
An Exact Solution Approach for Scheduling Cooperative Gantry Cranes?

Dominik Kressa,∗, Jan Dornseiferb, Florian Jaehnc

aUniversity of Siegen, Management Information Science, Kohlbettstr. 15, 57068 Siegen, Germany
bTebis ProLeiS GmbH, Marburger Str. 3a, 57339 Erndtebrück, Germany

cHelmut Schmidt University - University of the Federal Armed Forces Hamburg, Institute for Management Science and
Operations Research, Holstenhofweg 85, 22043 Hamburg, Germany

Abstract

We consider a scheduling problem for two gantry cranes moving on the same rails at a single storage

block. Containers originating at the seaside have to be stored in the block and containers that are

already stored in the storage area at the beginning of the planning horizon have to be delivered to the

landside handover point within given time windows. Most commonly in seaport operations, the berthing

time of vessels is to be minimized. Thus, the objective considered in this article is to minimize the

makespan of seaside container processing while guaranteeing on-time processing of landside containers

and while considering non-crossing constraints among cranes. We allow preemption of seaside container

processing. This means that one crane may move a seaside container to an intermediate storage slot,

and the other crane takes it to its designated position. This has previously been shown to be an

effective method of reducing the makespan when compared to classical approaches. We present a

dynamic programming (DP) algorithm and a related beam search heuristic. The DP method makes

use of bounding techniques and applies dominance properties of optimal solutions. In computational

tests, we show that the DP approach clearly outperforms CPLEX and that it is able to quickly solve

instances with real-world yard settings. The beam search heuristic is shown to be capable of quickly

improving solutions of heuristic approaches that have previously been introduced in the literature.

This allows both algorithms to be applied in real-world online settings, where container data is revealed

incrementally.

Keywords: Scheduling, Container logistics, Seaport logistics, Twin cranes, Crane scheduling

1. Introduction

Standardized containers play a key role in the unitload-concept and have thus become an essential

part of modern logistics processes over the past decades (Stahlbock & Voß, 2008; Steenken et al., 2004).

∗Corresponding author
Email addresses: dominik.kress@uni-siegen.de (Dominik Kress), jan.dornseifer@tebisproleis.com (Jan

Dornseifer), florian.jaehn@hsu-hh.de (Florian Jaehn)

? This is an Accepted Manuscript of an article published by Elsevier in the European Journal of Operational Research

on 6 August 2018, available online: https://doi.org/10.1016/j.ejor.2018.07.043

c© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/

licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.ejor.2018.07.043
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Large transshipment terminals at seaports handle several million twenty-foot equivalent units (TEU)

on an annual basis. The Port of Rotterdam, for example, handled more than 12 million TEU in 2016

(Port of Rotterdam, 2017). It is therefore not surprising that port authorities strive for sophisticated

planning approaches based on simulation or optimization techniques in order to stay competitive.

In a typical scenario at a container port, inbound containers, i.e. containers arriving by vessel, are

unloaded by quay cranes upon the arrival of vessels at the berths. The containers are then transported

to large storage areas, also referred to as blocks, by automated or non-automated vehicles. Starting

from seaside handover positions in front of the blocks, gantry cranes that span over the storage areas

then pick up the containers and transfer them to intermediate positions within the blocks, where they

are stored for further processing. Once the containers are requested at the landside, they must be

transported to landside handover points from their storage positions within the blocks by the blocks’

gantry cranes. Then, again, the containers are handled by vehicles and are finally loaded onto trains

or trucks. Outbound containers, i.e. containers that arrive by train or truck and have to be loaded onto

a vessel, process the same steps in reverse order. In addition to these two types of containers, there

exist containers that arrive by vessel and will be loaded onto another vessel, which implies that these

containers enter and leave the blocks on the seaside. These latter containers are usually referred to as

transit containers.

1.1. Related Literature and Contribution of this Article

There exists a vast amount of research articles that deal with operations research challenges arising

at container terminals in general and, in particular, regarding the processing of containers at seaports.

Comprehensive overviews on the former general perspective are provided by Steenken et al. (2004) and

Stahlbock & Voß (2008). A very broad survey of research in the field of ocean container transport is

presented by Lee & Song (2017). Literature reviews for berth allocation problems and the scheduling

of quay cranes are given by Bierwirth & Meisel (2010, 2015). In this article, however, we focus on

optimizing processes at the storage blocks. An excellent review on this topic has recently been given

by Carlo et al. (2014) so that we refer the interested reader to this article and the update of related

publications regarding the scheduling of gantry cranes within the storage area in Jaehn & Kress (2018).

Some papers have been published very recently. They include Gharehgozli et al. (2017), who use

simulation to evaluate cooperative twin cranes that use a “handshake area” for handing containers

over. Speer & Fischer (2017) compare different crane configurations within a storage block. Lashkari

et al. (2017) focus on to the unloading process of a vessel, but their work on cranes with spreaders that

are able to concurrently lift two containers is also relevant for storage blocks. Finally, a classification

scheme for crane scheduling with interference constraints, which can, amongst others, be applied to

seaport terminals and to rail terminals, is presented by Boysen et al. (2017). Following their scheme,

we will consider problem [1D,2,ends — pmtn, mvX,ri,δi,pos — Cmax] in this article. The entries in

2

this classification scheme refer to the following problem properties: storage positions of containers are

considered in one dimension, there are two cranes, and input and output containers only appear on

opposite sides of the block. Preemption is allowed, cranes move at constant speed, release times and

deadlines are considered, there are predefined initial positions of the cranes, and finally, the objective

is to minimize the schedule length (makespan).

More specifically, we focus on a specific gantry crane setting with two cranes spanning over a single

storage block. It is referred to as the twin system (Kemme, 2012) and is depicted in Figure 1. The

seaside landside

seaside
crane

landside
crane

container storage

Figure 1: Schematic layout of a twin system (Jaehn & Kress, 2018)

storage area is enclosed by the seaside and landside handover points. The gantry cranes are identical,

rail mounted, and share the same tracks for their horizontal movement along the long side of the block.

They therefore cannot pass each other, such that we have to take account of non-crossing constraints.

One of the cranes, the seaside crane, is responsible for serving the seaside and the other one, the landside

crane, must serve the landside. The cranes are equipped with a spreader that allows for lifting and

dropping the containers. Usually, during lifting and dropping, no concurrent movements of the container

are possible. However, when a crane moves horizontally, the spreader can simultaneously move along

the short (vertical) side of the block. Additionally, the block is usually very long but not very wide

so that the spreader is typically fast enough to complete its positioning during the crane’s horizontal

movement. Therefore, these vertical moves will be neglected in our considerations by assuming the slots

of the storage block to be arranged along a single straight line (see Section 2 for details), as it is often

done in other approaches for container terminals (e.g. Ehleiter & Jaehn, 2016; Kovalyov et al., 2018).

The workload of the cranes varies significantly over time. We focus on critical time periods in which

vessels have to be unloaded and the major objective of port authorities is the minimization of dwell

times of vessels at the berth. The problem of loading a vessel is of similar nature and the methods

proposed here can similarly be applied to the loading problem. However, for ease of description and

considering the fact that in European ports a much larger volume of goods is imported than exported,

we neglect the loading problem. In the aforementioned peak times, containers that have to be unloaded

from a vessel are usually assigned highest priority and the seaside crane of a relevant twin system stores

containers in its block nonstop while the landside crane performs other tasks, e.g. delivering inbound

containers to the landside handover point. However, as observed by Briskorn et al. (2016), it might

3

be beneficial to allow the seaside crane to move inbound containers only part of the way to so-called

handover storage positions and let the landside crane finish the transportation of these containers to

their target slots within the block, i.e. allow the cranes to cooperate. The authors restrict their analysis

to containers that originate at the seaside and have to be stored in the block (seaside containers). When

the sequence of seaside containers is given, they refer to this setting as the preemptive crane scheduling

problem with a given unloading sequence (PCSP-S). In Jaehn & Kress (2018), this analysis is extended

by including additional hinterland traffic, i.e. containers that are already stored in the block at the

beginning of the planning horizon and that have to be delivered to the landside handover point by the

landside crane within given time windows (landside containers). In line with Briskorn et al. (2016),

the authors refer to this problem as the PCSP-SL, where the L indicates the existence of landside

containers. The authors show that finding a feasible solution to an instance of PCSP-SL is NP-hard in

the strong sense. Furthermore, a procedure to determine lower bounds and two heuristic algorithms are

presented. These heuristics extend an approach that was introduced by Briskorn et al. (2016) and that

makes use of the bucket brigade principle, which we illustrate in detail in Section 2.2. Based on these

algorithms and an extensive computational study, Jaehn & Kress (2018) show that cooperation might

reduce the makespan by more than 20% when compared to the situation in which seaside containers

are exclusively served by the seaside crane. The authors conclude that allowing cooperation of gantry

cranes may result in significant time savings when unloading vessels and should therefore be considered

by terminal operators when determining crane schedules.

