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Abstract

We address an optimization problem that arises at seaports where containers are transported

between stacking areas and small buffer areas of restricted capacity that are located within

the reach of quay cranes. The containers are transported by straddle carriers that have to

be routed such that given unloading and loading sequences of the containers at the quay

cranes are respected. The objective is to minimize the turnaround times of the vessels. We

analyze the problem’s computational complexity, present an integer program, and propose a

heuristic framework that is based on decomposing the problem into its routing component and

a component that handles the time variables and buffer capacities. The framework is analyzed

in computational tests that are based on real-world data. Based on these tests, we analyze the

question of whether or not it pays off to deviate from the approach of permanently assigning

a fixed number of straddle carriers to each quay crane, which is the strategy that is currently

implemented at the port.

Keywords: Scheduling, Container logistics, Seaport logistics, Vehicle routing, Vehicle

dispatching

1. Introduction

A container port is a complex system consisting of berths equipped with quay cranes,

transport vehicles, stacking areas, stacker cranes, and road or rail connections to the hinterland.

Each container port is a unique combination of these components and features an individual

vehicle fleet. Large ports handle several million twenty-foot equivalent units (TEU) on an

annual basis. Port authorities therefore strive for sophisticated planning approaches based on

simulation or optimization techniques in order to stay competitive.

Operations research challenges at seaports are mostly concerned with problem settings that

directly or indirectly affect the flow of containers within the ports. Container ports that can
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serve several vessels simultaneously aim at high berth utilization rates, so that decision makers

have to determine appropriate assignments of vessels to berths. Each berth is equipped with

one or multiple quay cranes. These cranes are needed for the process of loading and unloading

containers and have to be scheduled appropriately. Inbound containers, i.e., containers that

arrive by vessels, must then be transported to large stacking (or storage) areas, where they

are temporarily stored for later processing by train, truck or vessel. Outbound containers,

i.e., containers that arrive by train or truck and that have to be loaded onto a vessel, have

to be transported in the reverse direction. The corresponding transportation requests within

the seaport can be executed by different types of vehicles. Automated guided vehicles (AGVs)

and manually driven yard trucks (YTs) cannot lift or drop containers. They have to be loaded

and unloaded at predefined handover positions by quay cranes at the vessels or by yard cranes

(or gantry cranes) at the storage areas. Automated lifting vehicles (ALVs) are able to perform

lifting and dropping operations. However, yard cranes remain necessary for stacking operations.

Straddle carriers (SCs) and reach stackers (RSs) represent the most flexible solutions as these

vehicles can perform all necessary container operations, i.e., lifting, dropping, and stacking,

without the need for additional cranes. RSs, however, are usually only applied in small and

medium sized ports.

Especially in peak times, the major objective of port authorities is the minimization of

dwell times of vessels at the berths (see also Jaehn & Kress, 2018; Kovalyov et al., 2018; Kress

et al., 2019; Nossack et al., 2018). A key factor to achieving this objective is an efficient usage of

quay cranes (see, e.g., Goodchild & Daganzo, 2007), so that the problem of effectively planning

the transportation processes of containers between quay cranes and storage areas is of specific

importance. Our research (see also Meiswinkel, 2018) is motivated by a real-world setting

at a container port in Germany, where SCs are used for transportation and storage (lifting,

dropping, restacking) operations. Buffer areas of limited capacity (four containers) at the quay

cranes allow the intermediate (short term) storage of containers that have been unloaded from

a vessel or that have been dropped by a SC and that are waiting to be loaded onto a vessel.

The current approach at the considered port is to permanently assign three to five SCs to each

quay crane. This, however, restricts the potential of effectively routing the SCs, which is a

prerequisite for high quay crane utilization rates and, consequently, short dwell times of the

vessels. In this article, we will therefore analyze if relaxing this constraint is beneficial.

1.1. Related literature

General survey articles on the vast amount of literature related to logistic operations at

container terminals and to ocean container transport in general are given by Steenken et al.

(2004) and Lee & Song (2017), respectively. When it comes to seaport operations, a major
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focus of the literature lies on the aforementioned berth allocation problem, the scheduling of

quay cranes, and on transportation operations within the ports. Comprehensive overviews

of the relevant literature regarding these problem settings are given by Bierwirth & Meisel

(2010, 2015) and Stahlbock & Voß (2008). Another recent literature overview by Lehnfeld

& Knust (2014) focuses on problems of loading, unloading and premarshalling of stacks in

storage areas and combined problem settings. Carlo et al. (2014a) survey literature on storage

yard operations. Kuzmicz & Pesch (2019) present literature on approaches concerning the

repositioning of empty containers between Europe and China.

All of the aforementioned survey articles include at least some articles related to transport

operations and vehicle routing problems in container terminals, i.e., the field of study in the

article at hand. Detailed and more focused reviews on these topics are provided by Carlo et al.

(2014b) and Stahlbock & Voß (2008). Hence, for the sake of brevity, we refer the reader to

these articles for a detailed overview of the field and restrict ourselves to presenting only the

most relevant literature in the context of our problem setting in the remainder of this section.

In doing so, we categorize the publications based on the types of vehicles that are considered by

the respective authors, as these types strongly affect the way that buffer areas are implemented

at the considered ports.

In case of vehicles that cannot perform lifting and dropping operations themselves, e.g.,

AGVs or YTs, the nature of buffer areas is profoundly different from our setting as they will

always have to be implemented by (loaded or unloaded) vehicles that wait to be served by quay

cranes or yard cranes. In contrast to our setting, there is direct interaction between cranes

and vehicles, so that specialized solution approaches for these settings are usually not directly

applicable to our case. However, there are some insights, analogies, and problem characteristics

that are relevant to the problem at hand and related directions for future research. Bish et al.

(2005), for example, consider a setting with AGVs and a single quay crane that solely performs

loading or unloading operations. They prove that a simple greedy algorithm solves their single

crane problem to optimality. This result will most probably also hold for our case. Based on the

greedy algorithm, Bish et al. (2005) then present a heuristic approach for the case of multiple

cranes. Other relevant papers include Bish (2003), who focusses on the problem of effectively

routing AGVs and scheduling the related quay crane operations. The author considers multiple

quay cranes that perform both unloading and loading operations. The decision of selecting

a storage location out of a set of potential candidate locations for each unloaded container

is integrated into the problem. A heuristic method based on formulating the problem as a

transshipment problem is presented. Angeloudis & Bell (2010) focus on a setting with various

conditions of uncertainty. They develop a dispatching approach with a planning horizon of two
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container movements per AGV and perform simulation experiments to compare the approach

with other heuristics. Briskorn et al. (2006) transform an AGV routing problem with the

objective of minimizing the weighted sum of earliness, tardiness and empty travel time into

an inventory based formulation and present an exact algorithm. Kim & Bae (2004) present a

MIP formulation and a heuristic approach for the dispatching and routing of AGVs with the

objective of minimizing the waiting time of cranes as well as the total travel distance of the

vehicles. Grunow et al. (2004) consider AGVs that are able to carry two containers at a time.

They present a priority rule based approach in order to minimize the total lateness. Similarly,

Grunow et al. (2006) consider AGVs that are able to carry either two small-sized containers or

one large-sized container. The authors analyze the performance of this setting in comparison

to a setting where only one (either small- or large-sized) container can be transported by each

AGV. Lee et al. (2009) analyze a port that uses YTs and integrate the scheduling of these

vehicles with the problem of allocating containers to storage blocks. Each container has a time

window with a hard lower bound and a soft upper bound. The authors focus on minimizing

the total delay with respect to these upper bounds and the total travel time of the YTs. Ng

et al. (2007) consider YTs for the transportation of containers between yard cranes and quay

cranes. A set of genetic algorithms that minimize the makespan is presented and compared.

In comparison to the aforementioned stream of research, the scheduling of vehicles that can

lift and drop containers themselves, e.g., SCs or ALVs, is more flexible, as these vehicles will

not have to wait until the containers are taken over by the quay cranes. Here, buffer areas allow

the short term storage of containers without the interaction of any vehicle or crane, so that the

horizontal transport of containers by vehicles is decoupled from the crane operations, which is

the perspective taken in this paper. In this context, Nguyen & Kim (2009) consider a setting

that takes account of buffer areas at the quay cranes and that is fairly similar to ours. While we

consider SCs, they assume that the transportation of containers is performed by ALVs. They

do not incorporate the yard crane schedules into their model, but rather assume that the ALVs

spend a specific time period at the storage areas to retrieve or store the containers. Hence, they

abstract from the explicit incorporation of storage area operations, which we aim to include

into our model. Specifically, we include the possibility to split the processing of restacking

operations and the retrieving and storage operations of the associated containers (that have to

be loaded onto or unloaded from a vessel) among multiple vehicles, rather than assigning just

one vehicle to all of these operations. Additionally, different from our model, Nguyen & Kim

(2009) do not consider safety time considerations in order to avoid collisions of the vehicles.

They develop a heuristic approach that is based on a procedure that heuristically converts

buffer constraints into time window constraints. In contrast to our approach, it imposes fairly
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restrictive assumptions with respect to the sequence of the containers that are processed by

the ALVs. Furthermore, it is less flexible with respect to the incorporation of the setting at the

beginning of the planning horizon, so that the authors leave the evaluation of their approach in

a dynamic environment for future research. Other relevant articles include Böse et al. (2000),

who consider a setting with a fixed number of SCs and multiple quay cranes that feature

buffers of unrestricted capacity. The authors present and evaluate evolutionary algorithms.

Kress et al. (2015) describe and analyze a combined partitioning and matching problem that

can be used to model the transportation of containers by RSs in small to medium sized ports

that feature a small temporary storage area in addition to the main stacking areas. They

present a heuristic framework that is based on decomposing the problem into its matching and

partitioning components. Skinner et al. (2013) develop a genetic algorithm for routing SCs in a

fairly specific setting at a container terminal in Australia. In contrast to the other studies, they

do not only take account of the transportation of containers between stacking areas and the

quay cranes but also consider transportation requests between stacking areas and hinterland

connections. Kim & Kim (1999) present a routing problem with a mixed fleet of SCs and YTs

in a setting with multiple quay cranes that solely have to perform loading operations. They

present and evaluate a beam search algorithm.

1.2. Problem setting and contribution

As outlined above, we consider a setting where SCs are used to transport containers between

storage areas and quay cranes that are equipped with buffer areas of limited capacity. This is

illustrated in Figure 1.

storage areas buffer areas vessels

loading crane

unloading crane

straddle carriers quay cranes

Figure 1: Problem setting

Because containers vary significantly in weight and the load of vessels has to be balanced

due to safety restrictions, we assume that the sequences of containers that have to be loaded

onto or unloaded from the vessels by the quay cranes are determined in a higher level opti-

mization problem and can be considered as given. Moreover, as frequently assumed in the

literature, the origin or destination location in the storage areas is assumed to be known in

advance for each container. In line with this assumption, we assume that the movement of a
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given container to, from, or within the storage areas cannot interfere with a lifting or dropping

operation of another container within the storage areas, e.g., by permanently “blocking” its

corresponding container stack.

A container port is a highly dynamic environment, in which frequent rescheduling of oper-

ations is needed. We therefore assume the container sequences to be rather short and consider

each quay crane either as a loading crane that solely loads containers onto a vessel or as an

unloading crane that solely unloads containers from a vessel (see Figure 1). Hence, we do not

consider crane double cycling (see, for example, Goodchild & Daganzo, 2007), i.e., the com-

bined processing of loading and unloading operations in single crane cycles (movements from

the buffer to the vessel and back or vice versa). Furthermore, at the beginning of the planning

horizon, the SCs may be located anywhere in the port and the cranes’ buffer areas may not be

empty. SCs and quay cranes may also not be immediately available because they may be in

the process of handling a container.

The task of picking up a container at its origin and moving it to its destination by a SC

is henceforth referred to as a job. As each job is associated with a distinct container, we

will sometimes refer to a job by its corresponding container and vice versa. The jobs can be

classified according to the origin and destination of the respective containers (see Figure 1).

