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Abstract

There is a finite number of non-cooperating clients, who are averse to uncertain loss and
compete for execution of their jobs not later than by their respective due dates in a parallel
service environment. For each client, a due date violation implies a cost. In order to
address the minimization of the total scheduling cost of all clients as a social criterion, a
game mechanism is suggested. It is designed such that no client has an incentive to claim
a false due date or cost. The game mechanism allows the clients to move their jobs to
complete earlier in a given schedule. However, they must compensate costs of those clients
whose jobs miss their due dates because of these moves. Algorithmic aspects are analyzed.
Furthermore, a polynomial time algorithm that determines an equilibrium of the considered
game is suggested and embedded into the game mechanism. Computational tests analyze
the performance and practical suitability of the resulting game mechanism.
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1. Introduction

When designing and analyzing algorithms for scheduling problems, we often assume that
a central decision maker - who is in control of some algorithm - has access to all relevant
data that defines a problem instance. However, there exist many real world applications
where this assumption does not hold. We can, for example, think of due dates, processing
times, or other relevant parameters of a scheduling domain, which are private information
of the jobs, machines, or their respective owners. When acting selfishly, these owners (also
referred to as players, agents, or clients) may try to influence the solution determined by the
scheduling algorithm by submitting false data. In some cases, however, the decision maker
can extract the true information by designing an appropriate algorithm that sets the right
incentives for the owners. The design of such algorithms is subject of a field of research that
is usually referred to as algorithmic mechanism design [1, 2].

1.1. Related Literature

Algorithmic mechanism design is an intersection of multiple disciplines, namely (algo-
rithmic aspects of) computer science, game theory and economic theory, and thus belongs
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to the broader field of algorithmic game theory (an excellent introduction and overview is
given in [2]). Most research articles in this field focus on auction contexts (see, for in-
stance, [3]). Recently, however, there has been a growing interest in taking a game theoretic
perspective on machine scheduling settings, which has resulted in a fairly large amount of
research articles. As stated in [4], there are two main streams of related publications. The
first stream assumes that solely the machines possess private information (machine agents).
These articles follow the seminal work of [5, 6]. Similarly, the second group of publications
assumes that only the jobs are selfish agents (job agents), which is the perspective taken in
this paper. Prominent examples of the latter stream are [7, 8, 9, 10]. We abstain from a
detailed overview of the literature, because up-to-date overviews and reviews of algorithmic
mechanism design in a scheduling context are given in [4, 11, 12]. Furthermore, for the sake
of brevity, we assume the reader to be familiar with the basic theory and terminology of
machine scheduling problems and the main concepts of game theory, and refer to [13, 14]
and [15, 16, 17] for comprehensive introductions to these fields of research.

1.2. Motivation and Outline of the Problem

In this paper, we consider a scheduling problem in which multiple clients, each owning a
single job, compete for the execution of their jobs not later than by their respective due dates
on parallel processing units (machines) of a service provider (also referred to as operator).
A processing time, a due date, and a weight representing the cost of missing the due date,
is associated with each job. Any job can be processed by any machine. Each machine
processes jobs one after another, non-overlappingly and non-preemptively, starting from
time zero, without idle time. The clients are assumed to be non-cooperative; that is, they
cannot form coalitions to exchange information and generate a group decision. Competition
of the clients is regulated by a game mechanism, which receives information claimed by the
service provider and the clients and suggests rules for generating a schedule of processing
the jobs. The processing times of the jobs are truly claimed by the service provider, because
the revenue from processing a job is fixed. Weights and due dates, however, are claimed by
their respective clients and can differ from the true values.

As the service provider aims to find a schedule that respects the interests of all players,
we consider minimizing the total scheduling cost of all clients as a social criterion, which the
service provider would like to address. The suggested game mechanism is such that if the
clients claim true weights and due dates, then they are certain that their true total cost (loss)
is implied by the social criterion. If they lie, then the outcome becomes uncertain, both
with respect to the value of the social criterion and the loss of particular clients, including
the one who is lying. We assume that the clients are fully averse to uncertain loss. Due to
this fear of loss, they claim true weights and due dates.

Our study is motivated by planning operations of a railway container unloading terminal
(see, e.g., [18]). There are multiple parallel railway tracks and each track is served by an
associated single hoist crane (corresponding to one of the machines). Each crane can process
at most one train at a time. For a given planning period, the terminal financial manager
negotiates service contracts with the shipping agents. Each contract specifies the unloading
of a train (i.e., a job of the scheduling problem). For a shipping agent, the contract is
associated with the train unloading due date and a cost, which is paid if and only if the
train misses the due date. For the terminal owner, this contract is associated with the train
unloading time and a fixed revenue. During the negotiation process, the manager would
like to work out a schedule for unloading the trains by the cranes which is satisfactory to
the interested shipping agents, and then to specify it in the corresponding contracts.
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1.3. Contribution and Overview of the Paper

The contribution of this paper is twofold. First, the problem studied in this paper is
a generalization of the problem studied earlier by us [19], in which there is only a single
machine. This necessitates a variation of the mechanism suggested in [19] as well as a
reinvestigation of the corresponding theoretical properties. Thus, our paper contributes
both to the scheduling literature and the literature on algorithmic mechanism design, where
only very few papers consider agents which are fully averse to uncertain loss or risk (see [4]).
Second, in contrast to [19], we will present computational results in this paper. These results
demonstrate that the suggested game mechanism enables a service provider to provide high
quality solutions that feature an appropriate level of communication between the service
provider and the clients.

