
Filter-and-fan approaches for scheduling flexible job shops under
workforce constraints

David Müllera and Dominik Kressb,∗

aUniversity of Siegen, Management Information Science, Kohlbettstraße 15, 57068 Siegen,
Germany
bHelmut Schmidt University - University of the Federal Armed Forces Hamburg, Business
Administration, especially Procurement and Production, Friedrich-Ebert-Damm 245, 22159
Hamburg, Germany

ACCEPTED MANUSCRIPT
This is an Accepted Manuscript of an article published by Taylor & Francis in the
International Journal of Production Research on 06/17/2021, available at: https:
//doi.org/10.1080/00207543.2021.1937745.

ABSTRACT
This paper addresses a flexible job shop scheduling problem (FJSP) that takes ac-
count of workforce constraints and aims to minimise the makespan. The former
constraints ensure that eligible workers that operate the machines and may be het-
erogeneously qualified, are assigned to the machines during the processing of oper-
ations. We refer to this problem as the worker constrained FJSP, and denote it by
WFJSP. We develop different variants of filter-and-fan (F&F) based heuristic solu-
tion approaches that combine a local search procedure with a tree search procedure.
The former procedure is used to obtain local optima, while the latter procedure
generates compound transitions in order to explore larger neighbourhoods. In order
to be able to adapt neighbourhood structures that have formerly shown to perform
well when workforce restrictions are not considered, we decompose the problem into
two components for decisions on machine allocation and sequencing and decisions on
worker assignment, respectively. Based on this idea, we develop multiple definitions
of neighbourhoods that are successively locked and unlocked during runtime of the
F&F heuristics. In a computational study, we show that our solution approaches
are competitive when compared with the use of a standard constraint programming
solver and that they outperform state-of-the-art heuristic approaches on average.

KEYWORDS
Scheduling; Flexible job shop; Workforce constraints; Filter-and-fan; Constraint
programming

1. Introduction

The job shop scheduling problem (JSP) is a well-known scheduling setting that has
attracted a lot of attention in the literature (see, e.g., Blazewicz et al. 2019, for an
overview). It arises in traditional manufacturing systems and is composed of a set
of jobs and a set of machines. Each job consists of a set of operations that have to
be processed in a predefined order to complete the job. Moreover, each operation is

∗ Corresponding author. Emails: david.mueller@uni-siegen.de (D. Müller), dominik.kress@hsu-hh.de (D.
Kress)

https://doi.org/10.1080/00207543.2021.1937745
https://doi.org/10.1080/00207543.2021.1937745
david.mueller@uni-siegen.de
dominik.kress@hsu-hh.de

associated to a machine that must be used for its processing as well as a corresponding
processing time. A machine can process only one operation at a time and preemption
of operations is not permitted. Given these restrictions, the problem is to sequence
the operations on the machines so that all jobs are completed and some performance
measure is optimised. When considering the minimisation of the makespan, the JSP is
known to be strongly NP-hard (Lenstra and Rinnooy Kan 1979).

In the face of large product varieties, short product life cycles, and demand fluctu-
ations, many manufacturing companies implement manufacturing systems that allow
for a quick response to market changes. These companies oftentimes make use of multi-
purpose machines that are able to process different types of operations (see, e.g., Jain
et al. 2013; Beach et al. 2000). This is taken account of in a generalisation of the JSP,
which is commonly referred to as the flexible job shop scheduling problem (FJSP). It
was originally introduced by Brucker and Schlie (1990) and assumes that each opera-
tion is associated to a set of eligible machines, so that a feasible schedule must specify
the machines that are used for processing the operations. FJSP settings are frequently
applied in real-world manufacturing systems, e.g., in the production of cardan shaft
mounts (Kress, Müller, and Nossack 2019) or in the semiconductor industry (Uzsoy,
Lee, and Martin-Vega 1992). They are thus of major practical relevance. In addition,
it is oftentimes necessary to take account of the fact that machines usually need to
be operated by workers (potentially in an alternating manner). We will refer to FJSP
settings that explicitly incorporate workers as worker constrained FJSPs, and denote
them by WFJSPs. Note, however, that these settings are sometimes also referred to
as dual-resource constrained systems (see, e.g., Xu, Xu, and Xie 2011; Treleven 1989).
Naturally, as a result of the manufacturing flexibility induced by the use of multi-
purpose machines, workers are oftentimes not qualified for operating all machines or
processing all manufacturing operations, so that one has to take account of a heteroge-
neous workforce. In general, workforce heterogeneity is a relevant issue that has been
addressed across various production systems (Katiraee et al. 2021; De Bruecker et al.
2015). Note that, on a strategic level, it requires companies to recognise the impor-
tance of training and accumulation of skills of workers (see, e.g., Altendorfer et al.
2020; Bokhorst and Gaalman 2009; Nembhard and Shafer 2008; Wirojanagud et al.
2007) as well as the potentials of collaboration of human workers and robots (see, e.g.,
Vieira et al. 2021).

Due to the fact that machine scheduling decisions are oftentimes embedded in rolling
horizon based planning approaches or have to be made in online settings, computational
time is strongly limited in most practically relevant industry cases. Companies therefore
thrive for sophisticated heuristic planning approaches that are likely to quickly com-
pute high quality solutions. Many researchers have therefore proposed diverse variants
of heuristic approaches for WFJSPs. As we will show in detail in Section 2, most of the
promising approaches in this area are population-based procedures. As pointed out by
He, Chen, and Chen (2016), the success of these approaches oftentimes comes at the
cost of intricate guiding strategies, complex parameter adjustments, and non-adaptive
(with respect to instance size) stopping criteria, as, for example, predefined time limits
or a maximum number of iterations. In order to develop competitive local search ap-
proaches that tackle these drawbacks, are easy to implement and, thus, attractive for
practitioners, one must make use of strategies that allow to very effectively explore the
solution space. Potential candidates to achieve this goal are filter-and-fan (F&F) meth-
ods. On their most general level (details are presented in Section 4), F&F approaches
combine two fundamental search strategies that are applied in an alternating manner.
A local search procedure is used to obtain local optima, while a tree search procedure

2

generates compound transitions in order to explore larger neighbourhoods to overcome
these locally optimal solutions and, thus, aims at effectively guiding the local search.
Rego and Glover (2010) summarise the basic functionality and historical development
of F&F approaches. They characterise F&F methods as multi-stream neighbourhood
search strategies that date back to Glover (1998) and were extended by Rego and Glover
(2002) as a specific method of creating efficient and robust combined neighbourhood
search strategies. In this sense, they can be seen as a complement to ejection chain pro-
cedures (see also Glover 1996; Pesch and Glover 1997; Dorndorf, Jaehn, and Pesch 2008;
Kress, Boysen, and Pesch 2017; Kress, Meiswinkel, and Pesch 2019). F&F approaches
have shown to be advantageous to or competitive with population-based procedures for
many optimisation problems, e.g., the facility location problem (Greistorfer and Rego
2006), the 2D HP model of the protein folding problem (Rego, Li, and Glover 2011),
the capacitated minimum spanning tree problem (Rego and Mathew 2011), variants
of vehicle-routing problems (Tarantilis, Stavropoulou, and Repoussis 2013; Yang and
Tang 2010), and the resource-constrained project scheduling problem (He, Chen, and
Chen 2016; Ranjbar 2008). Rego and Duarte (2009) present an extremely successful
F&F method for the JSP. The success of their approach suggests adapting this idea to
other shop scheduling settings, which is our main driver for developing F&F methods
for WFJSPs. In this article, we specifically consider the objective of minimising the
makespan and refer to our setting as the WFJSP for the sake of simplicity.

The remainder of this paper is structured as follows. In Section 2, we present an
overview of the related literature. Next, in Section 3, we provide a formal definition
of WFJSP, we introduce the concept of the solution graph, which we use to represent
solutions of WFJSP, and we summarise a constraint programming (CP) formulation
of Kress and Müller (2019) which will later be used for benchmarking. In Section 4, we
describe our F&F approaches in detail. An extensive computational study is subject
of Section 5. The paper closes with a summary in Section 6.

2. Literature overview and contribution

The incorporation of workforce related constraints and objectives into the planning
process is the backbone of many modern production concepts (see, e.g., the recent
overviews by Hashemi-Petroodi et al. 2020; Saadat et al. 2013). Examples include work-
force agility (Hopp and Oyen 2004), seru production systems (Liu et al. 2013; Zhang
et al. 2017), or the shojinka-principle of the Toyota production philosophy (Sennott,
Van Oyen, and Iravani 2006; Monden 2011). Hence, workforce constraints have also
become increasingly important in generalisations of classical scheduling settings as the
FJSP (see, e.g., the survey by Chaudhry and Khan 2016). Specifically, for WFJSPs in
their basic form as described above, many articles are devoted to makespan minimisa-
tion (see Table 1 for an overview). With respect to corresponding models and solution
approaches, Xianzhou and Zhenhe (2011) and Peng et al. (2018) propose genetic al-
gorithms. Both studies are restricted to the evaluation of the algorithms on a single
small size test instance as part of a case study. A variable neighbourhood search is in-
troduced by Lei and Guo (2014). It makes use of four neighbourhood structures. Two
of them use classical swap and insertion techniques on operation sequences, the other
two are concerned with the reallocation of workers and eligible machines. In a compu-
tational study based on literature instances for the FJSP, the authors show that their
approach outperforms two modified genetic algorithms that were originally designed
for the FJSP. Yazdani et al. (2015) propose a mixed-integer programming (MIP) model

3

Table 1. Literature overview: WFJSPs aiming at makespan minimisation

Publication Approach

Xianzhou and Zhenhe (2011) Genetic algorithm
Lei and Guo (2014) Variable neighbourhood search
Yazdani et al. (2015) Simulated annealing and vibration damping optimisation, MIP
Zhang, Wang, and Xu (2015) Particle swarm optimisation
Zheng and Wang (2016) Knowledge-guided fruit fly optimisation
Peng et al. (2018) Genetic algorithm
Kress and Müller (2019) MIP, CP
This article F&F approach

and two metaheuristic approaches (simulated annealing and vibration damping opti-
misation). Using the MIP solver provided by CPLEX, they are able to solve small sized
instances to optimality. The authors then show that the vibration damping optimisa-
tion approach outperforms the simulated annealing approach on randomly generated
instances. Zhang, Wang, and Xu (2015) develop a hybrid discrete swarm optimisation
algorithm by incorporating a simulated annealing approach with a variable neighbour-
hood structure into a particle swarm optimisation approach. In computational tests,
they observe that this incorporation pays off when compared to a classical discrete
swarm optimisation procedure. Zheng and Wang (2016) propose a knowledge-guided
fruit fly optimisation algorithm. The authors extend the standard search techniques
used in fruit fly optimisation algorithms, smell-based search and vision-based search,
by incorporating a knowledge-guided search stage. In a computational study based on
literature instances for the FJSP, they find that this approach outperforms a standard
fruit fly optimisation algorithm as well as the variable neighbourhood search heuristic
proposed by Lei and Guo (2014). Finally, Kress and Müller (2019) introduce a MIP as
well as CP model for WFJSP and compare these models by using the standard solvers
provided by IBM ILOG CPLEX. In a computational study, the authors show that the
CP solver clearly outperforms the MIP solver for the considered modelling approaches.

Another stream of research on WFJSPs considers generalised problem settings,
sometimes motivated from concrete industry applications (e.g., a quality control lab-
oratory scheduling problem in Cunha et al. 2019), or alternative objective functions,
either classical scheduling objectives that differ from makespan minimisation or mut-
liple objectives. As this stream is only indirectly related to the article at hand, we
abstain from summarising the articles in detail, but rather present a compact overview
of the most relevant articles in Table 2.

