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Abstract

This paper treats the Piggyback Transportation Problem: A large vehicle moves successive batches of small

vehicles from a depot to a single launching point. Here, the small vehicles depart toward assigned customers,

supply shipments, and return to the depot. Once the large vehicle has returned and another batch of small

vehicles has been loaded at the depot, the process repeats until all customers are serviced. With autonomous

driving on the verge of practical application, this general setting occurs whenever small autonomous delivery

vehicles with limited operating range, e.g., unmanned aerial vehicles (drones) or delivery robots, need to be

brought in the proximity of the customers by a larger vehicle, e.g., a truck. We aim at the most elementary

decision problem in this context, which is inspired by Amazon’s novel last-mile concept, the flying warehouse.

According to this concept, drones are launched from a flying warehouse and – after their return to an earthbound

depot – are resupplied to the flying warehouse by an air shuttle. We formulate the Piggyback Transportation

Problem, investigate its computational complexity, and derive suited solution procedures. From a theoretical

perspective, we prove different important structural problem properties. From a practical point of view, we

explore the impact of the two main cost drivers, the capacity of the large vehicle and the fleet size of small

vehicles, on service quality.

Keywords: Scheduling, Logistics, Work sharing, Approximation algorithm

1. Introduction

There exist quite a few settings, where a larger vehicle piggybacks multiple smaller vehicles and transports

them toward an advantageous launching point in order to achieve efficient transportation processes. In this

context, we treat the Piggyback Transportation Problem (PTP), which can be characterized as follows (see

Figure 1): There is a single large vehicle and a fleet of small vehicles. The large vehicle has a given capacity

for small vehicles and moves back and forth between a depot and a launching point. At the depot, the large

vehicle loads a batch of small vehicles, each of which has been loaded with a shipment for a specific customer

while being in the depot, and transports them to an advantageous launching point, which is hard to reach for

the small vehicles without assistance but provides easier access to their target area. At the launching point, each

small vehicle departs toward its assigned customer, delivers the shipment and returns to the depot. In parallel,

the large vehicle drives back to the depot, where another batch of small vehicles is loaded. This process repeats
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Figure 1: Schematic setting of PTP

until all shipments have been delivered to the customers. PTP decides on the assignment of small vehicles to

multiple successive batches and the departure times of the large vehicle. Furthermore, each small vehicle has to

be assigned to a customer for each of the batches in which it is included. Depending on the customer’s location,

this influences the travel time of the small vehicle back to the depot. In this setting, we aim to minimize the

makespan, i.e., the time instant at which all customers have been served and the large vehicle as well as all small

vehicles have returned to the depot.

1.1. Applications and Literature Review

PTP is a generic problem that has quite a few applications in the transportation or production context.

With autonomous driving on the verge of practical application, this setting occurs, for instance, whenever small

autonomous delivery vehicles, e.g., unmanned aerial vehicles (drones) (Otto et al. 2018) or delivery robots (Boysen

et al. 2018), with limited operating range need to be brought in the proximity of customers by a larger vehicle,

e.g., a truck. The customers can be of different nature. In the transportation context, they may be recipients

of shipments of an online retailer. In a production context, they may be workers at an assembly line that are

supplied with the needed material.

To derive basic insights, we aim at a core scheduling problem where the routing of the large vehicle is reduced

to the most elementary setting, a movement back and forth between a depot and a single launching point.

Such a reduced setting is, for instance, relevant for the airborne fulfillment center concept recently patented by

online retailer Amazon (Berg et al. 2016). This innovative last-mile delivery concept aims to provide high-speed

e-commerce deliveries to customers in urban areas from a flying warehouse, i.e., an airship hovering over a city

center. Its basic elements are depicted in Figure 2a. Once a customer places an order, a drone is loaded with the
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(b) Replenishment process

Figure 2: Concept of an airborne fulfillment center from Amazon patent (Berg et al. 2016)

ordered goods, flies down from the airship, and delivers the parcel. When the delivery is completed, the drone

does not directly return to the flying warehouse, but flies back to an earthbound depot. An air shuttle resupplies

the airship with drones and inventory from the depot (see Figure 2b). Certainly, this is a concept for the farther

future with many basic components still to be developed to a market-ready state. Compared to other application
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scenarios of drone-based home delivery, however, it has a few advantages. Most important, the overall process

is very energy efficient, because, when departing from a high altitude, the drones utilize gravitation and solely

have to stabilize their flights. Furthermore, the ground level flight legs are empty flights without payload. With

respect to energy consumption, these flight legs are usually more costly than the flights from the airship to the

customers but, nevertheless, require less operating energy than their alternatives, i.e., trips from the customers to

the flying warehouse. Thus, in spite of the energy capacity of drones being notoriously scarce (Agatz et al. 2018),

a large urban area can be supplied. Other concepts that aim to launch drones either directly from (earthbound)

distribution centers or from trucks acting as mobile launching platforms, require a dense and costly depot network

or have to apply plenty of trucks driving through the congested street networks, respectively.

In the above application of airborne fulfillment centers, the large vehicle – as defined in the context of PTP

– corresponds to the air shuttle that replenishes the flying warehouse (see Figure 2b), while the small vehicles

correspond to the drones. The shuttle flies back and forth between the earthbound depot and the launching

point at the airship. Thus, one has to decide on the starting times of the successive shuttle trips, the drones

to be taken on board, and the customer to be serviced by each drone launched from the airship. While plenty

of scientific papers on launching drones from trucks have recently been written (see Otto et al. 2018), airborne

warehouses have received less attention. To the best of the authors’ knowledge, there is only one paper by

Poikonen & Golden (2020). It is, however, concerned with the routing of the airborne warehouse and drone

releases toward customers in the sky. We complement this research and are the first to schedule the resupply of

the flying warehouse with drones by a shuttle from an earthbound depot. Other than Poikonen & Golden (2020),

we presuppose a fixed position of the airborne warehouse. At first sight, this may seem to be a very limiting

assumption that restricts the applicability of PTP to cases where the flying warehouse remains at a single spot.

Note, however, that the flying warehouse concept presupposes an airship, which is not very fast and can thus only

slowly adapt its position over the day. Our PTP, instead, is an operational problem, which is solved repeatedly

during the day on rolling planning horizons, e.g., to adapt the drone resupply schedule to new customers and

urgent orders that have newly arrived. For each single planning run, the variations in the positions of the flying

warehouse are rather small, so that, at least for a slow airship, the assumption of a fixed launching point is a

suitable simplification to ease schedule computations in each short-term planning run.

In this paper, we will stick to the application example of airborne warehouses, so that the small and large

vehicles within PTP will also be called drones and shuttle, respectively. We furthermore note that the term

piggyback transportation is sometimes reserved for the transport of (truck) trailers and semi-trailers on flat

railcars (see, e.g., Thoung 1989). We, however, interpret the term in a rather broad sense and allow any kind of

vehicle being given piggyback, so that there are quite a few alternative applications for our basic PTP, some of

which are briefly elaborated in the following.

The small vehicles could also represent a team of car relocators moving export cars onto roll-on roll-off vessels.

Large deep-sea car carriers have a capacity of up to 6000 vehicles (Cordeau et al. 2011), so that driving the cars,

parked somewhere in the huge terminal area, on board of such a large vessel causes considerable car relocation

effort. To speed up the process, each team of relocators is supported by a taxi bus (large vehicle) that transports

them from the ship back to the field of the parking area that is currently processed (launching point) (Mattfeld

& Kopfer 2003). From there, the relocators walk to their respective cars (customers) and drive them onto the

vessel. Then, another taxi trip is executed starting at the vessel (depot) and so on, until all cars are loaded.

Existing research on operating vehicle transshipment terminals mainly addresses the questions of where to park
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cars in the terminal area (Mattfeld & Orth 2006; Cordeau et al. 2011), how to coordinate the decisions in a

hierarchical planning approach (Mattfeld & Kopfer 2003), and how to determine team structures (Mattfeld &

Branke 2005). The operational scheduling of car movements corresponding to PTP has not been considered yet.

From a structural point of view, PTP has some similarities with job scheduling on a batching machine.

A batching machine can process up to k jobs in parallel and the processing time of a batch corresponds to

the maximum processing time among all parallel jobs. Corresponding elementary complexity results for the

traditional machine scheduling objectives are summarized in Brucker et al. (1998) and Blazewicz et al. (2019).

When minimizing the makespan, which corresponds to the objective of our PTP, batch scheduling is solvable in

polynomial time (see Brucker et al. 1998). For most other objectives, the problem turns out NP-hard. Important

algorithmic contributions for these settings are, for instance, provided by Wang & Uzsoy (2002), Malapert et al.

(2012), as well as Jia & Leung (2015). In the context of PTP, the travel of a small vehicle from the launching

point toward its designated customer and back to the depot can be interpreted as a job. The main difference of

scheduling a batching machine compared to our problem, however, is that the starting time of the next batch

(the next trip of the large vehicle) in the context of PTP is not determined by the maximum processing time

of the previous batch. Once the large vehicle has returned to the depot, it does not have to wait for the small

vehicles of the previous batch to return. It can depart instantaneously with the small vehicles that have already

returned (even if they were launched in a batch prior to the last).

Another related problem setting dedicated to the transportation of different raw coal lots stored in a coal yard

(depot) to different neighboring coke ovens (launching point) by a feeding train (large vehicle) is investigated by

Liu et al. (2019). They, however, assume that coke ovens influence the cooling process of neighboring ovens, so

that there are complex interdependencies between processing times. Our processing times, instead, only depend

on different customer locations. Thus, the problems are not directly transferable and PTP requires a separate

analysis and new algorithmic approaches.