Based on the observation that CPLEX performs very poorly for small instances of PCSP-S (see

Briskorn et al., 2016), it is the aim of this article to extend the aforementioned studies by presenting

a dynamic programming (DP) approach for PCSP-SL. Besides making use of bounding techniques,

this DP applies dominance properties of optimal solutions that we will introduce in this article. If the

resulting exact approach is able to solve small to medium sized instances to optimality, this will enable

us to better evaluate the quality of heuristic approaches. Furthermore, this might allow the DP to be

applied in real-world online settings of PCSP-SL, where container data is revealed incrementally. In

addition to our DP, we will contribute to the literature by introducing and evaluating a beam search

(BS) heuristic for PCSP-SL.

1.2. Overview of this Article

The remainder of this article is organized as follows. In Section 2, we will describe the problem setting

and, to keep the paper self-contained, briefly summarize the lower bounds and heuristics introduced

by Jaehn & Kress (2018), following their line of arguments. Next, in Section 3, we will introduce

dominance properties of optimal solutions of PCSP-SL. They will turn out useful when designing our

exact dynamic programming approach in Section 4. Computational results are presented in Section 5.

The paper closes with a conclusion in Section 6.

4

2. Preliminaries

We denote the cranes c of the considered twin system by c = w in case of the seaside crane and

c = l in case of the landside crane. As motivated in Section 1, the vertical extension of the storage

block is assumed to be one, and the slots (storage positions) s of the block are numbered consecutively

from 0 to S + 1 (see Figure 2). Slots 0 and S + 1 represent the seaside and landside handover points

(input/output, I/O, points), respectively. The cranes must not be located in the same slot at any time

instant. For ease of description, we do not consider safety distances between the cranes. Note, however,

that they can be incorporated into the presented methods. Moreover, we do not consider stacking

constraints and we do not take limited storage capacities of the slots into account, but assume that the

capacities are sufficiently large throughout the planning horizon.

s = 0 s = 1 s = 2 . . . s = S
s =

S + 1

crane c = w

init. pos. σw

crane c = l

init. pos. σl

seaside containers

(ordered):

I = {w1, . . . , wn}

target slot (wi ∈ I):
si ∈ {1, . . . , S + 1}

landside containers:

J = {l1, . . . , lm}

source slot (lj ∈ J):

aj ∈ {1, . . . , S}
earl. finish time (lj ∈ J):

rj ∈ N
deadline (lj ∈ J):

dj ∈ N

Seaside Landside

container flow

Figure 2: Problem setting and notation (Jaehn & Kress, 2018)

We assume that the considered time horizon is divided into a finite number of intervals [t − 1, t],

t = 1, 2, . . ., of equal length. Interval [t− 1, t], t = 1, 2, . . ., is also referred to as time slot t. The length

of a time slot is referred to as a time unit and is defined to correspond to the time needed by a crane

to move from a given slot to a neighboring slot. All time parameters in the remainder of this paper are

assumed to be integral multiples of a time unit and are therefore specified by natural numbers. The

number of time units required to lift (pick up) or drop a container while not moving between slots is

denoted by p ∈ N.

We restrict ourselves to considering containers that enter the storage block on the seaside and leave

the block on the landside, i.e. we consider an unidirectional flow of inbound containers, with a total of

n seaside containers originating at the seaside (slot 0) and m landside containers having to be moved

to the landside (slot S + 1). The sets of seaside containers and landside containers are denoted by

I = {w1, . . . , wn} and J = {l1, . . . , lm}, respectively. The set I is assumed to be ordered with respect

to a given pick-up sequence, i.e. container wi ∈ I must be picked up and moved to a slot s > 0 by the

seaside crane before container wj ∈ I \ {wi}, j > i, can be picked up. Each seaside container wi ∈ I is

associated to one parameter, namely a target slot si ∈ {1, . . . , S + 1}, where it must be dropped. Each

landside container lj ∈ J has multiple associated parameters:

• A source slot aj ∈ {1, . . . , S} where it originates from, i.e. where it must be lifted.

• An earliest time slot rj ∈ N (earliest finish time) at the end of which it may be dropped in slot

5

S+ 1. The landside crane may start processing a landside container before its earliest finish time

at the cost of potentially having to wait at the landside handover point, e.g. because the receiving

truck has not yet arrived.

• A latest time slot dj ∈ N (deadline) at the end of which it must be dropped in slot S + 1.

The latter two parameters rj and dj define the time window [rj , dj] of landside container lj ∈ J .

We allow preemption of seaside container processing, i.e. the seaside crane may move a seaside

container part of its way, while the landside crane takes it to its target slot. However, we assume that

each seaside container may be processed at most once by each crane. A preempted container is referred

to as a handover container. Landside containers may only be processed by the landside crane.

A crane schedule is defined by the positions xc,t of both cranes c ∈ {w, l} at all time instants t of the

time horizon as well as the cranes’ operations in the respective time slots. The initial locations of the

cranes are denoted by σw = xw,0 ∈ {0, . . . , S} and σl = xl,0 ∈ {1, . . . , S + 1} with σw < σl. Each crane

performs exactly one operation in a given time slot. Table 1 illustrates the potential crane operations

as well as the notation used to denote these operations in the remainder of this paper.

Table 1: Potential operations of crane c ∈ {w, l} in interval [t− 1, t]

operation symbol position description

move left ← xc,t = xc,t−1 − 1 c is moving left

move right → xc,t = xc,t−1 + 1 c is moving right

lift ↑ xc,t = xc,t−1 c is in the process of lifting a container

drop ↓ xc,t = xc,t−1 c is in the process of dropping a container

wait ◦ xc,t = xc,t−1 c is not moving and neither lifting nor dropping a container

Given a crane schedule, the position (slot) of seaside container wi ∈ I in the storage area at time

instant t is denoted by yi,t. Similarly, zj,t denotes the position of landside container lj ∈ J at time

instant t. Moreover, a crane is referred to as loaded (unloaded) at time instants t, . . . , t′ if it lifts (drops)

a container in time slots t− p+ 1 to t and drops (lifts) this very (the next) container in time slots t′+ 1

to t′ + p. Additionally, a crane is referred to as unloaded at the beginning of the planning horizon,

i.e. from time instant 0 until it starts lifting the first container. In all other time instants, the crane is

neither considered being loaded nor unloaded. A crane that is loaded (unloaded) at time instants t− 1

and t, t > 0, is said to be loaded (unloaded) in time slot t.

As outlined above, port authorities mainly focus on minimizing dwell times of vessels, so that we aim

at finding a feasible crane schedule that minimizes the makespan Cmax of seaside container processing

(seaside makespan), i.e. the earliest time instant at which all seaside containers have been dropped

in their target slots. With respect to the landside containers, we assume that a crane schedule is

feasible if all landside containers with deadlines less or equal to Cmax, i.e. all containers of the set

JCmax := {lj ∈ J |dj ≤ Cmax}, are dropped off on time. Furthermore, as infeasibility should not occur

right after Cmax in practical applications, a solution is only considered being feasible if a next landside

container ljnext , j
next ∈ arg minlj∈J\JCmax dj , can be dropped off on time.

6

A mixed-integer program for PCSP-SL is presented in Appendix A.

2.1. Lower Bounds

For a given number h of handover containers, Jaehn & Kress (2018) introduce two lower bounds on

the seaside makespan of an instance of PCSP-SL. LB(h) is based on approximating the total number

of lifts and drops as well as the total distance that must be covered by both cranes. LB(sea)(h), on

the other hand, does not take the landside crane into account. It solely bounds the seaside crane’s

workload from below. LB(h) is increasing in h, i.e. LB(0) is a general lower bound, and LB(sea)(h)

is non-increasing in h, i.e. LB(sea)(n) is a general lower bound. Given these bounds, the authors then

present an algorithm that determines a general lower bound based on the following idea. LB(h) is

loose if LB(sea)(h) is larger than LB(h). Moreover, LB(h + 1) is a general lower bound if LB(sea)(h)

is larger than LB(h + 1). Hence, a lower bound can be computed by successively incrementing the

number h of handover containers until either LB(sea)(h) ≤ LB(h), so that LB(h) is a lower bound, or

solely LB(sea)(h) ≤ LB(h + 1), so that LB(sea)(h) is a lower bound. Additionally, if sn 6= S + 1 in an

instance of PCSP-SL, then there exists an optimal solution with at most n − 1 handover containers.

These ideas are summarized in the following algorithm (as presented by Jaehn & Kress, 2018).

Algorithm 1 (Determine Lower Bound)

0. Initialization: Set LB := 0, LB∗ := 0, and h := 0.

1. Bound on h: If h < n− 1 and LB(h+ 1) < LB(sea)(h), then h := h+ 1 and go to Step 1.

If LB(h) < LB(sea)(h), then LB := LB(sea)(h), else LB := LB(h)

2. Iteration: If LB∗ ≥ LB, then stop. Else, set LB∗ := LB, h := 0 and go to Step 1.

Note that one can easily construct a modified version of Algorithm 1 that allows being applied to

partial solutions in which the crane schedule is fixed up to some given time instant.

2.2. Bucket Brigade Heuristics

Jaehn & Kress (2018) present two heuristic approaches for PCSP-SL. Both approaches extend an

algorithm for PCSP-S that was introduced by Briskorn et al. (2016) and makes use of the bucket brigade

principle: The seaside crane moves left to slot 0 and picks up the next seaside container (if existent)

whenever it is unloaded. When being loaded, it moves right and either drops the container upon having

reached its target slot, or, if the non-crossing constraints prohibit further moves to the right, it drops

the container for immediate handover. If the landside crane is unloaded and not lifting or dropping a

container, it moves left until it meets the seaside crane. It then potentially waits and afterwards moves

left to pick up the handover container that was dropped by the seaside crane because of having met

the landside crane. The landside crane then delivers this container to its target slot.

