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Abstract

We consider a semiconductor final-test scheduling problem that aims at minimizing the total weighted

tardiness. In contrast to previous studies on this problem, we explicitly take account of the need to assign

human operators to setup operations. We present decomposition-based heuristic solution approaches

and a mixed integer program. In a computational study based on real-world problem instances that

mimic settings at our industry partner, we show that our heuristics clearly outperform a standard solver

when computational time is limited. Based on this result, we provide decision support for managers by

analyzing the capability and effect of rescheduling jobs in the presence of a highly dynamic environment

with frequently changing customer requests and common test machine failures.

Keywords: Scheduling, Flexible job shop, Semiconductor, Tabu search, Simulated annealing

1. Introduction and overview

Today, semiconductor components are omnipresent in a wide range of products. They are essential

elements of, for example, smartphones, tablets, flat-screen monitors, sophisticated cars and aircrafts,

and many medical devices (PwC 2012). Semiconductor companies focusing on the automotive industry

are facing especially strong competition and high customer expectations (PwC 2013). It is therefore not

surprising that operational aspects of semiconductor manufacturing are becoming increasingly important

to these companies (Deng et al. 2010; Uzsoy et al. 1992a).

During an industry project with a developer and manufacturer of semiconductor-based system solu-

tions in North Rhine-Westphalia (Germany), an optimization problem in the above context was brought

to our attention. The company’s customers are mostly automotive manufacturers with extremely high

requirements regarding the quality and flawless functionality as well as on-time delivery of the semi-

conductor devices. It is therefore of major importance to carefully test every single device based on

a schedule that allows on-time delivery of customer orders in the presence of scarce test machine and

labor resources in a dynamic environment with frequently changing customer requests and common test

machine failures. Hence, the focus of our industry project, as well as the scope of this paper, was on
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a scheduling problem in one of the company’s final-test divisions, where packaged semiconductors are

subjected to functional tests.

1.1. The semiconductor manufacturing process

The process of manufacturing semiconductor devices can be divided into front-end and back-end

operations; see Figure 1, where optional operations are depicted by dash-dotted boxes. The process is
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Figure 1: Semiconductor manufacturing process

presented in detail by Uzsoy et al. (1992a) and Lee et al. (1992) and may, of course, slightly deviate

among different companies. We refer the interested reader to these articles and restrict ourselves to

briefly summarizing the process with a focus on the specific setting at our industry partner.

Front-end operations include two major steps. First, wafer fabrication develops the actual integrated

circuits on silicon wafers. Each wafer may contain hundreds or even thousands of circuits. Second,

in wafer probe, the wafers are subjected to tests in order to detect defective circuits. The wafers are

then cut into individual circuits. Non-defect circuits are packaged into branded plastic or ceramic cases

with attached leads. These latter operations are referred to as assembly and branding and form the

first steps in the back-end. The packaged semiconductors are then forwarded to the final-test stage in

lots of varying sizes. We will henceforth refer to these lots of semiconductor packages as jobs. In the

final-test, each device is subjected to multiple functional tests that aim to determine whether the device

is operating at the required specifications and, thus, aim to guarantee defect free products. A device

may, for example, be intended to operate at a specific frequency, which can be tested by stimulating

the device accordingly. The functional tests are performed at different temperatures on specific test

machines (see Section 1.2). If required by a job’s customer, an optional subsequent burn-in operation

followed by additional functional tests is performed. During the burn-in operation, the circuits are

loaded into ovens and are subjected to thermal stress for multiple hours or even days in order to be able

to detect latent defects. Some devices then go through optional steps, e.g., in order to remove moisture

(baking). Finally, the devices are inspected and rotated in a predefined position in an optical control

stage, and are then packed onto reels with a carrier tape for transportation to the customers (tape and

reel).

1.2. Final-test scheduling

In this article, we focus on the final-test stage of semiconductor processing. While, as mentioned

above, final-test operations of a job may include a burn-in operation and additional subsequent tests, the
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broad majority of jobs at our industry partner solely undergoes (multiple) functional testing operations.

We were therefore asked to restrict ourselves to the scheduling of jobs that are exclusively composed

of these latter operations. With respect to the practical applicability of our model, this seems to be

a reasonable assumption because burn-in takes place at large (non-bottleneck) ovens with relatively

long processing times when compared to the processing times of functional tests, such that they can

be considered in a higher-level scheduling problem (as, for instance, presented by Kim et al. 2011; Lee

et al. 1992) that determines partial jobs, being solely composed of functional testing operations, that

can then be included into our (lower-level) optimization problem.

In order for a test machine (also referred to as a test cell) to be eligible for performing a specific

functional test for a given device, it must be a feasible combination of three hardware components (see

also Hao et al. 2014; Uzsoy et al. 1992b). This is schematically illustrated in Figure 2. The tester
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Figure 2: Schematic representation of a test cell

provides the logic needed to test a device (test software) and is able to stimulate the device in order

to decide whether or not it is defect. The handler mechanically handles the device at the required

temperature for a specific test. Further accessories, especially the adapter, define the interface between

tester and device. Some handler-adapter combinations are able to handle multiple devices in parallel

(multisite testing).

As mentioned above, a device is usually subjected to multiple functional tests at different temper-

atures on different test cells. The time needed to prepare a test cell for the execution of a functional

test is referred to as a setup time. It can, for example, result from the need to change the adapter or

handler, load a new software, or wait for bringing the handler to the required temperature. Setup times

are sequence-dependent. That is, they do not only depend on the functional test to be performed on a

specific test cell configuration but also on the preceding functional test and configuration. Setups are

executed by human setup operators and may take a significant amount of time in the range of multiple

hours. At our industry partner, setup operators are considered to be a scarce resource, so that a detailed

planning of setup operations is required.

The testing of semiconductor devices takes place in a dynamic environment, in which changes re-

garding the parameters of the final-test scheduling problem occur regularly. Most important, customers

fairly frequently request a change of the due dates of their orders (so called “emergency orders”, cf. also
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Bard et al. 2012). Furthermore, as also observed by Freed et al. (2007), “machine failures are common

and unpredictable.” Typical issues at our industry partner are defect handlers or adapters. Defect

devices must be replaced on their current test cells, so that the testing process can continue while the

defect device is repaired by a technician. This may take multiple hours or even days. As the purchase

of additional devices is a main cost driver while meeting the customer due dates is highly important

with respect to service quality, it is necessary to carefully determine the required number of devices at

a testing facility.

The main goal of our industry partner is on-time delivery of customer orders. We therefore consider

the objective of minimizing the total weighted tardiness. We refer to the problem under consideration as

the semiconductor final-test scheduling problem with setup operator constraints and denote it by SFTPS.

1.3. Literature overview and contribution

There exists a multitude of articles that focus on scheduling problems in the field of semiconductor

manufacturing. Most of this literature focusses on front-end operations (Bard et al. 2012). Detailed

reviews and overviews are given by Freed et al. (2002), Gupta and Sivakumar (2006), Mathirajan and

Sivakumar (2006), Mönch et al. (2011), and Uzsoy et al. (1992a, 1994), so that we restrict ourselves to

giving a brief overview of research on semiconductor final-test scheduling and closely related fields in

the remainder of this section.

On a fairly general level, Freed et al. (2007) discuss trade-offs between in-house development of

a scheduling system and buying a software solution for scheduling semiconductor testing operations.

With respect to concrete variants of semiconductor final-test scheduling problems, the broad majority

of existing articles assumes labor to “not [being] a constraining factor” (Deng et al. 2010) and therefore

deviates from our industry case. In this stream of research, Ovacik and Uzsoy (1992, 1994, 1995, 1996)

develop decomposition-based solution methods and rolling horizon procedures. Uzsoy et al. (1992b) and

Uzsoy et al. (1991) describe and refine an approximation methodology based on the shifting bottleneck

approach of Adams et al. (1988). Zhang et al. (2011) present a machine learning approach. Zhang

et al. (2006) develop and make use of a mixed integer program (MIP) to analyze capacity planning

issues at Intel Shanghai. Chen et al. (1995) and Chen and Hsia (1997) describe Lagrangean relaxation

approaches. A Petri net based approach is presented by Xiong and Zhou (1998). Pearn et al. (2004)

adapt network algorithms designed for the vehicle routing problem. A simulation study is performed

by Lin et al. (2004). With respect to metaheuristic solution approaches, Deng et al. (2010) propose

a greedy randomized adaptive search procedure. The vast majority of publications, however, focusses

on population-based procedures. Genetic algorithms, for instance, are proposed by Wu et al. (2012),

Wu and Chien (2008), and Herrmann et al. (1995). Wu and Chien (2008) additionally present an

MIP for their specific problem setting. Wang et al. (2015) and Hao et al. (2014) introduce variants of

the estimation of distribution algorithm. Other nature-inspired algorithms are proposed by Cao et al.
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(2018), Sang et al. (2018), Wang and Wang (2015), and Zheng et al. (2014).

In contrast to the aforementioned articles, Bard et al. (2012) state that “in practice, one of the biggest

obstacles [. . . ] is crew availability,” and thus consider a setting which is similar to our industry case. We

are not aware of further articles that explicitly address the incorporation of setup operators into semi-

conductor final-test scheduling problems. Bard et al. (2012), however, consider a very specific industry

case at Texas Instruments. They present procedures that are specifically designed for this setting and

that make use of pre-computed (using the methods described in Deng et al. 2010) schedules that include

decisions on machine setups for a very specific objective function found at Texas Instruments. These

schedules are used as an input for a real-time control model that aims at prioritizing setup operations

under limited crew availability and specifically targets performance measures at the industry partner.

In contrast to the study by Bard et al. (2012), we consider a more general problem setting that uses an

objective function that is more common in the scheduling literature and that directly integrates deci-

sions on the setup of test machines and the assignment of setup operators when scheduling functional

tests. This allows to derive managerial insights that can be utilized by a broader variety of companies.

SFTPS is a variant of the flexible job shop scheduling problem (FJSP), which itself is a generalization

of the job shop scheduling problem (JSP; see, e.g., Blazewicz et al. 2019). It is well known that JSP is

strongly NP-hard for minimizing total tardiness (Graham et al. 1979; Lenstra and Rinnooy Kan 1979).

Hence, SFTPS is strongly NP-hard as well.

Comprehensive surveys on scheduling problems with setup considerations, including the JSP and its

generalizations, are presented by Allahverdi (2015), Allahverdi et al. (1999), Allahverdi et al. (2008), and

Zhu and Wilhelm (2006). Additionally, Chaudhry and Khan (2016) have recently surveyed literature

on solution approaches for the FJSP and its variants. According to their study, population-based

metaheuristics are the most popular approaches in the literature, followed by quite a few variants of tabu

search approaches. The predominance of population-based approaches can also be observed for recently

published articles on the FJSP that are not surveyed by Chaudhry and Khan (2016). Examples include

Defersha and Rooyani (2020) and Ahmadi et al. (2016), who present genetic algorithms, Luo et al. (2020)

and Gong et al. (2018), who propose memetic algorithms, or Mihoubi et al. (2020), who embed a genetic

algorithm into their solution approach. Many researches combine population-based metaheuristics with

other algorithms. Chen et al. (2020), for instance, combine a genetic algorithm with a reinforcement

learning method. Kato et al. (2018) propose a particle swarm optimization approach that incorporates

a random-restart hill climbing procedure. Other researchers incorporate tabu search techniques into

population-based approaches, both for intensification and diversification purposes. Examples include

Nouri et al. (2018) and Li and Gao (2016) (genetic algorithms) or Li et al. (2017) (artificial bee colony

algorithm). Lunardi et al. (2021) propose an iterated local search heuristic and two population-based

metaheuristics (a genetic algorithm and a differential evolution method). They combine the differential

evolution method with a tabu search approach and find that this combined approach outperforms the
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other procedures. Tabu search procedures have recently been proposed by Lunardi et al. (2021), Shen

et al. (2018) and Aschauer et al. (2017).