Loading jobs relate to containers that originate at storage areas and have to be transported to

a buffer, where they are loaded onto a vessel by a quay crane. Similarly, unloading jobs relate

to containers that have to be transported from a buffer to their storage location upon having

been unloaded from a vessel. Restacking jobs correspond to container movements within the

storage areas. They are taken into account because of stacking restrictions in the storage area.

It may, for example, be necessary to restack containers in order to be able to access specific

storage locations of loading or unloading jobs. We assume that each restacking job is related

to a distinct loading or unloading job. Each of these loading or unloading jobs may be related

to multiple restacking jobs, all of which relate to the same stack in a storage area and have

to be processed in a given sequence in order to be able to access the corresponding container

or its designated storage position. These sequences are assumed to be rather short, because

many restacking operations are performed in off-peak times in order to be able to quickly

access containers in peak times. Nevertheless, the fact that the processing of restacking jobs

and their associated loading or unloading jobs may be split among multiple SCs may result

in significant time savings when compared to the situation in which only one SC processes all

corresponding jobs (see Section 1.1). This is because it allows a container that corresponds to a

loading job to potentially be lifted before the processing of the associated restacking containers

is completed or to start the processing of a container that has been unloaded from a vessel
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before the corresponding restacking jobs have been lifted. Note that, in line with our research

question, we do not assume the assignment of SCs to cranes to be fixed, so that - in contrast

to the cranes - SCs are allowed to process a mix of loading, unloading, and restacking jobs.

As we address questions of rather general nature, the incorporation of the details of the

port layout, e.g., driving lanes or the layout of storage blocks, is not expected to have a critical

impact on our findings. Hence, for the sake of simplicity, we do not explicitly take these details

into account. Instead, we assume that the SCs move on driving lanes that are arranged on a

grid that spans over the port and make use of the Manhattan metric for the calculation of the

distance between any pair of points on this grid. Additionally, in order to extract a somewhat

basic problem setting, the SCs are assumed to be homogeneous and we do not take account of

their acceleration or of varying speeds for loaded and unloaded movements. They are assumed

to always be able to pass each other. Furthermore, when determining distances, each buffer is

assumed to be a single point, i.e., we do not differentiate between storage slots in the buffer

areas. In order to avoid collisions, we assume that certain safety times must elapse between

lifting and dropping operations of containers.

The problem is to determine a routing of the SCs, i.e., an allocation of jobs to SCs and

a corresponding sequencing of the jobs of each SC, subject to all capacity restrictions and

precedence relations, such that the resulting quay crane schedules allow for short turnaround

times of vessels. Hence, the objective relates to avoiding idle times of the quay cranes that

arise before all of the cranes’ containers have been dropped in the buffer areas or loaded onto

the vessels. As mentioned above, we can only consider short container sequences and we will

have to reschedule regularly. We therefore consider the objective of minimizing the sum of

the time instants at which quay cranes interact with their buffers, i.e., at which the process of

lifting a container starts or the process of dropping a container finishes. By doing so, we aim

at favoring idle times at the end of the quay crane schedules. This, in turn, allows for flexible

rescheduling, which is assumed to be initiated when new container data becomes available, in

case of unexpected events, or whenever one of the SCs or quay cranes has completed all of its

assigned jobs or operations. Regular rescheduling, of course, requires the ability to determine

high quality solutions in relatively short computational times, so that exact approaches do not

seem to be a promising research direction for real-world instance sizes in light of our complexity

results presented in Section 2.2.

We refer to the problem under consideration as the Manhattan Metric Straddle Carrier

Routing Problem with Buffer Areas (MSCRB). To the best of the authors’ knowledge, our

specific setting is new to the literature. Some basic results for a variant of our setting have

been presented and analyzed in the dissertation of S. Meiswinkel (Meiswinkel, 2018). In the

7



paper at hand, we present results on the computational complexity of MSCRB and develop a

heuristic framework that is evaluated in computational tests. These tests are based on real-

world data, so that we can elaborate on the question of whether or not our approach is beneficial

when compared to the current practice outlined above.

1.3. Overview of this article

The remainder of this article is structured as follows. Section 2 is devoted to defining the

notation used throughout the article and analyzing the computational complexity of MSCRB.

Furthermore, an integer programming formulation based on an asymmetric traveling salesman

problem (TSP) with precedence constraints is presented. A heuristic framework is described

in Section 3. It is based on decomposing MSCRB into its routing component and a component

that handles the time variables and buffer capacities. The results of our computational tests

are subject of Section 4. The paper closes with a conclusion in Section 5.

2. Notation and insights

We assume that the planning horizon is divided into a finite number of intervals of equal

length and refer to the length of a time interval as a time unit. All time parameters are assumed

to be integral multiples of a time unit and can therefore be specified by natural numbers.

We denote the set of loading cranes by C l, the set of unloading cranes by Cu, and the

complete set of quay cranes by C = C l ∪ Cu, |C| = nq. Each crane c ∈ C is associated

with a buffer capacity bc ∈ N>0, representing the maximum number of containers that can

simultaneously be stored in its buffer, a set of containers Jc = {jc,1, . . . , jc,|Jc|} that it must

process, and a set Jb
c of containers that are located in the crane’s buffer at the beginning of

the planning horizon.

The loading process of a container (performed by some loading crane) corresponds to

picking up the container in the buffer, moving it to the vessel, dropping it on the vessel, and

then returning to the buffer. Similarly, the unloading process of a container (performed by an

unloading crane) corresponds to moving from the buffer to the vessel, picking up the container,

moving to the buffer, and dropping the container. We assume that the time needed for an

unloading or loading processes is identical for all containers. It is denoted by tq ∈ N>0.

Figure 2 illustrates the container sets that are relevant for loading cranes. Dashed arrows

represent container movements that are not subject to the optimization because the respective

allocation decisions are fixed at the beginning of the planning horizon (see below for details).

For each loading crane c ∈ C l, the containers of the set Jb
c must still be processed, i.e., Jb

c ⊆ Jc.

Additionally, there potentially exists a subset Jv
c ⊆ Jc of containers that are handled by SCs at

8



capacity 𝑏𝑏𝑐𝑐

𝐽𝐽𝑐𝑐𝑏𝑏

𝐽𝐽𝑐𝑐\ 𝐽𝐽𝑐𝑐𝑏𝑏
from storage areas 

on straddle carriers
at start𝐽𝐽𝑐𝑐𝑣𝑣

buffer area vessel

𝐽𝐽𝑐𝑐

storage areas

𝐽𝐽𝑐𝑐\(𝐽𝐽𝑐𝑐𝑏𝑏 ∪ 𝐽𝐽𝑐𝑐𝑣𝑣)

capacity 𝑏𝑏𝑐𝑐

pick up

move to vessel

dropprocessing time 𝑡𝑡𝑞𝑞

𝐽𝐽𝑐𝑐𝑏𝑏

from vessel 

buffer area vessel

return to buffer

storage areas

𝐽𝐽𝑐𝑐
𝑞𝑞on crane

at start

𝐽𝐽𝑐𝑐 ∪ 𝐽𝐽𝑐𝑐
𝑞𝑞

𝐽𝐽𝑐𝑐 ∪ 𝐽𝐽𝑐𝑐
𝑞𝑞∪ 𝐽𝐽𝑐𝑐𝑏𝑏

𝐽𝐽𝑐𝑐

Figure 2: Container sets associated to a loading crane

the beginning of the planning horizon and that will be dropped in the crane’s buffer. However,

Jc does not include a container, the loading process of which has already been started but

has not yet been completed by the crane at the beginning of the planning horizon. We define

J l
c := Jb

c ∪ Jv
c for each c ∈ C l.

For each unloading crane c ∈ Cu (see Figure 3), we have Jc ∩ Jb
c = ∅, i.e., the containers

of the set Jb
c have already been processed by the crane and are waiting to be picked up by

a SC. Additionally, there may exist a container, the unloading process of which has already

capacity 𝑏𝑏𝑐𝑐

𝐽𝐽𝑐𝑐𝑏𝑏
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𝐽𝐽𝑐𝑐

storage areas
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𝐽𝐽𝑐𝑐 ∪ 𝐽𝐽𝑐𝑐
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𝐽𝐽𝑐𝑐 ∪ 𝐽𝐽𝑐𝑐
𝑞𝑞∪ 𝐽𝐽𝑐𝑐𝑏𝑏

𝐽𝐽𝑐𝑐

Figure 3: Container sets associated to an unloading crane

been started but has not yet been completed by c at the beginning of the planning horizon,

which we refer to by the set Jq
c that solely includes this container in case of its existence. This

container is not included in Jc as well. We define Ju
c := Jb

c ∪ J
q
c = {jc,|Jc|+1, . . . , jc,|Jc|+|Ju

c |}

for each c ∈ Cu. For the sake of notational convenience, we additionally define Ju
c := ∅ for all

c ∈ C l.

Each set Jc, c ∈ C, is assumed to be ordered. That is, for each pair of containers jc,i, jc,l ∈

Jc with i < l, crane c must process jc,i before it processes jc,l. We take account of the fact

that crane c ∈ C may not have finished a loading or unloading process of a container at the

beginning of the planning horizon, by defining a time instant aqc ∈ N≥0, at which it is available

for starting to lift the next container in the buffer in case of a loading crane or at which it has

dropped the container in the buffer in case of an unloading crane. For all cranes c ∈ C that

are immediately available, we set aqc = 0.

Table 1 summarizes the notation regarding the quay cranes.

Based on the above definitions, the set of loading jobs is J l :=
⋃

c∈Cl

(
Jc \ J l

c

)
, while

the set of unloading jobs corresponds to Ju :=
⋃

c∈Cu (Jc ∪ Ju
c ) (see Figures 2–3). We define

J := J l ∪ Ju. In the context of jobs, we will usually not explicitly specify the quay cranes that

must process or have processed the corresponding containers in order to ease the notation, i.e.,

we will write j ∈ J . Each job j ∈ J corresponds to a container that has not been started to
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Table 1: Notation regarding the quay cranes

Cl set of loading cranes
Cu set of unloading cranes

C set of quay cranes C = Cl ∪ Cu, |C| = nq

tq time needed to process a container by a quay crane tq ∈ N>0

aqc availability time of crane c ∈ C aqc ∈ N≥0

bc capacity of the buffer of crane c ∈ C bc ∈ N>0

Jc ordered set of containers that must be processed by crane c ∈ C Jc = {jc,1, . . . , jc,|Jc|}
Jb
c containers located in the buffer of crane c ∈ C at the beginning of the

planning horizon

Jv
c containers that have to be processed by loading crane c ∈ Cl and that

are handled by a SC at the beginning of the planning horizon

J l
c subset of the containers related to loading crane c ∈ Cl J l

c := Jb
c ∪ Jv

c , Jc ∩ J l
c = J l

c

Jq
c set of at most one container that is in the process of being unloaded by

unloading crane c ∈ Cu at the beginning of the planning horizon

Ju
c subset of the containers related to unloading crane c ∈ Cu Ju

c := Jb
c ∪ Jq

c , Jc ∩ Ju
c = ∅

Ju
c = {jc,|Jc|+1, . . . , jc,|Jc|+|Ju

c |}

be processed by a SC at the beginning of the planning horizon and that must be transported

between buffer areas and storage areas. It is associated with a (potentially empty) sequence of

restacking jobs, represented by an ordered set Rj = {rj,1, . . . , rj,|Rj |}. R :=
⋃

j∈J Rj denotes

the complete set of restacking jobs. If Rj 6= ∅ for some j ∈ J , the container related to job j may

only be lifted (in case of a loading job) or dropped (in case of an unloading job) by a SC when

the container related to rj,|Rj | has been lifted. Furthermore, for rj,i, rj,l ∈ Rj , j ∈ J , i < l, the

container related to rj,i must be lifted before the container related to rj,l can be lifted. The

underlying reasoning is illustrated in Figure 4 for the case of a loading job which is blocked by

two containers that are stored in the same stack. Naturally, these containers define restacking

loading job
𝑗𝑗 ∈ 𝐽𝐽𝑙𝑙
𝑟𝑟𝑗𝑗,2 ∈ 𝑅𝑅𝑗𝑗

𝑟𝑟𝑗𝑗,1 ∈ 𝑅𝑅𝑗𝑗

storage area

Figure 4: Restacking jobs associated to a loading job

jobs that have to be processed in the sequence which is defined by the stacking order. Again,

for the sake of notational convenience, we will usually write j ∈ R to refer to a restacking job,

i.e., we will omit its corresponding loading or unloading job, whenever possible. Restacking

jobs that are in the process of being executed by some SC at the beginning of the planning

horizon are assumed to not be included in R.