1.2. Contribution and Paper Structure

This paper is the first to formulate PTP, a generic problem that has various potential applications by itself

(see Section 1.1), but may also occur as a subproblem in more complex transportation settings, e.g., with

multiple alternative launching points or a single launching point with a dynamically varying position. For these

more involved problem settings, PTP may be a valid core problem to be solved repeatedly as a workhorse in a

decomposition procedure (e.g., a metaheuristic) or as a procedure for deriving quick lower bounds.

Our further contributions are in two areas. From a theoretical point of view, we derive important problem

properties:

• We prove strong NP-hardness of PTP even for very restricted special cases with solely two small vehicles.

• For the special case with identical travel times of the small vehicles for all customers, we propose a dynamic

programming approach with polynomial running time.

• For the case where the capacity of the large vehicle is large enough to take the complete fleet of small

vehicles on board, we propose a greedy algorithm with an approximation ratio of 2.

• We furthermore propose a polynomial-time approximation scheme (PTAS) for problem instances that are

characterized by “small” travel times of the small vehicles for all customers.
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• Finally, we make use of the above results to derive a polynomial algorithm with approximation ratio

(1 + ε)(3 + ε) for an arbitrary constant ε > 0 for the general case of PTP.

Beyond these theoretical contributions, we also propose an integer program and a simple, yet very efficient heuris-

tic approach for PTP. Based on a computational study, this allows to derive decision support for transportation

managers that have to set up a piggyback transportation process. In most applications, the main cost drivers

will certainly be the capacity of the large vehicle and the fleet size of small vehicles. We explore how to best

allocate investments among these two cost drivers.

The remainder of the paper is structured as follows. In Section 2, we introduce the notation used throughout

this article and define PTP in detail. A corresponding Integer Program (IP) is presented in Section 3. As

outlined above, Sections 4 and 5 are concerned with results on the computational complexity of PTP for several

special cases as well as the approximation algorithms. The derivation of managerial implications based on a

computational study is presented in Section 6. The paper closes with a summary and conclusions in Section 7.

2. Notation, Problem Description, and Definitions

PTP is defined as follows. We are given two kinds of vehicles: a set S of s homogeneous drones (small

vehicles) and a single shuttle (large vehicle) with capacity k. The shuttle solely makes round trips between a

depot and a launching point. Starting from the depot, the shuttle takes up to k drones on board and delivers

them to the launching point. From there, the empty shuttle returns back to the depot. We assume that it takes

d ∈ N time units to drive from the depot to the launching point or back. Hence, a complete round trip has a

duration of 2d. Note that – to derive a basic problem setting – we neglect all other times beyond travel, e.g., the

time needed to load the shipments onto the drones, to load the drones onto the shuttle, or the time needed for

swapping batteries of returning drones. We assume that these times are either negligible compared to the travel

times or can be added to the latter.

Furthermore, we are given a set J of n jobs. Each job j ∈ J is associated with the delivery of a shipment to

a specific customer. Due to weight and size restrictions (Agatz et al. 2018), each drone can only carry a single

shipment for a single customer at a time. Each drone delivery starts at the launching point and takes the flight

time from there to the respective customer, the unloading time at the customer, and the time for the final flight

leg from the customer back to the depot. In total, this takes a processing time pj ∈ N for the drone assigned to

the shipment to customer j ∈ J . Once returned to the depot, a drone is readily available for the next shipment.

Note that, if pj < d for some j ∈ J , the drone assigned to job j will return to the depot before the shuttle

returns. Thus, the drone inevitably has to wait for the shuttle. We can therefore set pj = d to compensate the

waiting time. Therefore, without loss of generality, we assume pj ≥ d for all j ∈ J .

In order to ease the notation in the remainder of this article, we define h = bs/kc, k′ = s− hk, and D = 2d,

where h represents the minimum number of round trips with k drones that can be performed consecutively at

the beginning of a schedule (see Definition 2.1). The execution of these trips is part of what we will later define

as the non-wasting property (see Definition 2.3). The notation is summarized in Table 1.

In our informal problem characterization, we have elaborated that PTP decides on the assignment of drones

to multiple successive shuttle trips, each being defined by a departure time, and an assignment of customers to

the drones of the trips. In fact, it is sufficient to only determine the departure times and the customers serviced

in the corresponding trips.
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Table 1: Notation used throughout the paper

S set of drones (small vehicles) S = {1, . . . , s}
J set of jobs (customers) J = {1, . . . , n}
pj processing time of job j ∈ J pj ≥ d ∀ j ∈ J
d one-way travel time of shuttle (large vehicle)
D = 2d time needed for a round trip of the shuttle
k capacity of the shuttle (in number of drones)
h = bs/kc auxiliary notation
k′ = s− hk auxiliary notation

Definition 2.1 (Schedule). A schedule σ consists of a set of shuttle departure times T = {τ1, τ2, . . .} and, for

each τ ∈ T, a set of corresponding jobs J(τ) ⊆ J that are serviced on the respective round trip. For each τ ∈ T,

η(τ) =
∑
τ ′∈T:τ ′<τ |{j ∈ J(τ ′)|pj > τ−d−τ ′}| denotes the number of drones that are still on the way and therefore

not available for being loaded onto the shuttle at time τ . Similarly, η̂(τ) =
∑
τ ′∈T:τ ′<τ |{j ∈ J(τ ′)|pj = τ−d−τ ′}|

is the number of drones that return to the depot exactly at time τ .

The prerequisites of a schedule being feasible are as follows.

Definition 2.2 (Feasible schedule). Schedule σ is feasible, if and only if

1. all customers are serviced, i.e., J =
⋃
τ∈T J(τ),

2. the shuttle has enough time to return to the depot in between two round trips, i.e., |τ − τ ′| ≥ D for all

τ, τ ′ ∈ T, τ 6= τ ′, and

3. the number of drones loaded onto the shuttle does neither exceed the shuttle’s capacity nor the number of

drones currently available at the depot, i.e., |J(τ)| ≤ min{k, s− η(τ)} for all τ ∈ T.

Among all feasible schedules, PTP seeks a schedule σ with minimummakespan Cmax(σ) = maxτi∈T,j∈J(τi){τi+

d+ pj}.

We now define a specific type of schedule that restricts the shuttle departure times and the number of drones

loaded in each round trip.

Definition 2.3 (Non-wasting schedule). A feasible schedule σ is called non-wasting if and only if the following

conditions hold for all τ ∈ T:

1. Either max{0, τ − 2d} ∈ T or τ ∈
⋃
τ ′∈T{τ ′ + d+ pj | j ∈ J(τ ′)}.

2. If max{0, τ − 2d} 6∈ T, then η̂(τ) > s− |J(τ)| − η(τ).

3. |J(τ)| = min{k, s− η(τ), n−
∑
τ ′∈T:τ ′<τ |J(τ ′)|}.

The first property of Definition 2.3 ensures that the shuttle departs for a round trip immediately after having

returned to the depot or that it departs exactly when some drones have returned. The latter case is further

restricted by the second property, which enforces at least one of the drones that have just returned is loaded onto

the shuttle for the next round trip. The third property ensures that the maximum possible number of drones (or

the exact number of drones needed to serve the remaining customers) is loaded onto the shuttle for each round

trip. It is easy to see that any optimal schedule can be transformed into a corresponding non-wasting schedule

without increasing the makespan. Hence, in what follows, we will restrict ourselves to considering non-wasting

schedules.

When designing algorithms for PTP, one can, for example, construct and combine strategies for generating

shuttle departure times in non-wasting schedules on the one hand and procedures for assigning jobs to the drones

of the respective round trips on the other hand. With respect to generating shuttle departure times, we will later

consider two specific strategies, that are defined as follows.
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Definition 2.4 (Conservative and aggressive strategies). In a conservative strategy, the (non-wasting) schedule

is such that the shuttle departs as soon as at least k drones are available for being loaded or when the required

number of drones that are needed to serve all customers that have not yet been served can be loaded. In an

aggressive strategy, the shuttle departs whenever there is at least one available drone as well as a customer that

remains to be served.

The conservative strategy models the policy of transporting as many drones as possible in each round trip,

while the aggressive strategy makes the shuttle depart for its trips as soon as possible. Both strategies may be

advantageous under different circumstances. When s is rather small and d is large when compared with the job

processing times, the conservative strategy may be a good choice. On the other hand, if d is relatively small and

s is rather large, then one would expect the aggressive strategy to perform well.

3. Integer Program

Let tmax be some upper bound on the latest departure time of the shuttle in an optimal solution and let

variables st ∈ N, t ∈ {0, . . . , tmax}, represent the number of drones that are not available immediately after the

shuttle has left at time instant t as they have not yet returned from their last departure. Note that time instant

t = 0 represents the beginning of the planning horizon. Additionally, define the following binary variables:

vt :=

1 if a round trip starts at time instant t

0 else
∀ t ∈ {0, . . . , tmax},

aj,t :=


1 if customer j is served by a drone loaded onto the shuttle

starting a round trip at time instant t

0 else

∀ j ∈ J, t ∈ {0, . . . , tmax}.

Then, an integer program for PTP is as follows.