Summing up, the vast majority of existing approaches for semiconductor final-test scheduling does

not explicitly address the incorporation of setup operators, which is the main research gap that our

study aims to address. With respect to solution approaches, most of the promising and recently pub-

lished articles present population-based procedures. The development and success of these approaches,

however, oftentimes requires intricate guiding strategies, non-adaptive stopping criteria, and complex

parameter adjustments (see, e.g., He et al. 2016). Especially the adjustment of the parameters can

be a very time consuming task, in particular when facing frequently changing problem instances (see,

e.g., Burke and Kendall 2014). Hence, from the perspective of our industry partner, these approaches

are less attractive than classical and well-established local search approaches that tackle the aforemen-

tioned drawbacks and are additionally easy to implement. In the paper at hand, we therefore focus

on the development of two of the most popular classical metaheuristic procedures, namely tabu search

procedures, that, as shown above, are frequently applied for FJSP settings, and simulated annealing

approaches, that have been successfully applied to various optimization problems (see, e.g., Burke and

Kendall 2014; Delahaye et al. 2019). In order to be competitive with respect to solution quality, these

approaches have to make use of strategies that allow an effective exploration of the solution space.

Hence, our approaches make use of neighborhood structures that have proven successful for the FJSP

(see Mastrolilli and Gambardella 2000). In order to adapt these neighborhood structures, we decompose

SFTPS into a FJSP with sequence-dependent setup times and an assignment problem. While the former

problem focusses on the allocation of operations to testers and the sequencing of the operations, the

latter problem considers the assignment of the additional resources, i.e., handlers, adapters, and setup

operators.

As for the incorporation of the dynamic environment, it is of utmost importance for our industry

partner to be able to make use of the expert knowledge of the planners when making rescheduling

decisions. Hence, we decided against internalizing these decisions into our model or to make use of

stochastic processing times or due dates. We rather assume that lots of devices are non-separable (as

usually done in the literature; see, e.g., Lee et al. 1992; Uzsoy et al. 1991) and that due dates and

processing times are deterministic. However, our solution approaches are designed to be applied in a

rolling horizon planning approach (see also Ovacik and Uzsoy 1994, 1995), which allows to manually

initiate a rescheduling of jobs, e.g., with manually split lots that allow parallel testing on multiple

machines in order to take account of changing due dates, or with adapted processing times or a restricted

set of resources in case of hardware failures.

The remainder of this article is structured as follows. In Section 2, we define SFTPS in detail. Next,

in Section 3, we introduce our decomposition-based heuristic solution approaches. They are evaluated

in an extensive computational study in Section 4, where we derive managerial implications on the
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application of our heuristics in dynamic environments. The paper closes with a conclusion in Section 5.

2. Detailed problem statement

In this section, we define the notation and provide a formal definition of SFTPS. A corresponding

MIP is presented in Appendix A. For the sake of notational convenience, we will usually make use of

index sets in order to address specific problem elements (jobs, resource types, resource classes, etc.).

The concrete entity that we refer to will always become clear from the context.

We assume that the planning horizon of length T is divided into a finite number of intervals (time

slots) [t − 1, t], t = 1, . . . , T , of equal length and refer to the length of a time interval as a time unit.

All time parameters that are introduced below, i.e., due dates, processing times, and setup times, are

assumed to be integral multiples of a time unit and can therefore be specified by natural numbers.

We are given a set J = {1, . . . , n} of jobs. Each job j ∈ J corresponds to a non-separable lot of

devices and is associated with a weight wj ∈ N and a due date dj ∈ N. Furthermore, each job j ∈ J is

associated with a set of qj operations Oj = {j1, . . . , jqj} that have to be assigned to and sequenced on

eligible test cells. The processing of operations may not be preempted. The sets Oj are assumed to be

ordered for all j ∈ J , which relates to the fact that, for any pair of operations ji, jl ∈ Oj with i < l, ji

must be completed before the processing of jl may start. We define O =
⋃

j∈J Oj .

Each operation ji ∈ O must be processed by exactly one test cell. As described above (see Figure 2),

each test cell is a combination of entities belonging to three resource types: one tester, one handler,

and one adapter. We denote the set of these types by K = {1, 2, 3}. There exist different classes

of each resource type (see Table 1). Each class represents a specification of a resource type, e.g., a

Table 1: Overview of notation related to hardware resources

Resource type Tester (k = 1) Handler (k = 2) Adapter (k = 3)

Resource classes R1 = {1, . . . , r1} R2 = {1, . . . , r2} R3 = {1, . . . , r3}
Number of copies One copy of each class

(q1i = 1 ∀ i ∈ R1)
Arbitrary number of copies of
each class (q2i ∈ N, i ∈ R2)

Arbitrary number of copies of
each class (q3i ∈ N, i ∈ R3)

specific form of a handler. The set of classes of resource type k ∈ K is denoted by Rk = {1, . . . , rk},

|Rk| = rk. The number of identical copies of resource class i ∈ Rk of type k ∈ K is denoted by qki .

Hence, a feasible schedule uses at most qki entities of this resource class at a given point in time. Each

test cell combines resources of all types and is therefore also referred to as a machine configuration.

At our industry partner, each tester is associated to a unique location in the testing facility, which we

implement by assuming q1i = 1 for all i ∈ R1. Thus, in a feasible schedule, each machine configuration

can process at most one operation at a time. The set of all potential machine configurations is denoted

by M = R1 × R2 × R3. The set of machine configurations that require resource class i ∈ Rk of type

k ∈ K is denoted by Mk
i ⊆ M . Furthermore, for some k ∈ K, we denote the element of the set Rk that

is used in machine configuration m ∈ M by m[k]. For the sake of brevity in our textual descriptions
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in the remainder of this paper, we will only explicitly differentiate between resource classes and specific

copies/entities if this is needed in the given context.

Each operation ji ∈ O is associated to a set Mji ⊆ M of eligible machine configurations, on which

it can be processed in order to be completed. Its processing time pmji ∈ N does not only depend on

the operation itself, but also on the configuration m ∈ Mji , which allows the incorporation of multisite

testing into our model (see, e.g., Freed and Leachman 1999). For all resource types and operations, each

resource class that is included in at least one eligible machine configuration is said to be eligible for this

specific operation.

In order to take account of machine configurations at t = 0 and operations that are being pro-

cessed at the beginning of the planning horizon, we define dummy operations 01, . . . , 0r1 and set

Ô = O ∪ {01, . . . , 0r1}. The set M0i of eligible machine configurations of some dummy operation

0i, i ∈ {1, . . . , r1}, solely includes the machine configuration which is “active” at t = 0 and that includes

resource class i ∈ R1. Furthermore, pm0i = 0 for all m ∈ M0i . Incomplete machine configurations (aris-

ing, for example, because of setup operations that are not finished at t = 0 or testers that are currently

unused) are then easily modelled by defining dummy resource classes that are included in the sets Rk,

k ∈ {2, 3}.

Table 2 summarizes the notation that has been introduced so far. It complements Table 1.

Table 2: Notation used throughout the paper

J Set of jobs J = {1, . . . , n}, |J | = n
Oj Set of operations of job j ∈ J Oj = {j1, . . . , jqj}, |Oj | = qj
O Set of all operations of jobs j ∈ J O =

⋃
j∈J Oj

Ô Set of all operations including the dummy operations {01, . . . , 0r1} Ô = O ∪ {01, . . . , 0r1}
K Set of resource types (tester, handler, adapter) K = {1, 2, 3}
M Set of machine configurations M = R1 ×R2 ×R3

Mji Set of machine configurations eligible for operation ji ∈ Ô Mji ⊆ M
Mk

i Set of machine configurations that require resource class i ∈ Rk of
type k ∈ K

Mk
i ⊆ M

m[k] Element of the set Rk of type k ∈ K that is used in machine con-
figuration m ∈ M

wj Weight of job j ∈ J wj ∈ N
dj Due date of job j ∈ J dj ∈ N
pmji Processing time of operation ji ∈ Ô on machine m ∈ Mji pmji ∈ N
T Length of the planning horizon T ∈ N

We assume that sequence-dependent setup times occur when an operation ji ∈ Ô is processed on

machine configuration m ∈ Mji and is the direct predecessor of some operation gh ∈ O that is processed

on m′ ∈ Mgh ∩M1
m[1]. There are three types of setups (see Table 3). First, the machine configuration

may remain unchanged with the adapter and handler entities remaining installed. In this case, we

assume that the setup time solely depends on the sequence of operations and denote this component

by sji,gh ∈ N0. Second, m′ may result from m by first disassembling and afterwards assembling an

adapter. Note that this includes the case m′ = m, which becomes practically relevant when there are

very few copies of some frequently needed adapter class. In this case, one will have to disassemble m by
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removing the adapter entity of class m[3], which we assume to take s̄mout ∈ N0 time units, and install an

adapter entity of class m′[3] for a period of s̄m′
in ∈ N0 time units. The operation-specific component for

this case is referred to by s̄ji,gh ∈ N0 and may deviate from sji,gh . Third, one may want to modify the

handler. Again, this includes disassembling a handler entity of some specific class and later installing

an entity of the same class. We assume that a handler can only be disassembled after the adapter of

the corresponding machine configuration has been removed. We denote the time needed to remove a

handler entity of class m[2] from m by ŝmout ∈ N0 and the time needed to install a handler entity of

class m′[2] for machine configuration m′ by ŝm
′

in ∈ N0. The operation-specific component for this case

is referred to by ŝji,gh ∈ N0. The times needed to insert and remove adapters and handlers as well as

the operation-specific components add to sequence-dependent setup time as illustrated in Table 3. We

Table 3: Sequence-dependent setup times (ji ∈ Ô on m ∈ Mji to gh ∈ O on m′ ∈ Mgh ∩M1
m[1])

Setup type Disassembly Assembly

Type 1: maintain machine configuration - sji,gh
Type 2: change adapter s̄mout s̄m

′
in + s̄ji,gh

Type 3: change handler (and adapter) s̄mout + ŝmout ŝm
′

in + s̄m
′

in + ŝji,gh

allow idle times between disassembling handlers and adapters of machine configurations. However, in

order to take account of the dynamic environment and the scarce machine resources, idle times are not

allowed when assembling a machine configuration, i.e., a required configuration is completely assembled

directly before the processing of the corresponding operation starts. All entities needed for an assembly

must be available during the entire setup time. The choice of setup times that involve operations 0i,

i ∈ {1, . . . , r1} and configurations m ∈ M0i allow a flexible modelling of the start of the planning

horizon. All components of the setup operations require the assignment of a setup operator during the

entire setup time. We assume that there are h equally skilled setup operators. Of course, each setup

operator can execute at most one setup operation at a time. Finally, given three operations ji ∈ Ô

and uv, kl ∈ O and a tester that is eligible for processing all of these operations, we assume that the

smallest possible overall setup time needed when processing kl immediately after ji on eligible machine

configurations that include this tester can never be larger than the smallest possible overall setup time

needed when processing uv in between ji and kl on eligible machine configurations that include the

tester.

A job is completed when all of its operations are completed. The completion time of an operation

ji ∈ Ô is denoted by Cji . The completion time of job j ∈ J is denoted by Cj . Obviously, Cj = Cjqj

for all j ∈ J . The objective is to minimize the total weighted tardiness,
∑

j∈J wjTj , of jobs, where the

tardiness Tj of job j ∈ J is defined as Tj := max{Cj − dj , 0}. This is summarized in Table 4.

We close this section by presenting an example for disassembling and assembling a test cell on a

specific tester class (tester class index 1) by means of a partial Gantt-chart in Figure 3. It assumes that

an operation 42 is, at some point in time, started to be processed on machine configuration (1, 3, 5).
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Table 4: Remaining notation used throughout the paper

h Number of setup operators h ∈ N
Cji Completion time of operation ji ∈ Ô
Cj Completion time of job j ∈ J Cj = Cjqj

Tj Tardiness of job j ∈ J Tj := max{Cj − dj , 0}

Afterwards the machine configuration is modified by disassembling the currently installed adapter and

handler entities and assembling entities of other eligible handler and adapter classes in order to process

operation 31 on machine configuration (1, 4, 2).

1 · · · p
(1,3,5)
42

s̄
(1,3,5)
out ŝ

(1,3,5)
out ŝ

(1,4,2)
in s̄

(1,4,2)
in

ŝ42,31 p
(1,4,2)
31

· · ·

0 T

tester class: 1

handler class: 3

adapter class: 5

executed by
a setup operator tester class: 1

handler class: 4

adapter class: 2

C42
C31

process
operation 42
on (1, 3, 5)

idle disassemble
adapter

of class 5

idle disassemble
handler

of class 3

idle assemble
handler

of class 4

assemble
adapter

of class 2

operation-
specific

setup time

process
operation 31
on (1, 4, 2)

time

tester class

Figure 3: Exemplary illustration of setup operations

3. Heuristic approaches

In this section, we present heuristic approaches for solving SFTPS. In order to handle the inter-

dependencies between all relevant hardware resources and the allocation of setup operators, we follow

the main ideas of the decomposition-based approaches introduced by Kress et al. (2019) and Müller

and Kress (2021), i.e., we decompose SFTPS into a FJSP with sequence-dependent setup times that

considers the assignment of operations to eligible testers and the sequencing of these operations (mas-

ter problem, Section 3.1), and an assignment problem that considers handlers, adapters, and setup

operators (subproblem, Section 3.2).