Both extensions of the bucket brigade principle by Jaehn & Kress (2018) dynamically update the

set of landside containers that must still be served within the planning horizon by applying the lower

bound determined by Algorithm 1. They differ in their strategy of how to handle those containers.

7

In the simple bucket brigade (SB) approach, the decision of whether the landside crane continues

bucket brigade, i.e. potentially processes a handover container, or interrupts bucket brigade in order

to process a landside container, is initiated when the landside crane has dropped a container. If there

exists a landside container that can be served without having to wait in slot S + 1, this container

is prioritized over any seaside container. Once SB reaches an infeasible partial solution with a late

landside container, it applies a backtracking strategy that triggers an earlier abortion of the bucket

brigade mode to potentially be able to serve this landside container within its time window.

One of the drawbacks of SB is the fact that the prioritization of landside containers may result in

solutions with many unloaded moves of the landside crane. In a second variant of the bucket brigade

principle, referred to as the bundling bucket brigade (BB) procedure, Jaehn & Kress (2018) therefore

bundle landside containers for sequential processing. To do so, BB determines a landside container

with earliest deadline among the containers not yet served and initializes a bundle with this container.

It assumes that this container is dropped off in slot S + 1 right at its deadline. BB then adds all

landside containers to the bundle whose earliest finish times allow the landside crane to process the

bundle without waiting in slot S + 1 and without processing seaside containers in between. Next, a

time window for the bundle is computed. It includes all time instants at which the processing of the

bundle can be started so that the landside crane can sequentially process all containers of the bundle

without having to wait at the landside handover point. The bundle and its time window are potentially

modified when the landside crane finishes a dropping operation. The landside crane then starts serving

the bundle if this is possible within the time window or, if this is not the case, continues bucket brigade.

As before, when an infeasible partial solution is reached, a backtracking procedure is applied.

Additionally, as the landside crane cannot always process handover containers immediately after

they have been dropped off by the seaside crane when landside containers are present, SB and BB

apply specific rules on how to handle those containers (for details, see Jaehn & Kress, 2018).

3. Dominance Properties of Optimal Solutions

Even though there might exist more than one optimal solution to an instance of PCSP-SL, it is

sufficient to search for just one optimal solution. In the following, we will present properties of optimal

solutions that can be exploited to guide an algorithm that is restricted to exclusively search for this

solution. These properties, which might be rather intuitive at first glance, are of particular interest,

as optimal solutions might show counterintuitive characteristics. For example, there exist instances in

which the landside crane moves left while being loaded in every optimal solution (Jaehn & Kress, 2018).

For the sake of brevity, the proofs of the dominance properties are presented in Appendix B. Recall

that a crane that is in the process of lifting or dropping is neither considered to be loaded nor unloaded.

8

3.1. Dominance Properties for the Seaside Crane

The first three properties allow for focusing on optimal solutions in which the seaside crane stays as

close to its handover area as possible.

Consider an arbitrary instance of PCSP-SL with at least one feasible schedule. There always exists

an optimal solution with the following properties regarding the seaside crane:

Property 1. In every time slot t in which the seaside crane is unloaded, it either moves left (xw,t−1 =

xw,t + 1) or, if it is in slot 0 and has already processed all seaside containers, i.e. xw,t−1 = 0 and

yi,t−1 > 0 for all i ∈ {1, ..., n}, it waits (xw,t−1 = xw,t).

Property 2. If the seaside crane is loaded in time slot t it does not move left, i.e. xw,t−1 ≤ xw,t.

Property 3. If the seaside crane is loaded with some container wi ∈ I and located at the container’s

target slot at some time instant t − 1 (xw,t−1 = si), it immediately drops the container in time slots t

to t− 1 + p.

It follows from Property 3 that w.l.o.g. we may assume that dropping operations are never preceded

by waiting and that handover containers are always dropped in a slot left of their target slot.

3.2. Dominance Properties for the Landside Crane

We now turn our attention to dominance properties for the landside crane. Again, we focus on

solutions in which the landside crane is located as close to the seaside (i.e. it stays ‘left’) as possible.

We start by considering the case of the landside crane being unloaded.

Property 4. Let OPT be an optimal solution to an instance of PCSP-SL and let t be a time slot in

OPT with the landside crane being unloaded and with

1. xl,t−1 > xw,t (moving left is not prohibited by non-crossing constraint of cranes),

2. xl,t−1 > yi,t−1 for all wi ∈ I with yi,t−1 6= si (all seaside containers that have not yet reached their

target slot are located to the left of the landside crane),

3. xl,t−1 > S + 1 + 2p + t − rj for all lj ∈ J with zj,t−1 6= S + 1 (all landside containers that have

not yet been dropped by the landside crane may reach slot S + 1 at their respective earliest finish

time, even if the landside crane were to move left).

Then there exists an optimal solution in which the landside crane moves left in period t (xl,t−1 = xl,t+1).

Now consider an arbitrary instance of PCSP-SL with at least one feasible schedule. If the landside

crane is loaded with a landside container, we may assume that it moves right until it reaches the

handover area, i.e. there always exists an optimal solution with the following property:

Property 5. If the landside crane is loaded with a landside container lj ∈ J at time instant t − 1, it

either moves right in time slot t (xl,t−1 = xl,t − 1) or, if xl,t−1 = S + 1 and rj > t− 1 + p, it waits in

9

time slot t (xl,t−1 = xl,t), or, if xl,t−1 = S + 1 and rj ≤ t − 1 + p, it starts dropping the container in

time slot t.

As mentioned above, there exist instances in which the landside moves left while being loaded in

every optimal solution. However, we can restrict ourselves to assuming that this only happens if the

landside crane gives way to the seaside crane because, in case of the existence of at least one feasible

schedule, there always exists an optimal solution with the following properties:

Property 6. For every time slot t in which the landside crane is loaded with a seaside container

wi ∈ I and in which it waits (xl,t−1 = xl,t), both cranes are in neighboring slots at time instant t, i.e.

xw,t = xl,t − 1.

Property 7. For every time slot t in which the landside crane is loaded with a seaside container wi ∈ I
and in which it moves left (xl,t−1 = xl,t + 1), both cranes are in neighboring slots at time instants t and

t− 1, i.e. xw,t = xl,t − 1 and xw,t−1 = xl,t−1 − 1.

3.3. Dominance Properties for Both Cranes

Consider an arbitrary instance of PCSP-SL with at least one feasible schedule. There always exists

an optimal solution with the following properties:

Property 8. None of the cranes’ lifting or dropping operations are interrupted once they have started,

i.e. if a crane is lifting a container in time slot t and if it is not loaded at time instant t, then it

continues lifting this very container in time slot t+ 1.

Property 9. None of the cranes’ lifting operations are preceded by waiting, i.e. if a crane is lifting a

container in time slot t, then it has not been waiting in time slot t− 1.

3.4. Summary of the Properties

Consider a feasible schedule of an instance of PCSP-SL and denote a specific operation of the

set {↑, ↓,←,→, ◦} that is performed by a crane c in a given time slot t > 0 of this schedule by

oc,t. Furthermore, refer to the first succeeding operation of c that differs from the one in t within

the schedule as the follow-up operation of oc,t. For each crane, Table 2 depicts all pairs of follow-up

operations that are prohibited (marked by an asterisk) in optimal solutions that are not dominated by

the properties presented above. As, by definition, follow-up operations must differ from their preceding

operations, dashes mark pairs of identical operations which are not relevant for the table. Note that, in

addition to the above dominance properties, Table 2 includes some straightforward optimality criteria

and restrictions, e.g. the fact that a crane never drops a container in the same slot where it has been

lifted or that a loaded crane cannot lift a container. The table can of course be applied to PCSP-S as

well.

10

Table 2: Prohibited follow-up operations for PCSP-SL

operation seaside crane landside crane

↑ ↓ ← → ◦ ↑ ↓ ← → ◦
pick-up (↑) - ∗ ∗ - ∗ ∗ ∗
drop-off (↓) ∗ - ∗ ∗ -

move left (←)

loaded ∗ ∗ - ∗ ∗ ∗ - ∗ ∗
unloaded ∗ - ∗ ∗ -

move right (→)

loaded ∗ ∗ - ∗ ∗1 -

unloaded ∗ ∗ ∗ - ∗ ∗ -

wait (◦)
loaded ∗ ∗ ∗ - ∗ ∗1 ∗ -

unloaded ∗ ∗ ∗ ∗ - ∗ ∗ -

1: in case of landside containers

4. Bounded Dynamic Programming

The set of feasible solutions is drastically reduced if it is restricted to the solutions following the

dominance properties summarized in Table 2. We will make use of this reduction by presenting a

corresponding DP procedure that generates an optimal solution by successively assigning containers

and corresponding (potentially temporary) destination slots to the cranes. Within this algorithm, the

dominance properties will also be used for dissolving potential crane interferences in partial solutions.

Before presenting the details of the algorithm, we will illustrate the underlying definition of states and

the generation of the DP graph. We will then outline our methods of evaluating and fathoming states.

Finally, we will present a heuristic beam search procedure based on our DP algorithm.