Based on Tables 1 and 2, we observe that the majority of heuristic solution ap-
proaches proposed in the literature are population-based procedures. In this article,
we contribute to the first of the above streams (Table 1) by abstaining from making
use of these procedures in order to tackle their aforementioned drawbacks. Consider,
for instance, the knowledge-guided fruit fly optimisation approach by Zheng and Wang
(2016), who find that their technique is ‘more effective than the existing algorithms’
summarised in Table 1. In order to tackle the complex parameter adjustments that
are typically needed when using population-based procedures, the authors make use
of the design-of-experiment method by Taguchi (see, e.g., Montgomery 2012). Only by
doing so, they are able to analyse the interdependencies of the key parameters of their
approach in order to select a promising setup. Additionally, besides the rather complex
guiding strategy applied in the fruit fly approach, another drawback of population-
based approaches shows in the stopping criterion applied by the authors, namely a
fixed and non-adaptive value for the maximum number of iterations, which is, for ex-

4

Table 2. Literature overview: WFJSPs with objectives differing from pure makespan minimisation or
under additional constraints

Publication Objective Approach

Lang and Li (2011) Delivery satisfaction, process
cost, energy consumption, and
noise pollution

Genetic algorithm

Liu, Liu, and Tao (2011) Makespan and production cost Hybrid genetic algorithm
Zhang et al. (2013) Makespan and production cost Hybrid discrete particle swarm

optimisation
Lei and Tan (2016) Makespan and total tardiness Local search
Paksi and Ma’ruf (2016) Total tardiness Genetic algorithm
Gong et al. (2018a) Makespan, total worker cost

and green production factors
Hybrid genetic algorithm

Gong et al. (2018b) Makespan, maximum
workload of machines and
total workload of all machines

Memetic algorithm

Vallikavungal Devassia,
Salazar-Aguilar, and Boyer (2018)a

Makespan Variable neighbourhood search,
MIP

Wu et al. (2018)b Makespan Hybrid genetic algorithm
Cunha et al. (2019)c Makespan MIP
Kress, Müller, and Nossack (2019)d Makespan, Total tardiness Branch-and-cut algorithm,

MIP, Decomposition based
heuristic approaches

Meng et al. (2019) Energy consumption Variable neighbourhood search,
MIPs

Yang, Chung, and Lee (2019)e Lateness, makespan and
deviation of the workload
among the machines

Local search

Yazdani, Zandieh, and
Tavakkoli-Moghaddam (2019)

Makespan, critical machine
workload and total workload
of machines

Genetic algorithms

Andrade-Pineda et al. (2020) Makespan and mean tardiness Iterated greedy algorithm, MIP
Wu et al. (2020)f Makespan and total setup

time
Genetic algorithm

Zhu et al. (2020)b Makespan, total carbon
emission, and total cost of
workers

Memetic algorithm

a : Consideration of resource recovery constraints
b : Consideration of learning effects of workers
c : Incorporation of additional time constraints
d : Incorporation of sequence-dependent setup times
e : Consideration of multilevel product structures
f : Consideration of loading and unloading time constraints of fixture resources

ample, also applied by Lei and Guo (2014). Usually, such complex and non-adaptive
techniques are not attractive for practitioners. When focussing on F&F settings, we can
address these drawbacks by making use of well-known search strategies (local search,
tree search) and adaptive stopping criteria (e.g., improvement detection within local
search) that result in methods that are easy to implement, to understand, and to adjust
due to directly observable interdependencies of their parameters. We are thus able to
make use of neighbourhood structures that have proven to be successful for the FJSP
(see Mastrolilli and Gambardella 2000) based on a decomposition of WFJSP into two
components for decisions on machine allocation and sequencing and decisions on worker
assignment, respectively (see Kress, Müller, and Nossack 2019). The resulting methods
aim to be competitive when compared with the use of the standard CP solver provided
by CPLEX, that itself tends to outperform the state-of-the-art heuristic approaches
listed in Table 1 in its ability to quickly determine high quality solutions (see Kress
and Müller 2019).

5

3. Problem definition and representation of feasible solutions

In Section 3.1, we formally define the WFJSP. The notation introduced in this section
is in line with the notation used in Kress, Müller, and Nossack (2019) and specifically
targets a decomposition of WFJSP that we will use below (see Section 4) and that
is inspired from the vehicle routing literature (for details, see Kress, Müller, and Nos-
sack 2019). In order to be able to adapt the neighbourhood functions presented by
Mastrolilli and Gambardella (2000), we augment the authors’ concept of representing
solutions by so called solution graphs in Section 3.2. In Section 3.3, we summarise the
aforementioned CP formulation of Kress and Müller (2019).

3.1. Problem description

The WFJSP is defined as follows. Given is a set I = {I1, . . . , In} of n jobs, a set
M = {M1, . . . ,Mu} of u machines, and a set W = {W1, . . . ,Wv} of v workers. Each
job Ii ∈ I is associated with a set of qi operations Oi = {i1, . . . , iqi}. The sets Oi are
assumed to be linearly ordered for all i ∈ {1, . . . , n}, which relates to the fact that
for any pair of operations ij , ij′ ∈ Oi with j < j′, ij must be completed before the
processing of ij′ may start. Each operation ij ∈ Oi, i ∈ {1, . . . , n}, must be processed on
exactly one machine out of a non-empty set of eligible machines Mij ⊆M . Moreover,
an operation ij ∈ Oi of a job Ii ∈ I can only be processed on a machine, if exactly one
worker out of a non-empty set of eligible workers Wij ⊆W is assigned to the operation
for the entire processing time. Processing times are assumed to depend on worker and
machine assignments. The processing time of an operation ij ∈ Oi of a job Ii ∈ I
assigned to worker Ww ∈Wij on machine Mm ∈Mij is denoted by pm,wij

∈ N+ ∪ {∞}.
For each job Ii ∈ I, each operation ij ∈ Oi, and each eligible machine Mm ∈ Mij , we
assume that there exists at least one eligible worker Ww ∈Wij with a finite processing
time pm,wij

. Similarly, for each eligible worker, we assume that there exists at least one
eligible machine with a finite processing time. The completion time of an operation
ij ∈ Oi of job Ii ∈ I is denoted by Cij . The completion time of job Ii ∈ I is denoted
by Ci. A job is completed if all of its operations are completed. Hence, Ci = Ciqi for
all i ∈ {1, . . . , n}.

We assume that all jobs, machines, and workers are available at time zero. The
processing of operations may not be preempted. Furthermore, each machine and each
worker can process at most one operation at a time. The problem is to find a sched-
ule, i.e. an allocation of operations to machines and workers as well as corresponding
sequences and starting times of the operations on the allocated machines and workers,
such that the makespan Cmax = maxi∈{1,...,n}Ci is minimised subject to the above
constraints. This problem is strongly NP-hard as it extends the JSP, which - as afore-
mentioned - is strongly NP-hard when aiming to minimise the makespan. We restrict
our attention to left-justified schedules (see, e.g., Sprecher, Kolisch, and Drexl 1995).
That is, whenever considering feasible solutions in the remainder of this paper, we
assume that each operation is started to be processed as early as possible when taking
the allocation and sequencing decisions as given.

Our notation is summarised in Table 3.

3.2. Solution graph

Mastrolilli and Gambardella (2000) represent solutions of the FJSP with the so called

6

Table 3. Notation used throughout the paper

Notation Definition Further details

I set of jobs I = {I1, . . . , In}
M set of machines M = {M1, . . . ,Mu}
W set of workers W = {W1, . . . ,Wv}
Oi set of operations of job Ii ∈ I Oi = {i1, . . . , iqi}, |Oi| = qi
Mij set of eligible machines for operation ij ∈ Oi of job Ii ∈ I Mij ⊆M
Wij set of eligible workers for operation ij ∈ Oi of job Ii ∈ I Wij ⊆W
pm,wij

processing time of operation ij ∈ Oi of job Ii ∈ I when pro-
cessed by worker Ww ∈Wij on machine Mm ∈Mij

pm,wij
∈ N+

0 ∪ {∞}

Cij completion time of operation ij ∈ Oi of job Ii ∈ I
Ci completion time of job Ii ∈ I Ci = Ciqi
Cmax makespan of the schedule Cmax = max

i∈{1,...,n}
Ci

solution graph (see also Blazewicz et al. 2019), which – in the presence of workers as
an additional resource – can be augmented in a straightforward manner:

• For all jobs Ii ∈ I, each operation ij ∈ Oi defines a vertex. We denote the
resulting vertex set by V , i.e. V =

⋃
i∈I Oi.

• Additional dummy vertices, denoted by 01 and (n+ 1)1, represent the beginning
and end of a schedule. We define D = {01} ∪ {(n+ 1)1}.
• Precedence relations among the operations of the jobs are represented by directed

edges of the set A1. For each job Ii ∈ I and all pairs ij , ij+1 with j ∈ {1, . . . , qi−
1}, A1 includes the directed edge (ij , ij+1). Additionally, A1 includes dummy
edges (01, i1) and (iqi , (n + 1)1) for all i ∈ {1, . . . , n}. The elements of A1 are
referred to as precedence edges.
• Based on the given solution of the considered instance of WFJSP, the set A2 of

directed edges includes an edge (ij , kl), if and only if ij is processed immediately
before kl on some machine Mm ∈ M . For each Mm ∈ M , A2 additionally in-
cludes dummy edges from vertex 01 to the vertex that corresponds to the first
operation that is processed on Mm and from the vertex that corresponds to the
last operation that is processed on Mm to vertex (n+ 1)1. For each machine Mm

that processes no operation, A2 includes a dummy edge from vertex 01 to vertex
(n+ 1)1. The elements of the set A2 are referred to as machine edges.
• Similarly, the set A3 includes a directed edge (ij , kl), if and only if ij is processed

immediately before kl by some worker Ww ∈ W . Additional dummy edges are
defined in line with their definition for machine edges. The elements of the set
A3 are referred to as worker edges.

Given some solution of an instance of WFJSP, we denote the corresponding solution
graph by G = (V ∪ D,A1 ∪ A2 ∪ A3, µ), where µ : V ∪ D → N defines a weight for
each vertex of the graph. Note that, to ease the notation, we do not explicitly refer
to the concrete instance and solution when denoting this graph. Furthermore, note
that the solution is infeasible if the corresponding solution graph contains a cycle. The
weight of each dummy vertex of the set D is 0, while the weights of the other vertices
are defined by the processing times of the corresponding operations according to the
machine and worker allocation of the solution. Given an integer δ ∈ {1, 2, 3}, a solution
graph G, and an operation ij ∈ V , we denote the unique predecessor kl ∈ V ∪D with
(kl, ij) ∈ Aδ by Pδ(ij). Similarly, the unique successor kl ∈ V ∪D with (ij , kl) ∈ Aδ is
referred to as Sδ(ij).

It is easy to see that the makespan of a solution of an instance of WFJSP corresponds

7

to the length of some longest path, also referred as a critical path, from 01 to (n+1)1 in
the corresponding solution graph. Here, the length of a path is defined as the sum of the
vertex weights of the vertices on the path. Operations that belong to a critical path are
referred to as critical operations. For each operation ij ∈ V ∪D, we define a starting time
sij and a tail time qij in analogy to Mastrolilli and Gambardella (2000). sij corresponds
to the time instant at which ij is started to be processed in the solution and equals
the length of a longest path from vertex 01 to ij when excluding the vertex weight of
operation ij . qij corresponds to the length of a longest path from ij to (n+1)1 without
the vertex weight of operation ij . The makespan, as well as the starting times and tail
times of all vertices of the solution graph can easily be computed in O(|V ∪D|) time
by a straightforward variation of Bellman’s labeling algorithm as proposed by Taillard
(1994) for the JSP. An operation ij ∈ V is critical if and only if sij +µ(ij)+qij = Cmax.

Figure 1 illustrates the solution graph of a feasible solution for an example instance
of WFJSP with three jobs, two machines, and two workers. The solid edges represent

01

11 12 13

4121 22

31 32 33

0

5 10 4

3 5

2 12 7

0

m = 1

m = 1

m = 1

m = 1

m = 1

m = 1m = 2
m = 2

m = 2

m = 2

w = 2

w = 2

w = 2

w = 2

w = 2 w = 2

w = 1

w = 1 w = 1

w = 1

Precedence edge: Machine edge: Worker edge:

Figure 1. Exemplary illustration of the solution graph

the precedence edges, while the dashed edges and dotted edges represent the machine
edges for machines Mm, m ∈ {1, 2}, and worker edges for workers Ww, w ∈ {1, 2},
respectively. Edge annotations highlight the corresponding machines or workers. Ad-
ditionally, vertex weights correspond to the processing times in the specific solution.
Hence, in the depicted solution, machine M1 (M2) processes operations 11, 12, 21, 32,
and 33 (31, 22, and 13). Similarly, worker W1 (W2) processes operations 31, 32, and 33

(11, 12, 21, 22, and 13).

3.3. Constraint programming formulation

As outlined above, Kress and Müller (2019) present a CP formulation for WFJSP. It is
based on variables and constraint types provided by the IBM ILOG CPLEX CP Op-
timizer (see Laborie et al. 2018; IBM 2016, for an introduction). The CP formulation
uses interval variables to model the start and the end of the processing of the opera-
tions. Sequence variables represent the sequencing decisions, i.e. orderings of interval
variables. An overview is given in Table 4.

Based on these variables and the structures and notation provided by IBM’s CP
Optimizer, which we assume the reader to be familiar with, the compact formulation
of WFJSP as presented in Kress and Müller (2019) is as follows.

8

Table 4. Variables for the CP model as introduced by Kress and Müller (2019)

Variables Definition

IOP{ij} Interval variable for each operation, i.e. for all Ii ∈ I, ij ∈ Oi
IMO{ij ,m,w,p} Interval variable for each processing mode, i.e. each eligible combination of an

operation ij ∈ Oi of job Ii ∈ I, a machine, a worker and a (finite) processing
time

Sm̄ Sequence variable for each machine Mm̄ ∈M ; related to all interval variables
IMO{ij ,m,w,p} with m = m̄

Sw̄ Sequence variable for each worker Ww̄ ∈W ; related to all interval variables
IMO{ij ,m,w,p} with w = w̄

min max
i∈{1,...,n}

(endOf(IOP{iqi})) . (1)

s.t.
endBeforeStart(IOP{ij}, IOP{ij+1}) . ∀ i ∈ {1, . . . , n}, j ≤ qi − 1, (2)

alternative(IOP{ij}, all IMO{ij ,m,w,p}). ∀ i ∈ {1, . . . , n}, ij ∈ Oi, (3)

noOverlap(Sm) . ∀m ∈ {1, . . . , u}, (4)
noOverlap(Sw) . ∀w ∈ {1, . . . , v}. (5)

The objective function (1) represents the minimisation of the makespan. Constraints
(2) capture the precedence constraints among the operations of the jobs. Constraints
(3) guarantee that an eligible processing mode is chosen for each operation. Constraints
(4) and (5) ensure that each machine and each worker processes at most one operation
at a time.

4. Filter-and-fan approaches

As outlined above, F&F methods combine a local search procedure for obtaining local
optima and a tree search procedure that is applied to explore larger neighbourhoods.
The tree search procedure essentially corresponds to a beam search approach that
generates multiple paths using a breadth-first search strategy. This is illustrated in
Figure 2.

