is based on the 72 value in the VDT?2 chart, and that this chart can also
signal.

The performance analysis has been carried out using Markov chain models for
computing the ARLs. These models were also used by computer programs for
optimization of the charts design. The programs, also running in Windows and with
user-friendly interfaces, take as entries the desired ARL( and the shift for which
the ARL; should be minimized. The decision variables are the charts limits, the
reflecting boundary and the smoothing constant.

The analysis has shown that the two versions of EWMA schemes (the VDEWMA-
T2 chart and the joint VDT2 and EWMA charts) performed quite similarly. Then
the VDEWMA-T2 chart was the only retained and described in detail in the paper,
because it is operationally simpler. The Markov chain model of the joint scheme is
much more involved, too, and its optimization is more time-consuming in processing
time.

An interesting result is that the optimization based on ARL minimization leads
almost always to solutions where p variables are measured in all samples or in a quite
large (over 95%) proportion of samples. That is, the variable-dimension procedure
degenerates into a fixed-dimension one. This should be intuitively expected, weren’t
it the fact that with the VDT?2 chart the same ARL optimization criterion leads to
solutions in which the p variables are measured only a small proportion of the times.
This contrasting behavior of the optimization solutions for the VDEWMA-T?2 chart
is not fully understood; maybe (this is only a conjecture) the reason is that, unlike
the VDT?2 chart, the VDEWMA-T?2 chart cannot benefit from the non-existence of
a control limit for samples with p; variables to reduce the control limit for samples
with p variables, and, as the EWMA statistic “drifts” slowly (in contrast with the
serial independence of the 72 values in the VDT2 chart), taking the samples with all
variables will make the VDEWMA-T?2 chart signal faster out-of-control conditions.

This observation showed the need to introduce a constraint on the percentage of
times that all variables are sampled (denoted by %p) in the optimization problem.
The program admits this as an input data from the user. The solutions satisfying this
constraint still have smaller out-of-control ARLs than the VDT?2 chart.

The user can then set %p at any desired value, say 50% or 30%. They can also
try different values to choose a solution based on cost-benefit analysis. The average

cost of one sample is ACS = (1 +a- %) Cp,, where C,, is the cost of a sample with
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only p variables and the cost of a sample with all variables is aCp,, . With a sampling
interval of A, the sampling cost per time equals ACS/h. The benefit is the detection
speed, which is the reciprocal of the average detection delay AAT'S = (ARL—0.5)h.
The product

TJep

ACS/h)-AATS ={1+a-
(ACS/h) S (+a 100

)c,,1 (ARL-0.5)

(note how h cancels out) corresponds to cost per time over detection speed. It can
be used as an objective function. The user can then try different values of %p, get
the solutions, calculate the quantity above and the solution that minimizes it is the
most efficient. Then, & can be determined according to a maximum feasible/tolerated
sampling cost per time ACS/h (and the AATS will be minimized according to this
constraint). Alternatively, one can determine / according to a constraint on the AATS
(and the sampling cost per time will be minimized).

The reader is referred to Epprecht et al. (2016) for more details and extensive
tables of results, but in synthesis, for small and moderate shifts in the process mean,
with constraints of %p = 30% and 50%, the reductions in the ARL with respect to
the VDT?2 chart range from 30% to 50%, approximately (larger %p leading to larger
reductions, naturally).

6 Summary

In multivariate process control, when some of the quality variables are much more
costly to measure than the other ones, the variable-dimension approach can lead to
substantial reduction in the sampling costs, being still very effective in signalling
out-of-control situations. We reviewed the existing charts using this approach. Sur-
prisingly, the variable-dimension T2 chart (VDT2 chart) can signal mean shifts
even faster than its fixed-dimension counterpart, requiring measuring all variables
only a limited proportion of the times. The double dimension 72 chart (DDT2) chart
exhibits equivalent behavior. The variable-dimension EWMA-T? chart (VDEWMA-
T2 chart) is still faster than them. The variable-sample-size VDT2 chart (VSSVDT2
chart) is another enhancement to the VDT2 chart. User-friendly software was devel-
oped for every one of these charts, for automatically performing the optimization of
the chart design, thus making the techniques applicable in practice. For details, the
reader is referred to the original papers.
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