4.1. Definition of States

Our DP procedure is based on successively assigning jobs to the cranes. In case of the seaside crane,

a job corresponds to the next available (or the currently processed) seaside container wi as well as a

destination slot, i.e. any potential handover slot, denoted by hi, or the target slot si. For the landside

crane, a job can be any landside container lj that has not yet been dropped in slot S+ 1 or any seaside

container wi that has not yet reached its target slot. In the latter case, the origin slot of wi is the

handover slot hi in which the seaside crane has dropped the container. If the container has not yet

been dropped by the seaside crane, we set hi = 0 for notational convenience. Note that we use the term

origin slot to generalize the terms seaside I/O, handover slot, and source slot. Similarly, destination

slot generalizes the terms landside I/O, handover slot, and target slot. This is summarized in Table 3.

Table 3: Origin and destination slots of containers

origin slot destination slot

seaside crane landside crane seaside crane landside crane

seaside container seaside I/O handover slot handover slot, target slot target slot

landside container - source slot - landside I/O

For our definition of states we make use of the fact that, once the next job to be processed by each

11

of the cranes has been assigned and when a priority rule in case of an interference is given, the cranes’

movements are easily computable based on the assumption that the cranes process their jobs as fast as

possible and by making use of the dominance properties of Section 3, until one of the cranes finishes

processing its assigned job. Hence, a state describes a situation in which at least one of the cranes

has just completed a job, i.e. has dropped the corresponding container in the destination slot, and is

therefore ready to process a new container. In this context, we define a crane to be active at time

instant t, if at least one of the following is true:

• The crane is loaded at time instant t.

• The crane is lifting a container in time slot t.

• The crane is dropping a container in time slot t without being unloaded at time instant t.

This gives rise to our definition of a state, which we denote by

(t, xw,t, xl,t, active, container, cw, listh, listl),

where, in addition to the notation introduced in Section 2, we define:

t ∈ {0, 1, . . .}: current time instant,

active ∈ {∅, w, l}: currently active crane,

container ∈ I × {←,→, ↓, ↑, ◦} × {0, . . . , p− 1} (if active = w): container processed by the seaside

crane in time slot t, including crane operation and counter on how many time units are left until

operation is finished (zero in case of operations ←, → and ◦),

container ∈ I ∪ J × {←,→, ↓, ↑, ◦} × {0, . . . , p− 1} (if active = l): container processed by the landside

crane in time slot t, including crane operation and counter on how many time units are left until

operation is finished (zero in case of operations ←, → and ◦),

cw ∈ {0, . . . , n}: counter on the number of seaside containers, the processing of which has not yet been

started by the seaside crane,

listh ⊆ I × {1, . . . , S − 1}: list of handover containers that have been dropped off by the seaside crane

but the processing of which has not yet been started by the landside crane, including their posi-

tions,

listl ⊆ J : list of landside containers, the processing of which has not yet been started by the landside

crane.

If no crane is active at time instant t, we define container = ∅. Hence, the initial state is denoted by

(0, σw, σl, ∅, ∅, n, ∅, J). Moreover, note that container never contains a drop operation with remaining

time zero because an unloaded crane is not active by definition.

12

4.2. The DP Graph

Given the initial state, w1 is the first container that has to be processed by the seaside crane. Because

of Property 3, we can assume w.l.o.g. that this container will be dropped off at s1 or at any slot further

to the left for handover, which results in a number of potential job assignments for the seaside crane.

The landside crane’s first job may be any seaside or landside container that has to be dropped at its

destination slot. For every resulting pair of job assignments to the cranes (which, by definition, include

or imply destination slots), at most two new states are derived in order to construct the DP graph. If no

interference arises, there is only one state transition. If there is an interference, two states are derived;

one giving priority to the landside crane and one giving priority to the seaside crane. In both cases,

each resulting state represents the situation in which the first one of the cranes finishes processing its

current job at the earliest possible time instant. Note that the landside crane will never be prioritized

if its next job corresponds to a handover container that is currently handled or that has not yet been

processed by the seaside crane.

4.2.1. On the Use of the Dominance Properties

Obviously, the potential number of states is extremely large. However, as indicated above, an

acceptable number of states is achieved by using the dominance properties of Section 3. Given a state

and the next job assignment to each of the cranes, it is then possible to make use of the properties to

easily compute time instants at which the cranes arrive at the origin slots, finish lifting, reach their

jobs’ destination slots, and finish dropping, whereby only a subset of feasible crane movements must be

considered. The follow-up state(s) can then be determined based on these computations without losing

the ability to determine an optimal solution in the overall process. This is illustrated in Example 1.

Example 1. Consider the state (t, 2, 3, ∅, ∅, n−1, ∅, {l1}) of an example instance of PCSP-SL with S = 6

and p = 4. Assume that we want to generate succeeding states based on assigning w2, with s2 = 1, to

the seaside crane and l1, with a1 = 2 and r1 = t+14, to the landside crane. Obviously, the corresponding

destination slots must be slot 1 and slot 7, respectively. Hence, there is no interference between the

cranes when immediately processing these jobs in accordance with the dominance properties. By

applying Properties 1, 8 and 9, we can assume that the seaside crane directly moves to the seaside

handover point and starts lifting w2 immediately. It is then loaded with w2 at time instant t+xw,t+p =

t+6. Similarly, based on Table 2, especially Properties 8 and 9, we may assume that the landside crane

moves to a1 and immediately lifts l1. It is therefore loaded at time instant t+(xl,t−a1)+p = t+5. Now,

by applying Properties 3 and 8, we can assume that the seaside crane will finish processing its assigned

job by directly moving to slot s2 and dropping the container, which is finished at (t+6)+s2+p = t+11.

Taking Properties 5 and 8 into account, we may furthermore assume that the landside crane immediately

moves to slot S+1, arrives at time instant (t+5)+(S+1−a1) = t+10, and drops l1, which is finished

at time instant t + 14. Hence, when comparing the times at which the cranes finish their assigned

13

jobs, the above job assignment results in one follow-up state with the landside crane being active, i.e.

(t+ 11, 1, S + 1, l, (l1, ↓, 3), n− 2, ∅, ∅).

The dominance properties can also be used to assist in detecting and dissolving interferences between

the cranes with respect to optimality, which is illustrated in the following example. Details on the

detection of interferences are presented in Appendix C.

Example 2. Consider a state (t, 7, 8, w, (wi, ↓, 3), n− i, {. . . (wk, 2), . . . }, {. . . }) in an example instance

of PCSL-SL with p = 4. Figure 3 presents an exemplary job assignment in which an interference

arises: the seaside crane finishes its current job (drop wi in slot 7) and the landside crane is assigned a

handover container wk at position 2 that shall be moved to its target slot sk = 7 (case a) or sk = 10

(case b). The interference arises in slot 7. If both cranes were to process their jobs immediately, the

seaside crane would finish processing wi in slot 7 at time instant t + 3 while the landside crane would

enter this slot at t + 1. As previously mentioned, it is therefore necessary to generate two succeeding

s = 0 s = 1 s = 2 . . . s = 6 s = 9 s = 10 . . .
s =

S + 1

w l

wi

(a)

(b)

Figure 3: Interference scenario

states based on prioritizing the cranes in order to dissolve the interference. Obviously, if the seaside

crane has priority, the landside crane must wait in slot 8 for 3 time units in cases (a) and (b). When

prioritizing the landside crane, an intuitive way of dissolving the interference is to make the seaside

crane interrupt the dropping operation, lift the container, and move left to slot 1 to give way to the

landside crane. This, however, may result in missing an optimal solution in the overall DP procedure

because the landside crane would have to wait for one time unit in slot 8 until the seaside crane has

finished lifting wi. Additionally, from a practical perspective, the energy consumption that is induced

by making the seaside crane move back and forth between slots 7 and 1 is avoidable. However, by

applying Properties 2, 3, and 8, we can assume that the seaside crane starts waiting in slot 1 at time

instant t− (p−3)− (xw,t−1) = t−7 before it enters slot 2 on its way to drop wi in slot 7, which allows

the landside crane to process its job without waiting. In order to determine the number of periods in

which the seaside crane waits, we must distinguish between cases (a) and (b). In case (b), the landside

crane drops wk to the right of slot 7, such that the seaside crane can move to the right as soon as the

landside crane has finished lifting wk in slot 2 and moves right. In case (a), we can assume that the

seaside crane waits for an additional p time units because the landside crane will block slot 7 when

dropping wk.

Additionally, by applying the properties it is also possible to recursively reconstruct concrete drive-

14

ways of the cranes when beginning with some state of the DP graph that corresponds to a feasible

(partial) solution.

4.2.2. Generating the DP Graph

The DP graph is generated recursively. For each state in which at most one crane is active, new

states are derived by iterating over all (pairs of) potential job assignments. Identical states are merged.

For each state with cw = 0, listh = ∅ and with container not relating to a seaside container, i.e. a

situation in which all seaside containers have reached their target slots, no further states are generated,

because it can easily be validated if it represents a feasible solution by checking whether the relevant

landside containers are or will be on time.

The generation of the DP graph is illustrated in the following example.