A F&F method initiates with the local search procedure that is called on an input
solution S and returns a local optimum SLS as well as a list Ω of transitions (moves or
meta-information on moves) associated with the ‘best’ η0 solutions evaluated within
the local search. Upon termination of the local search, the F&F method switches to
the tree search procedure. The nodes of the corresponding search tree in Figure 2
represent feasible solutions that are established by performing compound transitions
to SLS (the root node) based on the transition list Ω. In order to construct the first level
of the tree, the best η1 transitions returned by the local search procedure are applied
to SLS . This results in η1 solutions S1

1 , . . . , S
η1
1 . All other levels l′ = 2, . . . , L of the

tree are constructed by first selecting (marking) the best η1 solutions on the preceding
level l = l′ − 1 (filter candidate list strategy). For each corresponding solution Sil , the
procedure then generates a set of trial solutions by applying all transitions included
in Ω and then selecting the best η2 trial solutions to become elements of level l′ (fan
candidate list strategy). This results in a total of η1η2 solutions S1

l , . . . , S
η1η2
l on each

9

Local Search Procedure

S SLS

Generate transition list Ω during local search

Stop?yes: return best
solution found

no: S := STS

SLS , Ω

S

Tree Search Procedure

SLS

S1
1

S1
2

S1
3 S2

3

S2
2

S3
3 S4

3

S2
1

S3
2 S4

2

S3
1

S5
2

S5
3 S6

3

S6
2

S4
1

S7
2 S8

2

S7
3 S8

3

Level 1

Level 2

Level 3

η1 = 4, η2 = 2, L = 3
Root

Best (STS)

Generate trial solutions by
applying all transitions ω ∈ Ω to Si

l .
Select the best η2 trial solutions.

Generation of successors of Si
l :

Promising solutionPruned solution

Figure 2. Alternating structure of F&F approaches

level l > 1. The tree search terminates as soon as one of the solutions on some level of
the tree (referred to as STS) is better than SLS or when the maximum number L of
levels has been traversed without having found such a solution. In the latter case, the
overall procedure terminates. Otherwise, the local search procedure is called on STS .

4.1. Neighbourhood structure

Mastrolilli and Gambardella (2000) construct a neighbour of a given solution of FJSP
by moving an operation, i.e. deleting it from its current machine sequence and inserting
it in some other feasible position on a corresponding (not necessarily different) eligible
machine. By making use of the concept of solution graphs (see Section 3.2), they
show that the resulting set of potential neighbours of a solution can be reduced to a
specific subset that is guaranteed to include a neighbour with the lowest makespan.
Unfortunately, this result does not immediately carry over to the case of the WFJSP
because the processing times (and therefore the vertex weights of the solution graph)
in the latter problem depend on both the machine and worker allocation. Nevertheless,
we make use of this method as it guarantees the construction of feasible solutions, i.e.
solutions with acyclic solution graphs, when adapted appropriately.

In order to handle the interdependencies between machine and worker allocations, we
follow the main ideas of the hierarchical (decomposition based) approach introduced by
Kress, Müller, and Nossack (2019) for a WFJSP with sequence-dependent setup times.
In a first step, their approach solely takes account of the allocation of operations to
eligible machines and the sequencing of these operations on the machines. The second

10

step then determines a corresponding assignment of operations to eligible workers as
well as the sequences of these operations for each worker. Given the solution graph
G of some feasible solution of WFJSP and an operation ab that we want to move,
we adapt the underlying hierarchical idea as shown in Algorithm 1, where we first
delete either all machine edges or all worker edges of the graph (construction of G′
in line 2). We are left with a graph that solely considers one of the two resources, so

Algorithm 1. Generate a set of neighbouring solution graphs
Input: Solution graph G = (V ∪D,A1 ∪A2 ∪A3, µ) with starting and tail times, operation ab ∈ V
Output: Set N of neighbouring solution graphs, including starting and tail times

1 Initialise N := ∅;
2 Determine γ ∈ {2, 3} (Algorithm 2). Set G′ := (V ∪D,A1 ∪Aγ , µ). The starting times and tail times

of the vertices of G′ are set to the ones of the vertices of G;
3 forall Mm ∈Mab (in case of γ = 2) or Ww ∈Wab (in case of γ = 3) do
4 Apply an adapted version of the procedure presented by Mastrolilli and Gambardella (2000) on

G′ to determine a set of neighbouring solution graphs resulting from moving ab to machine Mm

(worker Ww) and select a most promising candidate Ĝ = (V ∪D,A1 ∪ Âγ , µ) (Algorithm 3);
5 Recompute (feasible) set of machine edges (in case of γ = 3) or worker edges (in case of γ = 2)

and add it to Ĝ (Algorithm 4). While doing so, redefine vertex weights µ and compute starting
times and tail times of the vertices of Ĝ based on the corresponding worker and machine
assignment;

6 Set N := N ∪ {Ĝ};
7 end

that we can directly apply the ideas of Mastrolilli and Gambardella (2000) in order
to construct feasible (with respect to the resource that has not been deleted as well
as the precedence constraints) neighbours and select a promising candidate (line 4).
Finally, we recompute a feasible allocation and sequencing decision for the remaining
resource and update the solution graph accordingly (line 5). This routine is executed
for all eligible machines or workers of operation ab (line 3). It is important to note
that line 4 of Algorithm 1 is based on the vertex weights of the input graph, even
though one resource is neglected. Nevertheless, the feasibility of the solutions that
correspond to the graphs constructed in line 5 is implied by the feasibility results
presented by Mastrolilli and Gambardella (2000) because the assignment of workers to
operations given an allocation and sequencing decision for the machines (and similarly
an assignment of machines to operations given the worker decisions) will only cause
temporal shifts of the operations on the machines (or in the worker sequences). Details
of Algorithm 1 are given in the following sections.

4.1.1. Determine set of edges to be deleted

In order to determine the set of edges that is deleted from G in line 2 of Algorithm 1,
we analyse the completion times of the predecessor operations of the input operation
ab with respect to the edge sets A2 and A3, i.e. operations P2(ab) and P3(ab), as stated
in Algorithm 2. The basic idea is to determine the resource that has the strongest effect

Algorithm 2. Determine γ
Input: Solution graph G = (V ∪D,A1 ∪A2 ∪A3, µ) with starting and tail times, operation ab ∈ V
Output: Integer γ

1 if sP2(ab)
+ µ(P2(ab)) > sP3(ab)

+ µ(P3(ab)) then γ = 2;
2 else if sP2(ab)

+ µ(P2(ab)) < sP3(ab)
+ µ(P3(ab)) then γ = 3;

3 else randomly select γ ∈ {2, 3};

11

on the ‘delayed’ start of ab due to the sequencing decisions and later delete the edge
set that corresponds to the other resource.

Consider an exemplary feasible solution of WFJSP as illustrated in Figure 3 as a
Gantt chart (m ∈ {1, 2, 3} refers to the index of machine Mm). In case of ab = 22

p1,111
p1,131

p1,322
p1,242

p2,341
p2,212

p2,252
p2,133

p3,221
p3,151

p3,132
p3,353

time

m

0 10 20 30 40 50 60 70 80 90 100

1

2

3

sP2(32) + µ(P2(32)) = 55 = sP3(32) + µ(P3(32))

sP2(22) + µ(P2(22)) = 35 > 30 = sP3(22) + µ(P3(22))

sP2(22) + µ(P2(22)) = 65 < 75 = sP3(22) + µ(P3(22))

Figure 3. Exemplary solution of an instance of WFJSP

(processed on machine M1 by worker W3) we have P2(ab) = 31 and P3(ab) = 41, so
that Algorithm 2 will return γ = 2. Similarly, for ab = 42, the algorithm will return
γ = 3. In case of ab = 32, the algorithm will randomly determine γ ∈ {2, 3}.

4.1.2. Determine neighbouring solution graph

After having deleted either all machine (if γ = 3) or all worker (if γ = 2) edges
from G in line 2 of Algorithm 1, we are left with a graph G′ = (V ∪ D,A1 ∪ Aγ , µ).
Given operation ab and some machine Mm ∈ Mab (if γ = 2) or worker Ww ∈ Wab (if
γ = 3) as selected in line 3 of Algorithm 1, our adaption of the procedure presented
by Mastrolilli and Gambardella (2000) is presented in Algorithm 3. For the sake of
notational convenience, we denote the index of the resource under evaluation in the
algorithm by θ, i.e. we set θ = m if γ = 2 and θ = w if γ = 3. The algorithm
starts by deleting ab from its current machine (worker) sequence in lines 1–2. The
starting time and tail time of ab is updated accordingly (line 3). Next, in lines 4–12,
the algorithm checks potential trial moves of operation ab to the operation sequence
of the resource indexed by θ. Denote the set of operations that is processed by the
resource with index θ by Qθ (note that this will not include ab, as this operation
has been removed from its sequence) and assume that the elements of this set are
ordered in non-decreasing order of their starting times. The algorithm computes the
sets Lθ = {ij ∈ Qθ | µ(ij) + qij > qab} and Rθ = {ij ∈ Qθ | sij + µ(ij) > sab} (line 4).
As shown by Mastrolilli and Gambardella (2000) for the FJSP, all insertions of ab after
the operations of the set Lθ \Rθ and before the operations of the set Rθ \Lθ result in
feasible solutions. As indicated above, this result immediately carries over to the case
of the WFJSP, so that Algorithm 3 restricts the construction of potential neighbours
to these insertions. Let ξθ = Qθ \ (Lθ \ Rθ) \ (Rθ \ Lθ) and assume that the elements
of this set are ordered in non-decreasing order of their starting times (see Figure 4).
Furthermore, denote the i-th element of this set by ξθ[i] and define ξθ[|ξθ| + 1] to be
an operation with smallest starting time in the set Rθ \ Lθ or, if this set is empty,
the dummy operation (n+ 1)1. The algorithm approximates the length of the longest
paths from 01 to (n+1)1 that include operation ab and that result from inserting ab at

12

Algorithm 3. Determine neighbouring solution graph
Input: Solution graph G′ := (V ∪D,A1 ∪Aγ , µ) with starting and tail times (as determined in line 2

of Algorithm 1), operation ab ∈ V , eligible machine Mm ∈Mab or worker Ww ∈Wab (index
denoted by θ)

Output: Solution graph Ĝ = (V ∪D,A1 ∪ Âγ , µ)

1 Initialise Âγ := Aγ and Ĝ := (V ∪D,A1 ∪ Âγ , µ) with starting and tail times identical to the ones of
G′ (all following deletion, adding, and updating operations are performed on Ĝ);

2 Delete (Pγ(ab), ab) and (ab, Sγ(ab)) from Âγ and add (Pγ(ab), Sγ(ab)) to Âγ ;
3 Set sab := sP1 (ab) + µ(P1(ab)) and qab := µ(S1(ab)) + qS1 (ab);
4 Compute Lθ and Rθ;
5 Initialise LP ∗ :=∞ and x∗ := 0;
6 forall potential positions x ∈ {0, . . . , |ξθ|} after Lθ \Rθ and before Rθ \ Lθ do
7 Compute LP (ab, θ, x);
8 if LP (ab, θ, x) < LP ∗ then
9 LP ∗ = LP (ab, θ, x);

10 x∗ = x;
11 end
12 end
13 if x∗ = 0 then
14 Delete (Pγ(ξθ[1]), ξθ[1]) from Âγ ;
15 Add (Pγ(ξθ[1]), ab) and (ab, ξθ[1]) to Âγ ;
16 end
17 else if x∗ = |ξθ| then
18 Delete (ξθ[x∗], Sγ(ξθ[x∗])) from Âγ ;
19 Add (ξθ[x∗], ab) and (ab, Sγ(ξθ[x∗])) to Âγ ;
20 end
21 else
22 Delete (ξθ[x∗], ξθ[x∗ + 1]) from Âγ ;
23 Add (ξθ[x∗], ab) and (ab, ξθ[x∗ + 1]) to Âγ ;
24 end

Lθ \Rθ

ξθ[1] ξθ[2] . . . ξθ[|ξθ|]

ξθ Rθ \ Lθ

0 1 2 |ξθ| − 1 |ξθ|
x =

Figure 4. Illustration of Qθ

13

positions x = 0 (immediately before the first operation of ξθ) to x = |ξθ| (immediately
after the last operation of ξθ) as follows:

LP (ab, θ, x) = pθ,min
ab +

sab + max(pθ,min
ξθ[1] + qξθ[1], qab), if x = 0

max(sξθ[x] + pθ,min
ξθ[x] , sab)+

max(pθ,min
ξθ[x+1] + qξθ[x+1], qab), if 1 ≤ x < |ξθ|

max(sξθ[x] + pθ,min
ξθ[x] , sab) + qab , if x = |ξθ| and |ξθ| > 0.

Here, pm,min
ij

= minWw∈Wij
pm,wij

for all ij ∈ V and Mm ∈ Mij . Similarly pw,min
ij

=

minMm∈Mij
pm,wij

for all ij ∈ V and Ww ∈ Wij . Algorithm 3 selects a position x∗ that
results in the shortest approximate length (lines 5–12) and terminates after having
updated the corresponding solution graph Ĝ (lines 13–24).