The remainder of this paper is structured as follows. In Section 2, we introduce the
required notation and define the problem under consideration in more detail. The game
mechanism is presented in Section 3. Truthfulness of the clients is discussed in Section 4.
An algorithmic analysis of the problem is provided in Section 5. AnO(n2) algorithm to find a
game equilibrium is presented and embedded into the game mechanism in Section 6, where
we additionally present the aforementioned computational results. The paper concludes
with a short summary of the results and suggestions for future research in Section 7.

2. Notation and Detailed Problem Description

We will denote the set of clients - or their respective jobs - by J = {1, . . . , n}. Each job
j ∈ J is associated with a processing time pj ∈ N, a due date dj ∈ N, and a weight wj ∈ N
representing the cost of missing the due date. The set of parallel machines of the service
provider is referred to by M = {1, . . . ,m}, where m ≤ n− 1.

As mentioned above, competition of the clients is regulated by a game mechanism. The
processing times pj are truly claimed by the service provider for all j ∈ J , because the
revenue from processing a job is fixed. The parameters wj and dj , however, are claimed
by their respective clients j ∈ J , and can differ from the true values, denoted by wtrue

j and
dtruej . Because of business confidentiality, the values pj , j ∈ J , and, possibly, the number
of clients n and the number of machines m are not revealed to the clients. Moreover, the
claimed values wj and dj of client j are not revealed to the other clients, and the true values
wtrue
j and dtruej of client j are neither revealed to the service provider nor to the other clients.

We assume that the clients are fully averse to uncertain (unpredictable, with unknown
probability distribution) loss, so that they do not lie about their due dates and weights if
lying induces an uncertain loss situation while claiming true values induces no unexpected
loss. The loss aversion phenomenon is observed in many economical situations. According
to it, people prefer avoiding losses much more than acquiring gains [20, 21, 22] and they
work harder to avoid losses [23, 24]. People also prefer avoiding unmeasurable uncertainty
by selecting actions with known probabilistic outcomes rather than those with unknown
outcomes. This phenomenon is called ambiguity aversion in the scientific literature [25, 26]
and has been confirmed both in experimental market settings [27] and for business owners
and managers [28]. Both these phenomena stimulated us to impose the assumption of full
aversion to uncertain loss, which makes the model and the solution of the schedule updating
game problem understandable and easy to implement.

A schedule for processing the jobs, which is satisfactory to all clients, has to be deter-
mined. The clients would like to have an influence on the completion times of their jobs.
We therefore suggest that the game mechanism proposes an initial schedule and that the
clients can update this schedule by following the rules described in this paper. A schedule
is represented by the job sequences on the machines. Given a schedule, let Cj denote the
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completion time of job j ∈ J . Job j is said to be on-time with respect to a given due date
dj , if it completes before or at this due date. If job j is not on-time, it is said to be late.
A job j ∈ J that is on-time with respect to its true due date incurs no cost to client j.
However, if job j ∈ J is late with respect to its true due date, then it incurs cost wtrue

j .
Our game mechanism determines an initial schedule and rules of moving a late job to

complete earlier. The financial regulation of the game works as follows. Client j, whose job
is late in an initial schedule, is presented a set of strategies to move her job to an earlier
position in the new schedule. For a specific move of job j, let Jj denote the set of jobs that
are on-time in the initial schedule and late in the new schedule. If this move is realized,
then client j will pay an amount of wi to each client i ∈ Jj . The move is presented to the
client only if the cost reduction of client j is greater than the corresponding compensation
paid to the other clients. After a certain number of moving operations, a final schedule is
obtained and the jobs are processed according to this schedule. It is clear that the total
compensation paid by all clients is equal to the total compensation received by all clients.

Define a cost indicator function U(dj , Cj), such that U(dj , Cj) = 0 if Cj ≤ dj and
U(dj , Cj) = 1 if Cj > dj , j ∈ J . Client j ∈ J aims at minimizing her loss function

Fj := wtrue
j U(dtruej , Cj) + V −j − V

+
j ,

where wtrue
j U(dtruej , Cj) is her scheduling cost, V −j is the total compensation paid by her

and V +
j is the total compensation paid to her. When there is no ambiguity about the due

dates and the schedule, we will simplify the notation by writing Uj instead of U(dj , Cj) in
the following. According to the game rules described above,

∑n
j=1(V

−
j − V

+
j ) = 0.