All relevant locations in the port are identified by points with integer coordinates in a

Cartesian coordinate system in the plane. The distance between two points x and y in this

coordinate system is calculated by using the Manhattan metric and is denoted by d(x, y). Each

job j ∈ J∪R is associated with two points, an origin and a destination. We denote these points
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by ori(j) and dest(j), respectively. For each loading job, the origin is a point that is located

in one of the storage areas, where it identifies some stack of containers, while the destination

corresponds to a point that represents a buffer area of a quay crane. Similarly, unloading jobs

are associated to an origin that represents a buffer and a destination in the storage areas. For

restacking jobs, both the origin and destination are points in the storage areas.

The set of SCs is denoted by K, |K| = nv. Each k ∈ K is associated with a time instant

avk ∈ N≥0, at which it is available for processing the next container. In case of a SC that is

handling a container at the beginning of the planning horizon, this time instant corresponds to

the point in time at which it has finished processing this container. For all remaining SCs, this

time instant is set to zero. As SCs may be located anywhere in the port at their availability

times, each k ∈ K is additionally associated with a starting point sk, which corresponds to

its position at time instant avk. We define S := {s1, . . . , snv}. Again, we will sometimes write

j ∈ S to refer to a starting position, i.e., we will not explicitly name the corresponding SC.

Furthermore, we denote the SC that handles a container j ∈
⋃

c∈Cl Jv
c at the beginning of the

planning horizon by SC(j) ∈ K. We assume that the SCs move at a constant speed, neglecting

acceleration phases, and define pv ∈ N>0 to be the time needed by a SC to move one distance

unit. Furthermore, we define tv ∈ N>0 to be the time needed by a SC in order to lift or drop

a container. The total time needed to process job j ∈ J ∪ R by a SC is denoted by tj . This

time includes the lifting and dropping operations, as well as the time needed to move from

the origin of job j to the destination of job j. Hence, tj = pv · d(ori(j), dest(j)) + 2tv for all

j ∈ J ∪R. Note that these processing times are integer because of using the Manhattan metric

on integer coordinates to determine the relevant distances.

Table 2 summarizes the notation regarding the SCs and the jobs.

Table 2: Notation regarding the SCs and the jobs

K set of SCs |K| = nv

tv time needed to lift or drop a container by a SC tv ∈ N>0

pv time needed by a SC to move one distance unit pv ∈ N>0

avk availability time of SC k ∈ K avk ∈ N≥0

sk starting point of SC k ∈ K S := {s1, . . . , snv}
SC(j) SC that handles a container j ∈

⋃
c∈Cl J

v
c at the beginning

of the planning horizon
SC(j) ∈ K

J l set of loading jobs J l :=
⋃

c∈Cl

(
Jc \ J l

c

)
Ju set of unloading jobs Ju :=

⋃
c∈Cu (Jc ∪ Ju

c )

J set of loading and unloading jobs J := J l ∪ Ju

Rj sequence of restacking jobs associated to job j ∈ J Rj = {rj,1, . . . , rj,|Rj |}
R set of restacking jobs R :=

⋃
j∈J Rj

ori(j) origin of job j ∈ J ∪R integer coordinate
dest(j) destination of job j ∈ J ∪R integer coordinate
tj time needed to process job j ∈ J ∪R by a SC tj = pv · d(ori(j), dest(j)) + 2tv

The movement of unloaded SCs is subject of the optimization and is modelled by an edge-

weighted, directed graph G = (V,A), with vertex set V and edge set A. Each j ∈ J ∪ R ∪ S
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defines a distinct vertex of the set V . Feasible movements of unloaded SCs are represented by

the edge set A := {(i, j)|i ∈ J ∪R∪S, j ∈ J ∪R, i 6= j}. This definition of the edge set does not

allow one-way travel settings, where SCs can only move to a subset of buffer areas after having

dropped a container. However, by appropriately redefining the edge set of the graph (and

potentially including dummy vertices), these settings can be incorporated in a straightforward

manner. The weight tij of an edge (i, j) ∈ A represents the (integer) time needed by a SC to

move from the destination of job i (or a starting position i, if i ∈ S) to the origin of job j, i.e.,

tij = pv ·d(dest(i), ori(j)) if i ∈ J ∪R or tij = pv ·d(i, ori(j)) if i ∈ S. A solution of the routing

component of MSCRB is therefore represented by nv paths in G, with the path of SC k ∈ K

starting in sk ∈ S.

Collisions are avoided by making use of safety times. The difference of the time instants at

which the lifting process (performed by a quay crane or a SC) of a container in a given slot of

a buffer is started and the time instant at which the dropping process of the next container in

this slot is finished must be at least ts ∈ N>0. The same time period must elapse between the

beginning and the end of two succeeding lifting operations of the restacking jobs of a restacking

set Rj , j ∈ J , as well as between the beginning of the lifting operation of rj,|Rj |, j ∈ J , and the

end of the lifting (in case of a loading job) or dropping (in case of an unloading job) operation of

the corresponding job j. Similarly, a container that has been dropped in a buffer must remain

unprocessed for at least tb ∈ N>0 time units before it can be started to be picked up by a quay

crane or a SC.

In order to take account of the setting at the beginning of the planning horizon, we make

use of some additional notation. The lifting process (by a quay crane or a SC) of a container

j ∈
⋃

c∈C J
b
c may not start before time instant aoj ∈ N≥0. Similarly, there may be a restriction on

the earliest possible completion time of a lifting or dropping operation of a job j ∈ J ∪{rj,1|j ∈

J,Rj 6= ∅} within the storage areas because a corresponding (preceding) restacking operation

has been started just before the beginning of the planning horizon, so that it is not included in

R while the safety time has not yet elapsed. Therefore, each job of this set is associated with

a time instant arj ∈ N≥0 that corresponds to the earliest possible completion time of a lifting

or dropping operation of the corresponding container. Finally, an empty slot of a buffer may

not be immediately available for dropping a container because of the above safety restrictions.

A slot of a buffer is considered to be empty at the beginning of the planning horizon, if there

is no container located in the slot and if there is no SC that is processing a container or an

unloading crane that has started an unloading process of a container that will be dropped in

the slot. Note that a container that is in the process of being lifted at the beginning of the

planning horizon is not considered to be located in any slot. The number of empty slots in
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the buffer of quay crane c ∈ C at the beginning of the planning horizon is denoted by nbc. We

define Ab
c := {1, . . . , nbc} for c ∈ C. The availability time of the i-th empty slot, i ∈ Ab

c, in the

buffer of quay crane c ∈ C is represented by the parameter abic ∈ N≥0.

The additional notation used throughout this paper is summarized in Table 3.

Table 3: Additional notation

A feasible movements of unloaded SCs
tij travel time between destination of job i ∈ J ∪ R (or starting position

i ∈ S) and the origin of job j ∈ J ∪R
tij = pv · d(dest(i), ori(j))

ts safety time ts ∈ N>0

tb time that a container must remain unprocessed after it has been
dropped in a buffer

tb ∈ N>0

aoj availability time of container j ∈
⋃

c∈C J
b
c aoj ∈ N≥0

nb
c number of empty slots in the buffer of quay crane c ∈ C at the beginning

of the planning horizon

Ab
c set of indices of empty slots of quay crane c ∈ C at the beginning of

the planning horizon

abic availability time of the i-th (i = 1, . . . , nb
c) empty slot of the buffer of

quay crane c ∈ C
abic ∈ N≥0

arj earliest possible completion time of a lifting or dropping operation of a
job j ∈ J ∪ {rj,1|j ∈ J,Rj 6= ∅}

arj ∈ N≥0

2.1. An integer programming formulation of MSCRB

We define two non-negative time variables, win
j and wout

j , for each j ∈
⋃

c∈Cl J l
c ∪ J , i.e.,

for all containers that interact with one of the buffer areas within the planning horizon. win
j

represents the time instant at which the dropping process (by a SC or a quay crane) of j in

its buffer is finished; wout
j is the time instant at which the lifting process is started. Similarly,

for each restacking job j ∈ R, we define a non-negative variable wj that represents the time

instant at which the lifting process of the corresponding container is started. We may restrict

ourselves to considering all of these time variables to be integer, because all processing times,

travel times, and time parameters are integral multiples of a time unit.

In order to avoid lengthy case differentiations, we define auxiliary variables for the quay

cranes,

ŵq
j :=


win
j if c ∈ Cu,

wout
j if c ∈ C l,

∀ c ∈ C, j ∈ Jc, (1)

and the SCs,

ŵv
j :=


win
j if j ∈ J l,

wout
j if j ∈ Ju,

∀ j ∈ J. (2)

We define ŵq
jc,0

:= −tq + aqc for all c ∈ C l and ŵq
jc,0

:= aqc for all c ∈ Cu. Moreover, auxiliary

variables start(j) and end(j), j ∈ J ∪R, represent the time instants at which a SC starts the

lifting process or completes the dropping process of a container, respectively. For j ∈ S, j is
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related to a distinct starting point of a SC k ∈ K, and we set end(j) := avk. Analogously,

stack(j), j ∈ J ∪ R, represents the time instant at which a SC finishes a lifting or dropping

process within one of the stacking areas when executing job j. Table 4 illustrates the values of

these auxiliary variables.

Table 4: Definition of start(j), end(j), and stack(j)

start(j) end(j) stack(j)

j ∈ J l win
j − tj win

j win
j − tj + tv

j ∈ Ju wout
j wout

j + tj wout
j + tj

j ∈ R wj wj + tj wj + tv

j ∈ S – avk –

The movement of unloaded SCs is modelled by binary variables

xij :=


1 if the same SC executes j immediately after

executing/starting in i,

0 otherwise,

∀ (i, j) ∈ A. (3)

Figure 5 illustrates the variables that have been defined above for the case of loading jobs.

It presents the state (loaded, unloaded, picking up, dropping) of a SC k ∈ K (timeline on the

top of the figure) and a loading crane c ∈ C l (timeline on the bottom of the figure) over the

relevant part of the time horizon. k processes job j ∈ J l immediately after i ∈ J l
c, so that

xij = 1. It starts lifting i at time start(i) and finishes dropping i at time end(i). Note that

end(i) − start(i) = ti, i.e., we do generally not allow for a SC to “wait” while being loaded.

However, our model allows waiting periods for unloaded movements of a SC. In Figure 5, this

is indicated by the fact that start(j)− end(i) ≥ tij . In this context, note that our model does

not answer the question of where to wait as it is based on the assumption that SCs can always

pass each other. Hence, we abstract from congestion situations, especially in front of the buffer

areas.

In order to be able to model the buffer capacities, we make use of binary variables binij ∈

{0, 1} and boutij ∈ {0, 1} for all c ∈ C, i, j ∈ Jc ∪ Ju
c , i 6= j. The variables boutij are also defined

for all c ∈ C, i ∈ Ab
c, j ∈ Jc ∪ Ju

c . We will refer to these variables as the b-variables. In this

context, recall that Ju
c = ∅ for all c ∈ C l. For a given crane c ∈ C and its corresponding buffer,

binij takes the value one if win
i < win

j , i.e., if container i is dropped in the buffer before container

j is dropped in the buffer. If win
i = win

j , exactly one of the variables binij and binji is set to one.