.min Cmax (1)

. s.t. .t · aj,t + d+ pj ≤ Cmax . ∀j ∈ J, t ∈ {0, . . . , tmax}, (2)

.
∑

t′∈{t,...,t+D−1}
vt′ ≤ 1 . ∀t ∈ {0, . . . , tmax −D + 1}, (3)

.
∑

t∈{0,...,tmax}
aj,t = 1 . ∀j ∈ J, (4)

.aj,t = 0 . ∀j ∈ J, t ∈ {−d− pj , . . . ,−1}, (5)

.st = st−1 +
∑
j∈J

aj,t −
∑
j∈J

aj,t−d−pj . ∀t ∈ {0, . . . , tmax}, (6)

.s−1 = 0 . (7)

.
∑
j∈J

aj,t ≤ k · vt . ∀t ∈ {0, . . . , tmax}, (8)

.st ≤ s . ∀t ∈ {0, . . . , tmax}, (9)

.vt ∈ {0, 1} . ∀t ∈ {0, . . . , tmax}, (10)

.st ∈ N . ∀t ∈ {−1, . . . , tmax}, (11)
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.aj,t ∈ {0, 1} . ∀j ∈ J, t ∈ {−d− pj , . . . , tmax}, (12)

The objective function (1) minimizes the makespan, which is bounded from below by restrictions (2). Note that,

as we assume that pj ≥ d for all j ∈ J , we do not have to explicitly consider the last return of the shuttle to the

depot in the latter restrictions. Constraints (3) ensure that at least D time units elapse between the start of two

succeeding round trips. Restrictions (4) enforce every customer to be served by exactly one drone. Constraints

(5) define auxiliary variables and fix them to zero. They are needed within constraints (6) and (7), that set the

variables st, t ∈ {0, . . . , tmax}, and the auxiliary variable s−1 to their correct values. Note that the latter two

terms on the right hand side of constraints (6) correspond to the number of drones that depart and land at the

depot at time t, respectively, and this aligns with constraints (5). Restrictions (8) assure that at most k drones

are loaded onto the shuttle for each round trip. Finally, constraints (9) model the fact that the number of drones

is limited and restrictions (10)–(12) define the domains of the variables.

4. Computational Complexity

For the extreme case where d = 0, PTP is equivalent to P ||Cmax, i.e., the classical problem of scheduling

jobs on s parallel machines to minimize the makespan, which is known to be strongly NP-hard and has been

extensively studied for decades (Chen et al. 2014; Garey & Johnson 1978). The equivalence is due to the fact

that, for d = 0, the shuttle capacity essentially does not restrict the number of drones that can be transported to

the launching point by the shuttle as it can perform an arbitrary number of round trips within zero time units.

Hence, each drone can immediately be transported to the launching point to start processing a new job after it

has returned to the depot. As a result, PTP reduces to assigning the jobs to the drones so as to minimize the

maximum load of the drones. When interpreting the drones as parallel machines, this corresponds to P ||Cmax.

Hence, we have shown that PTP is strongly NP-hard. In this section, we will additionally show that PTP remains

strongly NP-hard when restricted to the case s = 2 and k = 1 or the case s = k = 2. This is an interesting

property in light of the fact that P ||Cmax on a fixed number of two machines, i.e., the problem usually denoted

by P2||Cmax, is only weakly NP-hard as it can be solved in pseudo-polynomial time by dynamic programming

(Karp 1972).

The general case with positive d is more representative for our problem setting, because it reflects the fact

that some drones may have to wait for other drones so that they can be transported to the launching point by the

shuttle in a single round trip. This type of synchronization property is also relevant for many other applications in

machine scheduling. For example, in reliable machine scheduling, the machines need to be calibrated periodically

to ensure high quality products. It is usually costly and time consuming to conduct these calibrations. However,

there may be time savings when groups of machines are calibrated at the same time, so that some machines

might be intentionally set to be idle or turned off in order to wait for other machines and, thus, synchronize the

calibrating operations.

In light of the above synchronization property, we now define a variant of P ||Cmax.

Definition 4.1 (Synchronized Makespan Minimization Scheduling Problem). Given integers k and d, the Syn-

chronized Makespan Minimization Scheduling Problem (SMMSP) is a special case of P ||Cmax on some job set J̃

with job processing times p̃j, j ∈ J̃ , where a feasible solution must fulfill the following properties:

1. The number of jobs that share the same starting time is at most k.
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2. The difference of any pair of two distinct job starting times is at least 2d = D.

Obviously, SMMSP with jobs J̃ = J and p̃j = pj + d for j ∈ J̃ is equivalent to PTP. Adopting the classical

three-field notation in Graham et al. (1979), we denote SMMSP by P |sync ≤ k, diff ≥ D|Cmax. When the

number s of parallel machines is fixed, we write Ps|sync ≤ k, diff ≥ D|Cmax.

In order to prove the aforementioned complexity results, we will investigate two variants of SMMSP. In the

first variant, we fix k = 1. This class of problems, P |sync ≤ 1, diff ≥ D|Cmax, corresponds to a variant of

P ||Cmax, where the difference of any pair of two job starting times must be at least D. In the second variant,

P |sync ≤ s, diff ≥ D|Cmax, we set k = s.

Our proofs are based on reductions of the 3-Partition Problem, which is well known to be strongly NP-hard

(Garey & Johnson 1979).

Definition 4.2 (3-Partition Problem). Given positive integers b, c and a set of 3b positive integers Q =

{a1, a2, . . . , a3b} with
∑3b
i=1 ai = bc, the 3-Partition Problem is to decide whether the set Q can be partitioned

into b subsets Q1, Q2, . . . , Qb, such that each subset contains three elements and the sum of the numbers in each

subset equals c.

Without loss of generality, we will from now on restrict ourselves to 3-Partition instances with ai ∈ (0, c) for

all ai ∈ Q. Moreover, if some 3-Partition instance is a yes-instance, we will refer to a corresponding partitioning

as a solution of this instance.

4.1. Strong NP-hardness for the Case s = 2 and k = 1

We will now show that P |sync ≤ 1, diff ≥ D|Cmax is strongly NP-hard even for fixed s = 2 and D > 0,

i.e., we will prove strong NP-hardness of P2|sync ≤ 1, diff ≥ D|Cmax. This result implies the fact that PTP is

strongly NP-hard for the case s = 2 and k = 1.

Theorem 4.1. P2|sync ≤ 1, diff ≥ D|Cmax is strongly NP-hard.

Proof. Given an instance of 3-Partition, we construct an instance of P2|sync ≤ 1, diff ≥ D|Cmax as follows.

Define ` = 10c, and D = 2c. With each ai ∈ Q, we associate a job with processing time pi = ai + 3c. We refer

to these jobs as regular jobs and denote the set of these jobs by R. In addition, we create b − 1 “long” dummy

jobs with identical processing time `+ 2D = 14c and one “short” dummy job with processing time `+D = 12c.

Hence, there are 4b jobs in total. Let I denote the set of all of these jobs.

As ai ∈ (0, c), we have pi ∈ (3c, 4c) or, equivalently, pi ∈ (D+ c, 2D) for each regular job i ∈ R. Furthermore,

note that the sum of the processing times of any two regular jobs is smaller than `−D, the sum of the processing

times of any three regular jobs is larger than `−D, and the sum of the processing times of any four regular jobs

is larger than `. Moreover, if the sum of processing times of any three regular jobs equals `, then the sum of the

corresponding three elements of Q equals c and vice versa.

We will now show that, if there is a solution to the 3-Partition instance, then there is a solution of the

P2|sync ≤ 1, diff ≥ D|Cmax instance with makespan b(` + D) = 12bc. To see this, note that the sum of the

processing times of the regular jobs that correspond to the elements of any subset of the 3-Partition instance

equals ` = 10c. Construct a schedule by allocating the long dummy jobs to the two machines in an alternating

manner with starting time (D + `)(i− 1) = 12c(i− 1) for the i-th job. Similarly, allocate the short dummy job

to a machine so that it starts at time instant (D+ `)(b− 1) = 12c(b− 1). Note that, in this case, the completion
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time of the short dummy job equals b(` + D) = 12bc. As by definition of P2|sync ≤ 1, diff ≥ D|Cmax, the

difference of any pair of two job starting times must be at least D, every remaining available time interval on

the two machines that results in a makespan of exactly b(`+D) = 12bc, has a length of exactly ` time units (see

Figure 3), so that we can assign the regular jobs that correspond to the elements of the subsets of the partitioning

long dummy

long dummy

short dummy

regular regular regular

regular regular regular

regular regular regular

time

machine

2c 12c 14c 24c 26c 36c

1

2

D ℓ D ℓ D ℓ

Figure 3: Illustration of the construction of an optimal schedule for b = 3

to these disjoint time intervals, which proves the above claim.

It remains to prove that, if the instance of P2|sync ≤ 1, diff ≥ D|Cmax has a solution with makespan b(`+D),

then the 3-Partition instance has a solution. Note that, if the makespan of a feasible solution of the instance of

P2|sync ≤ 1, diff ≥ D|Cmax is
D+

∑
j∈I pj
2 = b(`+D), then there is no idle time on any of the machines except for

the very beginning of the time horizon, because the difference of any pair of two job starting times must be at

least D. As a consequence, the time instant at which the machines finish processing their last jobs is identical.

Denote the starting time and the completion time of job j in the considered schedule by tj and Cj , respectively.

Then, for all regular jobs j ∈ R, the time interval (tj , Cj) contains no starting time of any other job, because

D < pj < 2D and any starting time tj′ ∈ (tj , Cj) on the other machine would result in a violation of the property

of a minimum difference of at least D time units of tj′ to tj , or to the starting time of the job which is scheduled

immediately after j. If j is the last job on its machine, then Cj = b(` + D) and tj′ ∈ (tj , Cj) would result in a

makespan larger than b(`+D).

Thus, the processing intervals of regular jobs are pairwise disjoint and one of the machines completes with the

short dummy job as the last job. Define a block as a set of regular jobs scheduled successively on one machine

without any idle time. Assume a block is maximal, i.e., the jobs immediately preceding and following the block

are not regular, so that any two blocks are separated by at least D time units. Then, because the schedule

contains no idle time besides D time units before the first job on only one of the machines, a dummy job is

processed on the other machine while a block is processed on one machine. The dummy job’s starting time is

at least D time units earlier than the start of the block, and its completion time is at least D time units later

than the completion time of the block, except for the dummy job scheduled last. Thus, the total processing

time of a block is at most ` and it includes at most 3 jobs. There are b dummy jobs. Thus, there are at most

b blocks. The total processing time of all regular jobs is 10bc = b`. With less than b blocks, one of them would

have a processing time larger than `. As a consequence, the processing time of each block equals ` and we have

a solution of the 3-Partition instance. This concludes the proof.