We consider minimizing the total scheduling cost of all clients,
∑n

j=1 Fj =
∑n

j=1wjUj ,
as a social criterion, which the service provider would like to address. The deterministic
problem to find a schedule that minimizes

∑n
j=1wjUj is denoted by P ||

∑
wjUj in the

scheduling literature [29]. It is known to be NP-hard in the strong sense [30]. However, it
admits computation of an exact solution in O(n3) time for the special case with identical job
processing times, pj = p, for all jobs j, and due dates proportional to p, i.e. dj = kjp, where
kj is an integer number, by a reduction to an assignment problem [31]. This problem is
denoted by P |pj = 1|

∑
wjUj in the scheduling literature. The special case with a constant

number of machines m, denoted by Pm||
∑
wjUj , is solvable in O(

∑n
j=1(dj)

m−1) time [32].
With respect to the classification scheme proposed by [4], the setting under considera-

tion can be classified as P |averse, privd{wj , dj}, Uj |
∑
wjUj . In the first field, P indicates

that we are considering a setting with parallel machines. The second field refers to the
characteristics of the clients (jobs). Here, averse highlights the fact that the clients are
averse to uncertain loss and privd{wj , dj} indicates that they possess private information
on their weights and due dates, while it is publicly known that these values are elements
of discrete sets, i.e. the natural numbers. Uj refers to the fact that each client aims for a
schedule where her job is on-time. Finally, in the last field,

∑
wjUj indicates that the global

optimality criterion is the minimization of the total scheduling cost.
The notation is summarized in Table 1.

3. Game Decision Mechanism

We now propose a game mechanism, i.e. a process of decisions that generates a schedule
which is satisfactory to all clients. It is initialized by each client j ∈ J claiming parameters
wj and dj . Then, an initial schedule is generated. Any approach can be used here. For
example, if the clients agree to have equal chances to take any position on any machine,
it can be randomly generated. If the clients agree that the mechanism applies any rule to
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Table 1: Notation used throughout the paper

J set of clients J = {1, . . . , n}
M set of parallel identical machines M = {1, . . . ,m}
Cj completion time of job j Cj ∈ N
pj processing time of job j pj ∈ N
dj due date of job j dj ∈ N
wj weight of job j wj ∈ N
dtruej true due date of job j dj ∈ N
wtrue

j true weight of job j wj ∈ N
U(dj , Cj) cost indicator function U : N× N→ {0, 1}
V +
j total compensation paid to client j V +

j ∈ N
V −j total compensation paid by client j V −j ∈ N
Fj loss function of client j ∈ J Fj = wtrue

j U(dtruej , Cj) + V −j − V
+
j

generate the initial schedule, then we suggest that it is the best schedule with respect to
minimizing the total claimed scheduling cost

∑n
j=1wjUj , which the mechanism can find

within a given time limit. The rules of developing this schedule can be known to the clients
or not.

Let the initial schedule be aimed at minimizing
∑n

j=1wjUj . If n ≥ 2m + 1, then the
mechanism iterates over all machines that process at least two jobs in the initial schedule
and updates this schedule by swapping the job in the first position with the job in the
second position. This is done to prevent any client j ∈ J from claiming false values wj and
dj in order to take the first position on a machine such that it cannot be taken away by
any other job because of a high compensation payment. If n ≤ 2m, then the number of the
second positions in any schedule is less than or equal to the number of the first positions.
In this case, let k̂ be the number of machines that process at least two jobs in the initial
schedule, i.e. 1 ≤ k̂ ≤ n −m. The mechanism randomly selects k < k̂ of these machines
and swaps the first and the second job of these machines. If all n −m jobs in the second
positions were moved in this case, then a client j ∈ J who knows that n ≤ 2m could claim
false values wj and dj in order to take a second position and be placed in the first position
after the interchange.

If the initial schedule is randomly generated, then no job interchange is needed. Fur-
thermore, if none of the clients knows n and m, then specific handling of the case n ≤ 2m
is not needed.

Denote the updated schedule as Sold = (Sold
1 , . . . , Sold

m ), where Sold
h is the job sequence on

machine h, h ∈M . This is the input schedule for the first iteration of the game mechanism.
Each client j ∈ J , whose job is not in the first position on a machine, receives the completion
time of her job in this schedule and a set of possible completion times obtained by placing
her job in every position on a machine where it will be completed earlier, assuming that the
relative sequence of the other jobs on this machine remains unchanged. She also receives a
set Ej of eligible local strategies, which includes every strategy (j, g, s) of moving her job to
a position s on machine g in Sold such that her claimed savings emerging from applying this
strategy are positive. The definition of claimed savings is given below. The claimed savings
are presented together with the corresponding eligible local strategy.

Denote by Snew the schedule obtained from Sold by applying a job moving strategy
(j, g, s). Denote by Cold

i and Cnew
i the completion time of a job i ∈ J in the old and new

schedules, respectively. The claimed savings of client j ∈ J associated with strategy (j, g, s)
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are calculated as follows:

Aj(g, s) = wjU(dj , C
old
j )− wjU(dj , C

new
j )

−
∑

i∈Sold
g :Cnew

i >Cold
i

(
wiU(di, C

new
i )− wiU(di, C

old
i )
)
. (1)

Note that the summation is taken over jobs i on machine g which are completed after job
j in the new schedule.