4.1.3. Recompute missing edge set

Once a neighbouring solution graph Ĝ has been selected in line 4 of Algorithm 1, we
are left with having to recompute the edge set that has previously been deleted. To do
so, we follow a simple greedy approach that is illustrated in Algorithm 4. Given the

Algorithm 4. Recompute missing edge set

Input: Solution graph Ĝ = (V ∪D,A1 ∪ Âγ , µ)

Output: Modified solution graph Ĝ with starting times and tail times, values Cmax and C̄max
1 Initialise Âγ̄ := ∅, where γ̄ ∈ {2, 3} \ γ;
2 Add edge set Âγ̄ to Ĝ (all following adding and updating operations are performed on Ĝ);

3 Set µ(ij) := p
θ(ij),min

ij
, where θ(ij) refers to the index of the resource (specific machine index, if

γ = 2, or worker index, if γ = 3) that operation ij is currently allocated to, for all ij ∈ V in solution
graph Ĝ;

4 Recompute starting times sij of vertices ij ∈ V ∪D in Ĝ (see Section 3.2) and set C̄max := s(n+1)1 ;
5 Assign an eligible worker Ww ∈Wij (if γ = 2) or machine Mm ∈Mij (if γ = 3) to each operation

ij ∈ V in non-decreasing order of the starting times determined in line 4 in a greedy manner. While
doing so, update the corresponding vertex weight µ(ij) and starting time sij . Additionally, define a
corresponding worker or machine edge and add it to Âγ̄ ;

6 Recompute tail times qij of vertices ij ∈ V ∪D in Ĝ (see Section 3.2) and set Cmax := s(n+1)1 ;

machine (in case of γ = 2) or worker allocation (in case of γ = 3) of the input solution
graph Ĝ, it first updates the weights of the vertices ij ∈ V to the values pθ(ij),min

ij
(line

3), where θ(ij) refers to the index of the specific resource (a machine index, if γ = 2,
or a worker index, if γ = 3) that operation ij is currently allocated to. The starting
times of the vertices are recomputed accordingly (line 4). The vertices ij ∈ V are then
traversed in non-decreasing order of these starting times and are allocated to an eligible
resource (a worker, if γ = 2, or a machine, if γ = 3) in a greedy manner (line 5). That
is, the resource is chosen such that the resulting completion time of the corresponding
operation is as small as possible, given all previous resource allocation decisions. Based
on the resource allocation, the vertex weight and starting time of the corresponding
operation may change, so that these values are updated to their correct values. The
worker or machine edge that corresponds to the allocation decision is added to the edge
set of the solution graph. Finally, we are left with having to compute the tail times of
the vertices of the solution graph (line 6).

14

4.1.4. Neighbourhood definitions

Based on the above deliberations, we define three different neighbourhoods of some
solution graphG. The first neighbourhood, denoted byN1(G), corresponds to the union
of the sets returned by Algorithm 1 when being called for all critical operations of G.
Similarly, N2(G) is constructed by calling the algorithm for all non-critical operations.
Finally, we define a neighbourhood N3(G) that is somewhat similar to a neighbourhood
generated by traditional swap moves. It is constructed by calling a modification of
Algorithm 1 on all critical operations ab ∈ V of G. This modification executes the
loop of lines 3–7 for all eligible machines or workers that are not identical to the one
(labelled with resource index θ) that processes the input operation ab in the input
solution graph. After having executed line 5 and thus (potentially) having moved ab to
some other resource (labelled with resource index θ′), the modified algorithm once more
deletes all machine or worker edges as in line 2, i.e. without recomputing γ, and then
constructs all neighbouring solution graphs that result from moving some operation
kl 6= ab on the resource with index θ′ to the resource with index θ (if eligible) in
analogy to lines 4 and 5. All these graphs are then added to the set N as in line 6 of
Algorithm 1.

4.2. Details of the filter-and-fan algorithms

In this section, we present the details of all elements of our F&F approaches. As
indicated above, these approaches make use of multiple neighbourhood definitions.
Within the approaches, as also suggested by He, Chen, and Chen (2016) and Rego
and Duarte (2009), these neighbourhoods will successively be locked and unlocked
(neighbourhood switching).

To ease the notation in the remainder of this section, we will denote the makespan
of a solution S by using an additional label, i.e. S̈. Furthermore, we will sometimes
refer to a solution graph by its corresponding solution and vice versa.

4.2.1. Constructive procedure

In line with our deliberations in Section 4.1, we make use of the hierarchical approach
of Kress, Müller, and Nossack (2019) in order to construct a first feasible solution S
(and its solution graph) of a given instance of WFJSP. Hence, we first allocate all
operations to eligible machines and make the corresponding sequencing decisions with-
out considering the workers. Here, we apply a priority-rule based heuristic proposed
by Kress, Müller, and Nossack (2019) (see therein for details; setup times can easily
be neglected) that follows an algorithmic idea of Giffler and Thompson (1960) for the
classical JSP. Basically, this heuristic iteratively allocates operations that can start
being processed at the respective point of time with respect to all corresponding prece-
dence constraints. Among all operations that compete for the same machine in some
iteration, exactly one operation is chosen based on the most work remaining (MWKR)
priority rule. Given the corresponding solution graph that solely includes precedence
and machine edges, our constructive procedure then proceeds in a greedy manner as
in Algorithm 4 in order to generate the missing worker edges.

4.2.2. Transition list

The transition list Ω generated within the local search procedure is a crucial component
of any F&F approach. As defined above, it contains information regarding the ‘best’

15

η0 solutions evaluated within the local search (or all solutions, if less than η0 solutions
have been evaluated). Usually, the list contains concrete moves that have been used to
generate these solutions, so that it is referred to as the move list (see, e.g., Rego and
Duarte 2009). In our case, however, we store meta-information rather than concrete
moves, because the interdependency of machine and worker allocations in the WFJSP
causes classical moves to be not applicable or result in infeasible solutions within the
tree search procedure more often than the use of meta-information based transitions.

We define a transition ω to include information on the operation ab ∈ V that serves
as an input of Algorithm 1 when generating a neighbouring solution, the corresponding
value of γ determined in line 2 and the index θ of the resource that the operation ab is
moved to in line 4, a boolean value swap that indicates whether or not the transition
refers to a solution generated when using neighbourhood definitionN3 (one for yes, zero
for no), as well as the objective function values Cmax and C̄max returned by the final call
of Algorithm 4 in the course of generating the solution. Thus, we denote a transition
ω by a tuple (ab, γ, θ, swap,Cmax, C̄max). The value Cmax defines the quality of the
transition. C̄max is used as a tie-breaker when comparing transitions with identical
Cmax.

In order to apply a transition ω to a solution within the tree search procedure, we
call a modified version of Algorithm 1 with input operation ab, where γ is fixed to
the given value and where the loop 3–7 is executed solely for the resource with index
θ. In case of swap = 1, we additionally incorporate the modifications highlighted in
Section 4.1.4, where kl is additionally fixed to the operation with the smallest starting
time that is processed on the resource with index θ′ and is eligible to be processed
on the resource with index θ. If no such operation exists, the transition is considered
non-applicable. As in case of transitions, the corresponding values Cmax and C̄max are
used as a quality measure of the solution.

4.2.3. Local search

Our local search approach uses a best-fit strategy with a predefined neighbourhood
operator φ ∈ {1, 2, 3} (corresponding to neighbourhood Nφ) on an input solution S.
The transition list Ω of length η0 (or less, if less neighbours have been evaluated) is
generated during runtime of the procedure as illustrated in Algorithm 5.

Algorithm 5. Local search procedure
Input: Solution S, parameters η0 and φ
Output: Solution SLS , transition list Ω

1 Initialise Ω := ∅, Ωtemp := ∅, and SLS := S;
2 forall critical (if φ ∈ {1, 3}) or non-critical (if φ = 2) operations ab ∈ V of the solution graph of S do
3 Call (modified, if φ = 3) Algorithm 1 to determine the set N of neighbouring solution graphs;
4 Insert the transitions corresponding to the elements of N into Ωtemp;
5 if one of the elements of N has a smaller makespan than SLS then update SLS to the best

solution corresponding to these elements;
6 end
7 if S̈LS < S̈ then set S := SLS and go to line 2;
8 Insert the best max{η0, |Ωtemp|} transitions of Ωtemp into Ω;

4.2.4. Tree search procedure

Our tree search procedure is outlined in Algorithm 6. It follows the main principles
of tree search procedures within F&F approaches described above and uses a neigh-

16

Algorithm 6. Tree search procedure

Input: Solution SLS , transition list Ω, parameters η0, η1, η2, L, and φ
Output: Solution STS

. Create first level of the tree (l = 1)
1 Initialise l := 1 and an empty tabu list;
2 Construct solutions of the first level of the tree by applying (if applicable) the η1 best (or all, if there

exists less than η1) transitions included in Ω to SLS . Mark all of these solutions;
3 If no solution was generated in line 1, call Algorithm 7 to generate at most η1 alternative solutions

(and update Ω accordingly). Mark all of these solutions. If no solution is generated, terminate the
procedure and return STS := SLS ;

4 Initialise STS with the best solution generated in lines 2 and 3;
5 if S̈TS < S̈LS then terminate the procedure;
. Create further levels of the tree (1 < l ≤ L)

6 forall marked solutions on the current level l do
7 Apply all transitions in Ω (if applicable) to obtain potential trial solutions for the next level l+ 1.

Among these solutions, discard all but the best η2 candidates, the transitions of which are
non-tabu or the makespan of which is smaller than S̈LS (aspiration criterion). If there are less
than η2 corresponding candidates, call Algorithm 7 to generate additional solutions (and update
Ω accordingly), until a total of at most η2 solutions has been constructed;

8 end
9 Initialise S∗l+1 with the best solution generated in loop 6–8. If no solution has been generated,

terminate the procedure;
10 if S̈∗l+1 < S̈TS then set STS := S∗l+1;
11 if S̈TS < S̈LS then terminate the procedure;
12 Mark the best η1 (or all, if there exists less than η1) trial solutions on level l + 1;
13 Update the tabu list;
14 Delete the worst max{0, |Ω| − η0} transitions from Ω;
15 if l < L then set l := l + 1 and go to line 6;
16 else exit the procedure;

bourhood operator φ ∈ {1, 2, 3} as an input parameter. The procedure is such that
it generates all solutions of a given level, before it potentially terminates (lines 5, 11,
and 15). Additionally, note that it uses a global tabu list (starting with the generation
of the second level) that solely contains operations ij ∈ V . If the tuple that defines
some transition ω includes an operation of the tabu list and if the aspiration criterion
(new best solution) is not met, the corresponding solution is discarded in line 7. The
tabu list is updated in line 13. Here, the operations that correspond to the transitions
that were used when generating the η1 trial solutions marked in line 12 are added to
the list. Moreover, if the length of the tabu list exceeds some threshold (tabu length),
the algorithm removes entries of the list in a first-in-first-out manner, until the tabu
length is met. The tabu length is dynamically updated within the tree search. When
generating level l > 1, it is set to the average number of critical (in case of φ ∈ {1, 3})
or non-critical (in case of φ = 2) operations of all marked solutions of the previous
level l − 1.

Algorithm 6 includes details on how to handle situations where less than η1 or η2

transitions or solutions are available in the corresponding steps of a F&F approach.
The algorithm, for instance, calls Algorithm 7 in lines 3 and 7 to potentially gener-
ate additional solutions as well as the corresponding transitions based on alternative
neighbourhood operators. Note that Algorithm 7 potentially alters the transition list
Ω, so that Algorithm 6 updates this list in line 14 in order to balance the computational
effort and to only keep the most promising transitions.

17

Algorithm 7. Generate alternative neighbours
Input: Solution S, transition list Ω, parameters λ (number of solutions to be determined) and φ
Output: Set N̄ of solutions including the corresponding transitions, transition list Ω

1 Initialise N̄ := ∅ and Ñ := ∅;
2 Initialise alternative neighbourhood operators Φ := {1, 2, 3} \ {φ};
3 Randomly select operator φ̄ ∈ Φ. Set Φ := Φ \ φ̄;
4 forall critical (if φ̄ ∈ {1, 3}) or non-critical (if φ̄ = 2) operations ab ∈ V of the solution graph of S do
5 Call (modified, if φ̄ = 3) Algorithm 1 to determine the set N of neighbouring solution graphs.

Add all of the corresponding solutions to the set Ñ ;
6 end
7 Select the best min{λ, |Ñ |} solutions from Ñ , add these solutions to N̄ , add the corresponding

transitions to Ω;
8 if |N̄ | < λ then
9 set λ := λ− |N̄ |, Ñ := ∅;

10 if |Φ| > 0 then go to line 3;
11 else exit the procedure;
12 end
13 else exit the procedure;

4.2.5. Filter-and-fan framework

Our overall F&F framework including neighbourhood switching is presented in Al-
gorithm 8. It consists of two phases, the initialisation phase and the filter-and-fan

Algorithm 8. Filter-and-fan framework
Input: Instance I of WFJSP, parameters η0, η1, η2, and L
Output: Solution S∗

. Initialisation phase
1 Determine a feasible solution S of I with the constructive procedure described in Section 4.2.1 and

initialise S∗ := S;
2 Unlock all neighbourhood operators in the specific order {1, 3, 2};
. Filter-and-fan procedure

3 Get the first unlocked neighbourhood operator φ;
4 Determine SLS and Ω by calling Algorithm 5 on solution S with operator φ. ; . Local search
5 if S̈LS < S̈∗ then set S∗ := SLS and unlock all neighbourhood operators in the specific order
{1, 3, 2};

6 if |Ω| < η0 then modify Ω by calling Algorithm 7 on SLS with λ := η0 − |Ω|;
7 Determine STS by calling Algorithm 6 on SLS with transition list Ω and operator φ. ; . Tree search
8 if S̈TS < S̈∗ then set S∗ := STS and unlock all neighbourhood operators in the specific order
{1, 3, 2};

9 else if S̈TS ≥ S̈LS then lock current neighbourhood operator φ;
10 if there is at least one unlocked neighbourhood operator then set S := STS and go to line 3;
11 else exit the procedure;

procedure. The former phase makes use of the constructive procedure described in Sec-
tion 4.2.1 (line 1) to determine a feasible solution. It furthermore unlocks all neighbour-
hood operators (line 2) in a specific order. It is important to note that the corresponding
get-procedure (line 3) will always consider this ordering. An operator is locked, if a
call of the tree search procedure does not improve its input solution (line 9). Similarly,
all operators are unlocked, whenever the overall best solution S∗ is improved (lines 5
and 8). The filter-and-fan procedure calls the local search procedure (line 4) and the
tree search procedure (line 7) in an alternating manner. This process is repeated until
all neighbourhood operators are locked (line 10). If the transition list Ω includes less
than η0 elements before executing a tree search, the framework calls Algorithm 7 to
potentially determine more transitions.