Similarly, boutij is set to zero if wout
i + ts > win

j (or abic > win
j if i ∈ Ab

c), i.e., if container j is

dropped in the buffer before the slot that container i has been dropped in (or before a slot that

is empty at the beginning of the planning horizon) is available.
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Figure 5: Illustration of the variables associated to loading jobs

Based on these definitions and a large positive integer M , an integer programming formu-

lation of MSCRB is as follows.

min
∑

j∈
⋃

c∈C Jc

ŵq
j (4)

s.t.
∑

(i,j)∈A
xij = 1 ∀ j ∈ J ∪R, (5)

∑
(j,i)∈A

xji ≤ 1 ∀ j ∈ J ∪R ∪ S, (6)

end(i) + tij − start(j) ≤ (1− xij)M ∀ (i, j) ∈ A, (7)

ŵq
jc,i−1

+ tq − ŵq
jc,i
≤ 0 ∀ c ∈ C, jc,i ∈ Jc, (8)

win
j + tb ≤ wout

j ∀ j ∈ J\
⋃

c∈Cu Jb
c ∪

⋃
c∈Cl Jv

c , (9)

aoj ≤ wout
j ∀ j ∈

⋃
c∈C J

b
c , (10)

win
j = 0 ∀ j ∈

⋃
c∈C J

b
c , (11)

win
j = avSC(j) ∀ j ∈

⋃
c∈Cl Jv

c , (12)

win
j = aqc ∀ c ∈ Cu, j ∈ Jq

c , (13)

start(rj,|Rj |) + ts ≤ stack(j) ∀ j ∈ J with Rj 6= ∅, (14)

start(rj,i−1) + ts ≤ stack(rj,i) ∀ j ∈ J, rj,i ∈ Rj , i ≥ 2, (15)

arj ≤ stack(j) ∀ j ∈ J ∪ {rj,1|j ∈ J,Rj 6= ∅}, (16)∑
i∈Jc∪Ju

c ,i 6=j

binij −
∑

i∈Jc∪Ju
c ∪Ab

c

boutij ≤ bc − 1 ∀ c ∈ C, j ∈ Jc ∪ Ju
c , (17)

win
jc,l
− win

jc,i + 0.5 ≤M binjc,ijc,l ∀ c ∈ C, i = 1, . . . , |Jc|+ |Ju
c | − 1, (18)

l = i+ 1, . . . , |Jc|+ |Ju
c |,

win
jc,l
− win

jc,i ≤M binjc,ijc,l ∀ c ∈ C, i = 2, . . . , |Jc|+ |Ju
c |, (19)

l = 1, . . . , i− 1,
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win
j − (wout

i + ts) ≥M(boutij − 1) ∀ c ∈ C, i, j ∈ Jc ∪ Ju
c , i 6= j, (20)

win
j − abic ≥M(boutij − 1) ∀ c ∈ C, i ∈ Ab

c, j ∈ Jc ∪ Ju
c , (21)

win
j , w

out
j ∈ N≥0 ∀ j ∈

⋃
c∈Cl J l

c ∪ J, (22)

wj ∈ N≥0 ∀ j ∈ R, (23)

xij ∈ {0, 1} ∀ (i, j) ∈ A, (24)

binij ∈ {0, 1} c ∈ C, i, j ∈ Jc ∪ Ju
c , i 6= j, (25)

boutij ∈ {0, 1} ∀ c ∈ C, i, j ∈ Jc ∪ Ju
c , i 6= j or (26)

i ∈ Ab
c, j ∈ Jc ∪ Ju

c .

The objective function (4) minimizes the sum of the time instants at which the quay cranes

interact with their buffer areas. Constraints (5) and (6) guarantee that each job is processed

by exactly one SC and take account of the fact that the number of SCs and their starting

positions are given. Restrictions (7) ensure that at least tij time units elapse for the unloaded

movement when a SC processes job j ∈ J ∪ R immediately after job (or after having started

in) i ∈ J ∪ R ∪ S. They also take account of the availability times of the SCs. Constraints

(8) enforce the quay cranes to respect the given loading and unloading sequences of containers

and guarantee that tq time periods elapse between processing two containers. Furthermore, it

takes account of the availability times of the cranes. The fact that a container must remain

unprocessed for tb time units after having been dropped in a buffer is modelled by restrictions

(9) and (10). Constraints (11)–(13) fix time variables of containers that are located in a buffer

or that are being processed by a SC or a quay crane at the beginning of the planning horizon.

The precedence relations among restacking jobs and their associated loading or unloading jobs

as well as corresponding safety time restrictions are enforced by constraints (14)–(16). The

limited capacities of the buffer areas are modelled by constraints (17)–(21). For the buffer of

a crane c ∈ C and a container j ∈ Jc ∪ Ju
c , the first summand on the left hand side of the

corresponding constraint (17) counts the number of dropping operations in this buffer that

have been completed before the dropping of j has been completed, while the second summand

determines the number of lifting operations that have been started and resulted in an available

slot before the dropping of j has been completed. The constraint then enforces the difference

of these values to be no larger than the buffer capacity reduced by one slot for container j.

The summands of the left hand side of constraints (17) make use of the b-variables as defined

above. These variables are linked to their corresponding time variables by constraints (18)–

(21). Note that, for a given set of containers that have been dropped in a buffer at the same

time, constraints (18) make use of the fact that all time variables are integral multiples of a
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time unit to generate an artificial sequence that is needed for constraints (17). Furthermore,

note that constraints (20) and (21) take account of safety time considerations. As we allow the

SCs to process the containers associated to a given buffer area in an arbitrary order as long as

the buffer capacity is not exceeded and the container sequence of the crane is met, we cannot

convert restrictions (17)–(21) into time window constraints in a straightforward manner as, for

example, done in Nguyen & Kim (2009) and Vis et al. (2005). Finally, the domains of the

variables are defined by constraints (22)–(26).

2.2. Computational complexity

In this section, we will prove that the decision version of MSCRB, referred to as D-MSCRB,

is NP-complete in the strong sense by reduction of 3-Partition. D-MSCRB is defined in line

with its optimization version and asks whether there exists a feasible solution with objective

function value of no more than a given L.

An instance of 3-Partition, which is well known to be strongly NP-complete (Garey &

Johnson, 1979), is defined by 3m + 1 integers u1, . . . , u3m, B with
∑3m

j=1 uj = mB and B
4 <

uj <
B
2 for all j ∈ {1, . . . , 3m}. It asks if there exists a partition of the set {1, . . . , 3m} into

m subsets U1, . . . , Um, such that
∑

j∈Ui
uj = B for all i ∈ {1, . . . ,m}? Note that for every

yes-instance of 3-Partition, we have |Ui| = 3 for all i ∈ {1, . . . ,m}. Therefore, 3-Partition is

still strongly NP-hard if all integers are assumed to be multiples of 4 (if this is not the case,

they can simply be multiplied by 4).

Theorem 1. D-MSCRB is NP-complete in the strong sense.

Proof. It can easily be seen that D-MSCRB is in NP.

Now, assume that we are given an instance IP of 3-Partition with all integers u1, . . . , u3m, B

being multiples of 4. By definition of 3-Partition, we have

B

4
+ 1 ≤ uj ≤

B

2
− 2 ∀ j ∈ {1, . . . , 3m}. (27)

Based on IP , we construct an instance IS of D-MSCRB in polynomial time as described in the

following and as illustrated in Figure 6 for even m.

We define u′j := uj ·11m for all j ∈ {1, . . . , 3m}, B′ := B ·11m, u′min := min{u′1, . . . , u′3m},

and set K = {1, 2, . . . ,m}, so that there are nv = m homogenous SCs. All SCs are immediately

available and located in the same starting point α := (0,
u′min
2 −3m−2) at the beginning of the

planning horizon, i.e., sk = α for k = 1, . . . , nv. Furthermore, we set tq = B′ − u′min
2 + 3m− 1

and pv = tb = ts = tv = 1.
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Figure 6: Illustration of IS for even m

There are 3m loading cranes C l = {cl1, . . . , cl3m} and 3m unloading cranes Cu = {cu1 , . . . , cu3m}

that are equally distributed on the line (−3m+ 1, 0)− (3m, 0) and that are placed as described

in the following. For the sake of notational convenience, we refer to the points that correspond

to the locations of the cranes by their cranes’ identifiers. Crane cl1 defines the rightmost crane

at (3m, 0). The remaining cranes are placed to the left of this crane in an alternating manner

such that d(cli, c
u
i ) = 1 for all i ∈ {1, . . . , 3m}. Finally, the cranes cli and cui are interchanged if

d(cli, α) < d(cui , α) for all i ∈ {1, . . . , 3m}. Hence, the resulting placement of the cranes is such

that d(cli, α) > d(cui , α) for all i ∈ {1, . . . , 3m} and d(cji , α) ≤ u′min
2 − 2 for all j ∈ {u, l} and

i ∈ {1, . . . , 3m}.

Each loading crane cli ∈ C l is associated to exactly two containers, jcli,1
and jcli,2

, the first

one of which is located in the crane’s buffer at the beginning of the planning horizon, so that

it does not define a job. Each unloading crane cui ∈ Cu is associated to exactly two containers,

jcui ,1 and jcui ,2, both of which have to be processed by SCs. Note, however, that the processing

of jcui ,2 by some SC does not have an effect on the answer of IS for all cui ∈ Cu. We will

therefore restrict ourselves to solely considering the jobs related to jcui ,1 for all cui ∈ Cu in the

remainder of this proof. Hence, each crane is associated to exactly one job that is relevant for

the answer of IS . We set dest(jcui ,1) = α for all cui ∈ Cu. Furthermore, for all i ∈ {1, . . . , 3m},

we set ori(jcli,2
) to arbitrary values, such that

d(α, ori(jcli,2
)) + d(ori(jcli,2

), cli) + 2tv + d(cli, c
u
i ) + d(cui , α) + 2tv

= d(α, ori(jcli,2
)) + tj

cl
i
,2

+ d(cli, c
u
i ) + tjcu

i
,1

= u′i (28)

(see Figure 6) and such that the y-coordinate of ori(jcli,2
) is greater or equal to

u′min
2 − 3m− 2

(shaded area in Figure 6). Hence, for all i ∈ {1, . . . , 3m}, there is a one to one correspondence

of the integer ui of IP and the pair {cli, cui } of cranes of IS .

All remaining parameters of IS are set to arbitrary values, such that
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• each crane is necessarily idle for at least one time unit before the processing of its last

associated container if a SC starts the lifting process or finishes the dropping process of

the associated job after time instant B′ − u′min
2 + 3m, and

• each crane can process all of its associated containers without idle time if a SC starts the

lifting process or finishes the dropping process of the associated job no later than by time

instant B′ − u′min
2 + 3m, and

• jcui ,1 can immediately started to be lifted (tb has elapsed) upon the earliest possible arrival

of any SC at the corresponding buffer for all cui ∈ Cu, and

• there exists at least one slot in the buffer of cli, where a container can be dropped imme-

diately upon the earliest possible arrival of any SC for all cli ∈ C l.

Finally, we set L to the objective function value of the optimization version of D-MSCRB

that is defined by all quay cranes processing their associated containers without any idle times

before processing their last container.

In the remainder of this proof, we will show that IP is a yes-instance if and only if IS is

a yes-instance, i.e., that we have constructed a pseudo-polynomial transformation (Garey &

Johnson, 1979) from 3-Partition to D-MSCRB, which proves the latter problem to be strongly

NP-complete.

First, assume that IP is a yes-instance and let Ui = {ui1 , ui2 , ui3} denote the i-th subset

of a corresponding partition for i = 1, . . . ,m. Now, for all i ∈ {1, . . . ,m}, assign the following

sequence of jobs to SC i: jcli1,2
, jcui1,1

, jcli2,2
, jcui2,1

, jcli3,2
, jcui3,1

. Let each SC process the jobs

of its sequence as fast as possible. As d(α, ori(jcli,2
)) + tj

cl
i
,2

+ d(cli, c
u
i ) + tjcu

i
,1

= u′i for all

i ∈ {1, . . . , 3m}, each SC finishes processing its sequence at time instant B′. Hence, SC i

begins lifting jcui3,1
at time instant B′ − 2− (

u′min
2 − 3m− 2)− d(cui3 , (0, 0)) ≤ B′ − u′min

2 + 3m

for all i ∈ {1, . . . , 3m}, so that there exists a solution to IS where none of the quay cranes are

idle before processing their last associated containers.