Example 3. Let S = 6, σw = 0, σl = 1, p = 4, n = 4, s1 = 2, s2 = 1, s3 = 5, s4 = 4,m = 1, a1 = 4, r1 =

26, d1 = 32. Figure 4 depicts some of the states of the corresponding DP graph. Each state is denoted

I (0,0,1,∅,∅,4,∅,{l1})

II (9,1,2,∅,∅,3,{(w1, 1)},{l1})

III (9,1,6,l,(l1,→, 0),3,{(w1, 1)},∅)

IV (10,2,3,∅,∅,3,∅,{l1})

V (10,2,7,l,(l1,→, 0),3,∅,∅)

(w1,w1∨w3∨w4,1)

(w1,l1,1)

(w1,w3∨w4,2)

(w1,l1,2)

VI (19,1,2,∅,∅,2,∅,{l1})

VII (19,1,2,∅,∅,2,{(w1, 1)},{l1})

VIII (19,1,7,l,(l1, ◦, 0),2,{(w1, 1)},∅)

(w2, w1, 1)
(w2, w3 ∨ w4, 1)
(w2, l1, 1)

(w2,l1,1)

IX (21,1,2,∅,∅,2,∅,{l1})

X (21,1,7,l,(l1, ◦, 0),2,∅,∅)

(w2,w3∨w4,1)

(w2,l1,1)

(w2,l1,1)

Figure 4: DP graph of Example 3

by a Roman numeral. Each transition is represented by a triple (wi ∈ I, wk ∈ I ∨ lj ∈ J, s ∈ S), with

wi indicating the container that is assigned to the seaside crane with destination slot s, and wk or lj

representing the container that is assigned to the landside crane. s can be any handover slot or the

target slot si of wi (if si 6= S + 1).

Starting from state I, the seaside crane must process w1 first. Based on Property 3, we can assume

that it has to be dropped in slot 1 (handover) or 2 (target slot). The landside crane’s job can be

any seaside container except w2 (as this must not be a handover container) or the landside job l1. If

the seaside crane is assigned container w1 and destination slot 1, there are three transitions with the

landside crane processing w1, w3 or w4, each resulting in state II. In Figure 4, these transitions are

combined to a single one. Furthermore, state III represents the case where the landside crane is assigned

l1. If the seaside crane’s job is to move w1 to its target slot, state IV corresponds to the landside crane

processing w3 or w4 and state V relates to the landside crane processing l1.

Given any of the states II–V, the seaside crane’s next job will be moving w2 to slot 1. States III and

V are succeeded by only one state (VIII and X, respectively) because the landside crane is still active

and there is no interference. In case of states II and IV, however, the landside crane is available for

15

processing a new container, such that there are multiple succeeding states generated by iterating over

the remaining job assignments, including both seaside and landside containers.

As we will illustrate in Section 4.4, states VII and IX are dominated by state VI and can thus be

fathomed.

Obviously, we will have to generate the complete graph in order to derive an optimal solution, which

is indicated by the dotted lines in Figure 4.

4.3. Evaluation of States

We now define a score that indicates how likely a given state in the DP graph results in an

improved solution. This score will later be used for a best-first search policy of the DP graph.

The objective of PCSP-SL is minimizing Cmax. Therefore, we could simply evaluate a state s =

(t, xw,t, xl,t, active, container, cw, listh, listl) by considering time t. However, a state with relatively small

t but also very little progress in handling the containers is certainly not promising. Hence, we use the

following simple measure of a state’s progress:

prog(s) :=

n−cw∑
i=1

(yi,t + 2p)− |listh|2p−

(p+ p′) if container = (wk ∈ I, ↑, p′),

p if container = (wk ∈ I,← ∨ → ∨◦, p′),

p′ if container = (wk ∈ I, ↓, p′),

0 else.

prog(s) approximately evaluates the portion of the total seaside workload that has already been com-

pleted. Note, however, that the progress of a state s may be overrated when using prog(s). This is

due to the fact that there exist instances of PCSP-S in which the landside crane moves left while being

loaded with a seaside container in every optimal solution (see Jaehn & Kress, 2018).

Example 3 (continued). In the example of Figure 4, we have prog(I) = 0, prog(II) = prog(III) = 1,

prog(IV) = prog(V) = 10, etc.

4.4. Dominance Relations Among States

In order to ensure a reasonable number of states in the DP graph, our DP algorithm checks dominance

relations among states.

Example 3 (continued). Consider the example of Figure 4. When comparing the states VI and VII,

we find that all properties but the list of handover containers that are waiting to be processed by the

landside crane are identical. It is therefore obvious that state VII is dominated and can be fathomed.

Similarly, when comparing states VI and IX, the properties are identical except for the time instant so

that state IX is dominated.

Consider two distinct states s = (t, xw,t, xl,t, active, container, cw, listh, listl) and s′ = (t′,

x′w,t′ , x
′
l,t′ , active′, container′, cw

′
, listh

′
, listl

′
) 6= s of the current DP graph during the runtime of the

16

DP procedure, and denote the variables introduced in Section 2 in state s′ by using an additional

prime. Furthermore, given any state s∗ = (. . . , container∗, . . .), define

p̄(s∗) :=

(p+ p′) if container∗ = (wk ∈ I ∨ lk ∈ J, ↑, p′),

p if container∗ = (wk ∈ I ∨ lk ∈ J,← ∨ → ∨◦, p′),

p′ if container∗ = (wk ∈ I ∨ lk ∈ J, ↓, p′),

0 else,

which denotes the remaining time needed for lifting and dropping the container that is related to

container∗ (if existent). We will now define five conditions, denoted by C1 to C5, with respect to s and

s′. If all of these conditions apply, we say that s dominates s′. Furthermore, s and s′ are then referred

to as a dominating state and a dominated state, respectively. The first three conditions, C1–C3, require

the processing of the containers in the dominating state to have progressed at least as much as in the

dominated state. Each of the conditions refers to a specific set of containers. C1 relates to seaside

containers, C2 takes account of landside containers, and C3 relates to handover containers:

C1: cw ≤ cw′ : All seaside containers the processing of which has been started by the seaside crane in

s′ have also started to be processed by the seaside crane in s.

C2: listl ⊆ listl
′
: All landside containers the processing of which has not yet been started in s have

also not yet been started to be processed in s′.

C3: All seaside containers wi ∈ I that have been dropped off by the seaside crane at yi,t < si in s, i.e.

that are included in listh, have also been dropped off for handover in s′ at yi,t or further to the

left.

C4 is intended to avoid lengthy case differentiations that are necessary if the seaside crane is currently

dropping a container in one of the considered states.

C4: If active = w then container 6= (. . . , ↓, . . .) and if active′ = w then container′ 6= (. . . , ↓, . . .):
The seaside crane does not currently drop a container in s or in s′.

Finally, C5 takes account of the time that has elapsed in the states. Most important, it makes sure

that the cranes in the dominating state are able to reposition within the time difference t′− t such that

they are located in favorable slots when compared to the positioning of the cranes in the dominated

state. This, of course, depends on the currently active cranes in the states, so that there are quite a

few cases to consider:

C5: One of the following is true:

1. active′ = ∅, and

(a) active = ∅, t ≤ t′ − |xl,t − x′l,t′ |, t ≤ t′ − (xw,t − x′w,t′), and

i. t < t′ − (xw,t − x′w,t′), or

17

ii.
∑

wi∈listh
′ yi,t >

∑
wi∈listh

′ y′i,t′ , or

iii. cw < cw
′
, or

iv. listl (listl
′
.

(b) active = w, sn−cw 6= S + 1, t ≤ t′ − |xl,t − x′l,t′ |, and

i. cw < cw
′
, and t ≤ t′ − (sn−cw − xw,t + p̄(s))− (sn−cw − x′w,t′), or

ii. cw = cw
′
, xw,t ≥ y′n−cw,t′ , and t < t′ − p̄(s)− (xw,t − x′w,t′), or

iii. cw = cw
′
, xw,t < y′n−cw,t′ , and t < t′ − (y′n−cw,t′ − xw,t + p̄(s))− (y′n−cw,t′

− x′w,t′).

(c) active = l with the landside crane processing a landside container lj ∈ listl
′
, and

i. t ≤ t′ − (xw,t − x′w,t′), and

ii. container = (lj , ↑ ∨ → ∨ ↓, p′), and

iii. rj ≤ t+ S + 1− xl,t + p̄(s), and

iv. t ≤ t′ − (2(S + 1)− xl,t − x′l,t′ + p̄(s)).

(d) active = l with the landside crane processing a seaside container wj that is included in

listh
′
, and

i. t ≤ t′ − (xw,t − x′w,t′), and

ii. t ≤ t′ − (|sj − xl,t|+ |sj − x′l,t′ |+ p̄(s)).

2. active′ = w, and

(a) active = ∅, and

i. t ≤ t′ − |xl,t − x′l,t′ |, and

ii. t < t′ + p̄(s′)− (xw,t − x′w,t′).

(b) active = w, t ≤ t′ − |xl,t − x′l,t′ |, and

i. cw = cw
′
, and t < t′ − |x′w,t′ − xw,t| − (p̄(s)− p̄(s′)), or

ii. cw < cw
′
, sn−cw 6= S + 1, and t ≤ t′ + p̄(s′)− (sn−cw − xw,t + p̄(s))− (sn−cw − x′w,t′).