4.2. Strong NP-hardness for the Case s = k = 2

In this section, we will show that P |sync ≤ s, diff ≥ D|Cmax is strongly NP-hard even for fixed s = 2 and

D > 0. It follows readily that PTP is strongly NP-hard for the case s = k = 2.

Within the proof, we will restrict our attention to instances of 3-Partition where c/4 < ai < c/2 for all ai ∈ Q

and any two elements of set Q have distinct values. The 3-Partition Problem remains strongly NP-hard under
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these assumptions (see Garey & Johnson (1979) for the first property and Hulett et al. (2008), Corollary 7, for

the second property).

Theorem 4.2. P2|sync ≤ 2, diff ≥ D|Cmax is strongly NP-hard.

Proof. Given an instance of 3-Partition, we create an instance of P2|sync ≤ 2, diff ≥ D|Cmax as follows. Set

D = c/4 and create a job i with processing time pi = ai for each ai ∈ Q. We refer to the corresponding jobs as

regular jobs and denote the set of regular jobs by R. Additionally, create b dummy jobs with processing time c,

so that there are 4b jobs in total.

We will first show that, if there is a solution Q1, Q2, . . . , Qb to the 3-Partition instance, then there is a

solution of the P2|sync ≤ 2, diff ≥ D|Cmax instance with makespan bc by scheduling the regular jobs on one of

the machines in any order within their sets Q1, Q2, . . . , Qb and processing all dummy jobs on the other machine.

There are no idle times on the machines. It is obvious that the resulting schedule is such that both machines

finish processing their last job at time bc. Furthermore, for each dummy job, there exists a regular jobs that

starts at the same time instant. Hence, the difference of any pair of two distinct job starting times is at least

minai∈Q ai > c/4 = D and we have a solution to the P2|sync ≤ 2, diff ≥ D|Cmax instance.

Now, assume there exists a solution of the P2|sync ≤ 2, diff ≥ D|Cmax instance with makespan bc. Note

that, within this schedule, there is no idle time and both machines finish processing their last job at the same

time instant bc. In what follows, we will prove that - in this case - the 3-Partition instance has a solution. We

will use the notation introduced in the proof of Theorem 4.1.

First, observe that in the considered solution of the P2|sync ≤ 2, diff ≥ D|Cmax instance, there exists no

pair of regular jobs with overlapping processing intervals. To see this, assume to the contrary that there exists

a pair j, j′ ∈ R, so that j and j′ are scheduled on different machines and their processing overlaps. Without

loss of generality, assume that tj ≤ tj′ . If tj = tj′ , we have 0 < |Cj − Cj′ | < c/4 by our general restrictions

on the considered 3-Partition instances. Hence, as the schedule has no idle time, the two other jobs starting

immediately when j and j′ are completed violate the required starting time difference of D. Moreover, because

all ai are different and larger than c/4, neither j nor j′ can be the last jobs on their machines, so that we have a

contradiction. If, on the other hand, tj < tj′ , we have tj +D ≤ tj′ . Moreover, Cj > tj′ , because the processing

of j and j′ overlaps. Since additionally D = c/4 < pi < c/2 for all i ∈ R, it follows that 0 < Cj − tj′ < D and

Cj < Cj′ . Therefore, Cj must be the starting time of another job so that the SMMSP constraints are violated,

which is a contradiction. Therefore, the above observation is true.

Let j and j′ be a regular and a dummy job, respectively. Then, by the same arguments we conclude that

tj′ /∈ (tj , Cj) and Cj′ /∈ (tj , Cj). As the schedule has no idle time, the intervals of processing dummy jobs do not

overlap. Whenever a dummy job j′ is scheduled on a machine, a block of regular jobs is scheduled at the same

time on the other machine. The starting time of the first job in this block is identical to tj′ . The completion

time of the last job in the block equals Cj′ . Due to the fact that each block contains exactly 3 regular jobs, we

have a solution to the instance of 3-Partition.

4.3. Polynomial-Time Solvability for Identical Processing Times

In this section, we assume that all jobs have the same processing time, i.e., pj = p, j ∈ J . Then, PTP reduces

to the problem of having to determine optimal shuttle departure times in non-wasting schedules. When making

use of the shuttle departure strategies introduced in Definition 2.4, a few problem settings become trivial.
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Proposition 4.1. If the processing times are all equal, pj = p for all j ∈ J , the following holds:

1. If k′ = 0 or Dh ≥ d+ p, applying the conservative strategy or the aggressive strategy results in an optimal

schedule.

2. If D(h+ 1) ≤ d+ p, using the aggressive strategy results in an optimal schedule.

Proof. Consider the case k′ = 0. Then, for both strategies, the number of drones that are available in the depot

will always be a multiple of k. Hence, when restricting the solutions to non-wasting schedules, both strategies

result in identical solutions, in which the shuttle transports the maximum number of possible (shuttle capacity)

or needed (remaining customers to be served) drones to the launching point in every round trip. Moreover, these

solutions are optimal, since the shuttle departs immediately when a drone is available.

Now, consider the case Dh ≥ d+ p. If d+ p = 0, the claim is obvious, so that we restrict our attention to the

case d+ p > 0. Hence, we may assume that h > 0 and, therefore, s ≥ k. By definition of h, there are at least k

drones available when departing for the first h round trips for both strategies. At time Dh, the shuttle returns

to the depot from round trip h. At this point of time, the drones launched in the first round trip have already

returned, as Dh ≥ d+ p. The same reasoning applies for the later round trips of the shuttle. Consequently, both

strategies result in optimal schedules that are structured as in the above case k′ = 0.

Now, assume that D(h+1) ≤ d+p and that the aggressive strategy is applied. Again, consider the non-trivial

case d > 0. Then the shuttle starts the (h + 1)-th round trip at time Dh with exactly k′ drones. The drones

that are transported to the launching point in the first round will not return to the depot later than the shuttle

returns from round trip h, because Dh < d+ p. Hence, the resulting schedule is such that the maximum number

of drones departs from the depot, which is either k, k′ or limited by the remaining customers, in each round

trip.

For the remaining case, k′ > 0 and Dh < d+ p < D(h+ 1), we derive the following property.

Proposition 4.2. Consider fixed values of s and k such that k′ > 0. Moreover, assume that pj = p for all j ∈ J

and Dh < d+ p < D(h+ 1). Let f(n) be the optimal makespan of an instance of PTP with n jobs. Then

f(n) =

d+ p+D(
⌈
n
k

⌉
− 1), if 0 < n ≤ s

min{f(n− hk) + (d+ p), f(n− s) +D(h+ 1)}, if n > s.

(13)

Proof. In case of n ≤ s, i.e., when there are more drones than jobs, the shuttle will never have to wait for

drones to arrive at the depot before departing for a round trip. Hence, applying the conservative strategy or the

aggressive strategy results in an optimal schedule with
⌈
n
k

⌉
round trips and makespan d+ p+D(

⌈
n
k

⌉
− 1).

Now, consider the case n > s. Note that h > 0 as d+ p < D(h+ 1) and p ≥ d. As we restrict our attention

to non-wasting schedules, the optimal schedule is such that there are k drones transported by the shuttle in the

first h round trips. Hence, τi = D(i − 1) for the i-th round trip, i = 1, . . . , h. Moreover, for h ≥ 2, the time

interval between the return of the drones launched in round trips i ∈ {1, . . . , h− 1} and i′ = i+ 1 has a length

of exactly D time units. In what follows, we will differentiate between two cases.

First, assume that the optimal schedule is such that τh+1 > τh+D, i.e., the shuttle waits for drones to return

to the depot before departing for round trip h+ 1. As the k drones launched in the first round trip will return to

the depot at time d+ p, we have τh+1 = d+ p. Hence, we have reduced the considered problem to a subproblem

with n− hk jobs and starting time d+ p, so that f(n) = f(n− hk) + (d+ p).
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Now, assume that τh+1 = τh + D, so that there are k′ drones launched in round trip h + 1 in an optimal

schedule. As d + p < D(h + 1), the drones in the first round will have returned to the depot before the shuttle

returns from round trip h+ 1. Hence, τh+2 = τh+1 +D = D(h+ 1).

As a result, we have reduced the considered problem to a subproblem with starting time D(h+ 1) and n− s

jobs, so that f(n) = f(n− s) +D(h+ 1).

Proposition 4.2 characterizes a dynamic programming (DP) approach for solving PTP when all processing

times are identical and when k′ > 0 and Dh < d+ p < D(h+ 1). The runtime of this DP approach is linear in

the number of jobs. If n is a multiple of the least common multiple of s and s− k′ then the optimal solution can

be determined directly, either conservatively or aggressively. If n is not larger than the least common multiple of

s and s− k′, the runtime can be improved to O(s). To see this, we restrict our attention to the case n > s and

assume that the optimal schedule is such that the first option in the minimization of Equation (13) is chosen x

times and the second option is chosen y times. Then the makespan of the optimal schedule equals

x(d+ p) + yD(h+ 1) + (d+ p) +D(
⌈ z
k

⌉
− 1),

where 1 ≤ z ≤ s is such that n = x · (s − k′) + y · s + z. When x is fixed, we have y ≤
⌊
n−1−x(s−k′)

s

⌋
and

z = n − x(s − k′) − ys. As we assume that n is not larger than the least common multiple of s and s − k′, we

have x ≤
⌊

n
s−k′

⌋
≤ s, so that the runtime of the DP reduces to O(s) as claimed above.

As a consequence of the results presented in this section, we can conclude that PTP is polynomial time

solvable when all processing times are identical.