3.1. Master problem

In the master problem, we solely focus on assigning the operations to eligible testers and on sequenc-

ing these operations on their assigned testers. In line with the overall objective function, we aim at

minimizing the total weighted tardiness. However, as we neglect handlers, adapters and setup operators,

we make use of modified processing times and setup times. With respect to the processing times of

operations ji ∈ O on testers r ∈ R1, we use lower bounds minm∈Mji
∩M1

r
pmji (master processing times).

Similarly, the setup times between succeeding operations on some specific eligible tester are represented

by the smallest possible total setup times (disassembly, assembly, and operation-specific components)

that can arise over all corresponding eligible machine configurations that include the tester. The master

problem is a variant of the FJSP. It is therefore strongly NP-hard (see Section 1.3).

10



In order to represent feasible solutions of the master problem and in order to define a neighborhood

structure, we make use of the concept of the solution graph as introduced by Mastrolilli and Gambardella

(2000) and later adapted by Müller and Kress (2021). In the following, we will generalize this concept

in order to be able to take account of setup times.

The solution graph contains a distinct vertex for each operation (excluding the dummy operations).

We denote the resulting vertex set by V , so that V := O. The vertices of this set are weighted with the

master processing times according to the tester allocation of the solution. Additional dummy vertices

with zero weights, denoted by (n + 1)0 and (n + 1)1, represent the start and the end of the schedule.

We define D := {(n + 1)0} ∪ {(n + 1)1}. The graph furthermore includes two sets of directed edges.

The first set, denoted by E1, includes an edge for each direct precedence relation among the operations

of the jobs. Hence, for each job j ∈ J and all pairs ji, ji+1 with i ∈ {1, . . . , qj − 1}, the set E1 includes

the directed edge (ji, ji+1). Additionally, dummy edges ((n+1)0, j1) and (jqj , (n+1)1) for all j ∈ J are

added to E1. The second set, denoted by E2, represents the tester allocation and sequencing decisions

of the given solution in the same manner. The edges of this set are weighted with the master setup

times. An edge of this set that originates in the dummy vertex (n + 1)0 ends in the first operation

that is processed on the respective tester in the given solution and is thus weighted with the master

setup time that relates to the corresponding dummy operation as defined in Section 2. For each tester

that processes no operation, a dummy edge with zero weight from vertex (n+ 1)0 to vertex (n+ 1)1 is

included in E2.

Figure 4 illustrates the solution graph and the corresponding Gantt-chart of a feasible solution of

the master problem for an example instance of SFTPS with three jobs and two testers. The solid edges

represent the edges of the set E1 (precedence constraints). Dashed and dotted edges are included in

the set E2 and represent the tester allocation as well as the sequencing decisions for testers 1 and 2,

respectively. The master processing times of the current solution are depicted for all operations. In

order to keep the example simple, only two of the relevant master setup times are assumed to be positive

(11 to 22 on tester 1 and 31 to 32 on tester 2). The figure only depicts these non-zero edge weights. In

the depicted solution, tester 1 processes operations 11, 22, and 33. Tester 2 processes operations 31, 32,

21, 12, and 13. As a result of the precedence constraints, tester 1 is idle from time instant 1 to time

instant 4.

Each vertex ji ∈ V ∪D is associated to a starting time and a tail time. The starting time, denoted by

startji , corresponds to the time instant at which the corresponding operation is started to be processed

on its respective tester when assuming that the master processing times and the master setup times

actually occur. It corresponds to the length of a longest path from (n + 1)0 to vertex ji. Here, the

length of a path is measured in terms of the sum of vertex and edge weights on the path without taking

the last vertex weight into account. Similarly, the tail time, denoted by tailji , relates to the length

of a longest path from ji to (n + 1)1 when excluding the vertex weight of operation ji. The starting

11
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Figure 4: Exemplary illustration of the solution graph

and tail times of all vertices can easily be computed in polynomial time by a straightforward labelling

algorithm. Given these values, the objective function value of the solution follows readily. It defines

a lower bound on the total weighted tardiness of the solution after additionally taking account of the

remaining hardware resources and setup restrictions.

Table 5 illustrates the staring times and tail times for the solution graph of Figure 4.

Table 5: Starting times and tail times for the exemplary solution graph

ji 40 11 12 13 21 22 31 32 33 41

startji 0 0 7 8 5 7 0 2 9 10
tailji 10 6 2 0 3 1 9 5 0 0

We are now ready to define a neighborhood structure on the solution graph in line with Mastrolilli

and Gambardella (2000). Given a solution graph G, and an operation ji ∈ V , we denote the unique

operation uv ∈ V ∪ D with (uv, ji) ∈ E1 ((ji, uv) ∈ E1) by P (ji) (S(ji)). Furthermore, we denote

the mapping of the vertex weights of the solution graph by µ : V ∪ D → N. Generally speaking, we

construct a neighboring solution graph by moving a selected operation ab to one of its eligible testers r.

To do so, we remove ab from its current tester sequence by modifying edge set E2 accordingly. We then

update the starting time and tail time of operation ab, i.e., we set startab := startP (ab) + µ(P (ab)) and

tailab := µ(S(ab)) + tailS(ab). Note that, due to our assumptions on the setup times in Section 2, the

starting times and the tail times of the remaining vertices of the graph are guaranteed to not increase due

to this modification. Next, we determine potential trial moves of operation ab to the operation sequence

of tester r by making use of feasibility results by Mastrolilli and Gambardella (2000). Denote the set of

operations that is processed by tester r by Qr and assume that the elements of this set are ordered in non-

decreasing order of their starting times. Next, compute the sets Lr := {ji ∈ Qr | µ(ji) + tailji > tailab}

and Rr := {ji ∈ Qr | startji + µ(ji) > startab}. As shown by Mastrolilli and Gambardella (2000), all

insertions of ab after the operations of the set Lr \Rr and before the operations of the set Rr \Lr result

12



in feasible solutions of the master problem. In the corresponding proof, the authors show that these

insertion operations do not induce a cycle in the solution graph, which directly relates to feasibility.

This remains true for the case at hand in spite of the fact that, in contrast to the setting considered by

Mastrolilli and Gambardella (2000), the weight of vertex ab will potentially be altered after the insertion

and the fact that new weighted edges are introduced. This is essentially because these modifications

solely cause temporal shifts of operations on testers.

Our neighborhood structure is such that, for a given operation ab and tester r, we construct the

solution graphs for all of the aforementioned feasible insertions (without considering the feasible insertion

at the original position of the operation), recompute the corresponding starting times and tail times as

well as the objective function values, and then select the most promising candidate. It is embedded into

our heuristic frameworks as described in detail in Section 3.4.1.

Consider the example solution graph of Figure 4 and assume that we consider the insertion of op-

eration ab = 21 on tester 1. According to the above procedure, we first remove operation 21 from its

current tester sequence by modifying edge set E2 and updating the starting and tail time of operation 21.

We compute start21 = 0, tail21 = 3, Q1 = {40, 11, 22, 33, 41}, L1 = {40, 11}, and R1 = {11, 22, 33, 41}.

Hence, all insertions of 21 after operations of the set L1 \ R1 = {40} and before operations of the set

R1 \ L1 = {22, 33, 41} result in feasible neighboring solution graphs. Figure 5 illustrates the case of

inserting 21 after operation 11.
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Figure 5: Exemplary illustration of a neighboring solution graph

3.2. Subproblem

The subproblem is to determine a feasible solution of SFTPS by assigning handler and adapter

entities to the operations that have been allocated to testers within the master problem so that they are

processed on eligible machine configurations. Moreover, the subproblem has to decide on the assignment

on setup operators to the resulting setup operations. Again, the problem aims at the minimization of

13



the total weighted tardiness.

Even though the sequences of the operations on their associated testers are fixed, the subproblem

turns out to be strongly NP-hard, even for the case when all setup times are zero and when only one of

the hardware resources (either handlers or adapters) is scarce. This can be seen when considering the

flow shop scheduling problem with machine operators (FSPO) as introduced by Benkalai et al. (2019).

Here, a set J of n jobs and a set M of m machines is given. Each job j ∈ J has to be processed on

each machine in fixed order of the machine indices. It therefore has exactly m operations, denoted by

O1j , . . . , Omj . The processing of operation Oij takes pij ∈ N time units and may not be preempted.

The processing of an operation requires the presence of one of k ≤ m machine operators for the entire

processing time. Benkalai et al. (2019) show that this problem is strongly NP-hard for minimizing the

makespan when the job sequence is fixed. As illustrated by Graham et al. (1979), this implies strong

NP-hardness when instead aiming to minimize the total weighted tardiness. It is now straightforward to

show that our subproblem with zero setup times and only one scarce hardware resource is a generalization

of this setting (the scarce resource can be interpreted as a machine operator in the FSPO setting).

When designing a heuristic approach for SFTPS based on the proposed decomposition, it is especially

important to effectively explore the solution space. We will therefore have to evaluate a large amount of

subproblems in the course of the algorithm (see Section 4.3 for an associated analysis). Thus, in light of

the subproblem’s computational complexity, a heuristic algorithm for solving the subproblem is needed.

In order to achieve overall runtimes that are acceptable for practical applications, a greedy algorithm is

a reasonable choice. Given the solution graph of a solution to the master problem, we therefore solve the

subproblem by iteratively assigning handler and adapter entities as well as setup operators in a greedy

manner.

The details of our greedy approach are presented in Algorithm 1. It essentially iteratively considers

the operations, i.e., the vertices of the solution graph, in an order that guarantees the construction of a

feasible solution. Feasibility is achieved by solely selecting available operations in line 9. An operation

is available, if all of its direct predecessors (with respect to both edge sets) in the solution graph have

been selected in a previous iteration of the algorithm. The dummy vertex (n + 1)0 is initially defined

to be a vertex that has previously been selected. The concrete strategy of selecting available operations

must be specified when calling the algorithm (see Section 4.3 for more details). Next, the algorithm

corrects (i.e., shifts) the starting time of the selected operation based on a resource assignment that is

constructed in a greedy manner and the associated correct processing and setup times as well as the

availability of setup operators (lines 10–25). During runtime, the algorithm keeps track of the load of

the testers, i.e., the time instants at which the last operations that have been assigned to the testers

are completed, and information on the current use of all adapter and handler entities as well as the

setup operators. These values are initialized based on the machine configurations at time t = 0 in

lines 1–7 of the algorithm. For a selected available operation, the algorithm considers every eligible
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Algorithm 1. Determine a feasible allocation of handlers, adapters and setup operators
Input: Solution graph G of master problem solution
Output: Solution S of SFTPS with objective function value WT

▷ Initialization phase
1 Initialize load of testers Li := 0 ∀i ∈ R1;
2 Initialize resource information of adapter (k = 3) and handler (k = 2) entities q ∈ {1, . . . , qki } for all i ∈ Rk;
3 Initialize release times of setup operators i ∈ {1, . . . , h};
4 forall dummy operations 0i, i ∈ {1, . . . , r1}, do
5 Get m ∈ M0i , select an adapter entity m[3] and a handler entity m[2] and update their corresponding

resource information;
6 end
7 Set the initial state of solution S;

▷ Machine configuration evaluation phase
8 while vertex set V of G contains at least one available operation that has not yet been selected do
9 Select an available operation ji that has not yet been selected;

10 Initialize C∗
ji := ∞ and m∗ := ∅;

11 Get the tester class i′ assigned to ji from G;
12 Get the last assigned machine configuration m̂ that includes tester i′;
13 Set S∗ := S;
14 forall eligible machine configurations m ∈ Mji ∩M1

i′ do
15 Set Ŝ := S;
16 Evaluate machine configuration m (details in the text);
17 Compute the completion time Ĉji according to the above evaluation;
18 if Ĉji < C∗

ji then
19 C∗

ji := Ĉji ;
20 m∗ := m,S∗ := Ŝ;
21 end
22 end
23 Assign the most promising machine configuration m∗ to operation ji;
24 Update resource information and release times of setup operators;
25 Set S := S∗;
26 end
27 Compute objective function value WT ;

machine configuration based on the fixed tester decision of the given solution graph (loop 14–22). When

evaluating the machine configuration (line 16), it considers setup operator constraints and disassembly

as well as assembly operations to later select the most promising configuration based on the completion

time of the considered operation in a greedy manner (lines 18–21). More specifically, the evaluation

proceeds as follows. Based on the setup type (see Table 3) and the current resource information, it

first considers necessary disassembly operations on the selected tester. Here, the algorithm selects setup

operators that can complete the operations as quickly as possible. The resource information as well

as the operator release times are updated accordingly. In the next step, the machine configuration is

assembled. Here, the algorithm prioritizes handler and adapter entities that are currently unused. If all

entities are currently in use, it schedules disassembly operations as described above, so that the needed

entities are available as early as possible. Hereafter, the assembly operations are scheduled in a similar

greedy manner, the resource information as well as the operator release times are updated, and the

completion time of the operation is computed. Finally, after assigning each operation to a promising

machine configuration, the objective function value of the constructed solution of SFTPS is obtained

(line 27).
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3.3. Constructive procedure

We generate an initial solution by making use of a constructive procedure composed of two steps.