Next, assume that IS is a yes-instance and let Θ be a corresponding feasible solution,

i.e., a solution where none of the quay cranes are idle before processing their last associated

containers. We will make use of three auxiliary properties.

Property 1. Each SC k ∈ K processes exactly three unloading jobs in Θ.

Proof of Property 1. Assume that there is a SC k ∈ K that processes at least four unloading

jobs in Θ. Then this SC has to move from point α, which corresponds to its starting point

at the beginning of the planning horizon as well as the destination of all unloading jobs, or

an origin of some loading job (with a y-coordinate which is not smaller than the one of point
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α) to the quay, i.e., the x-axis in Figure 6, and back for at least four times. As pv = 1,

this takes at least 8 · (u
′
min
2 − 3m − 2) = 4u′min − 24m − 16 time units. Because of (27),

we have 4u′min − 24m − 16 ≥ 4(B
′

4 + 11m) − 24m − 16 = B′ + 20m − 16. Therefore, when

additionally taking account of six time units needed to lift and drop three containers, the

SC starts lifting the container of the fourth unloading job no earlier than at time instant

B′ + 20m − 10 − (
u′min
2 − 3m − 2) = B′ − u′min

2 + 23m − 8 > B′ − u′min
2 + 3m, so that the

corresponding unloading crane is idle for at least one time unit, which contradicts the feasibility

of Θ. We can therefore conclude that no SC processes more than three unloading jobs. Since

a total of 3m unloading jobs must be processed and there are m SCs, each SC must processes

exactly three unloading jobs.

Property 2. Each SC k ∈ K processes exactly three loading jobs in Θ.

Proof of Property 2. As the y-coordinate of the origin of each loading job is not smaller than

the y-coordinate of point α, the argumentation is analogous to the proof of Property 1.

Property 3. Θ is such that each SC k ∈ K processes its loading and unloading jobs (Properties

1 and 2) in an alternating manner, starting with a loading job.

Proof of Property 3. If SC k ∈ K were to process an unloading job first or if it were to process

its jobs (Properties 1 and 2) in a non-alternating manner, it would necessarily have to make

at least seven trips between some point with a y-coordinate not smaller than the y-coordinate

of point α and the quay before starting to lift (in case of an unloading job) or drop (in case of

a loading job) its last container in a buffer at the quay. When taking account of the resulting

travel times and the time needed to lift and drop containers, the remaining argumentation is

analogous to the proof of Property 1.

Based on Properties 1–3 and that fact that IS is a yes-instance we make the two observa-

tions. First, Θ is such that each SC k ∈ K starts its last lifting operation of an unloading job

no later than B′ − u′min
2 + 3m, so that it finishes processing its last job no later than B′ + 3m.

Second, Θ is such that the sequence of jobs to be processed by each SC k ∈ K is composed of

three subsequences, each of which is composed of a loading and an unloading job and relates

to a trip where the SC starts in α, processes a loading job, and returns to α while processing

an unloading job. Denote the unique trip that contains loading job jcli,2
, i ∈ {1, . . . , 3m}, by

τi and the sum of all travel and processing times of this trip by t(τi). Because of (28) and the

fact that d(cli, α) > d(cui , α) for all i ∈ {1, . . . , 3m}, we have t(τi) ≥ u′i for all i ∈ {1, . . . , 3m}.

Furthermore, denote the loading crane indices that correspond to the three loading jobs pro-

cessed by SC k ∈ K in Θ by k1, k2, k3 ∈ {1, . . . , 3m}. Then, based on the above deliberations,

we have
∑3

i=1 u
′
ki
≤
∑3

i=1 t(τki) ≤ B′ + 3m for all k ∈ K. When dividing this expression by

11m, we get
∑3

i=1 uki ≤ B + 3
11 . Moreover, as all ui, i ∈ {1, . . . , 3m}, are integer, we have
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∑3
i=1 uki ≤ B. By definition of 3-Partition, we additionally know that

∑3m
i=1 ui = mB, so that∑3

i=1 uki = B for all k ∈ K = {1, . . . ,m} in Θ. Hence, we have constructed a solution to IP ,

which concludes the proof.

3. Heuristic framework

We now present a heuristic framework for MSCRB. It is illustrated in Figure 7. Given some

Instance
Constructive procedure (Section 3.1) with

greedy or random assignment of jobs to SCs

Improvement procedure (Section 3.2):

Solution

Routing component local search:
Ejection chain (Section 3.2.1) or

3-Opt (Section 3.2.2)

Heuristic for determining time
variables and handling buffer
capacities (Section 3.2.3)

Figure 7: Heuristic framework

instance of MSCRB, it initiates with a constructive procedure that generates a first feasible

solution. This procedure iteratively assigns jobs to SCs (in a greedy or random manner)

such that idle times of quay cranes are avoided as far as possible. Details are presented

in Section 3.1. The solution is then passed to an improvement procedure that is based on

decomposing MSCRB into a graph-based routing component and a remaining integer part for

handling the time variables and buffer capacities. Details are presented in Section 3.2. Due

to the close relationship of the routing component of MSCRB and the asymmetric TSP, we

propose to apply local search approaches for the routing component that have been designed

and proven to perform well for the TSP, namely an ejection chain heuristic (Section 3.2.1) and

a 3-Opt approach (Section 3.2.2). Each routing solution examined within the local search is

evaluated by constructing a corresponding feasible solution of MSCRB (taking account of all

time variables and buffer capacities) and computing its objective function value as described

in Section 3.2.3. Note that we assume the input instance to have at least one feasible solution

during the remainder of this section.

3.1. Constructive procedure for MSCRB

Our constructive procedure is illustrated in Figure 8. As mentioned above, its main idea

is to iteratively assign jobs to SCs such that idle times of quay cranes are avoided as far as

possible.

During runtime of the algorithm, we keep track of the status of each SC, i.e., the latest

job that has been assigned to the SC and the time at which the dropping operation of the

corresponding container is completed by the SC. In the initialization step, each SC k ∈ K is

associated to its starting position sk and availability time avk. Similarly, each crane c ∈ C is
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L empty?Solution
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restacking jobs
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Fix variables (2) (or time
variable of restacking job)

and (3); update status of k̂

yes

no

Cranes & Buffer Areas

Straddle Carriers

Figure 8: Constructive Procedure

associated with a time stamp representing the time instant at which it will next be available for

processing a container. It is initialized with aqc. Furthermore, we initialize the time variables

win
j , with j ∈

⋃
c∈C J

b
c , j ∈

⋃
c∈Cl Jv

c , or c ∈ Cu and j ∈ Jq
c , as in constraints (11)–(13). All

remaining time variables are marked as unset. The variables xij are set to zero for all (i, j) ∈ A.

The algorithm then iterates over the cranes c ∈ C and their corresponding sets Jc to

potentially fix variables (1) to their earliest possible time instants and update the status of

the cranes. Let j be the container that is currently considered while iterating over Jc. If c is

a loading crane and win
j is set to some value, the algorithm fixes wout

j in accordance with all

additional time restrictions, e.g., safety time considerations or the time needed by a crane to

process a container. The iteration over Jc stops, when the first container with win
j unset is

reached. If, on the other hand, c is an unloading crane, the algorithm successively fixes variables

win
j to their earliest possible time instants with respect to all additional time restrictions until

all empty slots of the corresponding buffer have been taken into account.

The algorithm then enters its main loop, where it first generates (or later modifies) a list

L of most urgent containers. For each buffer area, L includes at most one container. If the

buffer area is associated to a loading crane c ∈ C l, L includes the first container j ∈ Jc (in case

of this container’s existence) with win
j unset that is detected when iterating over Jc as above.

For an unloading crane c ∈ Cu, it includes a job j ∈ Jc (if existing) with win
j minimal and wout

j

unset.

The algorithm terminates with a feasible solution once L is empty. If this is not the case,

L is updated with respect to the restacking jobs. That is, if an element j ∈ L has an associated

non-empty set Rj , the first job l of this set with wl unset (if existent) replaces j in L.

Next, the algorithm generates (or later updates) a due date dj for each job j ∈ L. This
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idea is similar to the time window approach by Nguyen & Kim (2009) and Vis et al. (2005). A

due date represents the latest time instant at which the processing of job j must start in order

to prevent the associated quay crane from staying idle. Note that this due date may not be

achievable or even be negative. In case of a restacking job, the due date takes account of all

lifting operations needed to process the succeeding restacking jobs of the corresponding loading

or unloading job. Again, the computation of due dates must take account of all additional time

restrictions. The algorithm then selects a job with smallest due date from L. We refer to this

job by jĉ,i in case of a loading or unloading job or by rj,l in case of a restacking job.

An example for the computation of due dates is as follows. Assume that a subset of the

time variables associated to a loading crane c ∈ C l has been fixed, so that the crane’s current

time stamp is time instant t. Moreover, assume that jc,i is the first container of this crane’s

sequence Jc with an unset arrival time in the buffer, i.e., assume that win
jc,i

is unset. Let

Rjc,i = {rjc,i,1} and assume that wrjc,i,1
is unset, so that rjc,i,1 is included in L. That is, assume

that jc,i has an associated restacking job, the processing of which has not yet been decided on.

Obviously, c will not run idle if jc,i is dropped in its buffer at time instant t − tb. To do so,

a SC will first have to lift rjc,i,1, before jc,i can finally be processed. Additionally, the safety

time ts must elapse between the beginning of the lifting operation of rjc,i,1 and the end of the

lifting operation of jc,i. Hence, as tjc,i includes the lifting and dropping operations needed to

process jc,i, we have djc,i = t− tb − (tjc,i − tv)− ts.

In the next step of our constructive procedure, a SC k̂ ∈ K for processing job jĉ,i or rj,l

is selected. There are two strategies of choosing k̂ based on the status of all SCs. The greedy

approach selects a SC that will be the first to arrive at the origin of the job. In the alternative

strategy, a SC is randomly selected. Based on the selection of k̂, it is then possible to fix

variables (2) (or a time variable of a restacking job) and (3). The former variable is fixed to

its earliest possible value with respect to all relevant time restrictions.

Based on the preceding computations for the selected SC k̂, the algorithm then fixes

variables (1) of crane ĉ (if the selected job is a loading or an unloading job) with respect

to all additional time restrictions as described above. If the selected job is a restacking job,

no variables are fixed. Hereafter, L is modified in accordance with these computations and the

algorithm proceeds as described above.

Note that, in the case of unloading cranes c ∈ Cu, there may remain jobs j ∈ Jc with unset

variables wout
j and without an assigned SC upon termination of the algorithm. These variables,

however, are not relevant for the objective function value and the corresponding jobs can, for

example, be assigned to and sequentially processed by an arbitrary SC.
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3.2. Improvement procedure

As mentioned above, our improvement procedure essentially corresponds to calling a local

search procedure that is well established for the TSP on the routing component of a MSCRB

solution. The evaluation of the routing solutions examined within the local search is performed

by constructing a corresponding feasible solution of MSCRB that takes account of all time

variables and capacity restrictions (Section 3.2.3).

We represent a solution of a TSP on some directed graph G̃ = (Ṽ , Ã) by a directed

graph with vertex set Ṽ , that includes an edge (i, j) iff vertex j ∈ Ṽ follows vertex i ∈ Ṽ

in the considered solution. This latter graph is referred to as the supporting graph of the

solution. As pointed out in Section 2, a feasible solution of the routing component of MSCRB

is represented by nv paths on G = (V,A). We therefore have to augment the edge set A in

order to be able to convert this solution into a tour, i.e., a feasible solution of a TSP. We thus

define A′ := A ∪ {(i, j) | i ∈ V, j ∈ S \ {i}} and consider the directed graph G′ := (V,A′) in

the remainder of this section. A given feasible solution of MSCRB is then transformed into the

supporting graph of a tour by connecting the last vertex of the path of the k− th SC with the

first vertex of the path of SC k+1 (with nv +1 ≡ 1) for all k ∈ K. The reverse transformation,

i.e., the transformation of a tour into a feasible solution of MSCRB, is performed analogously.