5. Approximation Algorithms

In this section, we propose approximation algorithms for different cases of PTP. An algorithm A is said to

be a ρ-approximation, ρ ≥ 1, if A(I) ≤ ρ ·OPT (I) for all problem instances I, where A(I) and OPT (I) are the

objective values obtained by solving I using A and the optimal objective value, respectively. An approximation

scheme is a family of algorithms that allows the user to specify any level ε > 0 of accuracy of the approximation

and includes an algorithm Aε for each ε, such that Aε is an (1 + ε)-approximation algorithm. As might be

expected, the runtime increases as more accurate levels are requested. A polynomial-time approximation scheme

(PTAS) is an approximation scheme with polynomial runtime in the input size for fixed ε.

In Section 5.1, we assume that the shuttle capacity is unbounded. For this case, we show that a well known

list scheduling approach is a 2-approximation. In Section 5.2, we then turn our attention to general values of

the shuttle capacity, but assume that the set of jobs is restricted to jobs with “small” processing times. We

present a PTAS for this case. These results are utilized in Section 5.3, where we conclude our deliberations on

approximation algorithms with a (1 + ε)(3 + ε) approximation algorithm for the general case of PTP.

5.1. Unbounded Shuttle Capacity

Let us assume that the capacity of the shuttle is sufficiently large for loading all drones, i.e., k = s. For this

case, we propose a greedy algorithm as a 2-approximation. It is based on adjusting the input by rounding the

processing times of the jobs. More specifically, we create an instance of Ps||Cmax as follows. For each j ∈ J , we

create a job (referred to as a rounded job) with processing time p#
j = 2θD, where θ ∈ N is the smallest positive

integer such that 2θ−1D < pj + d ≤ 2θD. Note that p#
j < 2(pj + d).
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For the rounded jobs, the processing time p#
j is a multiple of D. As a result, for any feasible solution of the

instance of Ps||Cmax with rounded jobs that has no idle time between two consecutive jobs on the same machine,

the starting time and completion time of each job must be a multiple of D. Therefore, and because k = s, a

feasible solution of the instance of Ps||Cmax is also feasible to our PTP instance. Now, consider an optimal

solution of Ps||Cmax and assume its makespan CPmax is attained at machine i (corresponding to drone i). Let Ji

be the set of all jobs scheduled on this machine. Then, we obtain CPmax =
∑
i∈Ji p

#
i < 2

∑
i∈Ji(pi+d) ≤ 2CPTPmax ,

where CPTPmax is the optimal objective function value to our instance of PTP. The strict inequality holds because

p#
j < 2(pj + d) for each job j ∈ J . Thus, an optimal solution to the instance of Ps||Cmax is a 2-approximation

to our PTP instance.

The remaining part of this section is to find an optimal solution for the instance of Ps||Cmax with rounded

jobs. We assume that the jobs are sorted and indexed in non-increasing order of their processing times (Longest

Processing Time, LPT, order).

The algorithm Best-Fit for Ps||Cmax is a classical (greedy) list scheduling approach that iteratively assigns

jobs to machines. It considers the jobs in their LPT order and assigns them to a machine with the smallest

current workload without idle time (see Algorithm 1). Here, the workload of a machine is defined by the sum of

Algorithm 1. Best-Fit
Input: Instance of Ps||Cmax
Output: Schedule Γs̄ for all machines s̄ ∈ S

1 Initialize τs̄ := 0 for all machines s̄ ∈ S; . Initialize workload of all machines
2 Initialize Γs̄ := [ ] for all machines s̄ ∈ S; . Initialize empty schedules for all machines
3 for j = 1 to n do . Iterate over jobs in LPT order
4 Select s̃ ∈ arg mins̄∈S τs̄; . Select machine with smallest workload
5 τs̃ := τs̃ + pj ; . Update workload
6 Γs̃ := [Γs̃, j]; . Append job to the machine’s schedule
7 end

the processing times of all jobs that have already been assigned to the machine.

Lemma 5.1. Best-Fit is optimal for Ps||Cmax with rounded jobs and, thus, a 2-approximation to PTP for the

case k = s.

Proof. Consider a Best-Fit schedule σ for our instance of Ps||Cmax with rounded jobs on s machines. We assume

that p#
1 ≥ p#

2 ≥ · · · ≥ p#
n . Let j′ be the smallest index of a job that is completed at the final makespan of σ.

Furthermore, let J ′ = {1, 2, . . . , j′} be the subset of the largest j′ rounded jobs and t′ be the starting time of job

j′ in σ. Let Cmax(J ′) be the makespan of an optimal schedule for the jobs in J ′. Then, we have Cmax(J ′) > t′,

because s · Cmax(J ′) >
∑
i∈J′\{j′} p

#
i ≥ s · t′. The first inequality results from the fact that each machine

completes processing of its jobs within Cmax(J ′) and the total processing time on all s machines is not more

than
∑
i∈J′ p

#
i . The second inequality estimates the total workload of s machines. None of them completes

the subset of jobs from J ′ assigned to it before t′, otherwise Best-Fit would have assigned job j′ to a machine

completing before t′. For rounded jobs, the processing time of each job of J ′ is a multiple of p#
j′ . Therefore, both

Cmax(J ′) and t′ are multiples of p#
j′ , which implies that Cmax(J ′) ≥ p#

j′ + t′, because of Cmax(J ′) > t′. Due to

the fact that the schedule obtained by the Best-Fit algorithm has makespan p#
j′ + t′, we conclude that Best-Fit

gives an optimal schedule.

5.2. PTAS for Small Jobs

Recall that the problem Ps|sync ≤ k, diff ≥ D|Cmax with jobs J̃ = J and p̃j = pj + d for j ∈ J̃ is equivalent

to PTP. In this section, we consider instances of Ps|sync ≤ k, diff ≥ D|Cmax on s machines, where for a constant
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ε > 0, we assume that the input consists only of small jobs j with D ≤ p̃j < D/ε for j ∈ J̃ . Note that the

first inequality is equivalent to our general assumption pj ≥ d. We will provide a corresponding PTAS based on

classical geometric rounding.

For each job j ∈ J̃ , we round the processing time to the value p#
j = D(1 + ε)i with D(1 + ε)i−1 < p̃j ≤

D(1 + ε)i, i ∈ N. Note that, in contrast to the previous subsection, we round the values p̃j rather than the

values pj . Let J# denote the set of jobs with rounded processing times. Again, we will refer to these jobs as

rounded jobs. The number of distinct values of processing times for rounded jobs is bounded by the i that satisfies

D(1+ε)i ≥ D/ε. We will refer to this specific i as v, so that v = dlog1+ε 1/εe. Due to the fact that p#
j ≤ (1+ε)p̃j

for j ∈ J̃ , optimally solving the instance with rounded jobs yields an (1 + ε)-approximation solution.

The rounded jobs instance can be optimally solved by dynamic programming as follows. Let Ψ = {
∑v
i=0 xi ·

D(1 + ε)i | xi ∈ N≥0,
∑v
i=0 xi < n}. According to the non-wasting property of Definition 2.3, the set Ψ

contains every possible shuttle departure time. |Ψ| is bounded by nv+1 because of the above rounding procedure.

Moreover, from D(1 + ε)i−1 < p̃j < D/ε, we conclude that p#
j = D(1 + ε)i < D(1 + ε)/ε. Thus, for each job

j ∈ J#, there are at most d(1 + ε)/εe = d1/εe+ 1 shuttle departures (including the one that carries job j) during

the execution of the job j with processing time p#
j in the optimal schedule. Then, in the dynamic program, it is

sufficient to record the information of the most recent d1/εe + 1 shuttle departures. Therefore, a state s of the

dynamic programming procedure is defined as s = (J#
0 , τ1, τ2, . . . , τd1/εe+1, J

#(τ1), J#(τ2), . . . , J#(τd1/εe+1)). It

relates to a partial schedule in which the jobs J#
0 are completed with s drones and one shuttle of capacity k,

given that in the most recent d1/εe + 1 rounds of the partial schedule, the shuttle has fixed departure times

τ1 ≥ τ2 ≥ · · · ≥ τd1/εe+1 and, correspondingly, fixed job assignments J#(τ1), J#(τ2), . . . , J#(τd1/εe+1), where

J#
0 ⊆ J#, and for each i ∈ {1, 2, . . . , d1/εe + 1}, τi ∈ Ψ, J#(τi) ⊆ J# \ J#

0 . For some state s, we denote the

corresponding makespan by f(s) and the minimum makespan by F (s). The problem is divided into subproblems

by testing the next shuttle departure times after time τ1 and the corresponding job assignments. Then, if J#
0 = ∅,

we have

F (∅, τ1, τ2, . . . , τd1/εe+1) = max
τi∈{τ1,τ2,...,τd1/εe+1},j∈J#(τi)

{τi + p#
j }.

Otherwise,

F (J#
0 , τ1, τ2, . . . , τd1/εe+1) = F (J#

0 \ J ′, τ0, τ1, τ2, . . . , τd1/εe) =

min
τ0∈NEXT,J′⊆J#

0

f(J#
0 \ J ′, τ0, τ1, τ2, . . . , τd1/εe, J ′, J#(τ1), J#(τ2), . . . , J#(τd1/εe)),

where NEXT = {t | t ≥ τ1 +D, t = τi+D(1+ε)λ, λ ∈ {0, 1, . . . , v}, i ∈ {1, 2, . . . , d1/εe}}, |J ′| ≤ min{k, s−η(τ0)},

and η(τ0) =
∑
τ ′∈{τ1,τ2,...,τd1/εe+1} |{j ∈ J#(τ ′)|p#

j > τ0 − τ ′}|. The partial schedule is feasible as the third

property of Definition 2.2 holds.

The important fact of this dynamic programming approach is that any job of J#(τd1/εe+1) will start at time

τd1/εe+1 and finish no later than τ1 +D since p#
j < D · (d1/εe+ 1) for any j ∈ J#. Then, the approach is correct

because we have enumerated over all possible next shuttle departure times τ0 and the corresponding sets of jobs

J ′.