First, the approach considers the master problem. For the corresponding allocation and sequencing

decisions, we adapt a priority-rule based heuristic introduced by Kress et al. (2019). It follows an

algorithmic idea of Giffler and Thompson (1960) for the classical job shop scheduling problem. In

general, the algorithm iteratively allocates operations that can start being processed at the respective

point of time when considering the corresponding precedence constraints. Among all eligible testers

that can be used for these operations, it then selects a tester, the use of which results in the smallest

possible completion time for one of the considered operations. Among all operations that compete for

this selected tester, exactly one operation is chosen based on a priority rule. In our case, we take account

of the due dates as well as the weights of the corresponding jobs and select an operation ji with smallest

value dj/wj . In the second step, given the corresponding solution graph of the master problem, we solve

the subproblem as outlined in Section 3.2.

3.4. Improvement procedures

As motivated in Section 1.3, we implemented a tabu search heuristic as well as a simulated annealing

procedure that we outline in this section. To ease the notation, we will refer to the objective function

value of a solution S by using an additional label, i.e., S̈.

3.4.1. Neighborhood definition

Our improvement procedures make use of a neighborhood definition that relies on our deliberations

in Section 3.1. Specifically, given some solution S of SFTPS, we compute a set of neighboring solutions,

denoted by N(S), as outlined in Algorithm 2. The procedure iterates over all operations that belong

Algorithm 2. Construction of the neighborhood N(S)

Input: Solution S of SFTPS
Output: Set N(S) of neighboring solutions

1 Initialize the set of feasible neighboring solutions N(S) := ∅;
2 Initialize Ot := ∅;
3 Insert all operations of all jobs that complete after their due date in S into Ot;
4 Initialize the master problem solution graph G of S;
5 if Ot = ∅ then exit the procedure;
6 forall operations ab ∈ Ot do
7 Determine the set R̄1 of eligible testers of operation ab;
8 forall r ∈ R̄1 do
9 Determine a neighbor GN of G as illustrated in Section 3.1;

10 Apply Algorithm 1 on GN to determine a neighboring solution SN ;
11 Set N(S) := N(S) ∪ SN ;
12 end
13 end

to jobs that complete after their due date in the given solution. For each of these operations and

each corresponding eligible tester, we make use of the solution graph of the master problem solution to

16



compute a neighboring solution graph as described in Section 3.1. For each of these graphs, we compute

a solution of the SFTPS instance by calling Algorithm 1 and consider this solution as a neighbor of the

input solution.

3.4.2. Tabu search framework

Our tabu search procedure applies a best-fit strategy and is presented in Algorithm 3. The framework

Algorithm 3. Tabu search framework
Input: Instance Inst of SFTPS, parameter τ
Output: Solution S∗

▷ Initialization phase
1 Determine a feasible solution S of Inst with the constructive procedure described in Section 3.3 and initialize

S∗ := S;
2 Initialize an empty tabu list and set λ := 0;

▷ Tabu search phase
3 Construct set N(S) of neighboring solutions by calling Algorithm 2;
4 Discard all elements SN of N(S) where the corresponding move from S is tabu if S̈N ≥ S̈∗ (aspiration criterion);
5 Select the best solution SNBS among the remaining solutions in N(S). If no solution remains, i.e., if N(S) = ∅,

exit the procedure;
6 if S̈NBS < S̈∗ then set S∗ := SNBS and λ := 0;
7 else set λ := λ+ 1;
8 Update the tabu list;
9 Set S := SNBS ;

10 if λ < τ then go to line 3;
11 else exit the procedure;

consists of two phases, the initialization phase and the tabu search phase. In the former phase, a first

feasible solution is determined by making use of the constructive procedure described in Section 3.3 (line

1) and the tabu search parameters are initialized (line 2). In the tabu search phase, we first construct a

set N(S) of feasible neighboring solutions by applying Algorithm 2 (line 3). In the next step (line 4),

neighboring solutions are discarded if their corresponding move (operation to tester) is tabu and if they

do not represent a new overall best solution (aspiration criterion). The tabu list is updated in line 8.

It is fed with the pair (ab, r̄) for the move of operation ab from tester r̄ to tester r in order to generate

the current solution SNBS . The length of the tabu list is dynamically updated. It is set to the current

number of operations included in the set Ot in solution S. If the length of the tabu list exceeds the tabu

length threshold, the procedure removes entries of the list in a first-in-first-out manner, until the tabu

length is met. Whenever the overall best solution S∗ is improved, the counter λ is set to 0, otherwise

the value is incremented by 1. The tabu search phase executes when no improvement is found for τ

iterations.

3.4.3. Simulated annealing framework

Our simulate annealing framework is presented in Algorithm 4. The initialization phase is in analogy

to the one of our tabu search heuristic. Here, the current temperature Tcur is initialized with the

parameter Tinit (line 2). In the simulated annealing phase, we randomly select a feasible neighboring

solution SN of the current solution S (lines 5–9). If this solution has a better objective function value
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Algorithm 4. Simulated annealing framework
Input: Instance Inst of SFTPS, parameters Tinit, Tmin, δ, and ϕ
Output: Solution S∗

▷ Initialization phase
1 Determine a feasible solution S of Inst with the constructive procedure described in Section 3.3 and initialize

S∗ := S;
2 Initialize the current temperature Tcur := Tinit;

▷ Simulated annealing phase
3 Set λ := 0 and N := ∅;
4 Determine N(S) by calling Algorithm 2;
5 while λ < δ do
6 Set λ := λ+ 1;
7 if N(S) ̸= ∅ then
8 Randomly select a neighboring solution SN of N(S);
9 Set N := N ∪ SN ;

10 if S̈N < S̈ then
11 Set S := SN and update N(S) by calling Algorithm 2;
12 else
13 Draw a random number µ from a uniform distribution over the interval [0, 1];
14 if µ < exp(S̈ − S̈N/Tcur) then set S := SN and update N(S) by calling Algorithm 2;
15 end
16 end
17 end
18 if N = ∅ then exit the procedure;
19 else select the best solution SNBS from N ;
20 if S̈NBS < S̈∗ then set S∗ := SNBS ;
21 Set S := SNBS ;
22 Update the current temperature Tcur = ϕ · Tcur;
23 if Tmin < Tcur then go to line 4;
24 else exit the procedure;

than the current solution, S is updated accordingly (lines 11–12). If, otherwise, the objective function

value does not improve, S is only potentially updated according to the classical acceptance criterion

applied in most simulated annealing procedures (lines 13–16; see, e.g., Burke and Kendall 2014). This

is repeated δ times (loop 6–18). Then, the best solution SNBS among all generated solutions at the

current temperature level is selected and the overall best solution S∗ is potentially updated (lines 19–

22). The current temperature is lowered according to the cooling parameter ϕ (line 23). The algorithm

terminates if the resulting temperature Tcur is not larger than the one defined by parameter Tmin (lines

4–25).

4. Computational study and managerial implications

In this section, we analyze the applicability and performance of our heuristic solution approaches

in real-world industry settings in order to provide decision support for managers. We analyze the

effectiveness of rescheduling jobs in case of changing customer requests and we explore the impact of

handler or adapter failures. Before presenting these managerial insights in Section 4.6, we present an

overview of the considered solution approaches (Section 4.1) and the generation of the instance sets that

our study is based upon (Section 4.2). In Section 4.3, we perform a pre-evaluation regarding the use

and setup of Algorithm 1. The general question of whether or not our heuristics are suited for drawing
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managerial conclusions is answered in Sections 4.4 and 4.5.

Our computational study was performed on a PC with an Intel® Core™ i7-4770 CPU, running at

3.4 GHz, with 16 GB of RAM under a 64-bit version of Windows 8. All algorithms were implemented

in Java (JRE 1.8.0_221), using Eclipse (Eclipse IDE for Java Developers, Oxygen 4.7). We used IBM

ILOG CPLEX in version 12.9 as an MIP solver.

4.1. Overview of solution approaches

We implemented four solution approaches for our computational study. First, in order to provide

benchmarks for evaluating our heuristics, we make use of CPLEX in its standard settings with a time

limit of 3600 seconds on the MIP presented in Appendix A. Additionally, we implemented the priority

rule based constructive procedure (referred to as H-PR, see Section 3.3). It mimics the status quo

scheduling approach at our industry partner. Furthermore, we implemented the tabu search procedure

(referred to as H-TS, see Section 3.4.2) and the simulated annealing heuristic (H-SA, see Section 3.4.3).

With respect to the parameters of the latter two approaches, we set τ :=
∑

j∈J qj for H-TS, and

Tinit := 5 · |J |, Tmin := 1, δ := 5 ·
∑

j∈J qj , ϕ := 0.95 for H-SA.

4.2. Instance generation

Our test instances are based on resource scenarios that imitate the resource pool at the testing

facility of our industry partner. While the small problem instances, that we make use of to evaluate

the basic performance of our heuristic framework, feature only two testers (Table 6), the large problem

Table 6: Resource scenario of small problem instances

r1 q1i r2 q2i r2R1 r3 q3i r3R1 h

2 1 2 1 [1, 2] 2 1 [1, 2] 2

instances are based on eight different scenarios (Table 7). The tables indicate whether the integer

Table 7: Resource scenarios of large problem instances

Scenario r1 q1i r2 q2i r2R1 r3 q3i r3R1 h

A 10 1 10 [1, 2] [3, 5] 15 [1, 2] [3, 5] 4
B 10 1 10 [2, 3] [3, 5] 15 [2, 3] [3, 5] 4
C 20 1 15 [1, 2] [3, 5] 20 [1, 2] [3, 5] 8
D 20 1 15 [2, 3] [3, 5] 20 [2, 3] [3, 5] 8
E 30 1 20 [1, 2] [3, 5] 25 [1, 2] [3, 5] 12
F 30 1 20 [2, 3] [3, 5] 25 [2, 3] [3, 5] 12
G 40 1 25 [1, 2] [3, 5] 35 [1, 2] [3, 5] 16
H 40 1 25 [2, 3] [3, 5] 35 [2, 3] [3, 5] 16

parameters were fixed or drawn from uniform distributions over the given intervals. We restricted the

interoperability of testers, handlers and adapters, by generating eligible machine configurations: For

each tester, we randomly generated a subset of eligible handler and adapter classes of given size r2R1

and r3R1 , that can be combined arbitrarily. With respect to the beginning of the planning horizon, we
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randomly selected eligible machine configurations and potentially generated incomplete configurations

by “removing” adapters and handlers (and formally introducing dummy resource classes). The number

h of setup operators is fixed in each scenario. For the large problem instances, this results in a staffing

level, defined as the ratio of the number of setup operators and the number of testers, of 40%.

The small instances are grouped into five instances sets, small1–small5. For each set, we randomly

generated 20 instances based on the values and intervals given in Table 8. As indicated in the table, the

Table 8: Parameters of small problem instances

Inst. set |J | qj |Mji |

small1 2 [1, 2] [1, 2]
small2 2 [2, 2] [1, 2]
small3 3 [2, 2] [1, 2]
small4 5 [1, 2] [1, 2]
small5 5 [2, 2] [2, 2]

number of jobs is fixed for each instance within a group, while the number of operations qj was drawn

randomly for each job j. Similarly, we randomly determined the number of eligible machine configu-

rations and, in a next step, the configurations themselves. For the large instances, the corresponding

parameter values are given in Table 9. For each combination and each resource scenario (A-H), we

Table 9: Parameters of real-world problem instances

|J | 20, 30, 40, 50
qj [2, 3], [3, 5], [4, 6]
|Mji | [1, 2], [2, 3], [3, 5]

randomly generated 20 test instances.