We will make use of two local search approaches. The first algorithm is an ejection chain

approach (Section 3.2.1). A detailed overview of these approaches is given by Rego & Glover

(2010). Ejection chain methods have been proven to be a promising approach for a variety

of combinatorial optimization problems, e.g., assignment problems (Rego et al., 2010; Yagiura

et al., 2004), the crew scheduling problem (Cavique et al., 1999), or partitioning problems (e.g.,

Dorndorf et al., 2008; Kress et al., 2017). Most important, they have very successfully been

implemented for the TSP (examples include Glover, 1996; Pesch & Glover, 1997) and have

been identified to “lead the state-of-the-art in local search heuristics for the traveling salesman

problem” (Rego & Glover, 2010). As an alternative approach, we make use of a 3-Opt heuristic

(Section 3.2.2), which is another well known and successful technique for routing problems (see

Korte & Vygen, 2012; Laporte, 1992).

3.2.1. Routing component: Ejection chain approach

Ejection chain methods are local search approaches that “provide the ability to strategically

extend simpler neighborhoods, such as those consisting of exchange (swap) moves or insert

(shift) moves” (Rego et al., 2010), for example by making use of a reference structure that

guides the generation of moves (Glover, 1996) by allowing a controlled portion of infeasibility

in temporal solutions. A reference structure can be transformed into another reference structure
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or into feasible solutions by making use of well-defined rules.

Our ejection chain approach is embedded into a tabu search framework and makes use of

the doubly rooted reference structure, which has been introduced by Glover (1996) in the context

of the TSP and allows being used on a directed graph. This reference structure comes in two

variants (see Figure 9, where dotted vertices represent vertex chains of arbitrary length), which

we represent by supporting graphs in analogy to the representation of solutions of the TSP,

a tricycle (Figure 9a) and a bicycle (Figure 9b). Both variants represent infeasible solutions

λ1 μ2
1 · · · μ1

2 λ2

μ1
1 · · · μ2

2

· · · · · · · · ·

(a) Tricycle

μ1
1

· · ·

λ1 μ2
1 · · · μ1

2 λ2

· · ·

μ2
2

(b) Bicycle

Figure 9: Doubly rooted reference structure

of a TSP, with at most two vertices of the supporting graph violating constraints of the TSP

because of being incident to more than two edges. These vertices are referred to as root vertices

and we will denote them by λ1 (too many outgoing edges) and λ2 (too many incoming edges).

The root vertices may coincide. Each root vertex λi, i ∈ {1, 2}, is associated to two subroots,

denoted by µ1i and µ2i , being defined as the vertices that are incident to the two outgoing or

incoming edges of the root vertex other than the root vertex itself, respectively. Subroots of

a root vertex may coincide with the other root vertex. Furthermore, subroots of two root

vertices may coincide. A tricycle connects the root vertices by three edge-disjoint paths, two

of which include two subroots each. The remaining path does not include a subroot. Similarly,

a bicycle is composed of two edge-disjoint cycles, each of which includes one root vertex and

one of its subroots. If the root vertices are distinct, they are connected by a path that includes

the remaining subroots.

Each iteration of our ejection chain method has two stages, as briefly illustrated in Algo-

rithm 1. In the probing stage, the reference structures in the neighborhood of the incumbent

reference structure are examined. They are constructed by iterating over all potential trans-

formation steps on the incumbent reference structure as described below. Each neighbor is

evaluated based on transforming its reference structure into feasible solutions of MSCRB (via

tours) and computing their objective function values as described in Section 3.2.3. After having

explored the complete neighborhood, the incumbent reference structure is updated to the one

of a most promising neighbor (referred to as bestNeighbor in Algorithm 1) in the transition

stage. Moreover, the overall best solution detected by the ejection chain method is potentially

updated.
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Input: Feasible solution sol of MSCRB instance, tabu length τ , parameter stop
Output: Feasible solution sol

1. Initialization: Initialize tabu list and generate an instance refStruc of the reference structure based
on sol.

2. Probing stage: Generate all neighbors of refStruc by iterating over all potential transformation steps
in accordance with the tabu list. Evaluate each neighbor by transformation into its corresponding
MSCRB solution(s) and computation of the objective function value(s) as described in Section 3.2.3.
Denote the most promising neighbor by bestNeighbor.

3. Transition stage: Set refStruc := bestNeighbor, update tabu list, and potentially update the best
known solution sol.

4. Stopping criterion: If sol has not improved for stop succeeding calls of step 3, terminate the
algorithm. Otherwise, go to step 2.

Algorithm 1: Ejection chain approach

When generating the neighborhood of an incumbent reference structure in the probing

stage, we have to perform transitions into other reference structures. Each of these transitions

is based on selecting any subroot µji ∈ {µ11, µ21, µ12, µ22} and deleting the edge e = (λi, µ
j
i ) if

i = 1 or (µji , λi) if i = 2. Now, we add any edge e′ = (v, µji ) ∈ A′ or e′ = (µji , v) ∈ A′, e 6= e′,

that is not yet part of the supporting graph, such that the resulting supporting graph remains

connected and such that each vertex has at least one incoming and one outgoing edge. This

results in a reference structure, in which v is a root vertex.

Let us now turn our attention towards the evaluation of reference structures in the probing

stage of our ejection chain method. There are two cases to consider. First, assume that the

reference structure is a tricycle. In this case, we construct two tours. For each pair of subroots,

µi1 ∈ {µ11, µ21} and µj2 ∈ {µ12, µ22}, that are not part of the same path between the root vertices,

we remove the edges (λ1, µ
i
1) and (µj2, λ2) and add the edge (µj2, µ

i
1) in the supporting graph.

Second, in case of a bicycle, one tour is constructed if the root vertices are distinct. This is

done by removing the edges (λ1, µ
i
1) and (µj2, λ2) and adding the edge (µj2, µ

i
1), where µi1 and µj2

are subroots that are part of the cycles. If the root vertices coincide, analogous transformations

result in two tours.

The ejection chain method is initialized by generating an instance of the reference structure

based on an initial feasible solution of MSCRB (see Algorithm 1). To do so, we first transform

this solution into a tour as described above. This tour defines a supporting graph. We then

randomly remove an edge (i, j) of this supporting graph and select two root vertices λ1 and λ2

that are not incident to (i, j). Finally, the edges (i, λ1) and (λ2, j) are added to the supporting

graph. A tabu list is used to prevent the algorithm from cycling. Its length is limited to a

predefined threshold value, referred to as the tabu length (referred to as τ in Algorithm 1). At

the end of the transition stage, the edge e′ which has been added to the supporting graph during

the transformation of the reference structure (from refStruc to bestNeighbor in Algorithm 1)

is inserted at the end of this list. Additionally, the first element of the list is removed, if the
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tabu length is exceeded. Elements of the tabu list may not be chosen as edges e to be deleted

when generating neighbors of an incumbent reference structure. The algorithm terminates

when the overall best solution has not improved for a given number of iterations (parameter

stop in Algorithm 1). In order to intensify the search process, we restart the ejection chain

algorithm for a given number of times. These restarts initiate with the MSCRB solution that

was returned by the previous call of the algorithm and an empty tabu list.

3.2.2. Routing component: 3-Opt approach

The 3-Opt approach is well established in the literature. For the sake of brevity, we refrain

from presenting it in detail and refer the reader to Korte & Vygen (2012) for details. In our

context, it is a local search algorithm that starts with an initial feasible solution of MSCRB

that has been transformed into a tour as described above. Roughly speaking, the neighborhood

of a given tour is defined by all tours that can be constructed by deleting at most three edges

in the supporting graph and afterwards replacing these edges with an identical amount of

new edges. As this neighborhood can get very large for real-world instances of MSCRB, our

implementation of 3-Opt skips an edge triple with a given probability when iterating over the

triples. As before, each tour is evaluated by computing the objective function value of the

corresponding solution of MSCRB as described in Section 3.2.3. The local search proceeds in a

first-fit manner, until no additional improvement that exceeds a given threshold is achievable.

3.2.3. A fast heuristic for determining time variables and handling buffer capacities

Given a solution of the routing component of MSCRB, we have to compute feasible values

of the time variables subject to the capacity constraints of the buffer areas in order to be able

to determine the objective function value of an associated solution of MSCRB. To do so, we

propose to make use of a heuristic approach that corresponds to a variant of the constructive

procedure introduced in Section 3.1. It is illustrated in Figure 10.

Instance,
routing sol. Initialization

For all cranes: fix variables
(1) if possible; update

status

Generate/modify list L of
jobs that are ready to be

processed by SCs

L empty? MSCRB sol.Infeasible

For all SCs: fix variables
(2) (or time variables of

restacking job) if possible;
update status

Any SC
status

changed?

yes

no

yes

no

Figure 10: Computing time variables
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The initialization step and the process of fixing variables (1) is identical to the constructive

procedure. The list L, however, is constructed in a different manner. It includes all loading and

unloading jobs that are ready to be processed by SCs based on the fixed time variables that

are associated to the buffer areas and the precedence constraints defined by their associated

restacking sets. Let jc,i, c ∈ C, be the first container of the set Jc with both win
jc,i

and

wout
jc,i

marked as unset (if this job exists). If c ∈ C l, the jobs that are associated with this

crane’s buffer area and that are included in L are the ones of the set {jc,l ∈ Jc|i ≤ l <

i + bc ∧ win
jc,l

unset ∧ rjc,l,|Rjc,l
| fixed if it exists}. An example with c ∈ C l, bc = 3, and

without the existence of restacking jobs is presented in Table 5. It assumes that only few

time variables have already been fixed (as indicated in the table), so that i = 2 and the jobs

jc,2 and jc,4 are included in L. Similarly, for each c ∈ Cu, L includes all jobs of the set

Table 5: Example for the jobs associated to a crane c ∈ Cl with bc = 3 that are included in L

l (container index) 1 2 = i 3 4 5 = |Jc|

win
jc,l

fixed fixed

wout
jc,l

fixed

included in L? no (1 < i) yes no (wjinc,3
fixed) yes no (5 ≥ i+ bc = 5)

{jc,l ∈ Jc|l < i ∧ wout
jc,l

unset ∧ rjc,l,|Rjc,l
| fixed if it exists}. Moreover, L includes all restacking

jobs that can be processed in accordance with the relevant precedence constraints of their

restacking sets. Let rj,i, j ∈ J , be the first job of the set Rj with wrj,i unset (if this job exists).

Then this job is included in L.

The algorithm terminates with a feasible solution of MSCRB if L is empty, i.e., if all

time variables have been fixed. If this is not the case, the algorithm proceeds in line with the

constructive procedure. Based on the paths of the SCs that are given by the input solution

of the routing component, the algorithm iterates over all SCs and fixes as many variables (2)

and wj , j ∈ J , as possible to their earliest possible time instants. The status of each SC is

then updated. If no status has changed, the algorithm terminates because a feasible solution of

MSCRB cannot be constructed based on the given routing solution. Otherwise, the algorithm

continues as described above.

4. Computational study

We performed an extensive computational study based on real-world data of a port in Ger-

many. The generation of the corresponding test instances is described in detail in Section 4.1.

Our analysis was driven by the following main research questions:

Q1: Does it pay off to deviate from the approach of permanently assigning a fixed number of

SCs to each quay crane, which is the strategy that is currently implemented at the port?
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Q2: How does an increasing number of quay cranes (and, thus, jobs), an increasing number

of SCs or larger buffer capacities influence the above findings?

We will elaborate on these questions in Section 4.4 after having answered some auxiliary ques-

tions dealing with the appropriateness of the proposed heuristic framework in Section 4.3:

A1: What is the quality of the solutions determined by the heuristic framework when being

compared with exact solutions, determined by calling CPLEX on model (4)–(26), for

small instances? Is this quality sufficient for real-world usage of the heuristic framework?

A2: Which setup of the heuristic framework (ejection chain vs. 3-Opt, random vs. greedy

selection of SCs in the constructive procedure) performs best in terms of solution quality

for medium and large instances that are inspired by real-world szenarios?

A3: Are the runtimes of the heuristic framework (as analyzed in A2) in ranges that allow its

usage in real-world scenarios?