With respect to time complexity, note that any subset of J# can be encoded as a vector with space complexity

O(nv+1) as there are at most v + 1 distinct job processing times in J#. Similarly, each subset of jobs J#(τi)

can be encoded as a vector with space complexity O(kv+1) because |J#(τi)| ≤ k. The variables τ1, τ2, . . . , τd1/εe

15



can be encoded together with space complexity O(|Ψ|d1/εe). Therefore, the table size of the dynamic program is

O(nv+1k(v+1)d1/εe · |Ψ|d1/εe) = O(n(v+1)(d1/εe+1)k(v+1)d1/εe). It takes O(d1/εe(v + 1) · kv+1) time to enumerate

all possible time τ0 and corresponding sets of jobs J#(τ0). Note that the term d1/εe(v + 1) is a constant

which only relies on ε, and providing that k ≤ n, the final complexity of the dynamic programming approach is

O((nk)(v+1)(d1/εe+1)), which is polynomial in n.

5.3. General Case

In this section, we consider the general case of PTP.

As in Section 5.1 we have presented a 2-approximation algorithm for the case k = s, we will first restrict

ourselves to the case k < s. We slightly modify our previous definition of small jobs and partition the set of

jobs into a subset of small jobs and another one with big jobs. Given a constant ε > 0, job j ∈ J̃ is called big if

p̃j > ξ, otherwise small, where ξ = D
min{ε,1/h} .

Recall our definition of h = bs/kc. Let Jb ⊆ J be the subset that contains all big jobs, and let Js = J \Jb. We

propose an algorithm which solves the subproblem consisting of only big jobs and the subproblem that contains

only small jobs independently and then merge the two schedules to a final schedule.

Let us first consider the subproblem that solely consists of small jobs Js. We can use the PTAS described in

Section 5.2 if ε < 1/h. If ε ≥ 1/h, we can find an optimal solution in linear time.

Lemma 5.2. Assume that k < s and that there are only small jobs. If ξ = Dh then PTP can be optimally solved

in linear time, otherwise there exists a PTAS.

Proof. If ε ≥ 1/h and, therefore, ξ = Dh, we propose a greedy algorithm that generates an optimal non-wasting

schedule. It applies the conservative strategy and schedules the jobs in their LPT order. In order to prove

optimality, we show that there will always be at least k drones available upon each return of the shuttle to the

depot. For the first h rounds, the claim is true because s ≥ hk. In round h, the shuttle returns at time t = Dh,

and at this moment all k drones launched in the first round must already have returned because p̃j ≤ ξ = Dh

for any small job j ∈ Js. Hence, the claim is true for round h+ 1. It is straightforward to use a similar argument

to show that the claim is true for all rounds.

If otherwise ε < 1/h and, therefore, ξ = D/ε, we apply the algorithm introduced in Section 5.2 to receive a

PTAS for the problem with only small jobs.

Now, assume that there are only big jobs Jb.

Lemma 5.3. Assume that k < s and that there are only big jobs. If there is an α-approximate solution for

P ||Cmax, then there is a (2 + ε)α-approximate solution for PTP.

Proof. Consider an α-approximate solution for any instance of problem P ||Cmax with processing time p̃j for job

j ∈ Jb on s machines. Based on this solution, we obtain a solution to our problem as follows. We keep the

assignment of the jobs to the machines (drones), the order of the jobs on the same machine (drone), and apply

the aggressive strategy with the policy that the drones are loaded on a first-come-first-serve basis. Consider

an arbitrary drone i and a job j ∈ Jb which is processed by the drone, let t be the completion time of job j

(i.e., the time when the drone arrives at the depot after having executed the job), and let t′ be the earliest

possible shuttle departure time for a round trip that contains drone i such that t′ ≥ t. Then, we claim that

t′− t ≤ Dh+D. Suppose the opposite that t′− t > Dh+D. Let t̂ be the earliest shuttle departure time in [t, t′).
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Then, t̂ < t+D and, during time interval [t̂, t′), the shuttle departs at times t̂, t̂+D, t̂+ 2D, . . . , t̂+ w ·D (i.e.,

the shuttle departs immediately after its return). In each of these w + 1 round trips, the shuttle is full because

drone i is available at time t and loaded onto the shuttle at time t′, where t ≤ t̂ ≤ t̂ + w ·D = t′ −D. We get

(w+ 1)k < s < (h+ 1)k, i.e., w ≤ h− 1, which contradicts the assumption that the shuttle departs at least h+ 1

times before drone i is loaded. Hence, t′− t ≤ t′− t̂+D ≤ D(h+1). That is (t′− t)/p̃j ≤ (h+1) ·min{ε, 1/h} due

to the fact that j ∈ Jb and p̃j > ξ. Moreover, (h+ 1) ·min{ε, 1/h} ≤ 1 + ε. Therefore, the lemma is proved.

The schedules computed by the procedures introduced in Lemmas 5.2 and 5.3 can be merged as follows.

Lemma 5.4. Assume that k < s. Given an α-approximation solution for small jobs Js, and a β-approximation

solution for big jobs Jb, merging these two solutions yields an (α+ β)-approximation solution for jobs J .

Proof. Note that the optimal solution of the problem that contains small (resp. big) jobs Jb only, is a lower

bound for the optimal solution of jobs J . Hence, the lemma is proved.

We can now conclude this section with our main result with respect to approximation algorithms for the

general case of PTP.

Proposition 5.1. There exists an approximation algorithm with approximation ratio (1 + ε)(3 + ε) for PTP.

Proof. First, note that there exists a PTAS for P ||Cmax for a constant number of machines (Graham 1969)

and when the number of machines is part of the input (Hochbaum & Shmoys 1987). Then, based on the 2-

approximation algorithm presented in Section 5.1 (case k = s) and Lemma 5.4 (case k < s), we receive an

algorithm with approximation ratio (1 + ε)(2 + ε) + (1 + ε) = (1 + ε)(3 + ε) for the general case of PTP.

6. Computational Study and Managerial Implications

In this section, we provide decision support for transportation managers who have to set up a piggyback

transportation process. In most applications, the main cost drivers will certainly be the capacity of the large

vehicle and the fleet size of small vehicles. We therefore explore how to best allocate investments among these

two cost drivers. To do so, we provide a heuristic approach for PTP. Specifically, we make use of our structural

insights and provide a straightforward heuristic, which is kept easy and quick to implement, but leads to near-

optimal solutions and is very fast. Throughout this section, we assume that the jobs are sorted and indexed in

their LPT order.

Our heuristic approach is introduced in Section 6.1. Its computational performance is then evaluated in

Section 6.2. The analysis of the managerial aspects indicated above is subject of Section 6.3. All computational

tests were performed on a PC with an Intel® Core™ i7-4770 CPU, running at 3.4 GHz, with 16 GB of RAM under

a 64-bit version of Windows 8. All algorithms were implemented in C++ (Microsoft Visual Studio Professional

2013). We used IBM ILOG CPLEX in version 12.7 as a MIP solver.

6.1. Basic Heuristic Approach

One of the main characteristics of PTP is the fact that it aims at solutions that synchronize the return of

drones to the depot so that sufficiently large groups of drones can be transported to the launching point without

making the shuttle wait at the depot for too long (synchronization property, see Section 4). This can be taken

account of in simple heuristic approaches by first allocating jobs to distinct drones so that the resulting workload
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is well balanced among the drones, and afterwards generating round trips of the shuttle by deciding on shuttle

departure times and the jobs that are associated to the trips. In the following, we make use of this idea.

In order to allocate the jobs to the drones so that the resulting workload is well balanced, we make use of

the procedure Best-Fit (Algorithm 1 in Section 5.1). Based on the resulting drone schedules Γs̄ for all s̄ ∈ S,

we construct a non-wasting schedule as illustrated in Algorithm 2. The algorithm iteratively assigns the drones

Algorithm 2. Determine non-wasting schedule
Input: Instance of PTP, schedules Γs̄ for all s̄ ∈ S, parameter tw
Output: Departure times Φ with job sets J(τ) ⊆ J for all τ ∈ Φ, makespan Cmax

1 Initialize Φ := ∅; . Initialize empty set of round trip departure times
2 Initialize available[s̄] := 0 for all s̄ ∈ S; . Initialize drone availability times
3 Initialize shuttleT ime := 0; . Initialize shuttle availability time
4 Initialize waitingT ime := 0, J̄ := ∅; . Initialize auxiliary variables for round trips
5 Initialize jobCounter := 0, tripCounter := 0; . Initialize counters
6 do
7 Re-order drone set S; . Prioritize drones
8 tripCounter := tripCounter + 1; . Consider next round trip
9 Initialize τtripCounter := 0; . Initialize round trip departure time

10 J̄ := ∅, waitingT ime := 0; . Update round trip variables
11 forall s̄ ∈ S do . Iterate over prioritized drones
12 if available[s̄] ≤ shuttleT ime+ tw and |Γs̄| > 0 then . Drone on time / jobs remaining?
13 Delete first element from Γs̄ and insert it into J̄ ; . Assign job to round trip
14 jobCounter := jobCounter + 1; . Increment counter
15 if available[s̄] > shuttleT ime and available[s̄]− shuttleT ime > waitingT ime then . Wait?
16 waitingT ime := available[s̄]− shuttleT ime; . Update waiting time for round trip
17 end
18 end
19 if |J̄ | = k then break; . Remaining capacity?
20 end
21 if J̄ = ∅ then . Empty round trip?
22 forall drones s̄ with minimum value available[s̄] do . Wait for drone(s)
23 Delete first element from Γs̄ and insert it into J̄ ; . Assign job to round trip
24 jobCounter := jobCounter + 1; . Increment counter
25 waitingT ime := available[s̄]− shuttleT ime; . Update waiting time for round trip
26 if |J̄ | = k then break; . Remaining capacity?
27 end
28 end
29 τtripCounter := shuttleT ime+ waitingT ime, Φ := Φ ∪ {τtripCounter}; . Update departure time
30 Initialize J(τtripCounter) := J̄ ; . Initialize job set of round trip
31 shuttleT ime := shuttleT ime+D + waitingT ime; . Update shuttle availability time
32 Update available[s̄] for all s̄ ∈ S; . Update drone availability times