If every job moving strategy results in non-positive claimed savings for client j ∈ J ,
then solely the “no move” strategy is eligible for her, i.e. Ej = {“no move”}. For each client
r ∈ J , whose job is first on a machine, Er = {“no move”} by definition.

Each client j ∈ J , whose set Ej contains a job moving strategy different from “no move”,
submits one of these strategies. Hereafter, the service provider selects and applies one of
them. Again, any selection approach can be used here, for example, random selection. If the
clients agree that the mechanism applies any selection rule, then we suggest that it selects
a strategy that minimizes the total claimed cost

∑n
j=1wjUj . The resulting schedule serves

as the input sequence Sold in the next iteration of the game mechanism. When making
a choice, the client can rank her job moving strategies. For example, she may consider
maximizing savings or minimizing job completion time.

Iterations of the decision process repeat until a final schedule is obtained for which
no set Ej , j ∈ J , contains an eligible local strategy different from “no move”. The jobs
are processed by the service provider according to the final schedule. All compensation
payments are realized.

We call the described process a schedule updating game with compensations. It is sum-
marized in Algorithm 1. In this game, clients are players. We define an equilibrium (EQ) of

Algorithm 1 Schedule updating game with compensations

Step 1 Each client j ∈ J claims values wj and dj .

Step 2 Calculate an initial schedule S = (S1, . . . , Sm) with a given algorithm. Depending on the
algorithm used, potentially update S by performing interchanges of jobs in the first and
second positions of the job sequences on the machines.

Step 3 Determine the set Ej of eligible local strategies for each client j ∈ J . If Ej = {“no move”}
for all j ∈ J , then go to Step 4. Else, each client j ∈ J with Ej 6= {“no move”} submits
exactly one local strategy. Apply one of the strategies, which is selected based on a given
algorithm, to update schedule S. Update the compensation payments of all players. Repeat
Step 3.

Step 4 Apply schedule S. Realize the compensation payments.

this game as a schedule such that “no move” is the only eligible local strategy for each client.
In Section 5, we will show that Algorithm 1 terminates with an EQ in a finite number of
iterations.

4. Truthfulness of Clients

In the described game, the clients j ∈ J can claim false parameters wj and dj if there
is no chance that this action will increase their loss. Let us show that, for any problem
instance and any client, there exist situations in which lying increases a client’s loss, and
in the remaining situations a client’s loss is independent of her truthfulness. Note that
no information is available about which of the situations will actually happen, both in a
deterministic and probabilistic sense.
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Consider a client j ∈ J who lies about her parameters. Recall that all the parameters are
claimed before the schedule updating procedure starts. In any iteration of this procedure,
including the first iteration, there is a chance that job j is not in a first position. Hence,
assume that this is the case and that a certain strategy is applied. There are four cases to
consider:

1. Job j is moved to complete earlier because its moving strategy is applied.

2. Job j is moved to complete earlier because a preceding job is moved to another ma-
chine.

3. Job j is moved to complete later because another job is placed before it on the same
machine.

4. The completion time of job j does not change.

In Cases 2 and 4, the change of the loss of client j does not depend on the claimed
parameters. Hence, we will only have to analyze Cases 1 and 3 in the remainder of this
section.

Consider Case 1. Denote by Afalse the claimed savings of client j, and by Atrue her
claimed savings calculated for the true values wtrue

j and dtruej and the same completion time.
Note that Afalse > 0 because the applied move is an eligible strategy.

If Afalse ≤ Atrue, then Atrue > 0. This implies that the same move would be eligible for
the true parameters wtrue

j and dtruej of client j and, moreover, her loss would be the same
or smaller than that for the false parameters.

Assume Afalse > Atrue. Since the parameters wi, di and pi, i ∈ J \ {j}, of other clients
are unknown to client j and they can be arbitrary, there is a chance that, in the case of
false parameters wj and dj , job j will delay jobs whose cost increase client j is not able to
compensate from her true cost reduction, i.e. Atrue < 0. In this case, lying will increase the
loss of client j. For example, let job j be sequenced immediately after job i ∈ J on the same
machine. Furthermore, let pi = pj , let both jobs have the same due date being equal to the
completion time of job i, and let the true and claimed weights of job j be equal to W and
W + δ, δ > 0, respectively, and the claimed weight of job i be equal to W + δ/2. Assume
that job j is moved to stand immediately before job i. Then the claimed savings of client j
are Afalse = δ/2, while her true savings are Atrue = −δ/2. This is illustrated in Figure 1,
where the situation after the move is depicted on the right. Now assume that, in the above

i j

di = dj

wiU(di, Ci) = 0
wjU(dj , Cj) =W + δ,

wtrue
j U(dj , Cj) =W

j i

di = dj

wiU(di, Ci) =W + δ/2
wjU(dj , Cj) = 0,

wtrue
j U(dj , Cj) = 0

Figure 1: False weight wj

example, the true and claimed weights of job j are equal to W + δ, δ > 0, but the true
due date is equal to dj + pj . If job j is moved to stand immediately before job i, then the
claimed savings of client j are Afalse = δ/2, while her true savings are −(W + δ/2). Figure
2 illustrates this setting. Again, the situation after the move is depicted on the right.