18

4.2.6. A modified filter-and-fan procedure

As described above, F&F procedures rely on transition lists that are generated during
calls of a local search procedure and that are later globally applied in a tree search
procedure. We will additionally consider a variant of our F&F framework that makes
local decisions within the tree search procedure. Our corresponding modifications are as
follows. Algorithm 5 (local search) does not compute a transition list. It solely returns
a local optimum. Therefore, in Algorithm 6 (tree search), whenever generating the
successors of some solution S with solution graph G in the tree, we randomly select η1

(adaption of line 2) or η2 (adaption of line 7) solutions from the neighbourhood N1(G)
(the other neighbourhood operators are not used in the tree search) instead of using
a transition list. Hence, we make use of the concrete characteristics, i.e. the critical
operations, of S, rather than relying on information generated during local search. We
additionally do not make use of Algorithm 7 in our modified F&F framework.

5. Computational study

In order to assess the performance of our F&F approaches, we conducted extensive
computational tests. They were performed on a PC with an Intel® Core™ i7-4770
CPU, running at 3.4 GHz, with 16 GB of RAM under a 64-bit version of Windows
8. All algorithms were implemented in Java (JRE 1.8.0_191), using Eclipse (Eclipse
IDE for Java Developers, Oxygen 4.7). We used IBM’s Optimization Programming
Language (OPL) to implement the CP model and applied the ILOG CPLEX CP
Optimizer in version 12.7 as a CP solver.

In total, we implemented four approaches as illustrated in Table 5.

Table 5. Algorithms

Abbreviation Algorithm Reference

FaF F&F framework Section 4.2.5
FaFM Modified F&F framework Section 4.2.6
TS Tabu search procedure Section 5
CPA IBM’s CP solver on the CP model of WFJSP Section 3.3

Our approaches include a tabu search (TS) benchmark heuristic that is presented
in Algorithm 9. All elements of Algorithm 9 are in line with the setup of our F&F
framework. It uses neighbourhood switching and the structure of the tabu list (line 11)
is identical to the one used in Algorithm 6. The tabu length is dynamically updated.
It is set to the average number of critical (in case of φ ∈ {1, 3}) or non-critical (in case
of φ = 2) operations of the current solution S. The input parameter τ specifies the
termination criterion of the subroutine of lines 4–13.

The setup of the algorithms’ parameters was derived in preliminary computational
tests on two sets (small and large) of randomly generated test instances with a max-
imum number of 10 (small) or 30 (large) jobs, and a maximum number of 5 (small)
or 25 (large) operations per job. In order to balance the trade-off between the solution
quality and runtime over all instances, we set η0 = 40, η1 = 20, η2 = 10 and L = 15
for FaF, η1 = 15, η2 = 25 and L = 300 for FaFM, and τ = 50 for TS.

The remainder of section is split into two parts. In the first part, we analyse
the performance of our F&F approaches (FaF and FaFM) on randomly generated
test instances when compared with TS (as a benchmark heuristic using the same

19

Algorithm 9. Tabu search heuristic
Input: Instance I of WFJSP, parameter τ
Output: Solution S∗

. Initialisation phase
1 Determine a feasible solution S of I with the constructive procedure described in Section 4.2.1 and

initialise S∗ := S and STBS := S;
2 Unlock all neighbourhood operators in the specific order {1, 3, 2} and initialise an empty tabu list;
. Tabu search phase

3 Get the first unlocked neighbourhood operator φ, clear tabu list, and set NoImprCounter := 0;
4 forall critical (if φ ∈ {1, 3}) or non-critical (if φ = 2) operations ab ∈ V of the solution graph of S do
5 Call (modified, if φ = 3) Algorithm 1 to determine the set N of neighbouring solution graphs;
6 Discard all elements of N , where the corresponding transition from S is tabu if their makespan is

not smaller than S̈∗ (aspiration criterion);
7 Select the best solution SNBS among the remaining solutions in N . If no solution remains, i.e. if

N = ∅, lock current neighbourhood operator φ and go to line 16;
8 end
9 if S̈NBS < S̈TBS then set STBS := SNBS and NoImprCounter := 0;

10 else set NoImprCounter := NoImprCounter + 1;
11 Update the tabu list;
12 Set S := SNBS ;
13 if NoImprCounter < τ then go to line 4;
14 else if S̈TBS < S̈∗ then set S∗ := STBS and unlock all neighbourhood operators in the specific

order {1, 3, 2};
15 else lock current neighbourhood operator φ;
16 if there is at least one unlocked neighbourhood operator then set S := STBS and go to line 3;
17 else exit the procedure;

neighbourhood structure) and CPA (as a standard solver benchmark). In the sec-
ond part, we make use of benchmark instances from the literature in oder to com-
pare the performance of our heuristics with existing metaheuristics from the litera-
ture. All test instances are available in supplementary files that accompany this paper
(https://doi.org/10.6084/m9.figshare.8082059).

5.1. Random testbed

Our random testbed is composed of 24 instances sets, denoted by wfjsp1–wfjsp24.
Each set represents a different scenario and features 10 randomly generated instances
with the parameter ranges illustrated in Table 6. The numbers of jobs, machines, and
workers are fixed for the instances of each set. The number of operations qi was drawn
from uniform distributions over the intervals given in the table for all jobs Ii ∈ I.
Similarly, the eligible machinesMij for operations ij ∈ Oi of jobs Ii ∈ I were randomly
determined based on a random generation of their number |Mij |. The sets of eligible
workers for each operation were generated indirectly by iterating over all machines
Mm ∈ M and randomly generating a subset of workers (denoted by Ŵm in Table 6)
of a given size that is assumed to be able to process the respective machines. The
processing times were then generated as follows (cf. Kress, Müller, and Nossack 2019).
First, auxiliary integer parameters pij for all jobs Ii ∈ I and operations ij ∈ Oi were
drawn from uniform distributions over the interval [10, 100]. Based on these parameters,
we constructed varying processing times over the corresponding eligible machinesMm ∈
Mij by drawing integer values pmij from uniform distributions over [b0.9 ·pijc, b1.1 ·pijc].
In the last step, we incorporated dependencies on the workers Ww ∈ W by drawing
integer values pm,wij

from uniform distributions over [b0.9 · pmij c, b1.1 · p
m
ij
c] for all Mm ∈

M̂w ∩Mij , where M̂w denotes the set of machines that worker Ww ∈W may process.

20

https://doi.org/10.6084/m9.figshare.8082059

Table 6. Parameters of random testbed

Instance set n u v qi |Mij | |Ŵm| Instance set n u v qi |Mij | |Ŵm|

wfjsp1 5 3 3 [2, 4] [1, 2] 2 wfjsp13 25 15 15 [8, 12] [2, 5] 8
wfjsp2 7 3 3 [2, 4] [1, 2] 2 wfjsp14 30 15 15 [5, 10] [2, 5] 8
wfjsp3 7 4 4 [2, 6] [1, 2] 2 wfjsp15 30 15 15 [10, 15] [3, 5] 8
wfjsp4 10 5 5 [2, 4] [1, 3] 3 wfjsp16 40 15 15 [5, 10] [2, 5] 8
wfjsp5 10 5 5 [2, 10] [1, 3] 3 wfjsp17 15 5 4 [8, 10] [2, 3] 3
wfjsp6 12 5 5 [2, 10] [1, 3] 3 wfjsp18 20 10 8 [5, 10] [1, 3] 5
wfjsp7 12 5 5 [5, 10] [2, 3] 3 wfjsp19 20 10 8 [5, 15] [2, 3] 5
wfjsp8 15 5 5 [5, 10] [2, 3] 3 wfjsp20 25 10 8 [5, 10] [2, 4] 6
wfjsp9 15 5 5 [8, 10] [2, 3] 3 wfjsp21 25 15 12 [8, 12] [2, 5] 8
wfjsp10 20 10 10 [5, 10] [1, 3] 5 wfjsp22 30 15 12 [5, 10] [2, 5] 8
wfjsp11 20 10 10 [5, 15] [2, 3] 5 wfjsp23 30 15 12 [10, 15] [3, 5] 8
wfjsp12 25 10 10 [5, 10] [2, 4] 6 wfjsp24 40 15 12 [5, 10] [2, 5] 8

It follows directly from the sets Ŵm for all Mm ∈ M . All remaining processing times
were set to infinity. Note that the basic parameters of instance sets wfjsp9–wfjsp16
and wfjsp17–wfjsp24 differ solely in the staffing levels, i.e. in the ratio of the number
of workers and the number of machines. The staffing level is 1 for sets wfjsp9–wfjsp16
and 0.8 for sets wfjsp17–wfjsp24.

Due to the non-deterministic elements of FaF, FaFM and TS, we ran these algorithms
five times on each instance. CPA was run once on each instance with a time limit 3,600
seconds. All calls of each algorithm returned a feasible solution. For some given instance
and some run of algorithm FaF, FaFM, or TS, we measure the quality of the solution
returned by the algorithm with the quality ratio 100 · (Cmax − CCPA

max)/CCPA
max , where

Cmax and CCPA
max denote the makespan of the solution determined by the heuristic and

CPA, respectively.
The computational results are presented in Table 7. For each instance set, the table

presents information about the percentage of test instances that were solved to opti-
mality with CPA within the time limit (column ‘opt.’), the average quality ratios of
the heuristic approaches over all runs and all instances of the set (columns ‘Qavg’), the
average values of the best quality ratios among the five runs of the heuristics for each
instance of the set (columns ‘Qbest’), as well as the average runtimes (columns ‘tavg’)
of the algorithms. Entries ‘tl’ indicate that the time limit was reached by CPA for all
instances of the set. Bold entries highlight the best heuristic approaches with respect
to the quality ratios.

We find that CPA is able to determine optimal solutions only for the small instances
of the sets wfjsp1–wfjsp5 within the time limit. For instance sets wfjsp1–wfjsp4, CPA
solves the majority of instances to optimality. Here, all heuristics provide high quality
solutions. In general, however, both F&F approaches tend to outperform TS. More-
over, it can be concluded that FaFM provides the overall best performance among the
heuristics with respect to the solution quality. This effect is particularly pronounced
for instances of larger size. The average computational times of the F&F approaches
are quite similar, except for the largest instance sets (wfjsp13–wfjsp16 and wfjsp21–
wfjsp24), where FaFM terminates faster than FaF. Based on these results, it can be
concluded that it certainly pays off to locally decide on the transitions applied within
the tree search procedure. Finally, when comparing the results for instances wfjsp17–
wfjsp24 and wfjsp9–wfjsp16, we observe that smaller staffing levels tend to result in
smaller quality ratios.