33 while jobCounter < n;
34 Initialize Cmax with maximum value available[s̄], s̄ ∈ S; . Compute makespan
35 Return Cmax, Φ, and J(τ) for all τ ∈ Φ; . Terminate procedure

(or their respective jobs) to the round trips of the shuttle. During runtime, it keeps track of the time instants

at which the drones return to the depot after having executed a job that has been assigned to a round trip

(availability time, available[s̄] for drones s̄ ∈ S). Similarly, it dynamically updates the time at which the shuttle

is available for executing its next round trip (shuttleT ime). The algorithm uses a parameter tw (shuttle waiting

time), that defines the aspired maximum number of time units that the shuttle waits (waitingT ime) at the

depot for loading the drones of its next round trip (loop 11–20). Only if no drone has arrived within the last tw

time units, the waiting time can exceed the value of tw, because empty round trips cannot improve a solution

(lines 21–28). Hence, for tw = 0, the algorithm applies the aggressive strategy. Note, however, that a very large

value of tw will not necessarily result in the conservative strategy, as the algorithm considers the drones in some

specific order (indicated by the ordering routine of line 7 and in loop 11–20) that may differ from the order in

which the drones arrive at the depot. The algorithm prioritizes drones with a larger remaining workload. Among

two drones that have an identical remaining workload, the algorithm selects the drone with a smaller number of

remaining jobs or, if this value is also identical, the drone with smaller availability time. As a last tie-breaker,

the algorithm prioritizes the drone with the smallest index.
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6.2. Performance of Heuristic Approach

In order to analyze the performance of our basic heuristic approach, we randomly generated a series of small

test instances. Table 2 depicts the parameter values that these instances are based upon. The number of drones

Table 2: Parameter values of small test instances
s n k d λ

5, 7, 9, 11 2s, 4s, 6s, 8s, 10s
⌊
s
2

⌋
,
⌊
s
3

⌋
,
⌊
s
4

⌋
[1, 10], [1, 50], [1, 100] 0.2, 0.8, 1.5, 2

s varies from 5 to 11. The number of jobs n is a multiple of the number of drones. The corresponding factor

ranges from 2 to 10. Similarly, the capacity k of the shuttle is set to some fraction of the number of drones. The

values of the one-way travel time d were drawn from uniform distributions over the intervals given in the table.

The processing times pj of the jobs j ∈ J were generated by drawing values xj from an exponential distribution

(density function f(x) = λ exp−λx, x ≥ 0) with parameter λ and then setting pj = d + d · xj . This generation

scheme is based on the assumption that the airship hovers directly over the middle of the city center, so that

the majority of customers living in the innermost city have a processing time close to value d. Larger processing

times are less likely, because the population density thins out toward the outskirts. This effect is steered by

parameter λ, where a smaller (larger) value of λ makes larger processing times more (less) likely. For increasing

vales of λ, the expected average processing times of the test instances decrease. We generated one instance for

each combination of the parameter values. With respect to the capacity of the shuttle, however, we discarded

all instances with k < 2. This resulted in a total of 540 test instances.

For each test instance, we called Algorithm 2 with four distinct parameter values tw ∈ {0.2d, 0.5d, d, 1.5d} and

selected the best solution generated by these runs of the algorithm. Additionally, in order to provide a benchmark

solution, we called CPLEX in its standard settings with a time limit of 900 seconds on the corresponding instance

of model (1)–(12). Here, we used

tmax =

⌊
n

min{s, k}

⌋
· d+

b n
min{s,k}c∑
i=1

max
j∈{(i−1)·min{s,k}+1,...,i·min{s,k}}

pj (14)

as an upper bound on the latest departure time of the shuttle. When considering an example instance with

n = 3, s = k = 2, d = 1 and p1 = p2 = p3 = 1, it can be seen that (14) provides a tight bound on tmax for that

particular case.

Consider an instance I of PTP, let Cmax(sol) denote the makespan of some feasible solution sol of I, and

denote the best corresponding solution determined by CPLEX by solC and the best solution determined by the

four runs of Algorithm 2 based on the drone schedules computed with Algorithm 1 by solH . Then, we define the

gap of this latter solution with respect to solC as

Cmax(solH)− Cmax(solC)

Cmax(solC)
. (15)

Note that we set Cmax(solC) :=∞ if CPLEX does not find a feasible solution.

The computational results are illustrated in Table 3. It is based on defining instance sets for all combinations of

the values of parameters s, k, and n, and presents information on the percentage of instances of the corresponding

set that CPLEX was able to find a feasible solution for (column “feas.”), the percentage of instances that CPLEX

solved to optimality (column “opt.”), and the corresponding average runtime in seconds (column “tavg”). For the
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Table 3: Performance of CPLEX and the heuristic approach for the small test instances
Instance set CPLEX Heuristic

s k n feas. [%] opt. [%] tavg [s] gapfeasavg gapoptavg tavg [ms] tmax [ms]

5 2 10 100 100 35.85 6.41 6.41 0.07 0.18
20 100 75 360.8 -3.11 3.25 0.08 0.12
30 100 25 458.09 -25.01 0 0.17 0.67
40 100 33.33 56.75 -25.46 2.19 0.17 0.26
50 91.67 8.33 160.65 -29.24 0 0.32 1.04

7 2 14 100 100 257.93 2.57 2.57 0.13 0.39
28 100 33.33 45.96 -12.59 1.89 0.17 0.24
42 100 16.67 20.97 -24.93 10.47 0.26 0.38
56 91.67 16.67 348.19 -26.41 0.67 0.57 1.83
70 75 8.33 117.22 -37.44 0 0.58 1.91

7 3 14 100 91.67 14.56 6.03 6.17 0.09 0.15
28 100 50 13.26 -12.19 1.04 0.3 0.6
42 100 25 13.88 -22.37 0.48 0.22 0.32
56 100 16.67 15.6 -27.91 1.32 0.29 0.39
70 100 16.67 405.5 -21.62 0.52 0.32 0.39

9 2 18 100 66.67 118.75 -2.95 5.89 0.15 0.2
36 100 33.33 156.82 -20.61 4.89 0.43 1.32
54 91.67 33.33 298.51 -25.28 5.21 0.47 0.65
72 91.67 25 181.93 -27.25 5.09 0.63 0.86
90 91.67 0 - -38.45 - 1.2 3.07

9 3 18 100 83.33 62.37 0.58 0.59 0.14 0.41
36 100 33.33 50.21 -20.37 0.98 0.61 1.32
54 100 16.67 181.87 -23.34 0.56 1.63 1.92
72 100 8.33 295.87 -22.75 19.47 1.72 2.33
90 91.67 16.67 73.1 -32.8 0 2.29 3.78

9 4 18 100 100 21.7 2.85 2.85 0.1 0.15
36 100 50 12.3 -15.66 6.53 0.37 1.02
54 100 25 229.26 -18.72 9.85 1.15 1.72
72 100 16.67 522.99 -18.83 0.69 1.32 1.94
90 75 8.33 295.09 -25.65 0 1.98 2.67

11 2 22 100 50 152.06 -10.1 3.65 0.43 1.02
44 100 33.33 196.23 -24.65 4.63 0.85 2.05
66 91.67 8.33 113.59 -33.89 0 0.85 2.78
88 91.67 8.33 20.95 -37.19 0 0.95 1.61
110 83.33 0 - -41.32 - 1.27 1.82

11 3 22 100 83.33 91.81 -7.35 0 0.18 0.27
44 100 41.67 47.29 -13.82 3.91 0.37 0.61
66 100 25 431.11 -24.24 7.64 0.53 0.69
88 100 8.33 12.87 -24.99 0 0.65 0.81
110 66.67 0 - -36.72 - 0.9 1.14

11 5 22 100 100 51.87 2.8 2.8 0.14 0.22
44 100 41.67 95.77 -8.13 3.78 0.28 0.43
66 100 33.33 17.58 -13.5 4.87 0.38 0.63
88 83.33 16.67 454.32 -18.7 2.78 0.5 0.65
110 83.33 8.33 57.88 -33.51 0 0.65 1.24
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heuristic approach, it presents the average gap when solely considering all instances where CPLEX found feasible

(column “gapfeasavg ”) or optimal (column “gapoptavg”) solutions, as well as the average (column “tavg”) and maximum

(column “tmax”) runtime in milliseconds.

As to be expected, an increase of the number of drones s or jobs n tends to result in CPLEX performing worse

in terms of the number of instances where a feasible or optimal solution is found. On the other hand, CPLEX

tends to benefit from an increasing capacity k. Our heuristic approach terminated with a feasible solution for all

instances. Its maximum runtimes are in the range of only a few milliseconds. The average gaps show that the

heuristic approach is competitive when compared with CPLEX. When considering all instances where CPLEX

determined feasible solutions, the results indicate that the heuristic (on average) outperforms CPLEX for n ≥ 4s.

Thus, we can conclude that our straightforward solution procedure performs surprisingly well in terms of runtime

and solution quality. It is therefore certainly an adequate method for deriving managerial insights, which is our

main intention in the next section.