Consider Case 3, in which client j may be paid by another client whose job is moved
to stand before job j on the same machine. Denote by Ifalse and Itrue the cost increase of
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i j

di = dj

wiU(di, Ci) = 0
wjU(dj , Cj) =W + δ,

wjU(dtruej , Cj) = 0

dtruej

j i

di = dj dtruej

wiU(di, Ci) =W + δ/2
wjU(dj , Cj) = 0,

wjU(dtruej , Cj) = 0

Figure 2: False due date dj

client j calculated with respect to her claimed and true parameters wj and dj , respectively.
The compensation paid to client j in Case 3 is equal to Ifalse, and her loss is increased
by Itrue. If Ifalse ≤ Itrue, then lying is not profitable. Furthermore, there is no guarantee
that Case 3 in which Ifalse > Itrue will happen with any probability. An increase of the
cost of client j from zero to wj can make job moving strategies of other clients ineligible,
while for true values dj and wj the cost could be increased to the value wtrue

j affordable
for compensation. Consider the examples depicted in Figures 1 and 2 and assume that job
j is sequenced immediately before job i ∈ J on the same machine (situation on the right)
and that job i is moved to stand immediately before job j (situation on the left). For the
example in Figure 1, the cost increase of client j with respect to her claimed cost function is
equal to Ifalse = W + δ and the cost increase with respect to her true cost function is equal
to Itrue = W . Job i cannot overtake job j in the case of its false weight wj , because savings
of client i are equal to −δ/2 in this case. If weight wj is true, then job i can overtake job j
and the loss of client j can be decreased by δ/2. For the example depicted in Figure 2, the
loss of client j is the same with respect to the claimed and true parameters. For false dj ,
job i cannot overtake job j, and for true dj , job j is not compensated.

Thus, we have shown that no client j ∈ J has an incentive to claim false values wj or
dj if she is fully averse to uncertain loss. We assumed that the clients are such. Therefore,
in the suggested game, they claim true values wj and dj .

5. Algorithmic Analysis

This section aims to establish relations between EQs and solutions of the problem
P ||
∑
wjUj . Some of the proofs of the considered propositions are similar to those in [19]

for the problem with m = 1.
Let opt, F opt, F best EQ, Fworst EQ, and F (S) denote a social optimum, its (objec-

tive function) value, and the values of a best EQ, a worst EQ, and a given schedule
S, respectively, for the studied schedule updating game. The ratios Fworst EQ/F opt and
F best EQ/F opt are called the price of anarchy [33, 34], and the price of stability [35, 36, 37],
respectively.

Proposition 1. opt is an EQ and the price of stability is equal to one.

Proof. Let S∗ be opt and not an EQ. Then, by the definition of an EQ, some job j ∈ J can
be moved to complete earlier in S∗, so that its cost is decreased from wj to zero, costs of
jobs shifted to complete earlier can also decrease, and the total cost increase of the jobs that
became completed later is less than wj , see (1). This means that

∑n
j=1wjUj is decreased,

which contradicts the optimality of S∗. Hence, opt is an EQ. This fact immediately implies
that, for the studied game, an EQ always exists and that the price of stability is equal to
one.

The following proposition shows that not every EQ is good with respect to the social
criterion

∑n
j=1wjUj . It is proven in [19].
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Proposition 2. The price of anarchy can be infinitely large.

Note that if EQs are limited to those produced by the designed mechanism, then the
price of anarchy depends on the initial schedule. For example, if the total cost F (S) of the
initial schedule S satisfies F (S)/F opt ≤ ∆ <∞ for any instance, then the price of anarchy
does not exceed ∆.

It is interesting to know if a given schedule is an EQ.

Proposition 3. Any schedule can be recognized as an EQ in O(n3) time.

Proof. Let S be an arbitrary schedule. Re-number the jobs such that t1 ≤ t2 ≤ · · · ≤ tn,
where tj is the start time of job j in S for all j ∈ J . There are at most n(n−1)/2 schedules
that can be obtained from moving each job j, j ∈ {2, . . . , n}, to start at time ti < tj , for
all i ∈ {1, . . . , j − 1}. For each schedule, the savings of the moved job can be calculated in
O(n) time by formula (1). If the savings are non-positive for all these schedules, then the
original schedule S is an EQ. Otherwise, it is no EQ and one of the new schedules has a
strictly smaller value

∑n
j=1wjUj than the one of the schedule S.

Now we show that an arbitrary EQ can be found in pseudo-polynomial time. Let B
denote an upper bound on the value F opt, and let S(B) be a schedule with value B. We
have F (S(B)) = B ≤

∑n
j=1wj .

Proposition 4. An EQ can be found in O(n3(B − F opt + 1)) time.

Proof. Consider schedule S(B). Apply the procedure described in the proof of Proposition
3 to verify in O(n3) time if S(B) is an EQ. If it is not an EQ, then the procedure finds
another sequence, say S′, such that F (S′) ≤ F (S(B)) − 1 = B − 1. In this case, apply the
EQ verification procedure for the sequence S′. Since cost functions are integer valued and
opt is an EQ, at most B − F opt + 1 sequences will be verified until an EQ is found.