It is interesting to additionally compare the performance of CPA when the time
limit for some instance is set to the average time needed by the five corresponding

21

Table 7. Performance of the heuristic approaches on random testbed

CPA FaF FaFM TS

Instance set opt. [%] tavg [s] Qbest Qavg tavg [s] Qbest Qavg tavg [s] Qbest Qavg tavg [s]

wfjsp1 100.00 0.83 0.22 0.70 0.16 0.11 0.64 0.26 0.35 1.32 0.02
wfjsp2 90.00 372.80 0.78 1.38 0.29 0.35 0.84 0.35 0.59 1.42 0.03
wfjsp3 100.00 59.68 0.89 2.85 0.40 1.02 2.00 0.77 2.23 3.80 0.04
wfjsp4 90.00 1031.33 2.21 3.93 0.56 1.52 2.38 0.68 2.57 4.13 0.06
wfjsp5 10.00 3272.70 3.88 5.61 2.84 2.33 3.37 3.59 3.74 5.49 0.66
wfjsp6 - tl 1.92 3.53 4.80 0.80 1.89 5.69 2.63 4.57 1.02
wfjsp7 - tl 2.03 3.22 12.53 2.02 2.80 9.74 2.43 3.57 3.16
wfjsp8 - tl 1.51 2.91 24.57 2.51 3.27 17.56 2.54 3.44 7.43
wfjsp9 - tl 1.46 2.38 41.04 1.97 2.57 22.69 1.85 2.76 10.51
wfjsp10 - tl 6.60 8.77 19.02 1.50 3.02 18.14 4.90 7.45 7.34
wfjsp11 - tl 6.65 8.20 45.31 2.97 4.19 34.14 6.17 7.73 21.83
wfjsp12 - tl 2.72 3.68 52.45 0.77 1.69 33.60 2.63 3.62 20.27
wfjsp13 - tl 5.09 6.37 127.92 1.39 2.51 48.59 4.24 5.45 50.59
wfjsp14 - tl 3.61 4.67 70.17 1.45 2.22 33.47 3.53 4.48 32.15
wfjsp15 - tl 3.51 4.03 265.15 1.63 2.33 98.45 3.19 3.77 136.70
wfjsp16 - tl 1.83 2.45 141.58 0.28 0.88 68.23 1.80 2.56 63.86
wfjsp17 - tl 0.61 1.55 56.48 0.83 1.34 30.90 1.12 2.38 17.91
wfjsp18 - tl 2.49 3.98 22.38 1.25 1.93 22.22 3.50 4.28 10.34
wfjsp19 - tl 2.95 3.81 49.62 1.46 2.11 46.64 3.20 3.81 31.82
wfjsp20 - tl 1.97 2.64 55.28 1.47 1.95 37.03 2.87 3.32 37.72
wfjsp21 - tl 2.11 2.91 119.50 1.29 1.81 61.17 2.50 3.05 71.50
wfjsp22 - tl 2.28 2.89 82.84 1.82 2.33 44.28 2.96 3.44 47.39
wfjsp23 - tl 2.05 2.64 347.88 1.37 2.05 115.74 2.40 2.80 295.22
wfjsp24 - tl 1.30 1.86 185.73 0.82 1.28 84.99 2.12 2.55 132.10

calls of FaFM and when the parallel processing mode in the CPLEX CP Optimizer is
deactivated for the sake of comparability. This is subject of Table 8, where quality ratios
are determined in relation to the previous CPA calls. Again, bold entries highlight the
best solution approaches with respect to the quality ratios. We observe that in this
setting, i.e. when time becomes a limiting factor as it is, for example, often the case
in rolling horizon based planning approaches, the standard CP solver provides feasible
solutions for all considered instances. However, FaFM clearly outperforms the standard
solver. This provides first evidence for the fact that FaFM may also be competitive
with state-of-the-art metaheuristics from the literature.
Table 8. Comparison of FaFM and CPA with FaFM-based time limit

CPA FaFM CPA FaFM

Instance set Qavg Qbest Qavg tavg [s] Instance set Qavg Qbest Qavg tavg [s]

wfjsp1 0.03 0.11 0.64 0.26 wfjsp13 4.22 1.39 2.51 48.59
wfjsp2 0.89 0.35 0.84 0.35 wfjsp14 3.79 1.45 2.22 33.47
wfjsp3 1.34 1.02 2.00 0.77 wfjsp15 0.94 1.63 2.33 98.45
wfjsp4 4.94 1.52 2.38 0.68 wfjsp16 3.07 0.28 0.88 68.23
wfjsp5 5.95 2.33 3.37 3.59 wfjsp17 3.58 0.83 1.34 30.90
wfjsp6 4.53 0.80 1.89 5.69 wfjsp18 4.37 1.25 1.93 22.22
wfjsp7 4.39 2.02 2.80 9.74 wfjsp19 3.42 1.46 2.11 46.64
wfjsp8 4.32 2.51 3.27 17.56 wfjsp20 4.75 1.47 1.95 37.03
wfjsp9 3.48 1.97 2.57 22.69 wfjsp21 4.04 1.29 1.81 61.17
wfjsp10 7.46 1.50 3.02 18.14 wfjsp22 5.18 1.82 2.33 44.28
wfjsp11 3.62 2.97 4.19 34.14 wfjsp23 2.13 1.37 2.05 115.74
wfjsp12 3.45 0.77 1.69 33.60 wfjsp24 2.91 0.82 1.28 84.99

We close this section with an illustration of the effect of the choice of different values
for the parameters η1, η2, and L within FaFM in Figure 5. The plots are based on fixing
all but one parameter to their original values as stated above and setting the other

22

5 10 15 20 25 30 35 40

1

1.5

2

2.5

3

η1

Q
a
v
g

0

40

80

120

160

200

t a
v
g

[s
]

(a) Analysis of parameter η1

5 10 15 20 25 30 35 40

1

1.5

2

2.5

3

3.5

4

4.5

η2

Q
a
v
g

0

20

40

60

80

100

t a
v
g

[s
]

(b) Analysis of parameter η2

50 100 150 200 250 300 350 400

1

1.5

2

2.5

3

L

Q
a
v
g

0

20

40

60

80

100

t a
v
g

[s
]

(c) Analysis of parameter L

Figure 5. Parameter analysis for FaFM

parameter to distinct values, i.e., η1 ∈ {5, 10, 15, 20, 25, 30, 35, 40} (Figure 5a), η2 ∈
{5, 10, 15, 20, 25, 30, 35, 40} (Figure 5b), and L ∈ {50, 100, 150, 200, 250, 300, 350, 400}
(Figure 5c). For each resulting set of parameters, we ran FaFM five times on each
instance of the largest instance sets wfjsp14–wfjsp16 and wfjsp22–wfjsp24. The plots
illustrate the corresponding average quality ratios and runtimes. We observe that in-
creasing values of the parameters result in increasing runtimes. Furthermore, they first
tend to improve the solution quality. At some point, however, this latter effect stag-
nates. Hence, the parameters must be chosen carefully in order to balance the trade-off
between solution quality and runtime, especially when applying FaFM in practice.

5.2. Literature instances

In our additional computational tests, we make use of benchmark instances that are
based on the ones provided by Lei and Guo (2014), who extend two FJSP benchmark
sets with worker related information. This includes ten instances (MK1–MK10) of the
set by Brandimarte (1993) with 10 to 20 jobs, 4 to 15 machines, 3 to 15 operations
per job, 2 to 6 eligible machines for each operation, and processing times that range
from 1 to 20 time units. Moreover, this includes twelve instances (DP1–DP12) of the
set by Dauzère-Pérès and Paulli (1997) with 10 to 15 jobs, 5 to 8 machines, and 15 to
25 operations per job. The set of eligible machines of the operations of the instances
within this latter set has been randomly constructed, by assuming that each machine
is eligible with a 0.1 to 0.5 probability. The processing times range from 10 to 100
time units. The worker related information of these instances provided by Lei and Guo
(2014) is summarised in Table 9. In order to keep the notation simple, we will not
change the labels of the augmented instance sets, and refer to them by MK1–MK10
and DP1–DP12. Table 9 includes information on the number of workers and the sets

23

Table 9. Worker related information of the literature instances (Lei and Guo 2014)

Literature instance v M̂w

MK1–MK2 4 M̂1 = {1, 3, 5}, M̂2 = {2, 4, 5}, M̂3 = {1, 4, 6}, M̂4 = {2, 3, 6}
MK3–MK4; DP7–DP12 6 M̂1 = {1, 5}, M̂2 = {2, 4}, M̂3 = {1, 4, 6}, M̂4 = {2, 3, 6, 7}, M̂5 = {6, 7, 8},

M̂6 = {5, 8}
MK5 3 M̂1 = {1, 3, 4}, M̂2 = {2, 4}, M̂3 = {1, 2, 3}
MK6,MK10 8 M̂1 = {1, 8, 10}, M̂2 = {2, 7, 11}, M̂3 = {3, 4, 6, 11}, M̂4 = {2, 9, 12, 13},

M̂5 = {6, 7, 8, 15}, M̂6 = {5, 8, 10}, M̂7 = {4, 9, 14, 15}, M̂8 = {1, 3, 10, 14}
MK7; DP1–DP6 4 M̂1 = {1, 3, 5}, M̂2 = {2, 4}, M̂3 = {3, 4}, M̂4 = {1, 2, 5}
MK8–MK9 6 M̂1 = {1, 3, 5}, M̂2 = {2, 4, 9}, M̂3 = {3, 4, 8, 10}, M̂4 = {1, 7, 9},

M̂5 = {5, 6, 7}, M̂6 = {2, 4, 8, 10}

of machines that can be operated by the workers. Unfortunately, the generation of the
processing times is only very briefly summarised by Lei and Guo (2014). Moreover, the
instances are not available publicly. Hence, based on the related information given by
Lei and Guo (2014), we made use of the following procedure. For all workers Ww ∈W ,
all operations ij ∈ Oi of jobs Ii ∈ I, and all Mm ∈ M̂w ∩Mij , we drew the processing
times from a uniform distributions over the intervals [p̄mij , p̄

m
ij

+ δij], where p̄mij are the
original processing time stated by Brandimarte (1993) or Dauzère-Pérès and Paulli
(1997), and the values δij were drawn from a uniform distributions over the interval
[2, 8]. All remaining processing times were set to infinity.

In order to evaluate our results, we use a lower bound on the makespan introduced
by Lei and Guo (2014), which we simplify to take account of the facts that all jobs are
available at time zero and that u ≤ n and v ≤ n for all considered instances. For a
given instance of WFJSP, the bound LB is defined as follows:

LB = max

 max
i∈{1,...,n}

∑
ij∈Oi

pmin
ij

 ,

⌈
P

|M |

⌉
,

⌈
P

|W |

⌉ .

Here, pmin
ij

= minMm∈Mij
pm,min
ij

(see Section 4.1.2) for all Ii ∈ I, ij ∈ Oi, and P =∑n
i=1

∑
ij∈Oi p

min
ij

. Note that, for the sake of brevity, we do not explicitly state the
concrete instance in the definition of the bound.

As in the previous section, we initiated five runs of the heuristics FaF, FaFM, and TS
on each instance. Moreover, we ran CPA with the FaFM-based time limit as introduced
in the context of Table 8. All calls of the algorithms returned feasible solutions. We
measure the quality of a solution with makespan Cmax with the corresponding quality
ratio 100 · (Cmax − LB)/LB. The computational results are presented in Table 10.

The table includes information on the best (columns ‘Qbest’) and the average
(columns ‘Qavg’) quality ratios over all calls of some algorithm on the respective in-
stance, as well as the average runtime of the heuristic approaches (columns ‘tavg’).
Bold entries highlight the best approaches with respect to the quality ratios among
FaF, FaFM, and TS. Figure 6 additionally plots the values given in Table 10.

As in case of the random testbed, FaFM tends to outperform FaF and TS. FaF,
FaFM and TS also prove to be competitive with the standard solver (with FaFM-
based time limit) for the MK instances, which is in line with our results for the random
testbed. In case of the DP instances, CPA sometimes also performs slightly better than
our F&F approaches. We believe that this is a result of the small average numbers of
eligible machines for the operations, that allow the CP solver to quickly determine

24

Table 10. Performance of heuristic approaches on literature instances

CPA FaF FaFM TS

Instance LB Qbest Qbest Qavg tavg [s] Qbest Qavg tavg [s] Qbest Qavg tavg [s]

MK1 66 18.18 10.61 12.73 2.85 10.61 11.82 4.16 12.12 15.45 0.48
MK2 65 10.77 7.69 11.08 6.36 10.77 12.62 5.41 10.77 12.62 3.01
MK3 182 37.91 34.62 37.58 24.99 34.07 34.73 21.99 34.62 36.59 11.08
MK4 80 32.50 26.25 31.00 11.29 22.50 25.75 11.54 30.00 32.50 1.06
MK5 295 5.76 3.39 5.69 31.79 3.39 4.20 37.54 4.41 5.63 13.10
MK6 78 41.03 64.10 71.79 31.14 44.87 51.28 29.05 55.13 65.38 13.01
MK7 213 11.74 8.92 12.39 26.15 9.86 12.30 18.54 11.27 13.05 8.28
MK8 488 28.89 29.10 30.98 72.59 28.07 28.52 51.14 29.10 30.61 11.76
MK9 443 20.32 12.87 14.09 291.95 11.06 12.78 74.79 12.64 14.13 133.00
MK10 289 19.72 17.99 23.60 339.27 13.84 16.12 73.38 20.07 25.88 72.65
DP1 2881 5.07 8.05 9.68 31.35 4.58 5.23 64.10 7.71 8.97 8.60
DP2 2881 1.80 2.26 3.41 60.92 1.91 2.43 32.54 2.29 2.95 19.91
DP3 2881 1.49 1.67 3.05 74.05 2.12 2.43 41.97 1.80 3.44 41.44
DP4 2862 3.67 7.69 9.93 38.63 3.74 4.70 64.87 7.44 8.41 8.48
DP5 2832 2.68 2.97 3.64 65.31 3.04 3.62 41.10 3.07 4.37 17.57
DP6 2799 3.61 3.29 4.91 106.79 3.75 4.12 53.70 3.18 4.14 73.58
DP7 2843 3.80 7.70 11.09 78.38 4.43 5.41 88.30 6.54 9.69 17.68
DP8 2835 1.83 2.01 3.28 316.57 2.57 3.08 62.01 2.22 4.04 64.08
DP9 2824 2.48 1.84 3.80 484.24 2.41 3.67 78.27 2.20 4.96 104.79
DP10 2840 5.21 9.40 11.09 89.07 6.51 7.74 67.61 7.50 10.15 15.98
DP11 2786 4.06 3.41 4.03 379.10 4.06 4.31 76.49 3.70 5.18 64.48
DP12 2723 5.77 3.82 5.77 771.17 5.18 5.51 82.36 4.59 6.71 171.03