In order to generate the processing times, we first drew auxiliary integer parameters pji for all

operations ji ∈ O from uniform distributions over [1, 100]. Then, in order to construct varying processing

times over the eligible machine configurations m ∈ Mji , we drew integer values pmji from uniform

distributions over [max{⌊0.9 · pji⌋, 1}, ⌊1.1 · pji⌋].

All relevant operation-specific setup components (sji,gh , s̄ji,gh , ŝji,gh) were drawn from uniform dis-

tributions over [1, 5]. Similarly, the setup times needed to remove or install adapters (s̄mout, s̄m
′

in ) and

handlers (ŝmout, ŝm
′

in ) were drawn from uniform distributions over [3, 10]. The overall process is such that

the assumptions outlined in Section 2 are met.

Define pmax
ji

:= max{pmji |m ∈ Mji}, and s̃max
ji

:= max{smax
ji

, s̄max
ji

, ŝmax
ji

}, for all ji ∈ O. Furthermore,

set smax
ji

:= max{sgh,ji |gh ∈ Ô}, s̄max
ji

:= max{s̄mout + s̄min|m ∈ Mji} +max{s̄gh,ji |gh ∈ Ô}, and ŝmax
ji

:=

max{s̄mout + ŝmout + s̄min + ŝmin|m ∈ Mji} + max{ŝgh,ji |gh ∈ Ô}, for all ji ∈ O. Based on these values,

we drew the due dates dj of jobs j ∈ J from uniform distributions over [0, ⌊1.5 · Tmax/r1⌋]. Here,

Tmax :=
∑

ji∈O(p
max
ji

+ s̃max
ji

). Similarly, the weights wj of jobs j ∈ J were randomly generated based

on the interval [1, 5].
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4.3. Pre-evaluation of the use and setup of Algorithm 1

Before turning our attention to a detailed analysis of H-TS and H-SA, this section aims to evaluate

the use and setup of Algorithm 1. We focus on representative scenarios that feature instances with an

expected makespan of about one working-day, namely the resource scenarios C and D with parameter

values |J | = 30, qj ∈ [3, 5], and |Mji | ∈ [3, 5] (see Table 9).

4.3.1. General effect of computing subproblem solutions

First, we analyze the question of whether or not it pays off to frequently compute solutions to the

subproblems within H-TS and H-SA. We implemented two variants of the heuristics:

1. Hierarchical (HIER): The procedures are solely executed on the master problem, i.e., line 11 of

Algorithm 2 is not executed at all. As in PI, Algorithm 1 is called only once at the very end of

the procedures.

2. Partial integration (PI): The procedure of evaluating machine configurations in line 16 of Algo-

rithm 1 does not take account of the availability of setup operators. Instead, setup operators

are taken account of only once in an additional call of Algorithm 1 at the very end of the proce-

dures. The algorithm then compares the resulting solution with the solution determined in the

initialization phase and selects the best solution.

The computational results are presented in Table 10. For H-TS and H-SA, the table illustrates the

performance of the standard setup and the two variants. It presents average objective function values

over all instances of the two scenarios (columns ‘WTavg’) as well as average runtimes (columns ‘tavg’).

Due to the non-deterministic elements of H-SA, we ran all of its variants three times on each instance.

Table 10: Analysis of the incorporation of computing solutions for the subproblems within the heuristics

H-TS H-SA

Standard PI HIER Standard PI HIER

Sce. WTavg tavg [s] WTavg tavg [s] WTavg tavg [s] WTavg tavg [s] WTavg tavg [s] WTavg tavg [s]

C 11280.1 43.66 14597.7 36.83 43384.85 0.91 9302.52 23.7 12799.98 23.28 42458.63 1.54
D 5138.95 33.73 6626.65 23.36 10715.15 0.95 4501.35 24.37 6201.5 24.01 10912.55 1.54

We observe that a frequent consideration of the subproblem clearly pays off with respect to the

solution quality. It is furthermore worthwhile to not only take account of the hardware resources when

computing solutions to the subproblems within H-TS and H-SA. The additional consideration of setup

operators comes at the cost of only slightly increased runtimes while tending to improve the average

solution quality.

In the standard setup, H-TS and H-SA considered an average number of 84560 and 52392 subproblems

after the initialization phase, respectively. As the procedures are designed to be applied in a rolling

horizon manner at our industry partner, the average runtimes reported in Table 10 therefore support

the appropriateness of our choice of a greedy approach used within Algorithm 1.
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4.3.2. Selecting available operations within Algorithm 1

As outlined in Section 3.2, we have to specify the concrete strategy of selecting available operations

whenever calling Algorithm 1 within our heuristics. We implemented three variants that aim at a quick

selection of available operations:

1. Starting time: Operations are selected in non-decreasing order of their staring times in the given

solution graph of the master problem solution. As a tie breaker, we select an operation with

smallest job index.

2. Shuffle: The operations are first ordered as in the previous strategy. Next, a shuffling procedure

is executed with a probability of 50%. It randomly selects operations and moves them to the

first position in the sequence. These operations must be direct successors of the dummy vertex

(n + 1)0 in the solution graph of the master problem solution with respect to both edge sets E1

and E2. The shuffling procedure makes a total of 0.8 · r1 selection and moving operations. It

results in a sequence of operations that defines the order of selecting available operations within

the algorithm.

3. Combined: Execute Algorithm 1 with the starting time strategy. Afterwards, with a probability

of 50%, make an additional call of the algorithm with the shuffle strategy that is guaranteed to

apply the shuffling procedure. Among the two generated solutions, select the one with the smallest

objective function value.

The computational results are presented in Table 11. Due to the non-deterministic nature of the

strategies shuffle and combined, the according heuristic variants of H-TS as well as all variants of H-SA

were executed three times on each instance when using these strategies. The table presents information

on the average objective function values when considering all runs (columns ‘WTavg’) or only the best

of the three runs (column ‘WT ∗
avg’) when relevant.

Table 11: Comparison of approaches used for of selecting available operations

H-TS H-SA

Starting time Shuffle Combined Starting time Shuffle Combined

Sce. WTavg WT ∗
avg WTavg WT ∗

avg WTavg WT ∗
avg WTavg WT ∗

avg WTavg WT ∗
avg WTavg

C 11280.1 9918.55 11076.22 10439.55 11331.83 8528.15 9302.52 9017.45 9787.95 8664.8 9444.07
D 5138.95 4692.8 4971.63 4945.25 5139.85 4266.85 4501.35 4344.5 4640.48 4277.7 4592.57

For H-TS, we observe that the shuffle strategy outperforms the other approaches with respect to

solution quality on average. In case of H-SA, the starting time strategy provides the best average

results.

4.3.3. Selecting machine configurations within Algorithm 1

Finally, we implemented various rules for selecting the most promising machine configuration in lines

14–22 of Algorithm 1:
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1. Completion time (as presented in Section 3.2): Select a machine configuration that results in the

smallest completion time of the considered operation.

2. Shortage value: Select an eligible machine configuration m with smallest shortage value
|M2

m[2]
|

q2
m[2]

+
|M3

m[3]
|

q3
m[3]

. This rule prefers machine configurations that use hardware resource classes that tend to

be least scarce.

3. Combined: Select machine configuration as in the completion time rule. Use the shortage value

as a tie breaker.

The computational results are presented in Table 12. As before, we ran H-SA three times on each

instance.

Table 12: Comparison of rules used for selecting machine configurations

H-TS H-SA

Completion time Shortage value Combined Completion time Shortage value Combined

Sce. WTavg WTavg WTavg WT ∗
avg WTavg WT ∗

avg WTavg WT ∗
avg WTavg

C 11280.1 10780 10357.7 8528.15 9302.52 9085.15 9966.68 8588.4 9399.18
D 5138.95 5283.7 5171.7 4266.85 4501.35 4273.45 4587.03 4332.15 4578.22

We find that the combined rule, on average, tends to result in the best solutions for H-TS. With

respect to H-SA, the combined rule and the completion time perform similarly well.

4.3.4. Setup of Algorithm 1

Based on the results of our pre-evaluation, we make use of the following setup in the remainder of this

paper: standard mode for computing subproblem solutions, shuffle strategy in case of H-TS or starting

time strategy in case of H-SA for selecting available operations, combined rule for selecting machine

configurations. In H-PR (and the initialization phase of the heuristics), we make use of the starting

time strategy and the completion time rule.

4.4. Small instances: basic evaluation of the heuristic frameworks

The computational results for the heuristic approaches H-PR, H-TS, and H-SA on the small instances

are presented in Table 13. The table additionally includes information on the performance of CPLEX,

Table 13: Performance of the heuristic approaches on small problem instances

CPLEX H-PR H-TS H-SA

Inst. set feas. opt. WT avg tavg [s] WT avg WT ∗
avg WT avg WT ∗

avg WT avg

small1 20 20 225 98.32 250.5 (14) 228.05 (18) 228.05 228.05 (18) 228.15
small2 20 20 527.35 227.49 741.4 (6) 612.7 (12) 620.18 638 (11) 638.72
small3 13 3 693.46 3035.77 899.65 (2) 674.65 (3) 685.77 683.5 (2) 716.88
small4 7 0 1336.57 3600.14 1208.6 694.5 723.18 818.1 825.92
small5 0 0 - - 1651.15 970.9 989.65 937.9 1061.22

i.e., the number of instances for which a feasible or optimal solution was obtained within the time limit

(columns ‘feas.’ and ‘opt.’), the corresponding average objective function value (column ‘WTavg’), as
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well as the average runtime over all runs that resulted in a feasible solution. For the heuristic approaches,

the table presents the average objective function values. As in Section 4.3, we ran H-TS and H-SA three

times on each instance, so that the table also includes a column ‘WT ∗
avg’ for each of these approaches.

Note that all calls of the heuristics resulted in a feasible solution. The numbers in parentheses illustrate

the number of instances for which a solution that was known to be optimal from the CPLEX results,

was detected by the respective approach on the corresponding instance set.

As to be expected, CPLEX returns feasible or optimal solutions solely for the smallest instances and

it is therefore not a reasonable choice when facing instances of larger size in practice. However, the few

resulting benchmarks, especially for the sets small1 and small2, certainly allow to draw first conclusions

on the performance of the heuristic approaches. While H-TS and H-SA are able to detect quite a few

optimal solutions, they - at first glance - seem to sometimes also result in solutions with a significantly

larger objective function value than the one of a known optimal solution. When looking at the results for

the individual instances, however, we find that the respective instances are characterized by relatively

large weights of tardy jobs (see Appendix B.1). It is therefore interesting, to additionally analyze the

performance of our heuristic approaches when fixing all weights to one. The corresponding results are

presented in Table 14 (see also Appendix B.2 for details). We observe that, on these modified instances,

Table 14: Performance of the heuristic approaches on small problem instances (all weights are fixed to one)

CPLEX H-PR H-TS H-SA

Inst. set feas. opt. WT avg tavg [s] WT avg WT ∗
avg WT avg WT ∗

avg WT avg

small1 20 20 85.15 65.52 95.4 (12) 85.45 (19) 85.45 85.45 (19) 85.92
small2 20 20 198.9 204.95 262.4 (6) 206.15 (15) 208.05 210.65 (16) 216.77
small3 15 2 366 3249.9 341 (1) 246 (2) 251.43 245.95 (1) 260.32
small4 8 1 418.75 3460 449.65 (0) 239.85 (1) 254.23 251.05 (1) 268.78
small5 0 0 - - 595.75 328.65 334.12 314.45 335.28

our heuristic approaches H-TS and H-SA tend to provide optimal or near-optimal solutions for the sets

small1 and small2.

Finally, we find that the solutions obtained by H-TS and H-SA are, on average, clear improvements

when compared with the solutions determined by H-PR, being the current status quo scheduling ap-

proach at our industry partner. This effect is especially pronounced for the larger instances. The average

runtimes of the heuristic approaches over all considered instances range from 0.24 to 7.1 milliseconds.