It follows from Proposition 4, that an EQ can be found in O(n4) time if all weights
are unit, i.e., if wj = 1 for all j ∈ J . Note that the O(n3(B − F opt + 1)) time process
of finding an EQ described in the proof of Proposition 4 is not needed for special cases
of P |averse, privd{wj , dj}, Uj |

∑
wjUj , if the corresponding special cases of the NP-hard

problem P ||
∑
wjUj admit a faster optimal algorithm. For example, if pj = p for all j ∈ J ,

then an optimal solution of the problem P |pj = p|
∑
wjUj (and thus EQ) can be found in

O(n3) time.
An immediate consequence of the preceding propositions and their proofs is as follows.

Corollary 1. Algorithm 1, i.e. the proposed schedule updating game with compensations,
terminates in a finite number of iterations.

Observe that a local optimum of the problem P ||
∑
wjUj in the neighborhood defined

such that a neighbor of a given schedule is obtained from this schedule by moving a single
job to complete earlier, is an EQ. Furthermore, an EQ is a local optimum in the defined
neighborhood if m = 1. If m ≥ 2, then an EQ may not be a local optimum, because
even a non-eligible move of a job to another machine can decrease the function

∑n
j=1wjUj

due to the possible cost decrease of the jobs sequenced after it. For m = 1, the studied
schedule updating game is an exact potential game because the change of loss of any client
as a result of applying its eligible local strategy is equal to the change of the total loss∑n

j=1 Fj =
∑n

j=1wjUj , which satisfies the definition of a potential function [38]. For m ≥ 2,
the studied problem is a generalized ordinal potential game because the loss decrease of any
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client as a result of applying its eligible local strategy implies a decrease of the total loss
but not vice versa.

The following section elaborates more on the question of whether it is possible to find
an EQ in polynomial time.

6. Computational Analysis

In this section, we will computationally analyze Algorithm 1. Most important, we aim
to analyze the question of whether or not the number of iterations of Step 3 of Algorithm 1
is significantly affected by the algorithm used in Step 2 of Algorithm 1. The importance of
this question stems from the fact that in potential applications (cf. Section 1.2) one typically
wants to avoid being faced with communication intensive processes.

6.1. An O(n2) Algorithm to Determine an EQ

The idea of the following Algorithm 2, which we refer to as WEDD (Weighted Earliest
Due Date, cf. also [39]), is based on the fact that there exists an optimal schedule to an
instance of P ||

∑
wjUj , such that the on-time jobs on each machine are sequenced in the

earliest due date (EDD) order and the late jobs follow on-time jobs on each machine (see
[40]). Here, the EDD order of jobs is such that a job with smaller due date appears in a
sequence on a machine earlier than a job with larger due date.

Algorithm 2 WEDD

Step 1 Initialize a list L by sorting all jobs according to their weights in non-increasing order,
breaking ties arbitrarily. Let L[j] denote the j-th element of L. Initialize an empty set
Searly
h of on-time jobs for each machine h ∈ M , an empty set Slate of late jobs, and an

empty auxiliary set Stemp. Set k := 1.

Step 2 If k = n+ 1, then perform Step 4. Else, set h := 1.

Step 3 If h = m + 1, then set Slate := Slate ∪ {L[k]}, k := k + 1 and perform Step 2. Else, set
Stemp := Searly

h ∪ {L[k]}. Construct an EDD sequence SEDD of the jobs in the set Stemp,
breaking ties arbitrarily. If all jobs of sequence SEDD are on time, then set Searly

h := Stemp,
k := k + 1 and go to Step 2. If at least one job of the sequence SEDD is late, then set
h := h+ 1 and repeat Step 3.

Step 4 Output a schedule S∗ = (S∗
1 , . . . , S

∗
m), which is constructed as follows. On-time jobs are

scheduled according to the EDD sequence of Searly
h on each machine h ∈ M . Afterwards,

late jobs of the set Slate are scheduled arbitrarily after the on-time jobs.

In the algorithm WEDD, the jobs are re-numbered in non-increasing order of their
weights. The common iteration of WEDD is as follows. A current job k is attempted to
be assigned as an on-time job to a current machine h, considering machines in the order
1, . . . ,m. The on-time jobs already assigned to h and job k are tentatively sequenced in
their EDD order. If all these jobs are on-time on machine h, then job k is classified as an
on-time job on machine h, and the common iteration repeats for job k+1. If at least one job
is late on machine h, then job k is attempted to be assigned as an on-time job to machine
h+ 1. If at least one job is late when trying to assign job k to any of the m machines, then
job k is classified as late, and the common iteration repeats for job k + 1. The algorithm
terminates after all jobs have been considered.

Since one iteration k of Step 2 of Algorithm 2, which includes at most m iterations of
Step 3, can be implemented to run in O(n) time, algorithm WEDD can be implemented to
run in O(n2) time.
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Proposition 5. Algorithm WEDD constructs an EQ.