M
K1

M
K2

M
K3

M
K4

M
K5

M
K6

M
K7

M
K8

M
K9

M
K10

0

10

20

30

40

50

60

70

Q
b
e
s
t

DP1 DP2 DP3 DP4 DP5 DP6 DP7 DP8 DP9
DP1

0
DP1

1
DP1

2
0

1

2

3

4

5

6

7

8

9

10

Q
b
e
s
t

CPA FaF FaFM TS

Figure 6. Performance of heuristic approaches on literature instances

25

promising allocation decisions of machines to operations.
With respect to the relevant metaheuristic algorithms that have been presented in

the literature (see Section 2, Table 1), Peng et al. (2018) and Xianzhou and Zhenhe
(2011) provide only basic case studies or examples in order to evaluate their approaches.
Zhang, Wang, and Xu (2015) and Yazdani et al. (2015) do not provide detailed infor-
mation on their test instances. Thus, we can only compare our approaches with the
variable neighbourhood search approach (denoted by VNS) by Lei and Guo (2014) and
the knowledge-guided fruit fly optimisation algorithm (denoted by KF) by Zheng and
Wang (2016). As Zheng and Wang (2016) find that KF outperforms ‘existing algo-
rithms’ (including VNS), this is a comparison with the state-of-the-art. Both, Lei and
Guo (2014) and Zheng and Wang (2016), make use of instances with the parameters il-
lustrated in Table 9. Additionally, their computational tests were performed on similar
hardware when compared with our setup. Lei and Guo (2014) report to have used a PC
with a 2.2 GHz CPU. They used Microsoft Visual C++ in version 6.0. Zheng and Wang
(2016) coded in C++ and ran their tests an a PC with a 2.3 GHz CPU. However, as
mentioned above, the processing times used by these authors are not publicly known,
so that comparisons with the above results have to be made carefully. Nevertheless,
as our process of generating processing times mimics the procedures of the respective
authors as close as possible, the lower bounds stated by these authors only slightly dif-
fer from the ones listed in Table 10. This is highlighted in Tables 11 and 12, where we
compare the lower bounds as well as the results listed by all relevant studies (note that
Zheng and Wang (2016) reimplemented VNS, so that this approach is listed twice).
As can be seen, the differences in the lower bounds are sufficiently small to allow our
results to be utilised for detecting tendencies on the relative performance of the ap-
proaches. Besides the lower bounds for the instances (labelled as described above), the
tables include the average (Table 11) and best (Table 12) quality ratios (computed by
using the bounds presented in the respective studies) and processing times as reported
by the authors. Additionally, the tables include average (Cavgmax) as well as best (Cbestmax)
makespan values achieved for each instance by the respective algorithm. These values
have been calculated and rounded based on the quality ratios reported in the relevant
studies.

Based on the results presented in Tables 11 and 12, we observe that, while especially
KF tends to use sightly less computational time than FaFM on average, FaFM tends
to outperform KF and VNS for most instances with respect to solution quality. When
comparing the average (best) quality ratios for each instance, FaFM performs best for
6 (5) out of 10 MK instances and on 12 (12) out of 12 DP instances. It can thus be
observed that FaFM performs significantly better on instances with a larger average
number of operations per job, as encountered in instances MK3, MK9–MK10 and
DP1–DP12.

Overall, we therefore conclude that FaFM is suitable for application in real-world
scenarios. It is competitive with the use of the standard CP solver provided by CPLEX
when runtime becomes a limiting factor. Additionally, it outperforms state-of-the-art
heuristics on average.

6. Conclusion

In this paper, we have addressed a flexible job shop scheduling problem that aims at
makespan minimisation and takes account of a heterogeneous workforce by making use
of processing times that do not only depend on the machine, but also on the specific

26

Table 11. Comparison with state-of-the-art approaches (average values)

This article Lei and Guo (2014) Zheng and Wang (2016)

FaFM VNS VNS KF

Instance LB Qavg Cavgmax tavg LB Qavg Cavgmax tavg LB Qavg Cavgmax tavg Qavg Cavgmax tavg
[s] [s] [s] [s]

MK1 66 11.8 73.8 4.2 63 17.3 73.9 4.3 61 17.1 71.4 3.0 8.2 66.0 3.1
MK2 65 12.6 73.2 5.4 51 22.6 62.5 4.4 52 23.1 64.0 3.1 7.7 56.0 3.2
MK3 182 34.7 245.2 22.0 190 48.8 282.7 31.0 201 49.2 299.9 12.8 41.0 283.4 13.4
MK4 80 25.8 100.6 11.5 69 32.5 91.4 5.4 67 31.8 88.3 4.9 26.3 84.6 5.3
MK5 295 4.2 307.4 37.5 337 12.7 379.7 34.8 287 13.6 325.9 14.4 9.2 313.4 15.1
MK6 78 51.3 118.0 29.1 89 49.7 133.2 22.2 86 44.7 124.4 11.1 36.9 117.7 11.2
MK7 213 12.3 239.2 18.5 184 24.7 229.4 21.9 164 21.6 199.5 10.0 13.4 185.9 10.5
MK8 488 28.5 627.2 51.1 536 22.9 658.8 114.0 551 23.2 678.9 58.3 19.0 655.9 59.2
MK9 443 12.8 499.6 74.8 437 35.1 590.3 117.0 407 35.7 552.4 51.5 28.2 521.6 52.9
MK10 289 16.1 335.6 73.4 328 42.2 466.3 89.5 315 44.1 454.0 47.8 37.1 431.9 49.4
DP1 2881 5.2 3031.6 64.1 2885 13.5 3273.6 61.4 2887 13.5 3277.9 33.6 11.2 3209.8 35.2
DP2 2881 2.4 2951.0 32.5 2775 12.9 3133.5 62.1 2779 13.0 3139.7 33.9 9.9 3055.2 35.3
DP3 2881 2.4 2951.0 42.0 2983 10.6 3300.4 61.6 2990 11.0 3319.2 34.5 10.7 3308.4 35.6
DP4 2862 4.7 2996.6 64.9 2761 15.3 3184.0 60.8 2768 15.4 3195.1 34.4 13.1 3130.9 35.8
DP5 2832 3.6 2934.4 41.1 2984 13.2 3377.9 60.2 2988 13.3 3386.0 34.9 11.4 3329.5 35.1
DP6 2799 4.1 2914.2 53.7 2650 13.8 3015.7 60.8 2647 13.6 3006.7 33.8 10.2 2916.7 34.4
DP7 2843 5.4 2996.8 88.3 2747 29.3 3550.5 169.0 2757 29.5 3571.4 51.3 27.0 3501.7 52.3
DP8 2835 3.1 2922.2 62.0 2437 29.5 3155.2 164.0 2451 29.3 3169.9 51.1 25.2 3069.1 52.1
DP9 2824 3.7 2927.6 78.3 2338 29.2 3020.2 165.0 2321 29.5 3004.8 51.2 27.3 2955.1 52.4
DP10 2840 7.7 3059.8 67.6 2742 31.1 3595.6 164.0 2747 31.2 3605.2 51.1 26.9 3485.1 52.6
DP11 2786 4.3 2906.2 76.5 2450 34.3 3289.1 166.0 2460 33.9 3293.2 51.3 31.2 3227.8 53.0
DP12 2723 5.5 2873.0 82.4 2213 32.6 2935.1 168.0 2221 32.8 2949.3 51.3 30.1 2889.3 53.2

Table 12. Comparison with state-of-the-art approaches (best values)

This article Lei and Guo (2014) Zheng and Wang (2016)

FaFM VNS VNS KF

Instance LB Qbest Cbestmax LB Qbest Cbestmax LB Qbest Cbestmax Qbest Cbestmax

MK1 66 10.6 73 63 7.9 68 61 8.2 66 8.2 66
MK2 65 10.8 72 51 7.8 55 52 7.7 56 7.7 56
MK3 182 34.1 244 190 43.2 272 201 44.8 291 38.8 279
MK4 80 22.5 98 69 24.6 86 67 25.4 84 20.9 81
MK5 295 3.4 305 337 11.0 374 287 12.5 323 8.0 310
MK6 78 44.9 113 89 44.9 129 86 41.9 122 33.7 115
MK7 213 9.9 234 184 17.4 216 164 17.1 192 11.0 182
MK8 488 28.1 625 536 21.5 651 551 21.1 667 17.8 649
MK9 443 11.1 492 437 30.7 571 407 31.9 537 26.5 515
MK10 289 13.8 329 328 38.4 454 315 40.3 442 35.6 427
DP1 2881 4.6 3013 2885 10.5 3187 2887 11.2 3211 10.1 3178
DP2 2881 1.9 2936 2775 10.1 3055 2779 11.0 3084 8.5 3014
DP3 2881 2.1 2942 2983 9.6 3269 2990 9.3 3269 7.8 3223
DP4 2862 3.7 2969 2761 12.0 3093 2768 12.1 3104 11.1 3074
DP5 2832 3.0 2918 2984 11.5 3328 2988 11.0 3318 9.3 3265
DP6 2799 3.8 2904 2650 10.4 2925 2647 10.2 2916 9.5 2898
DP7 2843 4.4 2969 2747 28.0 3517 2757 27.2 3507 25.0 3447
DP8 2835 2.6 2908 2437 27.3 3101 2451 27.3 3119 23.8 3033
DP9 2824 2.4 2892 2338 28.3 2999 2321 29.0 2995 25.4 2911
DP10 2840 6.5 3025 2742 29.6 3555 2747 27.6 3505 24.8 3427
DP11 2786 4.1 2899 2450 31.5 3221 2460 32.7 3264 29.8 3194
DP12 2723 5.2 2864 2213 31.4 2907 2221 31.3 2916 28.2 2848

27

worker that operates the machine while it processes some operation. We have developed
two filter-and-fan based heuristic solution approaches. These methods combine a local
search procedure with a tree search procedure that generates compound transitions
in order to explore larger neighbourhoods to overcome locally optimal solutions. They
make use of a decomposition of the problem that allows to make use of a neighbourhood
structure that has formerly shown to perform well when worker restrictions are not
considered. In a computational study, we have shown that our heuristic approaches
outperform existing heuristic approaches from the literature on average. They have also
proven competitive when compared with a standard constraint programming solver.
With respect to the setup of the filter-and-fan framework, we found that it pays off
to make local decisions when generating solutions within the tree search procedure
instead of relying on transitions lists that are generated during local search.

There remain several interesting questions to be answered in future research. They
are, for example, concerned with the performance of filter-and-fan approaches for ob-
jectives other than makespan minimisation that are relevant in practice. Similarly,
the problem under consideration can be generalised to include more restrictions found
in real-world scheduling environments, e.g., sequence-dependent setup times and the
need for setup operators. Moreover, it may be interesting to design methods that ad-
just the parameters of our filter-and-fan approaches depending on the given instance.
Due to the convincing computational results, we believe that related future research
activities should furthermore focus on developing filter-and-fan based heuristic solution
approaches for other problem settings. As highlighted by Rego and Glover (2010), it is
especially promising to consider settings, where simple neighbourhood structures have
shown to be relatively effective in rather simple approaches. Here, the additional com-
putational burden needed to take advantage of compound neighbourhood structures is
likely to pay off.

Funding

David Müller has been supported by the European Union and the state North Rhine-
Westphalia through the European Fund for Regional Development (EFRD), as this
work was conducted as part of the project ‘EKPLO: Echtzeitnahes kollaboratives Pla-
nen und Optimieren’ (EFRE-0800463). This work has furthermore partially been sup-
ported by the German Research Foundation (DFG) through the grant ‘Sustainable
Personnel Planning in Highly Customized Assembly Lines with Work Sharing’ (KR
4926/3-1, OT 500/4-1).

References

Altendorfer, K., A. Schober, J. Karder, and A. Beham. 2020. “Service level improvement due to
worker cross training with stochastic worker absence.” International Journal of Production
Research (in press).

Andrade-Pineda, J. L., D. Canca, P. L. Gonzalez-R, and M. Calle. 2020. “Scheduling a dual-
resource flexible job shop with makespan and due date-related criteria.” Annals of Operations
Research 291 (1): 5–35.

Beach, R., A. P. Muhlemann, D. H. R. Price, A. Paterson, and J. A. Sharp. 2000. “A review
of manufacturing flexibility.” European Journal of Operational Research 122 (1): 41–57.

Blazewicz, J., K. H. Ecker, E. Pesch, G. Schmidt, M. Sterna, and J. Weglarz. 2019. Handbook
on scheduling: from theory to practice. 2nd ed. Berlin: Springer.

28

Bokhorst, J. A. C., and G. J. C. Gaalman. 2009. “Cross-training workers in Dual Resource Con-
strained systems with heterogeneous processing times.” International Journal of Production
Research 47 (22): 6333–6356.

Brandimarte, P. 1993. “Routing and scheduling in a flexible job shop by tabu search.” Annals
of Operations Research 41 (3): 157–183.

Brucker, P., and R. Schlie. 1990. “Job-shop scheduling with multi-purpose machines.” Com-
puting 45 (4): 369–375.

Chaudhry, I. A., and A. A. Khan. 2016. “A research survey: review of flexible job shop schedul-
ing techniques.” International Transactions in Operational Research 23 (3): 551–591.

Cunha, M. M., J. L. Viegas, M. S. E. Martins, T. Coito, A. Costigliola, J. Figueiredo, J. M. C.
Sousa, and S. M. Vieira. 2019. “Dual resource constrained scheduling for quality control
laboratories.” IFAC-PapersOnLine 52 (13): 1421–1426.

Dauzère-Pérès, S., and J. Paulli. 1997. “An integrated approach for modeling and solving the
general multiprocessor job-shop scheduling problem using tabu search.” Annals of Opera-
tions Research 70: 281–306.

De Bruecker, P., J. Van den Bergh, J. Beliën, and E. Demeulemeester. 2015. “Workforce plan-
ning incorporating skills: State of the art.” European Journal of Operational Research 243
(1): 1–16.

Dorndorf, U., F. Jaehn, and E. Pesch. 2008. “Modelling robust flight-gate scheduling as a clique
partitioning problem.” Transportation Science 42 (3): 292–301.