All computational tests were executed on a PC with an Intel R© CoreTM i7-4770 CPU

running at 3.4 GHz and 16 GB of RAM under a 64-bit version of Windows 8. We used a 64bit

version of IBM ILOG CPLEX 12.7.

4.1. Instance generation

Our test instances were generated randomly, based on real-world data of a port in Germany.

We received data for about 5,000 containers, including their origin and destination locations,

the SCs that were assigned to the containers, the distances travelled by the loaded SCs when

transporting the containers, and the average speed of the SCs. Moreover, we received informa-

tion on all relevant parameters of MSCRB, e.g., the time needed to lift or drop a container by

a SC or to process a container by a quay crane.

All relevant locations of a problem instance were generated randomly in a Cartesian coordi-

nate system in the plane, with the dimensions having been set according to the real-world data.

The quay cranes are located at the waterfront, so that we arbitrarily set their y-coordinates to

0. The x-coordinates of the quay cranes were drawn from uniform distributions on the interval

[0, 600]. Similarly, all relevant origin or destination locations of jobs were drawn from uniform

distributions over the intervals [0, 600] (x-coordinates) and [50, 350] (y-coordinates). Finally,

the starting positions of the SCs were drawn from the intervals [0, 600] (x-coordinates) and

[0, 350] (y-coordinates). All generated coordinates are integer valued. In order to align the

generated locations with the real-world data, we set the length of a time unit as well as the

value of pv to one second. Moreover, in line with the real-world data, we set tv to 20 seconds.
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Furthermore, we set tq = 4 · tv, ts = tb = 0.25 · tv (see also Soriguera & Espinet, 2006; Steenken

et al., 2004).

In all of our test instances, a crane is a loading crane with probability 0.5. Otherwise, it is

an unloading crane. The buffer capacity bc is assumed to be equal for all cranes c ∈ C of each

test instance. Furthermore, each test instance features containers that are located in the buffer

areas at the beginning of the planning horizon. In case of unloading cranes, we assume that

the restacking sets of the corresponding jobs are empty. In case of loading cranes, we assume

that these containers are the first ones to be processed by the cranes. For the sake of simplicity,

all cranes, SCs, empty slots and containers are assumed to be immediately available, and the

length of each nonempty restacking set is set to one container. Table 6 summarizes these basic

assumptions for all test instances.

Table 6: Instance generation: basic parameters

tq [s] tv [s] ts [s] tb [s] aqc avk aoj arj abic pv [s] |Rj | if Rj 6= ∅

80 20 5 5 0 0 0 0 0 1 1

The parameters of our test instances, which we will apply for analyzing Q1–Q2 and A2–

A3, are presented in Table 7, where JR := J \
⋃

c∈C J
u
c . We generated five test instances for

each parameter combination that results in an identical number of containers that have to be

processed by each crane. This results in a total of 2,160 instances. As can be seen from Table 7,

Table 7: Generation of real-world instances: Q1–Q2 and A2–A3

loading cranes unloading cranes

nq bc |Jc \ J l
c| |Jb

c | Jv
c |Jc| |Jb

c | Jq
c nb

c nv/nq |{j|j ∈ JR, Rj 6= ∅}|

3,4,5,6 3,4,5 10,14,18,22 b0.5bcc ∅ 10,14,18,22 b0.5bcc ∅ bc − |Jb
c | 3,4,5 d0.05|JR|e,d0.1|JR|e,d0.15|JR|e

the number of quay cranes nq of our test instances varies between three and six. The current

approach at the considered port is to permanently assign three to five SCs to each quay crane.

Hence, we generated instances with nv ∈ {3nq, 4nq, 5nq}. The buffer capacity varies between

three and five. As motivated in Section 1.2, the sequences of containers that have to be loaded

onto or unloaded from the vessels by the quay cranes and that are known when routing the SCs

are rather short. Currently, the considered port considers about 20 containers per quay crane,

which is reflected in our test instances. As restacking operations are usually performed in off-

peak times, the percentage of loading and unloading jobs that feature a nonempty restacking

set is assumed to be rather small. It varies from 5% to 15% of the jobs that do not correspond

to containers located in a buffer area at the beginning of the planning horizon.

In light of the computational complexity of MSCRB, we generated additional sets of small

instances (with respect to the number of quay cranes and containers) in order to analyze
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auxiliary question A1. The corresponding parameters are presented in Table 8. Again, we

Table 8: Generation of small instances: A1

loading cranes unloading cranes

nq bc |Jc \ J l
c| |Jb

c | Jv
c |Jc| |Jb

c | Jq
c nb

c nv/nq |{j|j ∈ JR, Rj 6= ∅}|

2,3 4 4,6,8,10,12 b0.5bcc ∅ 4,6,8,10,12 b0.5bcc ∅ bc − |Jb
c | 3,4 d0.1|JR|e

generated five test instances for each parameter combination that results in an identical number

of containers that have to be processed by each crane, i.e., a total of 100 instances.

4.2. Setup of the algorithms

We consider four variants of the heuristic framework presented in Section 3. Each vari-

ant combines a strategy of selecting SCs in the constructive procedure (Section 3.1) and a

succeeding improvement procedure (Section 3.2) that guides the construction and evaluation

(Section 3.2.3) of MSCRB solutions. The four variants are listed in Table 9.

Table 9: Variants of the heuristic framework

Name Selection of SC Improvement procedure

ECg greedy ejection chain approach, Section 3.2.1
ECr random ejection chain approach, Section 3.2.1
3OPTg greedy 3-Opt approach, Section 3.2.2
3OPTr random 3-Opt approach, Section 3.2.2

The parameters of the heuristic framework were set based on preliminary tests on randomly

constructed instances. The improvement procedure within ECg and ECr is restarted four times

(see Section 3.2.1), i.e., it is called five times in total. The first call is initiated with the MSCRB

solution which has been determined by the constructive procedure. The succeeding calls are

initiated with the MSCRB solutions that have been computed based on their respective previous

calls. When restarting, the tabu list is cleared. The tabu length is set to 0.5 · |V |. A call of

the ejection chain procedure is terminated, when the best solution determined within the call

has not improved for 0.8 · |V | iterations. In order to allow reasonable runtimes of the 3-Opt

variants of the heuristic framework, 3OPTg and 3OPTr skip an edge triple with a probability

of 50%. The threshold for the termination criterion introduced in Section 3.2.2 is set to the

value of ts.

In addition to the heuristic framework, we use CPLEX with a given time limit on model

(4)–(26) as an additional approach for determining solutions to an instance of MSCRB. We rate

the quality of a solution with objective function value F alg(I) returned by a specific algorithm

alg ∈ {ECg, ECr, 3OPTg, 3OPTr, CPLEX} for some given problem instance I of MSCRB

with the ratio F alg(I)/F ∗(I), where F ∗(I) is the best objective function value returned by any

of the considered algorithms for problem instance I.
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4.3. Auxiliary questions: evaluation of the heuristic framework

For auxiliary question A1 (small test instances, Table 8), we set the CPLEX time limit

to one hour. Table 10 presents the computational results. For each set of instances, the table

Table 10: Performance of CPLEX and the heuristic framework for small instances, CPLEX time limit: 3,600 s

CPLEX 3OPTg ECg 3OPTr ECr

nq nv |Jc|∗ opt. [%] tavg [s] qualavg tavg [s] qualavg tavg [s] qualavg tavg [s] qualavg tavg [s]

2 6

4 100 0.016 1.006 0.001 1.006 0.026 1.02 0.001 1.071 0.028
6 100 0.407 1.023 0.006 1.032 0.086 1.013 0.008 1.029 0.087
8 80 6.775 1.015 0.019 1.021 0.192 1.044 0.021 1.124 0.162
10 40 1795.513 1.058 0.051 1.081 0.332 1.039 0.185 1.151 0.319
12 0 - - - - - - - - -

2 8

4 100 0.017 1.002 0.001 1.002 0.038 1.003 0.002 1.035 0.041
6 100 0.135 1.005 0.005 1.003 0.101 1.015 0.007 1.003 0.107
8 80 85.691 1.076 0.018 1.029 0.164 1.05 0.033 1.036 0.181
10 60 368.154 1.086 0.058 1.108 0.333 1.099 0.099 1.127 0.313
12 0 - - - - - - - - -

3 9

4 100 0.296 1.012 0.006 1.012 0.1 1.101 0.005 1.062 0.104
6 80 2.285 1.016 0.027 1.02 0.207 1.15 0.023 1.026 0.208
8 20 752.436 1.074 0.139 1.096 0.479 1.292 0.016 1.108 0.515
10 0 - - - - - - - - -
12 20 0.081 1.015 0.006 1.015 0.119 1.044 0.01 1.067 0.155

3 12

4 100 0.091 1.011 0.009 1.015 0.182 1.012 0.015 1.059 0.178
6 100 271.102 1.016 0.019 1.011 0.341 1.185 0.014 1.044 0.343
8 80 177.558 1.046 0.088 1.044 0.591 1.481 0.106 1.088 0.658
10 0 - - - - - - - - -
12 0 - - - - - - - - -

avg. 59 133.858 1.025 0.022 1.025 0.192 1.093 0.029 1.06 0.197

∗: |Jc \ J l
c| in case of loading cranes

depicts the percentage of instances that CPLEX was able to solve to optimality (column “opt.”)

and the average time tavg needed to compute these solutions. Additionally, it presents average

quality ratios qualavg and computational times of the four variants of the heuristic framework

when restricting the analysis to the instances that were solved to optimality by CPLEX. In the

last row, the table additionally lists the overall average values of the corresponding columns.

As can be seen from Table 10, CPLEX is able to compute optimal solutions when the

number of containers is sufficiently small. Furthermore, CPLEX benefits from an increasing

number of SCs for a given number of quay cranes and containers. However, when aiming

to compute optimal solutions, the computational results do not allow for using CPLEX for

real-world instances that usually feature more than 12 containers per crane (see Section 4.1).

With respect to the heuristic framework, the greedy variants 3OPTg and ECg perform

slightly better than the random variants 3OPTr and ECr. Except for the larger instances with

nq = 3 and nv = 12, where the quality ratios of 3OPTr become quite large, all variants of the

heuristic framework are reasonable candidates for real-world usage, both with respect to the

computational times and the solution qualities.

For the real-world test instances and auxiliary questions A2–A3, we set the CPLEX time

limit to 180 seconds and make use of the best solution determined by CPLEX within this
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limit. Note that 180s/tq = 2.25, so that this is a reasonable limit for computational times in

real-world online settings of MSCRB, where rescheduling is initiated with new container data

whenever one of the SCs or quay cranes has completed all of its assigned jobs or operations.