Proof. Consider schedule S∗ determined by WEDD. Observe that moving an on-time job
to complete earlier in this schedule is not an eligible strategy because its scheduling cost is
zero, it cannot be decreased, and possible compensation payments to other jobs can only
decrease the utility of this job.

Consider a late job k ∈ J in the schedule S∗. It follows from the definition of WEDD
and the fact that the EDD sequence minimizes the maximum deviation of job completion
times from their due dates, that, if job k was moved to stand first on a machine or after any
of the jobs 1, . . . , k − 1 in the schedule S∗, then at least one of the jobs 1, . . . , k would be
late. If job j ≤ k − 1 was late, then compensation wj ≥ wk would have to be paid. If job
k itself was late, then the savings of client k would be zero. In either case, moving job k is
not an eligible strategy. We deduce that S∗ is an EQ.

Note that the social value F (S∗) of an EQ S∗ that is determined by WEDD may be
arbitrarily far away from F opt. To see this, assume the opposite, i.e. F (S∗) ≤ ∆ · F opt for
a given number ∆ < ∞ and any problem instance. Then WEDD could hypothetically be
used to solve the problem of recognizing

∑n
j=1wjUj = 0 in polynomial time, because for any

yes-instance of the latter problem it will produce an EQ S∗ with value F (S∗) ≤ ∆ · 0 = 0.
Since recognizing

∑n
j=1wjUj = 0 is an NP-complete in the strong sense problem for the

parallel machine environment [30], WEDD cannot do this, unless P = NP. This fact raises
another question to be answered by our computational tests, namely, whether the solutions
determined by Algorithm 1 when applying WEDD in Step 2 are of acceptable quality from
a practical point of view.

6.2. Computational Tests

We conducted a series of computational experiments on randomly generated instances
to analyze the quality of Algorithm 2 with respect to the social criterion

∑n
j=1wjUj when

being used in Step 2 of Algorithm 1. Algorithm 2 and all further algorithms that we will
describe in the following were implemented in C++. The computational experiments were
performed on a PC with 16 GB of memory and an Intel® Core™ i7 CPU, running at a
speed of 3.4 GHz. The operating system was Windows 8.1, 64 bit.

In order to generate benchmark solutions, we implemented twelve versions of Algorithm
1, i.e. the actual game mechanism suggested in Section 3. They differ in the way they
generate the initial schedule (Step 2 of Algorithm 1) and in the behavior of clients when
selecting an eligible move (Step 3 of Algorithm 1).

We consider six approaches of generating an initial schedule: random generation (de-
noted by rand), algorithm WEDD, a complete enumeration approach (denoted by enum)
that determines optimal schedules of the underlying scheduling problem P ||

∑
wjUj , and

three priority rule based approaches. These latter approaches first generate a sorted list of
all jobs based on a priority rule (see [41]), namely EDD, shortest processing times (SPT),
or weighted shortest processing times (WSPT). Based on this ordering, the jobs are then
iteratively assigned to the machines. In each iteration, the algorithm chooses a machine with
minimum load. In order to improve the readability of the following figures, we combine the
latter three approaches to an algorithm that sequentially executes the priority rule based
approaches and returns the overall best solution. We refer to this algorithm as prio.

With respect to Step 3 of Algorithm 1, we study two variants of the behavior of clients:

• Greedy clients: clients always pick a move with largest saving among their list of
eligible moves.
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• Randomly acting clients: clients randomly select a move out of their list of eligible
moves.

We additionally assume that the service provider applies a strategy with largest saving out
of the set of strategies that have been submitted by the clients. Algorithm 1 terminates
if no player has an eligible move different from “no move”, i.e. when an EQ is reached.
We denote the eight resulting variants of the game mechanism by gameinitSchedulebehavior , where
initSchedule ∈ {rand,WEDD, enum, prio} refers to the procedure of generating the initial
schedule, and behavior ∈ {greedy, random} refers to the behavior of the clients.

We generated two groups of test instances. The first group features small instances
with m ∈ [2, 3] and n ∈ [5, 20], for which we were able to generate optimal initial schedules
with respect to the social criterion

∑n
j=1wjUj with the complete enumeration approach.

The second group relates to large instances with m ∈ [2, 30] and n ∈ [20, 400], that we
could not solve to optimality. For both groups, processing times pj , weights wj , and due
dates dj , j ∈ J , were randomly drawn from uniform distributions over the intervals [1, 100],
[100, 200], and [pj , P/m], respectively, where P :=

∑n
j=1 pj . If pj > P/m for some j ∈ J ,

we set dj = pj .
For each pair of n and m, we generated a total of ten test instances. For each of the

resulting instance sets, we rate the performance of a specific variant of the schedule updating
game by calculating the arithmetic mean of the corresponding solution qualities, which are
defined as F ∗/F ′, where F ∗ is the total scheduling cost of the solution determined by the
specific variant of the game mechanism, and F ′ is the scheduling cost of the best solution
obtained by any of the considered algorithms. Note that the algorithms that apply complete
enumeration are solely considered in the first test set.