(c) active = l, and

i. t < t′ + p̄(s′)− (xw,t − x′w,t′), and

ii. condition 1. c) ii.–iv. or 1. d) ii.

3. active′ = l, and

(a) active = ∅, t ≤ t′ − |xl,t − x′l,t′ |, and t ≤ t′ − (xw,t − x′w,t′).

(b) active = w, and condition 1. b).

(c) active = l, and

i. t < t′ − (xw,t − x′w,t′), and

ii. the cranes are processing the same container, and

iii. container = (wi ∈ I, . . .), and t ≤ t′ − |xl,t − x′l,t′ | − (p̄(s) − p̄(s′)), or container =

(lj ∈ J, . . .), and t ≤ t′ + (xl,t − x′l,t′)− (p̄(s)− p̄(s′)).

18

Whenever there exists a state s that dominates another state s′ within the DP graph, the latter

state can be fathomed. However, the DP graph can get very large so that the pairwise comparison of

a newly generated state with all existing states can be very time consuming. Hence, we store a list

best(t) of the most promising states concerning prog(s)/t for each potential time instant t and restrict

the algorithm to check dominance based on these lists only.

Note that, if s dominates one of its direct or indirect successors s′ in the current DP graph, then

there will always exists another successor ŝ 6= s′ of s that represents the constellation that caused the

dominance, so that the DP procedure does not lose its ability to find optimal solutions. The same holds

for the case of mutual exclusion of paths of the DP graph due to fathoming states in accordance with

the above dominance criteria.

4.5. The DP Algorithm

Our DP procedure makes use of the bucket brigade heuristics as well as the lower bounds summarized

in Sections 2.1 and 2.2. Given a state s, we denote the corresponding lower bound determined by

Algorithm 1 (in its adapted version for partial solutions) by LB∗(s). Additionally, our DP algorithm

uses a predetermined search policy for traversing the states of the DP graph. A policy P defines two

methods. push(P,S) adds a set S of states to the policy. pop(P) retrieves the next state to be

processed or an empty set if no more states are available. We have implemented a total of five search

policies. On the one hand, we use the traditional policies depth-first search (DFS) and breadth-first

search (BFS). On the other hand, we use a problem specific best-first search policy that we refer to as

prog search (PROG). It is based on sorting the states s in non-increasing order of their values prog(s)/t.

pop(PROG) always returns a state s with largest value prog(s)/t among all states that must still be

examined by the algorithm. Finally, we combine PROG with DFS and BFS (to DFS PROG and BFS

PROG) by sorting the set S of states in analogy to the PROG policy, before calling push(P,S) as in

DFS and BFS. Every search policy must provide a suitable data structure in the background. In case

of DFS, for example, the policy can be implemented as a last in first out (LIFO) stack, while a queue

is suitable for implementing BFS. When implementing PROG, one can use a sorted list.

We summarize the previous deliberations in the following algorithm.

Algorithm 2 (Bounded Dynamic Programming)

0. Initialize: Initialize an upper bound UB := ∞ and try to improve it using the bucket brigade

heuristics SB and BB. Let s = (0, σw, σl, ∅, ∅, n, ∅, J) be the initial state and push(P, {s}). Initial-

ize the DP graph G = (V := {s}, E := ∅) with vertex set V (states) and edge set E (transitions).

Furthermore, initialize empty lists best(t), t = 1, 2, . . ., to store promising states.

1. Pop from search policy: Pop the next state s := pop(P). If s = ∅, then stop. If LB∗(s) ≥ UB,

then go to Step 1. Let t be the current time instant of s and check if s is dominated by some

s′ ∈ best(t′), s 6= s′, for any t′ ≤ t. If this is the case, then go to Step 1.

19

2. Determine successors: Determine the set S of potential successors of s in the DP graph as de-

scribed in Section 4.2.

3. Build DP graph: For each s′ = (t′, x′w,t′ , x
′
l,t′ , active′, container′, cw

′
, listh

′
, listl

′
) ∈ S do:

3.1 Modify DP graph: Set boolean flag vis := false. If s′ ∈ V and s′ is not marked infeasible,

set E := E ∪ {(s, s′)} and go to Step 3.6. Else, if s′ ∈ V and s′ is marked infeasible, set

vis := true and E := E ∪ {(s, s′)}. Else, set V := V ∪ {s′} and E := E ∪ {(s, s′)}.

3.2 Feasibility: Check if all landside containers that have been dropped in S + 1 or that are

currently handled by the landside crane in s′ are or will be on time. If this is not the case,

go to Step 3.6.

3.3 New best solution: If cw
′

= 0, listh
′

= ∅, and if container′ does not relate to a seaside

container, then check solution for feasibility by checking if an additional landside container

ljnext (see Section 2) can be dropped off on time. If this is the case, potentially update UB

and go to Step 3.6. If infeasibility is detected, go to Step 3.6. If vis = true, go to Step 3.7.

3.4 Bounding: If LB∗(s′) ≥ UB, go to Step 3.6.

3.5 Update best states: If best(t′) = ∅ or prog(s′)/t′ ≥ prog(ŝ)/t′ for some ŝ ∈ best(t′), then

insert s′ into best(t′). If |best(t′)| > 5, eliminate a state with worst progress. Go to Step 3.7.

3.6 Remove successor: Set S := S \ {s′} (s′ is fathomed or was already existing).

3.7 Next successor: Continue Step 3.

4. Push to search policy: Add the remaining states in S to the search policy for further processing,

i.e. push(P,S), and go to Step 1.

Note that in Steps 3.2 and 3.6, Algorithm 2 might fathom a state because a landside container cannot

be dropped in slot S + 1 on time, even though this container may actually not have to be processed in

a succeeding feasible solution (see Section 1.1). In this case, however, the process of generating states

as outlined in Section 4.2 prevents the algorithm from missing a related optimal solution.

4.6. Beam Search

Due to the flexibility of Algorithm 2 with respect to the incorporation of different search policies, it

is easily possible to transform the exact DP algorithm into a beam search heuristic. In general, BS uses

a graph representation of the solution process and applies breadth-first search with a filtering process

to only expand the most promising nodes of the graph. It was first used by Lowerre (1976). A review

is provided by Sabuncuoğlu et al. (2008).

Our BS procedure for PCSP-SL combines the BFS policy in Algorithm 2 with a simple filtering

method that selects β states s with largest ratios prog(s)/t of the current level of the DP graph for

further consideration. All remaining states of a level are excluded from further consideration in the DP

20

algorithm. The parameter β is usually referred to as the beam width. The level of a state s is defined as

the length (in terms of the number of edges in the DP graph) of the shortest path from the initial state

to s when the state is first inserted into the DP graph in Step 0 or Step 3.2 of Algorithm 2. Details of

our BS implementation are presented in Appendix D.

5. Computational Study

In order to assess the performance and practical applicability of our DP algorithm and the corre-

sponding BS heuristic, we performed a comprehensive computational study that was driven by five

research questions, Q1–Q5, which we will evaluate in this section. All algorithms were implemented

in C ++ (Microsoft Visual Studio Professional 2013). The experiments were executed on a PC with

an Intel R© CoreTM i7-4770 CPU running at 3.4 GHz and 16 GB of RAM under a 64-bit version of

Windows 8.

Q1 and Q2 are concerned with the performance of the DP algorithm for small instances. Based on

a mixed-integer program that we extend to include landside containers in Appendix A, Briskorn et al.

(2016) find that “only the small instances [of PCSP-S] (|I| = 5, S = 5, and p = 1) could be solved to

optimality [by CPLEX 12.5 on a similar PC] within the time limit of 60 min.” The research questions

are as follows:

Q1: Can the DP procedure solve small instances of PSCP-SL to optimality in reasonable time?

Q2: Is the DP algorithm able to quickly solve instances of PCSP-S to optimality that are larger than

the ones solved by Briskorn et al. (2016) by using CPLEX?

Positive answers to Q1 and Q2 justify the existence of our DP procedure and are a prerequisite for

answering Q3 that seeks to investigate the practical applicability of the DP algorithm.

Q3: Is it possible to obtain optimal solutions or at least improve the results of the bucket brigade

heuristics for larger instance sizes of PCSP-S and PCSP-SL in adequate time?

Due to the computational complexity of PCSP-SL, we cannot expect the DP procedure to be able

to solve instances with hundreds of containers and large storage blocks to optimality. Hence, “larger

instance sizes” in the context of Q3 refers to real-world yard settings regarding S and p, but only few

containers. Such problem settings can, for instance, be realistic when considering an online setting of

PCSP-SL with the data for only a few containers being available when executing the algorithm (see, e.g.

Dorndorf & Schneider, 2010, for a similar online setting). Briskorn et al. (2016) provide data from the

Europe Container Terminals (ECT) at the port of Rotterdam for constructing real-world instances of

PCSP-SL. Here, a block is typically about 40 TEU long, which corresponds to S = 40 (see also Saanen

& Valkengoed, 2005), and cranes move along the block at a speed of around 3 meters per second so

21

that a time interval of PCSP-SL corresponds to roughly two seconds of real time. Furthermore, the

authors show that p = 20 is a realistic assumption.

Finally, Q4 and Q5 aim at analyzing the heuristic BS approach.

Q4: How does BS perform with respect to solution quality and runtime when using a cold start, i.e.

when omitting the calculation of an upper bound with the bucket brigade heuristics in Step 0 of

Algorithm 2?