4.5. Large instances: applicability of the heuristic frameworks

As can be concluded from the previous subsection, it is not reasonable use CPLEX to determine

benchmark solutions for the large problem instances. Instead, we compare the objective function values

returned by H-TS and H-SA with the real-world solution approach at our industry partner (H-PR).

Thus, for some given instance and some run of algorithm H-TS and H-SA, we measure the quality of

the solution returned by the algorithm with the quality ratio 100 · (WTPR −WT )/WTPR, where WT
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and WTPR denote the total weighted tardiness of the solution determined by the considered heuristic

framework and H-PR, respectively.

Table 15 summarizes the computational results for the large problem instances grouped by the eight

scenarios and the number of jobs. As in the previous sections, H-TS and H-SA were executed three

times for each test instance. The table includes information about the average quality ratio over all

instances of the corresponding sets (columns ‘Qavg’), as well as the average runtimes (columns ‘tavg’)

of the algorithms. Figure 6 complements Table 15 by illustrating the average quality ratios (Qavg) as

Table 15: Performance of the heuristic approaches on large problem instances

H-TS H-SA H-TS H-SA

Sce. |J | Qavg tavg [s] Qavg tavg [s] Sce. |J | Qavg tavg [s] Qavg tavg [s]

A

20 65.76 5.82 70.47 6.86

B

20 47.02 4.53 54.01 6.51
30 68.32 19.43 74.45 17.92 30 50.67 14.11 60.46 17.23
40 69.54 46.9 76.86 37.08 40 55.58 33.57 66.98 34.94
50 70.99 93.58 79.15 65.31 50 58.1 63.84 71.69 61.08

C

20 59.85 10.1 62.65 9.01

D

20 38.9 8.42 43.15 9.47
30 64.98 33.46 69.72 24.16 30 46.69 24.48 53.33 25.33
40 67.45 82.25 73.55 49.24 40 54.34 56.86 61.67 51.5
50 67.77 175.65 74.48 86.06 50 55.67 111.18 64.03 89.31

E

20 56.12 13.05 58.58 11.11

F

20 33.4 12.52 35.85 11.25
30 62.27 45.67 66.25 29.59 30 42.51 41.84 46.95 31.11
40 64.5 114.33 69.47 60.41 40 49.13 96.28 54.51 63.21
50 65.53 233.94 71.28 105.84 50 52.82 171.74 59.33 109.34

G

20 49.75 16.33 51.7 13.14

H

20 27.3 14.36 29.01 12.39
30 59.51 53.24 62.64 36 30 37.35 44.92 40.85 33.88
40 62.51 120.61 66.79 73.03 40 44.08 122.78 48.52 73.52
50 64.6 255.11 69.79 118.3 50 48.38 221.58 53.51 110.3

well as the average runtimes (tavg) over all resource scenarios. It can be seen that the use of both H-TS
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Figure 6: Quality ratios for large problem instances over all resource scenarios

and H-SA significantly improves the solutions that are currently implemented in practice (and used as

initial solutions within our framework). Certainly, with respect to the runtimes, both approaches are

applicable in practice. However, H-SA tends to outperform H-TS with respect to solution quality. This

effect is stronger when the number of jobs is relatively high. As to be expected based on the number of

tester and handler entities, we observe that the average quality ratios are smaller in scenarios B, D, F,

and H when compared with scenarios A, C, E, and G.
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4.6. Managerial implications

Based on the above results we conclude that, in general, our heuristic frameworks are adequate

methods for deriving managerial insights. It furthermore seems reasonable to focus on the use of the

most promising framework H-SA. The following results therefore rely on this approach. It was executed

three times for each test instance. With regard to the test instances, we restrict our attention to the

representative resource scenarios C and D, as already motivated in Section 4.3. We will, however, adjust

selected parameters of these instances in the following.

We first analyze the impact of the number of copies of handler (adapter) classes q2i (q3i ) on the

objective function value. Therefore, for each test instance, we modify the values of q2i and q3i , such

that they take all integer values from 1 to 6 for all i in all possible combinations. Figure 7 illustrates

the corresponding computational results over increasing values of q2i and q3i . Naturally, we find that
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Figure 7: Impact of increasing the number of copies of handler and adapter classes

increasing the number of copies of handler and adapter classes has a positive impact on the objective

function value. This positive effect, however, quickly diminishes when the values become relatively

large. Moreover, the number of handlers has a larger impact on the objective function value than the

number of adapters. Essentially, this is induced by the structure of the setup times for assembly and

disassembly operations as described in Section 2. Thus, when investing in the test infrastructure, one

should focus on a sufficiently large number of handler copies before increasing the number of adapter

copies.

Next, in order to evaluate the impact of the staffing level on the objective function value, we adjust

the value of h for each test instance in order to achieve staffing levels between 20% and 100%. Figure 8

plots the resulting increase of the total weighted tardiness in comparison to a staffing level of 100% over

the different staffing levels for both resource scenarios. As can be seen, the total weighted tardiness

remains relatively stable for staffing levels between 100% and 70%. Only below this threshold of 70%,

we find a significant deterioration of the total weighted tardiness.

As mentioned above, customers at our industry partner fairly frequently request a change of the due

dates of their orders. Hence, we now turn our attention to analyzing the effectiveness of rescheduling jobs

with our solution approach. To do so, we consider an idealized situation where, at a given point in time
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(breakpoint), a rescheduling based on the initial schedule is manually initiated. At this point in time, the

test cells are associated to some machine configuration and some of the jobs are labelled as emergency

orders/jobs (see Section 1.2). For the sake of simplicity, we set the corresponding jobs’ due dates and

weights to the time instant associated with the breakpoint and five, respectively. All operations that are

currently processed at the breakpoint define new operations with adapted processing times, so that their

processing can potentially be preempted. Other than that, the instance remains unchanged. The initial

schedule SInit is determined by the heuristic approach H-SA. We compute the makespan Cmax of this

solution and randomly determine the breakpoint in the interval [⌊0.2 · Cmax⌋, ⌊0.5 · Cmax⌋]. Given the

set of emergency jobs, we then modify the problem instance in accordance with the remaining planning

scenario as described above and then call H-SA on this modified instance to compute a solution SRes

that also takes account of the jobs that have been scheduled before the breakpoint. With respect to

selecting the emergency jobs, we make use of different techniques that are based on specifying some fixed

percentage of emergency jobs. Our first technique models real-world scenarios by randomly selecting

the corresponding orders. The other techniques aim at analyzing the influence of the jobs’ parameters.

Here, we sort the relevant jobs in the order of non-decreasing (non-increasing) values dj/wj and select

the emergency jobs based on this ordering.

In order to assess the effectiveness of rescheduling by making use of H-SA, we determine the total

weighted tardiness over all emergency jobs for the solutions SInit and SRes based on the modified

parameters and denote these values by WTSInit
and WTSRes

, respectively. We measure the quality of

the rescheduling solution with the quality ratio WTSRes
/WTSInit

. For each test instance, each technique

for selecting emergency jobs, and varying percentages δ of emergency jobs, we generated ten random

breakpoints. The resulting average quality ratios (columns ‘Qavg’) are presented in Table 16. We

observe that rescheduling jobs with our solution approach has a significant positive effect, at least when

the emergency orders correspond to jobs j that originally have a relatively large ratio dj/wj . This

positive effect is relevant even if the percentage of emergency orders is relatively small.

Finally, we analyze the impact of defect hardware resources. We construct idealized scenarios where

either only adapters or only handlers are defect. The corresponding failure rate is referred to as ϵ. As
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Table 16: Rescheduling effectiveness

Selection of emergency jobs

Randomly Smallest dj/wj Largest dj/wj

Scenario δ [%] Qavg Qavg Qavg

C

4 0.82 1.03 0.59
6 0.8 1.02 0.58
8 0.79 1.02 0.59
10 0.79 1.02 0.6
12 0.79 1.02 0.62
14 0.79 1.01 0.64
16 0.79 1 0.65
18 0.8 1 0.66
20 0.8 1 0.68
25 0.8 0.99 0.7

D

4 0.77 1.02 0.54
6 0.75 1.02 0.56
8 0.73 1.01 0.57
10 0.73 1 0.58
12 0.72 1 0.59
14 0.72 0.99 0.61
16 0.72 0.99 0.62
18 0.72 0.98 0.63
20 0.72 0.97 0.65
25 0.73 0.95 0.67

above, we first compute an initial solution SInit by means of H-SA, determine a breakpoint at which the

handler or adapter failures occur, and then apply H-SA as a rescheduling heuristic to determine SRes.

The set of defect handlers or adapters is randomly selected, whilst ensuring at least one remaining eligible

machine configuration for each operation. We define a quality ratio 100 · (WTSRes
−WTSInit

)/WTSInit

based on the total weighted tardiness WTSInit
and WTSRes

over all jobs in the corresponding solutions.

As above, we compute ten random breakpoints for each instance and various failure rates for the case

of handler or adapter defects. The results are presented in Figure 9. It depicts the average quality
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Figure 9: Impact of defect hardware resources

ratios (‘Qavg’) as well as the average percentage of unavailable machine configurations (‘UMCavg’, in

comparison to the original instances) over different failure rates for scenarios C and D and the cases of

handler or adapter defects. As already indicated by the above results on varying numbers of handler

and adapter copies, the defect of handlers has a stronger negative effect on the objective function value
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than the defect to adapters. This is interesting in light of the fact that the corresponding difference

of the percentage of unavailable machine configurations is relatively small. This effect is particularly

pronounced for large failure rates in scenario C. It is a result of the fact that a defect handler requires

the disassembly of both adapter and handler. Furthermore, when increasing failure rates, the total

weighted tardiness tends to increase slower in scenario D than in scenario C which reflects the fact that

managers should carefully determine the number of available copies of the relevant adapter and handler

classes in accordance to the investment costs and the time needed to repair or replace defect entities.

While these tests have not explicitly targeted the case of multisite testing, it is obvious that the results

will carry over in a straightforward manner.

5. Conclusion

In this article, we have addressed a semiconductor final-test scheduling problem that takes account

of setup operator restrictions and aims to minimize the total weighted tardiness. We have introduced

an MIP and proposed two heuristic frameworks. In a computational study, we have shown that our

heuristics are competitive when compared with the performance of a standard solver on the MIP on small

problem instances. They have furthermore shown to clearly outperform an as-is solution procedure at

our industry partner on large instances that mimic real-world settings within reasonable time and have

thus proven to be well suited for daily usage at our industry partner. When setting up the frameworks,

we found that it pays off to fully integrate the allocation of the setup operators. From a managerial

perspective, our results can be summarized by the following simple take-home messages:

• Integrating setup operators into heuristic final-test scheduling approaches pays off at the cost of

only slightly increased computational runtimes. When labor is considered to be a constraining

factor, corresponding approaches should thus be taken into account by managers.

• There exists a threshold value, above which an increase of the staffing level results in relatively

small improvements with respect to on-time delivery of customer orders. Managers should there-

fore carefully determine a reasonable staffing level for their specific setting.

• With respect to the number of hardware resources at a testing facility, managers should invest in

a sufficiently large number of handler copies before increasing the number of adapter copies. The

decisions must reflect the investment cost as well as the time needed to repair or replace defect

entities.

• Rescheduling should be manually initiated whenever due dates change significantly. This remains

true even if only few jobs are affected and when rescheduling decisions induce a significant setup

effort.
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Appendix A. MIP formulation

In this appendix, we present an MIP for SFTPS. It uses elements of the models presented by Wu and

Chien (2008) and Wu et al. (2012) but, to the best of our knowledge, is the first model that explicitly

takes account of the specific setting regarding disassembly and assembly operations introduced in this

paper. The model makes use of a large positive integer B that has to be chosen appropriately.

Appendix A.1. Graph representation, time variables, allocation and sequencing variables

We represent the potential allocation, sequencing and setup decisions by a directed (multi-) graph,

which we refer to as the allocation, sequencing and setup graph (ASAS graph). Its structure is illustrated

in Figure A.10. It is inspired by graph representations of vehicle routing problems that are known to

have multiple similarities with machine scheduling problems (see, e.g., Bigras et al. 2008; Kress et al.