In our computational tests, all variants of the schedule updating game, except the ones
that apply the complete enumeration approach, terminated in less than 0.6 seconds, even for
the largest instances with n = 400 and m = 30. Hence, runtime comparisons of the distinct
procedures in Steps 2 and 3 of Algorithm 1 are of minor interest. Our major interest is to
analyze the number of iterations of Step 3, because the corresponding updating procedures
include potentially time consuming communication processes between the clients and the
operator. For our comparisons, we use the arithmetic mean of the number of iterations of
Step 3 for each set of instances.

We will first analyze the results for the small instances. In Figure 3, we plot the
algorithms’ corresponding average qualities over the number of jobs for instances with two
(Figure 3a) and three (Figure 3b) machines.

As to be expected, integrating the complete enumeration approach (gameenumgreedy and
gameenumrandom) results in the best overall solution quality. However, applying WEDD to
determine an initial schedule (gameWEDD

greedy and gameWEDD
random) results in fairly good solution

qualities. Moreover, in comparison to the random generation of initial solutions (gamerandgreedy

and gamerandrandom) and the priority rule based generation (gamepriogreedy and gamepriorandom), the
average solution quality degrades significantly slower when increasing the number of jobs.

Figure 4 plots the average number of iterations of Step 3 over the number of jobs for
instances with two (Figure 4a) and three (Figure 4b) machines.

The algorithms based on an initial schedule generated by WEDD or by complete enu-
meration clearly outperform gamerandgreedy and gamerandrandom as well as the priority rule based
algorithms. We believe that this is a result of Propositions 1 and 5, i.e. the fact that the
solutions determined by complete enumeration and WEDD are EQs. These solutions are
only slightly modified in Step 2 of the game mechanism, so that less iterations of Step 3 are
needed in order to restore the EQ.

We will now turn our attention to the large test instances. Figure 5 plots the corre-
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sponding results on the average solution quality.

40 80 120 160 200 240 280 320 360 400

1

3

5

7

9

11

13

n

So
lu

ti
on

qu
al

it
y

(a) 2 machines

40 80 120 160 200 240 280 320 360 400

1

2

3

4

5

6

n

So
lu

ti
on

qu
al

it
y

(b) 15 machines

40 80 120 160 200 240 280 320 360 400

1

2

3

4

n

So
lu

ti
on

qu
al

it
y

(c) 30 machines

0 0.2 0.4 0.6 0.8 1

0

0.5

1

n

gamerand
greedy gamerand

random

gameWEDD
greedy gameWEDD

random

gamepriogreedy gamepriorandom

Figure 5: Large test instances - solution quality

Again, generating initial schedules by using WEDD clearly pays off when compared
to random and priority rule based generation of initial schedules. The difference of these
strategies with respect to solution quality increases for larger ratios n/m. An interesting
detail is that, especially in the case of two machines, gamerandrandom, on average, results in
better solutions than gamerandgreedy. The same can be seen for gamepriorandom and gamepriogreedy.
This effect does not ocuur when using WEDD.

Figure 6 depicts the average number of iterations of Step 3 of Algorithm 1 over the
number of jobs for the large instances.

Again, the algorithms applying WEDD outperform the algorithms based on random
and priority rule based initial schedules. While, on average, gameWEDD

greedy and gameWEDD
random

need less than m iterations for all considered n, the number of iterations of Step 3 seems
to increase linear in n for the other considered variants of the algorithm. For the case of 30
machines (Figure 6c) and random generation of initial schedules, this results in more than
120 iterations for large n, and substantiates our believe that the game mechanism performs
best when carefully generating an initial schedule that is an EQ.

Summing up, even though the social value of an EQ determined by WEDD may theoret-
ically be arbitrarily far away from F opt, gameWEDD

greedy and gameWEDD
random result in high quality

solutions. Moreover, integrating WEDD into the game mechanism is well suited from a
practical perspective because it results in an appropriate level of communication between
operator and clients.
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7. Summary and Suggestions for Future Research

This paper has suggested a game decision mechanism for fully risk averse clients who
compete for the processing of their jobs not later than by their respective due dates in
a parallel machine environment. For any agent, due date violation implies a cost. The
mechanism aims at minimizing social cost, which is the sum of due date violation costs of
all clients. It includes compensations to clients who suffer from a decision of another client.
We have shown that the clients have no incentive to claim false due dates and costs when
the suggested game decision mechanism is applied. Furthermore, algorithmic aspects of the
mechanism have been analyzed. The price of stability is equal to one, the price of anarchy
is infinitely large. An O(n2) algorithm to find an EQ has been suggested. While the social
value of this EQ can be infinitely greater than the social optimum, computer experiments
have demonstrated that the game mechanism results in high quality solutions when applying
this algorithm. Furthermore, from a practical perspective, the resulting game mechanism
features an appropriate level of communication between operator and clients.

For future research, it is interesting to find financial rules ensuring that the clients are
truthful in case of accepting risky decisions. Furthermore, precedence relations on the set
of jobs are an interesting extension of the model, which requires additional investigation.
Finally, note that some of the results of this article carry over to other objective functions
that may be appropriate for other applications and may deserve a detailed investigation.
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