Q5: Is it possible to (quickly) improve the results obtained by the bucket brigade heuristics using BS?

5.1. Instance Generation

As Q1 is of theoretical nature, we constructed relatively small instances in order to answer this

research question. This holds for both, the size of the storage yard and the number of containers

when compared to the real-world parameters. Table 4 depicts the parameter values that our testbed

regarding Q1 is based upon. For each combination of the parameter values of Table 4, we generated

Table 4: Parameters of PCSP-SL test instances for Q1 and Q4

fixed variable

σw S p σl n m

0 5, 7 1, 4, 6
⌈
S
2

⌉
5, 8, 10 1, 2, 4

3 test instances, which results in a total of 162 test instances. The same instances are used for our

analysis of Q4.

The parameter values of the test instances for Q2 and Q3 are presented in Table 5. We generated 10

Table 5: Parameters of PCSP-S and PCSP-SL test instances for Q2 and Q3

fixed variable

σw S p σl n
m

(PCSP-SL only)

0 5, 10, 15, 20, 40 1, 5, 10, 15, 20
⌊
S
2

⌋
5, 10, 15, 20

⌊
n
3

⌋

test instances for each combination of the parameter values, i.e. a total of 1,000 instances for PCSP-S

and another 1,000 instances for PCSP-SL. As mentioned above, some of these instances mimic real-

world yard settings regarding S and p with only few containers, which can be a realistic situation in

online settings of PSCP-S or PCSP-SL.

The parameters presented in Table 6 were used to generate instances for Q5. We generated 20 in-

Table 6: Parameters of PCSP-SL test instances for Q5

fixed variable

σw S p σl n m

0 20, 40 S
2

S
2

5, 10, 15
⌊
n
3

⌋

stances for each parameter combination, i.e. 120 instances in total. Again, these instances can represent

realistic situations in online settings of PCSP-SL.

22

The remaining parameters of the test instances were determined in analogy to Jaehn & Kress (2018),

i.e. they were randomly drawn from uniform distributions on the intervals depicted in Table 7, where

C̄sea = 2pn + Sn − S
2 is the expected seaside makespan when assuming that there exist no landside

containers and that preemption of jobs is not allowed. The parameters δr and δd were applied to

Table 7: Intervals of uniform distributions for generating the container data

si, wi ∈ I aj , lj ∈ J rj , lj ∈ J dj , lj ∈ J
[1, S + 1] [1, S] [0,

⌊
δr · C̄sea

⌋
] [rj ,

⌊
δd · δr · C̄sea

⌋
]

generate time windows for the landside jobs. As shown by Jaehn & Kress (2018), δr = 0.7 and δd = 1.3

result in a large share of completed landside jobs in heuristic solutions to instances of PCSP-SL, which

is why we have chosen these values for our computational tests.

We assume that all data is available at the beginning of the planning horizon throughout this

computational study. This is a realistic assumption in light of the fact that we restrict our attention

to instances with only a few containers. Within the planning process at seaports, PCSP-SL will, in

general, be embedded into higher level scheduling problems that successively provide short seaside

container sequences and a few container requests on the landside.

5.2. Results and Evaluation

The results of our computational study are presented in detail in the following sections.

5.2.1. Research Question Q1 - Small Instances

In order to assess the quality of our exact approach for the small test instances, we evaluated its

performance with the search policies DFS (depth-first search), BFS (breadth-first search), PROG (best-

first search based on the progress measure introduced in Section 4.3), as well as the hybrids DFS PROG

and BFS PROG, as presented in Section 4.5. We imposed a time limit of 45 minutes for each instance-

policy combination. The results are presented in Figure 5. Each boxplot (left ordinate) depicts the

Table 7: Intervals of uniform distributions for generating the container data

si, wi ∈ I aj , lj ∈ J rj , lj ∈ J dj , lj ∈ J

[1, S + 1] [1, S] [0,
⌊
δr · C̄sea

⌋
] [rj ,

⌊
δd · δr · C̄sea

⌋
]

5.2.1. Research Question Q1 - Small Instances

In order to assess the quality of our exact approach for the small test instances, we evaluated its

performance with all search policies presented in Section 4.5 and a time limit of 45 minutes for each

instance-policy combination. The results are presented in Figure 5. Each boxplot (left ordinate) depicts

DFS BFS PRO
G

DFS
PRO

G

BFS
PRO

G

0

20

40

60

80

search policy

ru
n
ti
m
e
[s
]

1773.4 1910.6 2516.2 2424.7 1656.3

0

20

40

60

80

100

so
lv
ed

[%
]

(a) Overall performance

DFS BFS PRO
G

DFS
PRO

G

BFS
PRO

G

0

50

100

150

search policy

ru
n
ti
m
e
[s
]

393.4 1256.1 2516.2 365.1 1308.8

0

2

4

6

8

10

d
et
ec
te
d
[#

]

(b) No feasible solution

Figure 5: Q1 results, all instances, time limit: 2700 s

the runtime performance of a given search policy over all instances that were solved to optimality

(Figure 5a, including the instances without a feasible solution) and that were proven to not have a

feasible solution (Figure 5b). It depicts the first quartile of the runtimes (bottom of the box), the third

quartile of the runtimes (top of the box), the median of the runtimes (dotted line within the box), the

minimum runtime (bottom whisker), and the maximum runtime (top whisker). As the top whiskers

lie outside of the coordinate systems for all boxplots, the maximum runtimes are additionally depicted

above the whiskers. Furthermore, squares inside the charts (right ordinate) of Figure 5 represent the

percentage of the instances that were solved to optimality (Figure 5a) and the number of instances that

were proven to not have a feasible solution (Figure 5b).

It can be concluded that, while relatively reliably detecting infeasibility, BFS and BFS PROG solve

the least instances to optimality and feature the worst runtime performance of all considered search

policies. We will therefore exclude these policies from our further analysis. Furthermore, with respect

to the overall performance and the ability to detect instances without a feasible solution, PROG clearly

outperforms DFS and DFS PROG. When using PROG, the DP solves more than 80% of the instances

to optimality, with 75% of these instances being solved in less than four seconds. The relatively large

maximum runtime of PROG in comparison to DFS and DFS PROG in Figure 5b is induced by the

additional instance that is proven to not have a feasible solution.

In analogy to Figure 5a, Figure 6 presents some more details by focusing on three subsets of instances

23

(a) Overall performance

Table 7: Intervals of uniform distributions for generating the container data

si, wi ∈ I aj , lj ∈ J rj , lj ∈ J dj , lj ∈ J

[1, S + 1] [1, S] [0,
⌊
δr · C̄sea

⌋
] [rj ,

⌊
δd · δr · C̄sea

⌋
]

5.2.1. Research Question Q1 - Small Instances

In order to assess the quality of our exact approach for the small test instances, we evaluated its

performance with all search policies presented in Section 4.5 and a time limit of 45 minutes for each

instance-policy combination. The results are presented in Figure 5. Each boxplot (left ordinate) depicts

DFS BFS PRO
G

DFS
PRO

G

BFS
PRO

G

0

20

40

60

80

search policy

ru
n
ti
m
e
[s
]

1773.4 1910.6 2516.2 2424.7 1656.3

0

20

40

60

80

100

so
lv
ed

[%
]

(a) Overall performance

DFS BFS PRO
G

DFS
PRO

G

BFS
PRO

G

0

50

100

150

search policy

ru
n
ti
m
e
[s
]

393.4 1256.1 2516.2 365.1 1308.8

0

2

4

6

8

10

d
et
ec
te
d
[#

]

(b) No feasible solution

Figure 5: Q1 results, all instances, time limit: 2700 s

the runtime performance of a given search policy over all instances that were solved to optimality

(Figure 5a, including the instances without a feasible solution) and that were proven to not have a

feasible solution (Figure 5b). It depicts the first quartile of the runtimes (bottom of the box), the third

quartile of the runtimes (top of the box), the median of the runtimes (dotted line within the box), the

minimum runtime (bottom whisker), and the maximum runtime (top whisker). As the top whiskers

lie outside of the coordinate systems for all boxplots, the maximum runtimes are additionally depicted

above the whiskers. Furthermore, squares inside the charts (right ordinate) of Figure 5 represent the

percentage of the instances that were solved to optimality (Figure 5a) and the number of instances that

were proven to not have a feasible solution (Figure 5b).

It can be concluded that, while relatively reliably detecting infeasibility, BFS and BFS PROG solve

the least instances to optimality and feature the worst runtime performance of all considered search

policies. We will therefore exclude these policies from our further analysis. Furthermore, with respect

to the overall performance and the ability to detect instances without a feasible solution, PROG clearly

outperforms DFS and DFS PROG. When using PROG, the DP solves more than 80% of the instances

to optimality, with 75% of these instances being solved in less than four seconds. The relatively large

maximum runtime of PROG in comparison to DFS and DFS PROG in Figure 5b is induced by the

additional instance that is proven to not have a feasible solution.