To analyze the influence of larger processing times and increasing values of the travel time d from the depot

to the launching point, we grouped the instances based on the values of λ and d given in Table 2. Figure 4

illustrates the related computational results in three plots for the instances where CPLEX determined optimal

(Figure 4a) or feasible (Figure 4b) solutions, and for the average gap of our heuristic approach (Figure 4c). As
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Figure 4: Impact of larger processing times and increasing values of d

can be seen, CPLEX benefits from smaller values of d when considering its ability to find optimal solutions. A

potential reason of this effect is the fact that the upper bound (14) increases with lager values of d. Interestingly,

smaller average processing times (caused by an increasing λ), while reducing the value of (14), induce a similar

effect. The ability of CPLEX to determine feasible solutions is best for medium average processing times. The
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average gap of the solutions determined by our heuristic approach is in line with the behavior of CPLEX. Again,

we find that our approach seems well suited for drawing managerial conclusions in the next section.

6.3. Managerial Implications

The main cost drivers when setting up a piggyback transportation process are certainly the capacity k of

the large vehicle and the fleet size s of small vehicles. We want to explore where investment is better spent and

how the answer to this question is impacted by the population density (steered by parameter λ). To address

these issues, we generated additional random test instances with a larger number of jobs n and drones s. The

instances are such that we are able to analyze the effects of doubling the number of drones or the divisor used to

compute the capacity in different settings. Table 4 lists the parameters used to generate the testbed. Here, s̄ and

Table 4: Parameter values of managerial test instances

n s̄ k̄ d λ

100, 500, 1000 {5 · 2y |y = 0, . . . , 8} {
⌊

s̄
2y

⌋
|y = 0, . . . , 10} 5, 10, 20, 50 0.2, 0.8, 2

k̄ are auxiliary parameters applied to derive the number of drones s and the capacity k of the shuttle. For each

combination of the parameters presented in the table, we randomly generated five instances with s = min{s̄, n}

and k = min{k̄, s} as described in Section 6.2. We discarded all instances with k < 1 and all but five instances for

each resulting combination of n, s, k, d, and λ. This results in a total of 8880 instances. Our heuristic approach

returned a feasible solution for all of these instances. The average runtimes (again, the overall runtime for a

single instance includes four runs of Algorithm 2) were in the range of 4 millisecond for instances with n = 100,

70 milliseconds for instances with n = 500, and 0.3 seconds for instances with n = 1000. The maximum runtime

was around 8 seconds for an instance with n = 1000, s = 320, k = 1, d = 5, and λ = 0.8.

We first analyze the effect of increasing expected average processing times for given values of d. For the sake

of brevity, we restrict ourselves to the case n = 500. Figures 5 and 6 illustrate the corresponding computational

results. Essentially, both figures include the same information, namely the effect of varying s and k on the
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Figure 5: Impact of increasing capacity k for different values of λ with n = 500

average value of Cmax/n in the corresponding set of instances. However, in order to highlight the related effects

more clearly, Figure 5 focuses on increasing values of k, while Figure 6 displays the impact of increasing values

of s. The results of Figures 5 and 6 suggest the following findings:

• Impact of capacity k: Naturally, increasing the large vehicle’s capacity k beyond the fleet size s of small

vehicles makes no sense. Inevitably, the extra capacity remains unused. However, even before reaching

this upper limit, we can observe that the positive effect of increasing capacity k quickly diminishes. This

effect is even more distinct, if we have small λ values. In this case, the variation of processing times pj
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Figure 6: Impact of increasing number s of drones for different values of λ with n = 500

is large, and we have a fairly large probability that some customers residing in the outskirts require large

processing times. Thus, we have a larger probability that drones servicing these far-away customers have

not yet returned when the shuttle arrives at the depot from the respective round trip, so that extra capacity

remains unused. If λ is large, instead, we have the case of a crowded city center, where all customers require

a processing time pj close to the return time d of the shuttle; larger processing times to outskirt customers

are rather unlikely. In this case, extra capacity is much less likely to remain unused. However, even in this

case, increasing capacity k beyond a few dozen drones does not (considerably) reduce the makespan in our

experiments, because, in any case, we have to wait for the return of the drones with the farthest flight legs,

which are released on the early round trips of the large vehicle.

• Impact of fleet size s: The diminishing return of an increasing fleet size s of small vehicles is even more

pronounced. For large λ, i.e., a densely populated city center where the drones have to service only few

outskirt customers with long flight times, increasing the fleet size of drones beyond capacity k makes not

much sense. Here, most processing times are close to d, so that, in most cases, enough drones have returned

to the depot to instantaneously load the shuttle to full capacity for its next round trip. The probability of

drones having not yet returned to the depot increases for smaller values of λ. In this case, having a few

more drones than shuttle capacity makes more sense, because extra drones can fill the gaps of those having

not yet returned. However, even with many outskirt customers, having more than twice as many drones

than capacity k barely improves the makespan in our experiments.

• These results can be translated into the following simple take-home messages: Invest into a sufficiently

large shuttle capacity k. This capacity should be well below the value n
pmax
D

, where pmax refers to the

maximum processing time over all jobs. Dividing the maximum processing time by the time D needed

for a single round trip of the shuttle, results in the number of round trips that can be executed while the

farthest customer is serviced. Thus, dividing the customer base n, typically to be serviced during a work

shift, by this number, delivers an upper limit for a reasonable capacity k. If the service region is limited

to a densely populated city center, then the drone fleet size s should equal capacity k plus a handful of

extra drones. Only if a lot of outskirt customers with considerably larger processing times occur regularly,

increasing the drone fleet size up to 2k can be reasonable.

Note, however, that our experiments abstract from investment and operational costs on the one hand and

the benefits of a better service quality and faster deliveries on the other. Additional experiments including these

values should be executed if a specific piggyback process is to be established. Further impact is to be expected

by the size n of the customer base to be serviced. To analyze the effect of increasing values of n, we grouped the
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instances in sets with identical values of s, k, and n. Figures 7 and 8 illustrate the corresponding computational

results. Generally, these results confirm our previous findings. Not that obvious, however, is the fact that more
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Figure 7: Impact of increasing capacity k for different numbers n of customers
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Figure 8: Impact of increasing number of drones s for different numbers n of customers

customers n to be serviced tend to slightly increase the positive impact of more capacity k and drones s than for

smaller n. The reason for this is that the larger the customer base to be serviced, the larger the probability that

suited customers fitting into a shuttle schedule without delay exist. Thus, we can add the following extension

to our take-home messages: When testing a piggyback process such as the flying warehouse where the customer

base is still small, diminishing returns of additional capacity and drones are especially pronounced. Thus, in early

phases, investment costs can be kept low. With a successful diffusion of piggyback services and an increasing

customer base, larger shuttles and drone fleets are a much better (and safer) invest.

We close this section with an analysis of the effect of balancing the workload among drones within the basic

heuristic approach introduced in Section 6.1. As mentioned above, we apply the procedure Best-Fit (Algorithm 1)

to determine well balanced drone schedules. To analyze the effect of using this approach, we compare it to the

results of Algorithm 2 when fed with random drone schedules, i.e., schedules that are generated by iterating over

the jobs, selecting a random drone for each job (each with identical probability), and appending the job at the

end of the drone schedule. For some instance I of PTP, we define solH′ to be the best solution determined by

the four runs of Algorithm 2 on these modified drone schedules. Furthermore, in line with the definition of (15),

we define the gap of solH′ with respect to solH as

Cmax(solH′)− Cmax(solH)

Cmax(solH)
.

Figure 9 displays the average gaps in our computational experiments for the different values of n and s over

the shuttle capacity. As can be seen, the average gaps range to values of around 1.5, so that there clearly is a

major negative impact that results from neglecting workload balancing by using random drone schedules. For

relatively large shuttle capacities and few drones, well balanced drone schedules become increasingly important.
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Figure 9: Effect of balancing drone workload for different numbers n of customers

This, of course, must be interpreted in light of the fact that our algorithmic approach separately generates drone

schedules before computing round trips. In general, however, we can conclude that one must specifically address

the synchronization property when developing heuristics for PTP.

7. Conclusions

This paper addresses a very basic transportation problem, called the piggyback transportation problem: A

large vehicle takes a number of small vehicles on board and transports them toward an advantageous launching

point, where they are launched with shipments toward customer homes. Then, the large vehicle returns back

to the depot, which is the collection point for all returning vehicles, and takes another batch of small vehicles

on board until all customers are serviced and all vehicles have returned to the depot. This problem setting is,

for instance, relevant for Amazon’s flying warehouse concept, where a shuttle delivers drones toward a flying

warehouse hovering over a city center. We prove several important properties of our piggyback transportation

problem, such as the complexity status, efficient solution algorithms for restricted problem settings, and a

polynomial-time approximation scheme for the problem. Based on these structural insights, we provide a simple,

yet very efficient heuristic solution procedure. This procedure is finally applied to explore how an investment

into a piggyback transportation process should be split among the loading capacity of the large vehicle and the

fleet size of small vehicles, including the prioritization of delivery capacity (see Chen et al. 2021). The good news

for practitioners having to set up a piggyback transportation process is that the positive impact of additional

capacity and larger fleet sizes quickly diminish, so that investment costs can be kept low without deteriorating

service quality.

We see several avenues for future research (also for the operational research community) to finally bring

piggyback processes such as the flying warehouse to a market-ready state. For instance, in our problem setting,

the launching position remains stable over the innermost city center. Following the expectations of Poikonen

& Golden (2020), however, the flying warehouse could also change its position during the day to improve the

launching positions toward other urban districts. Over time, this would impact the flight times d of the shuttle

and the processing times for the drone flights in our problem setting. Also, the limited flight ranges of the drones,

which may not be able to reach any customer from any launching point, need to be considered in this case. The

resulting holistic optimization problem also has to determine the flight path of the warehouse and coordinate

it with the piggyback delivery process. For such an extended problem setting and also our core problem, other

objective functions could be applied to measure service quality. Alternative (e.g., due date related) objectives

and additional constraints (e.g., an additional resource successively loading shipments onto small vehicles at

the launching point) lead to interesting variations of our basic piggyback transportation problem, for which
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important structural properties are yet unknown.
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