With respect to auxiliary question A2, Table 11 presents the resulting average quality

ratios for each group of instances with an identical number of quay cranes, containers per

crane and SCs. For CPLEX, the table additionally includes the percentage of instances for

Table 11: Average quality ratios for real world instances, CPLEX time limit: 180 s

3OPTg ECg 3OPTr ECr CPLEX

nq |Jc|∗ nv

nq =3 nv

nq =4 nv

nq =5 nv

nq =3 nv

nq =4 nv

nq =5 nv

nq =3 nv

nq =4 nv

nq =5 nv

nq =3 nv

nq =4 nv

nq =5 nv

nq =3 nv

nq =4 nv

nq =5

3

10 1.063 1.048 1.03 1.09 1.068 1.037 1.169 1.221 1.206 1.182 1.146 1.095 1 (100) 1 (100) 1 (100)
14 1.018 1.038 1.028 1.052 1.046 1.041 1.103 1.213 1.32 1.184 1.169 1.167 1.048 (60) 1.019 (84.4) 1.008 (95.6)
18 1.006 1.006 1.007 1.049 1.034 1.021 1.183 1.206 1.306 1.212 1.218 1.192 1.113 (20) 1.066 (17.8) 1.071 (31.1)
22 1.003 1.004 1.005 1.055 1.03 1.025 1.159 1.302 1.294 1.257 1.233 1.229 1.279 (15.6) 1.267 (13.3) 1.138 (15.6)

4

10 1.041 1.034 1.027 1.058 1.052 1.027 1.212 1.326 1.355 1.178 1.14 1.096 1.01 (100) 1.001 (95.6) 1.001 (100)
14 1.011 1.01 1.016 1.053 1.025 1.024 1.179 1.318 1.386 1.199 1.179 1.156 1.057 (22.2) 1.061 (37.8) 1.011 (37.8)
18 1.003 1.003 1.003 1.043 1.019 1.014 1.232 1.331 1.355 1.232 1.201 1.202 1.257 (6.7) 1.127 (6.7) 1.131 (6.7)
22 1.001 1.001 1.002 1.043 1.02 1.011 1.255 1.42 1.376 1.247 1.258 1.211 - (0) - (0) 3.531 (2.2)

5

10 1.012 1.029 1.021 1.035 1.034 1.023 1.235 1.358 1.423 1.168 1.128 1.103 1.031 (80) 1.008 (86.7) 1 (82.2)
14 1.003 1.005 1.004 1.031 1.017 1.011 1.275 1.376 1.363 1.192 1.171 1.138 1.155 (11.1) 1.086 (11.1) 1.074 (24.4)
18 1.002 1.001 1.005 1.025 1.021 1.005 1.375 1.374 1.595 1.245 1.246 1.208 - (0) - (0) 1.439 (2.2)
22 1.001 1.002 1.004 1.034 1.013 1.008 1.395 1.481 1.564 1.279 1.256 1.247 - (0) - (0) - (0)

6

10 1.007 1.014 1.012 1.02 1.016 1.012 1.293 1.431 1.486 1.166 1.132 1.08 1.045 (55.6) 1.011 (68.9) 1.007 (66.7)
14 1.001 1.003 1.008 1.022 1.012 1.006 1.324 1.447 1.45 1.198 1.179 1.135 1.476 (2.2) 1.196 (4.4) 1.651 (8.9)
18 1.001 1.002 1.005 1.023 1.013 1.008 1.344 1.569 1.536 1.242 1.224 1.214 - (0) - (0) - (0)
22 1 1.002 1.004 1.024 1.011 1.003 1.348 1.532 1.587 1.276 1.286 1.237 - (0) - (0) - (0)

avg. 1.011 1.013 1.011 1.041 1.027 1.017 1.255 1.369 1.413 1.216 1.198 1.169 1.046 (29.6) 1.024 (32.9) 1.039 (35.8)

∗: |Jc \ J l
c| in case of loading cranes

which a feasible solution was found in parentheses. Again, the last row presents overall average

values of the corresponding columns.

As CPLEX does not reliably return feasible solutions within the time limit, it is not an

appropriate candidate for real-world usage. With respect to the heuristic framework, 3OPTg

and ECg now clearly outperform their random counterparts in terms of solution quality. While

ECg benefits from an increasing number of SCs, 3OPTg performs similarly well for all ratios

nv/nq. Therefore, when not taking computational times into account, 3OPTg seems most

appropriate for practical applications.

In order to answer A3, Tables 12 and 13 present average and maximum runtimes of the

algorithms for the real-world instances, respectively. Bold elements in the tables highlight the

best value for the corresponding set of instances. It is immediately obvious that 3OPTg features

computational times that do not allow its usage in real-world online settings of MSCRB in most

cases. All calls of ECg, however, feature runtimes that are smaller than the 180 seconds time

limit motivated above. Additionally, we found that the effect of varying buffer capacities on the

average runtimes of ECg is fairly small. Hence, when balancing runtimes and quality ratios,

ECg is the most appropriate setup of the heuristic framework in real-world settings.
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Table 12: Average runtimes in seconds for real world instances, CPLEX time limit: 180 s

3OPTg ECg 3OPTr ECr CPLEX

nq |Jc|∗ nv

nq =3 nv

nq =4 nv

nq =5 nv

nq =3 nv

nq =4 nv

nq =5 nv

nq =3 nv

nq =4 nv

nq =5 nv

nq =3 nv

nq =4 nv

nq =5 nv

nq =3 nv

nq =4 nv

nq =5

3

10 0.5 0.5 0.4 0.9 1.1 1.3 0.4 0.2 0.2 1 1.1 1.4 180 171.3 114.8
14 3 2.2 2.8 2.4 2.7 3.1 2 0.9 0.5 2.8 2.9 3.4 180 180 176.8
18 12.1 10.9 9.3 5.6 6.3 6.8 5.4 4.1 2.8 6.1 7.1 7.9 180 180 180
22 36.4 31.6 30.6 9.4 12.1 12.1 21.4 10.7 6.3 11.1 13.3 14.1 180 180 180

4

10 1.4 1.9 1.2 2.1 2.5 2.9 0.8 0.5 0.2 2.3 2.8 3.3 180 169.2 108.8
14 11.2 10.5 10.1 5.9 6.5 8.1 5.8 1.9 1.6 6.6 7.4 9.2 180 180 180
18 49.9 30.4 28.2 13.5 15.5 17.5 18.2 5.4 5 14.9 17.8 19.9 180 180 180
22 138.4 117.5 49.5 24.5 29.5 30.4 42.3 10.8 8.5 28.3 35 35.7 180

5

10 4.8 3.9 3.5 4.1 5.1 5.7 1.4 0.3 0.4 4.8 5.6 6.6 180 176.7 134.8
14 32.9 22.3 15.1 12.4 14.3 16.3 8.4 3.2 1.3 14.3 16.7 18.3 180 180 180
18 81.7 100.4 42.7 26.5 32 35.2 17.1 12.3 2 31.2 38 40.1 180
22 315.3 186.1 132.9 56 62.6 67.2 77.9 22 5.1 67.1 72.7 78.6

6

10 10.2 4 5.8 7.5 9.1 10.8 2.4 0.6 0.6 8.6 9.7 12.2 180 175.7 153.9
14 51.7 44 24.8 21.5 24.8 28.4 6 3.9 1.4 24.7 28.9 32.4 180 180 180
18 191.5 164.5 132.3 48.5 56 67.1 28.7 5.2 6.6 58.3 64.5 77
22 523.6 405.1 134.2 94.5 110 117.4 60.5 24.9 9.6 113.7 129.5 131.5

∗: |Jc \ J l
c| in case of loading cranes

Table 13: Maximum runtimes in seconds for real world instances

3OPTg ECg 3OPTr ECr

nq |Jc|∗ nv

nq =3 nv

nq =4 nv

nq =5 nv

nq =3 nv

nq =4 nv

nq =5 nv

nq =3 nv

nq =4 nv

nq =5 nv

nq =3 nv

nq =4 nv

nq =5

3

10 2.4 2.7 2.1 1.5 1.5 1.8 1.5 0.8 1.7 1.4 1.6 1.8
14 12.8 11.4 16.6 3.8 4.1 4.7 9.1 5.5 3.3 3.9 4.4 5.1
18 28 39.6 44.1 8.4 8.7 10.3 23.8 33.6 25.9 9.7 9.8 11
22 145.2 123.4 228.3 14.2 18.1 18.1 77.1 68.9 53 18.3 21.4 21.4

4

10 5.3 6.3 7.1 3 3.5 3.9 3.6 5 1.2 3 3.7 4.3
14 35.5 72.3 68.8 8.7 9.5 11.5 45.7 16.2 28.2 9.8 11.3 13.6
18 290.3 201.2 175.1 18.7 22.4 27.1 126.6 58.5 65.5 21.5 26.9 29.4
22 512.1 529.3 224.1 39 45.4 50.4 779.4 177.4 127.9 45.6 50.2 51.9

5

10 13.6 17.3 25.2 5.7 6.5 8.3 6.6 1.7 3.3 6.3 7.7 8.3
14 122.6 144.3 110.7 17.4 21.9 24.1 56.8 35.5 10.4 19 24.2 25.1
18 289.9 449.9 266.9 39.7 52.4 57 322.1 103.5 18.3 47.5 65.9 60.7
22 1188.2 650.6 1466.4 83.1 96.1 99.4 1157.3 365.3 67 95.7 122 115.7

6

10 33.9 25.3 44.6 11.3 13.8 15.4 21.3 4.4 14.3 13.1 12.1 16
14 367.4 328.5 146.1 28.1 33.1 41.4 34.8 39.7 16.7 34 41 43
18 758 833.9 1039.6 77.8 77.9 98.5 226.6 60.3 83.4 85.9 96.6 108.9
22 2649.9 2053.1 1455.6 156 154.9 174.5 339.2 300.3 72.8 165.8 201 182.7

∗: |Jc \ J l
c| in case of loading cranes
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4.4. Impact of relaxing fixed SC assignments

Based on our results in Section 4.3, we can now analyze our main research questions by

solely focussing on ECg. As described above, the current approach at the considered port is to

permanently assign three to five SCs to each quay crane. That is, each SC solely processes jobs

that are associated to its assigned crane. We simulate this approach by a heuristic referred

to as FIXg. Basically, this heuristic corresponds to sequentially calling the greedy version

of our constructive procedure (Section 3.1) for each crane, its associated jobs (including the

restacking jobs), and its associated SCs.

Figure 11 illustrates the effect of relaxing fixed SC assignments by comparing the average

quality ratios of ECg and FIXg for different groups of instances with a varying number of

quay cranes and SCs. The depicted quality ratios take into account all variants of the heuristic
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Figure 11: Impact of relaxing fixed SC assignments: cranes and SCs

framework and CPLEX as analyzed in Section 4.3.

It can be seen that relaxing fixed SC assignments has a significant positive effect (research

question Q1) on the objective function value of MSCRB: the difference of the quality ratios

varies between about 0.2 and 0.37. With respect to Q2, we find that the number of containers

per crane plays a minor role for the achievable time savings, whereas the differences in the

quality ratios tend to increase for an increasing number of quay cranes (and, thus, jobs) as well

as for a decreasing number of SCs, where the latter effect is more distinct for larger numbers
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of quay cranes.

In line with Figure 11, Figure 12 presents the average quality ratios when focussing on

varying buffer capacities. As can be seen, the effect of varying capacities on the achievable
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Figure 12: Impact of relaxing fixed SC assignments: buffer capacity

savings is rather small.

5. Conclusion

In this paper, we have considered a SC routing problem that arises at container ports where

quay cranes are equipped with buffer areas of limited capacity that allow short time storage of

containers. The SCs are in charge of transporting containers between these buffer areas and

the stacking areas of the port, while having to respect given unloading and loading sequences of

the containers at the quay cranes. The objective of the routing problem represents the overall

goal to minimize the turnaround times of the vessels at the port. In contrast to the current

approach at the considered port, we do not fix the assignment of SCs to quay cranes.

We have provided a proof for the strong NP-hardness of the problem under consideration.

Furthermore, we have presented an integer program based on an asymmetric traveling sales-

man problem with precedence constraints. We have then introduced a heuristic framework,

that decomposes the problem into a routing component and a component that handles the

time variables and the buffer capacities. Computational tests have provided evidence for the

applicability of a variant of this framework that applies an ejection chain approach for the

routing component in real-world online settings. Furthermore, seeing significant improvements

in the objective function value when freely routing the SCs, we have shown that the relaxation

of the fixed SC assignments is an interesting strategy to be considered by port authorities.

There remain several interesting questions to be answered in future research. Potential

limitations of our model could, for example, be evaluated in a simulation study. Other relevant

questions are concerned with generalizations or modifications of the problem studied in this

article in order to include more details of the port layout, other transportation vehicles (AGVs,
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YTs, ALVs, etc.), or more general loading or unloading strategies at the quay cranes. In order

to achieve high crane utilization rates, for example, some terminal operators seek to implement

crane double cycling strategies. Due to the fact that this results in cranes and SCs dropping

containers in the same buffer areas, this oftentimes results in deadlock situations in practice

(see, for example, Carlo et al., 2014b; Lehmann et al., 2006). In order to prevent or resolve

such deadlocks, our model and algorithms may be extended appropriately. Similarly, one can

explicitly model waiting periods of SCs in order to prevent congestion situations or include one-

way travel settings or other details of the port layout that are frequently applied in practice.

Further research could also be undertaken to investigate the potential of integrating decisions

of higher level optimization problems into our model, e.g., container sequencing decisions at

the quay cranes or decisions on destination locations of containers in the storage areas, which

we have treated as parameters is this study.
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