2019). Each operation ji ∈ Ô defines three vertices, ji, j̄i, and ĵi, of the graph. The latter two vertices

represent states, in which the adapter or handler of the machine configuration that is assigned to ji have

been removed after completing ji. Each vertex ji is associated to a completion time variable Cji ∈ R+
0

as defined in Section 2. Additionally, we define variables Cj̄i , Cĵi
∈ R+

0 for all ji ∈ Ô, and set C0i = 0

for all i ∈ {1, . . . , r1}. An additional vertex e serves as a sink of the graph and represents the final

states of the machine configurations associated to the testers at the end of the planning horizon. All
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ĵi,e

Figure A.10: Illustration of the ASAS graph, ji, gh ∈ Ô, ji ̸= gh

allocation, sequencing and setup decisions are represented by directed edges that are weighted with the

setup times defined in Section 2 and that are associated with the following variables:

ymji,gh :=


1 if gh directly follows ji on m without change of

handler or adapter,

0 else,

∀ ji ∈ Ô, gh ∈ O, ji ̸= gh,m ∈

Mji ∩Mgh ,
(A.1)

ym,m′

j̄i,gh
:=



1 if gh is processed on m′ and directly follows ji on

m after having disassembled adapter m[3] and as-

sembled adapter m′[3],

0 else,

∀ ji ∈ Ô, gh ∈ O, ji ̸= gh,m ∈

Mji ,m
′ ∈ Mgh ∩M1

m[1] ∩M2
m[2],

(A.2)

ym,m′

ĵi,gh
:=



1 if gh is processed on m′ and directly follows ji on

m after having disassembled handler m[2] and as-

sembled handler m′[2],

0 else,

∀ ji ∈ Ô, gh ∈ O, ji ̸= gh,m ∈

Mji ,m
′ ∈ Mgh ∩M1

m[1],
(A.3)

zmj̄i :=


1 if adapter m[3] is disassembled after processing ji

on m,

0 else,

∀ ji ∈ Ô,m ∈ Mji , (A.4)

zm
ĵi

:=


1 if handler m[2] is disassembled after processing ji

on m,

0 else,

∀ ji ∈ Ô,m ∈ Mji . (A.5)

In line with the definition of these variables, parallel edges in the graph represent the fact that multiple

machine configurations may be used when processing (succeeding) operations (dotted edges in Figure

A.10). Additional binary variables ymji,e, y
m
j̄i,e

, and ym
ĵi,e

for all operations ji ∈ Ô are used for modelling the

end of the planning horizon. They are defined and represented in analogy to the variables (A.1)–(A.3).

The concrete allocation, sequencing and setup decisions of a solution to an instance of SFTPS are

represented by r1 edge-disjoint paths in the corresponding ASAS graph. Each path starts at a distinct

vertex 0i associated to a dummy operation i ∈ {1, . . . , r1} (start of the planning horizon) and ends
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at vertex e (end of the planning horizon). It represents the machine configurations that include the

corresponding tester, the allocation of operations to the corresponding configurations, as well as the

sequencing and setup decisions. In a feasible solution, each vertex ji ∈ Ô is included exactly once in

exactly one path.

As defined in Section 2, the tardiness of each job j ∈ J is represented by the variable Tj ∈ R+
0 .

Appendix A.2. Objective, processing time related constraints, and precedence constraints

The objective

min
∑
j∈J

wjTj (A.6)

minimizes the total weighted tardiness, where the correct tardiness values are enforced by the following

constraints:

Tj ≥ Cjqj
− dj ∀ j ∈ J. (A.7)

The following five sets of conditions establish the correct differences of the completion times of

succeeding operations when taking account of setup and processing times:

Cji + sji,gh + pmgh − Cgh ≤ (1− ymji,gh)B ∀ ji ∈ Ô, gh ∈ O, ji ̸= gh,m ∈ Mji ∩Mgh , (A.8)

Cj̄i + s̄m
′

in + s̄ji,gh + pm
′

gh
− Cgh ≤ (1− ym,m′

j̄i,gh
)B ∀ ji ∈ Ô, gh ∈ O, ji ̸= gh,

m ∈ Mji ,m
′ ∈ Mgh ∩M1

m[1] ∩M2
m[2],

(A.9)

Cĵi
+ s̄m

′
in + ŝm

′
in + ŝji,gh + pm

′
gh

− Cgh ≤ (1− ym,m′

ĵi,gh
)B ∀ ji ∈ Ô, gh ∈ O, ji ̸= gh,

m ∈ Mji ,m
′ ∈ Mgh ∩M1

m[1],

(A.10)

Cji + s̄moutz
m
j̄i

≤ Cj̄i ∀ ji ∈ Ô,m ∈ Mji , (A.11)

Cj̄i + ŝmoutz
m
ĵi

≤ Cĵi
∀ ji ∈ Ô,m ∈ Mji . (A.12)

The restrictions

Cji ≤ Cji+1
−

∑
gh∈Ô\{ji+1}

∑
m∈Mgh

∑
m′∈Mji+1

∩M1
m[1]

ym,m′

ĝh,ji+1
pm

′
ji+1

−
∑

gh∈Ô\{ji+1}

∑
m∈Mgh

∑
m′∈Mji+1

∩M1
m[1]

∩M2
m[2]

ym,m′

ḡh,ji+1
pm

′
ji+1

−
∑

gh∈Ô\{ji+1}

∑
m∈Mgh

∩Mji+1

ymgh,ji+1
pmji+1

∀ ji ∈ O with i ≤ qj − 1

(A.13)

enforce the precedence relations among the operations of each job.

Appendix A.3. Allocation and sequencing constraints

Constraints (A.14) take account of the fact that each operation gh ∈ O must be processed by exactly

one eligible machine configuration, i.e., that exactly one incoming edge is chosen for the corresponding
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vertex in the ASAS graph:∑
ji∈Ô\{gh}

∑
m∈Mji

∩Mgh

ymji,gh +
∑

ji∈Ô\{gh}

∑
m∈Mji

∑
m′∈Mgh

∩M1
m[1]

∩M2
m[2]

ym,m′

j̄i,gh

+
∑

ji∈Ô\{gh}

∑
m∈Mji

∑
m′∈Mgh

∩M1
m[1]

ym,m′

ĵi,gh
= 1 ∀ gh ∈ O.

(A.14)

Similarly, after completing the processing of an operation or at the beginning of the planning horizon,

the adapter or the handler may have to be disassembled from the associated machine configuration, i.e.,

at most one incoming edge may be chosen for all vertices j̄i and ĵi, ji ∈ Ô:

∑
m∈Mji

zmj̄i ≤ 1 ∀ ji ∈ Ô, (A.15)

∑
m∈Mji

zm
ĵi

≤ 1 ∀ ji ∈ Ô. (A.16)

With respect to the sequencing of operations, each operation must have exactly one successor, which

is modelled by appropriately selecting outgoing edges of the vertices of the ASAS graph:∑
gh∈O\{ji}

∑
m∈Mji

∩Mgh

ymji,gh +
∑

m∈Mji

zmj̄i +
∑

m∈Mji

ymji,e = 1 ∀ ji ∈ Ô. (A.17)

For all vertices j̄i and ĵi, ji ∈ Ô, we may only select an outgoing edge if the adapter or handler is

actually disassembled, so that∑
gh∈O\{ji}

∑
m∈Mji

∑
m′∈Mgh

∩M1
m[1]

∩M2
m[2]

ym,m′

j̄i,gh
+

∑
m∈Mji

zm
ĵi

+
∑

m∈Mji

ymj̄i,e ≤ 1 ∀ ji ∈ Ô, (A.18)

∑
gh∈O\{ji}

∑
m∈Mji

∑
m′∈Mgh

∩M1
m[1]

ym,m′

ĵi,gh
+

∑
m∈Mji

ym
ĵi,e

≤ 1 ∀ ji ∈ Ô. (A.19)

Additionally, the machine configurations chosen for processing the operations must be consistent (flow

conservation constraints):∑
gh∈Ô\{ji}

∑
m′∈{m}∩Mgh

ym
′

gh,ji
+

∑
gh∈Ô\{ji}

∑
m′∈Mgh

∩M1
m[1]

∩M2
m[2]

ym
′,m

ḡh,ji

+
∑

gh∈Ô\{ji}

∑
m′∈Mgh

∩M1
m[1]

ym
′,m

ĝh,ji

=
∑

gh∈O\{ji}

∑
m′∈{m}∩Mgh

ym
′

ji,gh
+ zmj̄i + ymji,e ∀ ji ∈ O,m ∈ Mji ,

(A.20)

zmj̄i =
∑

gh∈O\{ji}

∑
m′∈Mgh

∩M1
m[1]

∩M2
m[2]

ym,m′

j̄i,gh
+ zm

ĵi
+ ymj̄i,e ∀ ji ∈ Ô,m ∈ Mji , (A.21)

zm
ĵi

=
∑

gh∈O\{ji}

∑
m′∈Mgh

∩M1
m[1]

ym,m′

ĵi,gh
+ ym

ĵi,e
∀ ji ∈ Ô,m ∈ Mji . (A.22)
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Appendix A.4. Resource variables and constraints: handler and adapter

In order to be able to model the resource constraints (availability of handlers and adapters), we define

the following binary variables:

um
ji,t :=


1 if the setup for processing ji on m starts at time instant

t− 1,

0 else,

∀ ji ∈ Ô,m ∈ Mji , t ∈

{1, . . . , T},
(A.23)

v̄m,k
ji,t

:=



1 if the use of resource class m[k] of type k in machine

configuration m for operation ji finishes at time instant

t,

0 else,

∀ ji ∈ Ô,m ∈ Mji , t ∈

{0, . . . , T}, k ∈ {2, 3},
(A.24)

xm,k
ji,t

:=


1 if resource class m[k] of type k is being used in machine

configuration m for operation ji in time slot [t− 1, t],

0 else,

∀ ji ∈ Ô,m ∈ Mji , t ∈

{1, . . . , T}, k ∈ {2, 3}.
(A.25)

Furthermore, we define xm,k
ji,0

= xm,k
ji,T+1 = 0 for all ji ∈ Ô, m ∈ Mji , and k ∈ {1, 2}, as well as umji,T+1 = 0

for all ji ∈ Ô and m ∈ Mji .

The variables (A.23), i.e., the start of the setups that precede the processing of operations, are

handled by the following constraints:∑
m∈Mji

∑
t∈{1,...,T}

um
ji,t = 1 ∀ ji ∈ Ô, (A.26)

∑
m∈M0i

um
0i,1 = 1 ∀ i ∈ {1, . . . , r1}, (A.27)∑

m∈Mji

∑
t∈{1,...,T}

(t− 1)um
ji,t = Cji −

∑
gh∈Ô\{ji}

∑
m∈Mji

∩Mgh

ymgh,ji(sgh,ji + pmji )

−
∑

gh∈Ô\{ji}

∑
m′∈Mgh

∑
m∈Mji

∩M1
m′[1]∩M2

m′[2]

ym
′,m

ḡh,ji
(s̄min + s̄gh,ji + pmji )

−
∑

gh∈Ô\{ji}

∑
m′∈Mgh

∑
m∈Mji

∩M1
m′[1]

ym
′,m

ĝh,ji
(s̄min + ŝmin + ŝgh,ji + pmji ) ∀ ji ∈ O,

(A.28)

∑
t∈{1,...,T}

um
ji,t ≤

∑
gh∈Ô\{ji}

∑
m′∈{m}∩Mgh

ym
′

gh,ji
+

∑
gh∈Ô\{ji}

∑
m′∈Mgh

∩M1
m[1]

∩M2
m[2]

ym
′,m

ḡh,ji

+
∑

gh∈Ô\{ji}

∑
m′∈Mgh

∩M1
m[1]

ym
′,m

ĝh,ji
∀ ji ∈ O,m ∈ Mji .

(A.29)

Here, conditions (A.26) and (A.27) guarantee that each operation needs a setup. The dummy operations

take a special role as their setups have been started before or at the beginning of the planning horizon.

The actual setup times as presented in Table 3 are taken account of in restrictions (A.28). Conditions

(A.29) ensure that the machine configurations are consistent.