Giffler, B., and G. L. Thompson. 1960. “Algorithms for solving production-scheduling prob-
lems.” Operations Research 8 (4): 487–503.

Glover, F. 1996. “Ejection chains, reference structures and alternating path methods for trav-
eling salesman problems.” Discrete Applied Mathematics 65 (1): 223–253.

Glover, F. 1998. “A template for scatter search and path relinking.” In Artificial Evolution,
edited by J.-K. Hao, E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers, Vol. 1363 of
Lecture Notes in Computer Science, Berlin, Heidelberg, 1–51. Springer.

Gong, G., Q. Deng, X. Gong, W. Liu, and Q. Ren. 2018a. “A new double flexible job-shop
scheduling problem integrating processing time, green production, and human factor indi-
cators.” Journal of Cleaner Production 174: 560–576.

Gong, X., Q. Deng, G. Gong, W. Liu, and Q. Ren. 2018b. “A memetic algorithm for multi-
objective flexible job-shop problem with worker flexibility.” International Journal of Pro-
duction Research 56 (7): 2506–2522.

Greistorfer, P., and C. Rego. 2006. “A simple filter-and-fan approach to the facility location
problem.” Computers & Operations Research 33 (9): 2590–2601.

Hashemi-Petroodi, S. E., A. Dolgui, S. Kovalev, M. Y. Kovalyov, and S. Thevenin. 2020. “Work-
force reconfiguration strategies in manufacturing systems: a state of the art.” International
Journal of Production Research (in press).

He, J., X. Chen, and X. Chen. 2016. “A filter-and-fan approach with adaptive neighborhood
switching for resource-constrained project scheduling.” Computers & Operations Research
71: 71–81.

Hopp, W. J., and M. P. Oyen. 2004. “Agile workforce evaluation: a framework for cross-training
and coordination.” IIE Transactions 36 (10): 919–940.

IBM. 2016. “IBM ILOG CPLEX optimization studio 12.7.0: Scheduling examples.”
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.ide.
help/OPL_Studio/usroplexamples/topics/opl_cp_examples_scheduling.html. Last
accessed 2018-12-11.

Jain, A., P. K. Jain, F. T. S. Chan, and S. Singh. 2013. “A review on manufacturing flexibility.”
International Journal of Production Research 51 (19): 5946–5970.

Katiraee, N., M. Calzavara, S. Finco, D. Battini, and O. Battaïa. 2021. “Consideration of work-
ers’ differences in production systems modelling and design: State of the art and directions
for future research.” International Journal of Production Research (in press).

Kress, D., N. Boysen, and E. Pesch. 2017. “Which items should be stored together? A basic par-
tition problem to assign storage space in group-based storage systems.” IISE Transactions

29

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.ide.help/OPL_Studio/usroplexamples/topics/opl_cp_examples_scheduling.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.ide.help/OPL_Studio/usroplexamples/topics/opl_cp_examples_scheduling.html

49 (1): 13–30.
Kress, D., S. Meiswinkel, and E. Pesch. 2019. “Straddle carrier routing at seaport container

terminals in the presence of short term quay crane buffer areas.” European Journal of Op-
erational Research 279 (3): 732–750.

Kress, D., and D. Müller. 2019. “Mathematical models for a flexible job shop scheduling prob-
lem with machine operator constraints.” IFAC-PapersOnLine 52 (13): 94–99.

Kress, D., D. Müller, and J. Nossack. 2019. “A worker constrained flexible job shop scheduling
problem with sequence-dependent setup times.” OR Spectrum 41 (1): 179–217.

Laborie, P., J. Rogerie, P. Shaw, and P. Vilím. 2018. “IBM ILOG CP optimizer for scheduling.”
Constraints 23 (2): 210–250.

Lang, M., and H. Li. 2011. “Research on dual-resource multi-objective flexible job shop schedul-
ing under uncertainty.” In Proceedings of the 2nd International Conference on Artificial In-
telligence, Management Science and Electronic Commerce, AIMSEC ’11, 1375–1378. IEEE.

Lei, D., and X. Guo. 2014. “Variable neighbourhood search for dual-resource constrained flex-
ible job shop scheduling.” International Journal of Production Research 52 (9): 2519–2529.

Lei, D., and X. Tan. 2016. “Local search with controlled deterioration for multi-objective
scheduling in dual-resource constrained flexible job shop.” In Proceedings of the 28th Chinese
Control and Decision Conference, CCDC ’16, 4921–4926. IEEE.

Lenstra, J. K., and A. H. G. Rinnooy Kan. 1979. “Computational complexity of discrete opti-
mization problems.” Annals of Discrete Mathematics 4: 121–140.

Liu, C. G., N. Yang, W. J. Li, J. Lian, S. Evans, and Y. Yin. 2013. “Training and assignment of
multi-skilled workers for implementing seru production systems.” The International Journal
of Advanced Manufacturing Technology 69 (5-8): 937–959.

Liu, X. X., C. B. Liu, and Z. Tao. 2011. “Research on bi-objective scheduling of dual-resource
constrained flexible job shop.” Advanced Materials Research 211–212: 1091–1095.

Mastrolilli, M., and L. M. Gambardella. 2000. “Effective neighbourhood functions for the flex-
ible job shop problem.” Journal of Scheduling 3 (1): 3–20.

Meng, L., C. Zhang, B. Zhang, and Y. Ren. 2019. “Mathematical modeling and optimization of
energy-conscious flexible job shop scheduling problem with worker flexibility.” IEEE Access
7: 68043–68059.

Monden, Y. 2011. Toyota production system: an integrated approach to just-in-time. 3rd ed.
Boca Raton: CRC Press.

Montgomery, D. C. 2012. Design and Analysis of Experiments. 8th ed. Hoboken, New Jersey:
Wiley.

Nembhard, D. A., and S. M. Shafer. 2008. “The effects of workforce heterogeneity on productiv-
ity in an experiential learning environment.” International Journal of Production Research
46 (14): 3909–3929.

Paksi, A. B. N., and A. Ma’ruf. 2016. “Flexible job-shop scheduling with dual-resource con-
straints to minimize tardiness using genetic algorithm.” In Proceedings of the 2nd Interna-
tional Manufacturing Engineering Conference and 3rd Asia-Pacific Conference on Manu-
facturing Systems, 012060. IOP Publishing.

Peng, C., Y. Fang, P. Lou, and J. Yan. 2018. “Analysis of double-resource flexible job shop
scheduling problem based on genetic algorithm.” In Proceedings of the 15th International
Conference on Networking, Sensing and Control, ICNSC ’18, 1–6. IEEE.

Pesch, E., and F. Glover. 1997. “TSP ejection chains.” Discrete Applied Mathematics 76 (1):
165–181.

Ranjbar, M. 2008. “Solving the resource-constrained project scheduling problem using filter-
and-fan approach.” Applied Mathematics and Computation 201 (1-2): 313–318.

Rego, C., and R. Duarte. 2009. “A filter-and-fan approach to the job shop scheduling problem.”
European Journal of Operational Research 194 (3): 650–662.

Rego, C., and F. Glover. 2002. “Local search and metaheuristics for the traveling salesman
problem.” In The traveling salesman problem and its variations, edited by G. Gutin and
A. Punnen, Vol. 12 of Combinatorial Optimization Series, Boston, 309–368. Kluwer.

Rego, C., and F. Glover. 2010. “Ejection chain and filter-and-fan methods in combinatorial

30

optimization.” Annals of Operations Research 175 (1): 77–105.
Rego, C., H. Li, and F. Glover. 2011. “A filter-and-fan approach to the 2D HP model of the

protein folding problem.” Annals of Operations Research 188 (1): 389–414.
Rego, C., and F. Mathew. 2011. “A filter-and-fan algorithm for the capacitated minimum

spanning tree problem.” Computers & Industrial Engineering 60 (2): 187–194.
Saadat, M., M. C. L. Tan, M. Owliya, and G. Jules. 2013. “Challenges and trends in the allo-

cation of the workforce in manufacturing shop floors.” International Journal of Production
Research 51 (4): 1024–1036.

Sennott, L. I., M. P. Van Oyen, and S. M. R. Iravani. 2006. “Optimal dynamic assignment of a
flexible worker on an open production line with specialists.” European Journal of Operational
Research 170 (2): 541–566.

Sprecher, A., R. Kolisch, and A. Drexl. 1995. “Semi-active, active, and non-delay schedules
for the resource-constrained project scheduling problem.” European Journal of Operational
Research 80 (1): 94–102.

Taillard, E. D. 1994. “Parallel taboo search techniques for the job shop scheduling problem.”
ORSA Journal on Computing 6 (2): 108–117.

Tarantilis, C. D., F. Stavropoulou, and P. P. Repoussis. 2013. “The capacitated team orienteer-
ing problem: a bi-level filter-and-fan method.” European Journal of Operational Research
224 (1): 65–78.

Treleven, M. 1989. “A review of the dual resource constrained system research.” IIE Transac-
tions 21 (3): 279–287.

Uzsoy, R., C.-Y. Lee, and L. A. Martin-Vega. 1992. “A review of production planning and
scheduling models in the semiconductor industry part I: system characteristics, performance
evaluation and production planning.” IIE Transactions 24 (4): 47–60.

Vallikavungal Devassia, J., M. A. Salazar-Aguilar, and V. Boyer. 2018. “Flexible job-shop
scheduling problem with resource recovery constraints.” International Journal of Production
Research 56 (9): 3326–3343.

Vieira, M., S. Moniz, B. S. Gonçalves, T. Pinto-Varela, A. P. Barbosa-Póvoa, and P. Neto.
2021. “A two-level optimisation-simulation method for production planning and scheduling:
the industrial case of a human–robot collaborative assembly line.” International Journal of
Production Research (in press).

Wirojanagud, P., E. S. Gel, J. W. Fowler, and R. Cardy. 2007. “Modelling inherent worker
differences for workforce planning.” International Journal of Production Research 45 (3):
525–553.

Wu, R., Y. Li, S. Guo, and W. Xu. 2018. “Solving the dual-resource constrained flexible job
shop scheduling problem with learning effect by a hybrid genetic algorithm.” Advances in
Mechanical Engineering 10 (10): 1–14.

Wu, X., J. Peng, X. Xiao, and S. Wu. 2020. “An effective approach for the dual-resource flexi-
ble job shop scheduling problem considering loading and unloading.” Journal of Intelligent
Manufacturing 1–22.

Xianzhou, C., and Y. Zhenhe. 2011. “An improved genetic algorithm for dual-resource con-
strained flexible job shop scheduling.” In Proceedings of the 4th International Conference on
Intelligent Computation Technology and Automation, ICICTA ’11, 42–45. IEEE.

Xu, J., X. Xu, and S. Q. Xie. 2011. “Recent developments in dual resource constrained (DRC)
system research.” European Journal of Operational Research 215 (2): 309–318.

Yang, G., B. D. Chung, and S. J. Lee. 2019. “Limited search space-based algorithm for dual re-
source constrained scheduling problem with multilevel product structure.” Applied Sciences
9 (19): 4005.

Yang, Y., and L. Tang. 2010. “A filter-and-fan approach to the multi-trip vehicle routing
problem.” In Proceeding of the International Conference on Logistics Systems and Intelligent
Management, ICLSIM ’10, 1713–1717. IEEE.

Yazdani, M., M. Zandieh, and R. Tavakkoli-Moghaddam. 2019. “Evolutionary algorithms
for multi-objective dual-resource constrained flexible job-shop scheduling problem.”
OPSEARCH 56 (3): 983–1006.

31

Yazdani, M., M. Zandieh, R. Tavakkoli-Moghaddam, and F. Jolai. 2015. “Two meta-heuristic
algorithms for the dual-resource constrained flexible job-shop scheduling problem.” Scientia
Iranica - Transactions E 22 (3): 1242–1257.

Zhang, J., W. Wang, and X. Xu. 2015. “A hybrid discrete particle swarm optimization for dual-
resource constrained job shop scheduling with resource flexibility.” Journal of Intelligent
Manufacturing 28 (8): 1961–1972.

Zhang, J., W. Wang, X. Xu, and J. Jie. 2013. “A multi-objective particle swarm optimization
for dual-resource constrained shop scheduling with resource flexibility.” In Proceedings of
the IEEE Symposium on Computational Intelligence for Engineering Solutions, CIES ’13,
29–34. IEEE.

Zhang, X. L., C. G. Liu, W. J. Li, S. Evans, and Y. Yin. 2017. “Effects of key enabling
technologies for seru production on sustainable performance.” Omega 66 (Part B): 290–307.

Zheng, X.-L., and L. Wang. 2016. “A knowledge-guided fruit fly optimization algorithm for
dual resource constrained flexible job-shop scheduling problem.” International Journal of
Production Research 54 (18): 5554–5566.

Zhu, H., Q. Deng, L. Zhang, X. Hu, and W. Lin. 2020. “Low carbon flexible job shop scheduling
problem considering worker learning using a memetic algorithm.” Optimization and Engi-
neering 21 (4): 1691–1716.

32

	Introduction
	Literature overview and contribution
	Problem definition and representation of feasible solutions
	Problem description
	Solution graph
	Constraint programming formulation

	Filter-and-fan approaches
	Neighbourhood structure
	Determine set of edges to be deleted
	Determine neighbouring solution graph
	Recompute missing edge set
	Neighbourhood definitions

	Details of the filter-and-fan algorithms
	Constructive procedure
	Transition list
	Local search
	Tree search procedure
	Filter-and-fan framework
	A modified filter-and-fan procedure

	Computational study
	Random testbed
	Literature instances

	Conclusion