In line with the system of restrictions (A.26)–(A.29), the following seven sets of conditions handle

the end of the usage of resources used for processing the operations:∑
t∈{0,...,T}

v̄m,k
ji,t

=
∑

t∈{1,...,T}
um
ji,t ∀ ji ∈ Ô,m ∈ Mji , k ∈ {2, 3}, (A.30)
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∑
t∈{0,...,T}

tv̄m,k
ji,t

− Cgh + pmgh + sji,gh ≥ (ymji,gh − 1)B ∀ ji ∈ Ô, gh ∈ O, ji ̸= gh,

m ∈ Mji ∩Mgh , k ∈ {2, 3},

(A.31)

v̄m,k
ji,T

≥ ymji,e ∀ ji ∈ Ô,m ∈ Mji , k ∈ {2, 3}, (A.32)

v̄m,2
ji,T

≥ ymj̄i,e ∀ ji ∈ Ô,m ∈ Mji , (A.33)∑
t∈{0,...,T}

tv̄m,2
ji,t

− Cgh + pm
′

gh
+ s̄m

′
in + s̄ji,gh ≥ (ym,m′

j̄i,gh
− 1)B ∀ ji ∈ Ô, gh ∈ O, ji ̸= gh,m ∈

Mji ,m
′ ∈ Mgh ∩M1

m[1] ∩M2
m[2],

(A.34)

∑
m∈Mji

∑
t∈{0,...,T}

tv̄m,3
ji,t

≥ Cj̄i ∀ ji ∈ Ô, (A.35)

∑
m∈Mji

∑
t∈{0,...,T}

tv̄m,2
ji,t

≥ Cĵi
∀ ji ∈ Ô. (A.36)

Conditions (A.30) ensure that the use of some resource class must end if it has previously been setup.

Depending on the allocation and sequencing decisions (Appendix A.1), constraints (A.31)–(A.36) then

set the variables (A.24) to their correct values.

Now, based on the choice of the variables (A.23) and (A.24), conditions (A.37) fix the variables

(A.25) that model the actual resource usage over all time slots of the planning horizon:

xm,k
ji,t

− xm,k
ji,t−1 = um

ji,t − v̄m,k
ji,t−1 ∀ ji ∈ Ô,m ∈ Mji , t ∈ {1, . . . , T + 1}, k ∈ {2, 3}. (A.37)

Finally, constraints (A.38) restrict the usage of the handler and adapter classes based on their avail-

ability: ∑
ji∈Ô

∑
m∈Mji

∩Mk
r

xm,k
ji,t

≤ qkr ∀ t ∈ {1, . . . , T}, k ∈ {2, 3}, r ∈ Rk. (A.38)

Appendix A.5. Setup operator variables and constraints

The setup operators are handled in analogy to the hardware resources, so that we define the following

variables:

ūm
ji,t :=


1 if the setup for processing ji on m finishes at time instant

t,

0 else,

∀ ji ∈ Ô,m ∈ Mji , t ∈

{0, . . . , T},
(A.39)

vm,k
ji,t

:=



1 if the procedure of disassembling resource class m[k] of

type k from machine configuration m after processing

operation ji starts at time instant t− 1,

0 else,

∀ ji ∈ Ô,m ∈ Mji , t ∈

{1, . . . , T}, k ∈ {2, 3},
(A.40)

wm
ji,t :=


1 if a setup operator is required for the setup of machine

configuration m for operation ji in time slot [t− 1, t],

0 else,

∀ ji ∈ Ô,m ∈ Mji , t ∈

{1, . . . , T},
(A.41)

w̃m,k
ji,t

:=



1 if a setup operator is required for disassembling resource

class m[k] of type k from machine configuration m for

operation ji in time slot [t− 1, t],

0 else,

∀ ji ∈ Ô,m ∈ Mji , t ∈

{1, . . . , T}, k ∈ {2, 3}.
(A.42)
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While the variables (A.39) model the end of the setup operations, variables (A.40) are used to identify

time instants at which handlers and adapters are started to be disassembled. The variables (A.41) and

(A.42) are used to indicate the need for setup operators for setup or disassembly operations. As in

Appendix A.4, we define wm
ji,0

= wm
ji,T+1 = 0 for all ji ∈ Ô and m ∈ Mji , as well as w̃m,k

ji,0
= w̃m,k

ji,T+1 =

vm,k
ji,T+1 = 0 for all ji ∈ Ô, m ∈ Mji , and k ∈ {2, 3}.

The handling of the above variables is in line with our deliberations in Appendix A.4. Conditions

(A.43)–(A.45) relate to variables (A.39), while constraints (A.46)–(A.48) relate to variables (A.40):∑
t∈{0,...,T}

ūm
ji,t =

∑
t∈{1,...,T}

um
ji,t ∀ ji ∈ Ô,m ∈ Mji , (A.43)

∑
m∈M0i

ūm
0i,0 = 1 ∀ i ∈ {1, . . . , r1}, (A.44)∑

m∈Mji

∑
t∈{0,...,T}

tūm
ji,t = Cji −

∑
gh∈Ô\{ji}

∑
m∈Mji

∩Mgh

ymgh,jip
m
ji

−
∑

gh∈Ô\{ji}

∑
m′∈Mgh

∑
m∈Mji

∩M1
m′[1]∩M2

m′[2]

ym
′,m

ḡh,ji
pmji

−
∑

gh∈Ô\{ji}

∑
m′∈Mgh

∑
m∈Mji

∩M1
m′[1]

ym
′,m

ĝh,ji
pmji ∀ ji ∈ O,

(A.45)

∑
t∈{1,...,T}

vm,k
ji,t

=
∑

t∈{1,...,T}
um
ji,t ∀ ji ∈ Ô,m ∈ Mji , k ∈ {2, 3}, (A.46)

∑
m∈Mji

∑
t∈{1,...,T}

(t− 1)vm,3
ji,t

= Cj̄i −
∑

m∈Mji

zmj̄i s̄
m
out ∀ ji ∈ Ô, (A.47)

∑
m∈Mji

∑
t∈{1,...,T}

(t− 1)vm,2
ji,t

= Cĵi
−

∑
m∈Mji

zm
ĵi
ŝmout ∀ ji ∈ Ô. (A.48)

The need for setup operators over all time slots of the planning horizon as well as the availability of

the setup operators is then taken account of in the following conditions (as in Appendix A.4):

wm
ji,t − wm

ji,t−1 = um
ji,t − ūm

ji,t−1 ∀ ji ∈ Ô,m ∈ Mji , t ∈ {1, . . . , T + 1}, (A.49)

w̃m,k
ji,t

− w̃m,k
ji,t−1 = vm,k

ji,t
− v̄m,k

ji,t−1 ∀ ji ∈ Ô,m ∈ Mji , t ∈ {1, . . . , T + 1}, k ∈ {2, 3} (A.50)∑
ji∈Ô

∑
m∈Mji

(wm
ji,t + w̃m,2

ji,t
+ w̃m,3

ji,t
) ≤ h ∀ t ∈ {1, . . . , T}. (A.51)

Appendix B. Details on the performance of the heuristic approaches on small instances

Appendix B.1. Original sets small1 and small2

The computational results of CPLEX as well as the heuristics H-PR, H-TS, and H-SA on the instances

of the set small1 and small2 are presented in Table B.17. The table presents the objective function values

of the solutions returned by each run of the algorithms (columns ‘WT ’, potentially indexed with the

number of the run). For CPLEX, the table additionally includes the runtime (column ‘t’).

Appendix B.2. Set small1 and small2 with all weights fixed to one

Table B.18 focusses on the results after having fixed all weights to one. It is in line with Table B.17
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Table B.17: Performance of the heuristic approaches on the sets small1 and small2

CPLEX H-PR H-TS H-SA

Instance WT t [s] WT WT 1 WT 2 WT 3 WT 1 WT 2 WT 3

small1-1 295 13.64 295 295 295 295 295 295 295
small1-2 674 3.45 674 674 674 674 674 674 674
small1-3 0 254.13 0 0 0 0 0 0 0
small1-4 71 10.1 71 71 71 71 71 71 71
small1-5 187 0.39 187 187 187 187 187 187 187
small1-6 175 11.09 260 175 175 175 175 175 175
small1-7 140 14.32 140 140 140 140 140 140 140
small1-8 260 0.75 316 260 260 260 260 260 260
small1-9 416 16.66 429 429 429 429 429 429 429
small1-10 360 276.29 425 408 408 408 408 408 408
small1-11 0 6.66 0 0 0 0 0 0 0
small1-12 358 12.51 643 358 358 358 358 358 358
small1-13 242 1215.91 248 242 242 242 248 242 242
small1-14 312 82.59 312 312 312 312 312 312 312
small1-15 72 33.84 72 72 72 72 72 72 72
small1-16 650 6.32 650 650 650 650 650 650 650
small1-17 89 6.87 89 89 89 89 89 89 89
small1-18 185 0.23 185 185 185 185 185 185 185
small1-19 4 0.53 4 4 4 4 4 4 4
small1-20 10 0.2 10 10 10 10 10 10 10
small2-1 1206 279.71 1206 1206 1206 1206 1206 1206 1206
small2-2 810 44.74 1356 1259 810 810 1259 1259 1259
small2-3 774 98.93 1522 1306 1306 1306 1306 1306 1306
small2-4 515 103.07 749 735 735 735 735 735 749
small2-5 495 542.91 495 495 495 495 495 495 495
small2-6 484 105.32 679 679 679 679 679 679 679
small2-7 250 182.83 364 250 250 250 250 250 250
small2-8 248 174.09 336 248 248 248 248 248 248
small2-9 136 164.84 404 188 188 188 136 136 136
small2-10 653 14.16 653 653 653 653 653 653 653
small2-11 448 61.61 448 448 448 448 448 448 448
small2-12 172 198.66 211 211 211 211 211 211 211
small2-13 54 212.28 54 54 54 54 54 54 54
small2-14 184 356.65 371 184 184 184 293 293 293
small2-15 358 965.1 815 358 358 358 358 358 368
small2-16 1832 352.56 1832 1832 1832 1832 1832 1832 1832
small2-17 724 55.11 1352 1352 1352 1352 1352 1352 1352
small2-18 786 448.49 1487 795 795 795 795 795 795
small2-19 293 111.72 294 293 293 293 293 293 293
small2-20 125 77.12 200 157 157 157 157 157 176
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Table B.18: Performance of the heuristic approaches on sets small1 and small2 (all weights are fixed to one)

CPLEX H-PR H-TS H-SA

Instance WT t [s] WT WT 1 WT 2 WT 3 WT 1 WT 2 WT 3

small1-1 79 5.04 83 79 79 79 79 79 79
small1-2 168 7.09 168 168 168 168 168 168 168
small1-3 0 259.39 0 0 0 0 0 0 0
small1-4 64 12.65 81 64 64 64 64 64 64
small1-5 187 0.38 187 187 187 187 187 187 187
small1-6 35 7.36 52 35 35 35 35 35 35
small1-7 70 13.55 70 70 70 70 70 70 70
small1-8 65 0.58 106 65 65 65 65 65 65
small1-9 189 5.02 259 189 189 189 189 189 189
small1-10 96 308.19 120 102 102 102 102 102 102
small1-11 0 3.65 0 0 0 0 0 0 0
small1-12 179 10.33 197 179 179 179 179 179 179
small1-13 121 571.15 135 121 121 121 135 121 135
small1-14 133 41.4 133 133 133 133 133 133 133
small1-15 36 40.32 36 36 36 36 36 36 36
small1-16 130 16.44 130 130 130 130 130 130 130
small1-17 89 6.9 89 89 89 89 89 89 89
small1-18 55 0.21 55 55 55 55 55 55 55
small1-19 2 0.52 2 2 2 2 2 2 2
small1-20 5 0.2 5 5 5 5 5 5 5
small2-1 523 268.06 523 523 523 523 523 523 523
small2-2 243 63.66 354 348 243 243 348 348 348
small2-3 226 280.36 388 266 266 266 266 266 266
small2-4 147 59.39 233 147 147 147 147 147 233
small2-5 99 282.95 99 99 99 99 99 99 99
small2-6 121 36.02 121 121 121 121 121 121 121
small2-7 250 182.68 364 250 250 250 250 250 250
small2-8 202 227.61 212 202 202 202 202 202 202
small2-9 34 405.95 143 47 47 47 47 34 34
small2-10 238 23.68 290 238 238 238 290 290 238
small2-11 112 27.51 112 112 112 112 112 112 112
small2-12 172 47.4 243 211 211 211 211 211 211
small2-13 45 331.65 45 45 45 45 45 45 45
small2-14 92 493.66 151 92 92 92 92 92 141
small2-15 177 300.79 244 179 179 179 179 179 177
small2-16 458 292.87 458 458 458 458 458 458 458
small2-17 293 253.82 475 293 293 293 404 293 293
small2-18 259 245.96 421 259 259 259 259 259 259
small2-19 221 191.24 239 221 221 221 221 221 221
small2-20 66 83.81 133 117 126 117 117 117 117
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