In analogy to Figure 5a, Figure 6 presents some more details by focusing on three subsets of instances

23

(b) No feasible solution

Figure 5: Q1 results, all instances, time limit: 2,700 s

runtime performance of a given search policy over all instances that were solved to optimality (Figure

23

5a, including the instances without a feasible solution) and that were proven to not have a feasible

solution (Figure 5b). It depicts the first quartile of the runtimes (bottom of the box), the third quartile

of the runtimes (top of the box), the median of the runtimes (dotted line within the box), the minimum

runtime (bottom whisker), and the maximum runtime (top whisker). As the top whiskers lie outside

of the coordinate systems for all boxplots, the maximum runtimes are additionally depicted above the

whiskers. Note that the boxplots solely consider instances which are solved within the time limit of

2,700 s, so that the maximum runtimes are smaller than 2,700 s. Furthermore, squares inside the charts

(right ordinate) of Figure 5 represent the percentage of the instances that were solved to optimality

(Figure 5a) and the number of instances that were proven to not have a feasible solution (Figure 5b).

It can be concluded that, while relatively reliably detecting infeasibility, BFS and BFS PROG solve

the least instances to optimality and feature the worst runtime performance of all considered search

policies. We will therefore exclude these policies from our further analysis. Furthermore, with respect

to the overall performance and the ability to detect instances without a feasible solution, PROG clearly

outperforms DFS and DFS PROG. When using PROG, the DP solves more than 80% of the instances

to optimality, with 75% of these instances being solved in less than four seconds. The relatively large

maximum runtime of PROG in comparison to DFS and DFS PROG in Figure 5b is induced by the

additional instance that is proven to not have a feasible solution.

In analogy to Figure 5a, Figure 6 presents some more details by focusing on three subsets of instances

with n = 5 and m = 1 (Figure 6a), n = 8 and m = 2 (Figure 6b), and n = 10 and m = 4 (Figure 6c).

As can be seen from these figures, our DP performs well for the Q1 test instances as long as the number

with n = 5 and m = 1 (Figure 6a), n = 8 and m = 2 (Figure 6b), and n = 10 and m = 4 (Figure 6c).

As can be seen from these figures, our DP performs well for the Q1 test instances as long as the number

DFS PRO
G

DFS
PRO

G

0

0.02

0.04

0.06

search policy

ru
n
ti
m
e
[s
]

99.1 20.6 23.8

0

20

40

60

80

100

o
p
ti
m
a
l
[%

]

(a) n = 5, m = 1

DFS PRO
G

DFS
PRO

G

0

10

20

30

40

search policy

ru
n
ti
m
e
[s
]

365.8 690.6 2309.6

0

20

40

60

80

100

o
p
ti
m
a
l
[%

]

(b) n = 8, m = 2

DFS PRO
G

DFS
PRO

G

0

500

1,000

1,500

2,000

2,500

search policy

ru
n
ti
m
e
[s
]

0

20

40

60

80

100

o
p
ti
m
a
l
[%

]

(c) n = 10, m = 4

Figure 6: Q1 results, grouped by instance size, time limit: 2700 s

of containers remains sufficiently small. Again, PROG can be identified to be the search strategy with

the best overall performance.

Summing up, the PROG policy seems most appropriate amongst the strategies presented in this

article. Furthermore, we can conclude that dynamic programming in combination with bounding

techniques and dominance relations is well suited for solving small instances of PCSP-SL in a reasonable

amount of time in the context of the problem’s computational complexity. Q1 can therefore be positively

answered. The question of whether or not our DP also outperforms CPLEX is answered in the next

section.

5.2.2. Research Questions Q2 and Q3 - Large Instances

For research questions Q2 and Q3, we restricted ourselves to using the PROG policy. The time

limit was set to 10 minutes, as Q2 and Q3 aim to analyze the potential of using the proposed DP in

real-world settings. Below, we will additionally present results for a larger time limit of 45 minutes.

The results are given in Tables 8 (PCSP-S instances) and 9 (PCSP-SL instances). For each set of test

instances with given S, p, and n, the tables depict the percentage of instances that were solved to

optimality (column opt.) within the time limit, the average computational time needed to compute the

optimal solutions (column tavg), and the percentage of instances for which the solution determined by

the bucket brigade heuristics in Step 0 of Algorithm 2 was improved (column impr.).

It turns out that our DP procedure performs significantly better than CPLEX, which has shown to

only be able to solve very small instances (n = 5, S = 5, p = 1) of PCSP-S to optimality within a time

limit of 60 minutes by Briskorn et al. (2016). In contrast to these results, we can now quickly solve

instances with up to 40 slots, realistic lift and drop times, and few landside containers to optimality,

both for PCSP-S and PCSP-SL. As to be expected, the incorporation of landside containers results in

larger running times and a smaller share of instances than can be solved to optimality. However, there

24

(a) n = 5, m = 1

with n = 5 and m = 1 (Figure 6a), n = 8 and m = 2 (Figure 6b), and n = 10 and m = 4 (Figure 6c).

As can be seen from these figures, our DP performs well for the Q1 test instances as long as the number

DFS PRO
G

DFS
PRO

G

0

0.02

0.04

0.06

search policy

ru
n
ti
m
e
[s
]

99.1 20.6 23.8

0

20

40

60

80

100

o
p
ti
m
a
l
[%

]

(a) n = 5, m = 1

DFS PRO
G

DFS
PRO

G

0

10

20

30

40

search policy

ru
n
ti
m
e
[s
]

365.8 690.6 2309.6

0

20

40

60

80

100

o
p
ti
m
a
l
[%

]

(b) n = 8, m = 2

DFS PRO
G

DFS
PRO

G

0

500

1,000

1,500

2,000

2,500

search policy

ru
n
ti
m
e
[s
]

0

20

40

60

80

100
o
p
ti
m
a
l
[%

]

(c) n = 10, m = 4

Figure 6: Q1 results, grouped by instance size, time limit: 2700 s

of containers remains sufficiently small. Again, PROG can be identified to be the search strategy with

the best overall performance.

Summing up, the PROG policy seems most appropriate amongst the strategies presented in this

article. Furthermore, we can conclude that dynamic programming in combination with bounding

techniques and dominance relations is well suited for solving small instances of PCSP-SL in a reasonable

amount of time in the context of the problem’s computational complexity. Q1 can therefore be positively

answered. The question of whether or not our DP also outperforms CPLEX is answered in the next

section.

5.2.2. Research Questions Q2 and Q3 - Large Instances

For research questions Q2 and Q3, we restricted ourselves to using the PROG policy. The time

limit was set to 10 minutes, as Q2 and Q3 aim to analyze the potential of using the proposed DP in

real-world settings. Below, we will additionally present results for a larger time limit of 45 minutes.

The results are given in Tables 8 (PCSP-S instances) and 9 (PCSP-SL instances). For each set of test

instances with given S, p, and n, the tables depict the percentage of instances that were solved to

optimality (column opt.) within the time limit, the average computational time needed to compute the

optimal solutions (column tavg), and the percentage of instances for which the solution determined by

the bucket brigade heuristics in Step 0 of Algorithm 2 was improved (column impr.).

It turns out that our DP procedure performs significantly better than CPLEX, which has shown to

only be able to solve very small instances (n = 5, S = 5, p = 1) of PCSP-S to optimality within a time

limit of 60 minutes by Briskorn et al. (2016). In contrast to these results, we can now quickly solve

instances with up to 40 slots, realistic lift and drop times, and few landside containers to optimality,

both for PCSP-S and PCSP-SL. As to be expected, the incorporation of landside containers results in

larger running times and a smaller share of instances than can be solved to optimality. However, there

24

(b) n = 8, m = 2

with n = 5 and m = 1 (Figure 6a), n = 8 and m = 2 (Figure 6b), and n = 10 and m = 4 (Figure 6c).

As can be seen from these figures, our DP performs well for the Q1 test instances as long as the number

DFS PRO
G

DFS
PRO

G

0

0.02

0.04

0.06

search policy

ru
n
ti
m
e
[s
]

99.1 20.6 23.8

0

20

40

60

80

100

o
p
ti
m
a
l
[%

]

(a) n = 5, m = 1

DFS PRO
G

DFS
PRO

G

0

10

20

30

40

search policy

ru
n
ti
m
e
[s
]

365.8 690.6 2309.6

0

20

40

60

80

100

o
p
ti
m
a
l
[%

]

(b) n = 8, m = 2

DFS PRO
G

DFS
PRO

G

0

500

1,000

1,500

2,000

2,500

search policy

ru
n
ti
m
e
[s
]

0

20

40

60

80

100
o
p
ti
m
a
l
[%

]

(c) n = 10, m = 4

Figure 6: Q1 results, grouped by instance size, time limit: 2700 s

of containers remains sufficiently small. Again, PROG can be identified to be the search strategy with

the best overall performance.

Summing up, the PROG policy seems most appropriate amongst the strategies presented in this

article. Furthermore, we can conclude that dynamic programming in combination with bounding

techniques and dominance relations is well suited for solving small instances of PCSP-SL in a reasonable

amount of time in the context of the problem’s computational complexity. Q1 can therefore be positively

answered. The question of whether or not our DP also outperforms CPLEX is answered in the next

section.

5.2.2. Research Questions Q2 and Q3 - Large Instances

For research questions Q2 and Q3, we restricted ourselves to using the PROG policy. The time

limit was set to 10 minutes, as Q2 and Q3 aim to analyze the potential of using the proposed DP in

real-world settings. Below, we will additionally present results for a larger time limit of 45 minutes.

The results are given in Tables 8 (PCSP-S instances) and 9 (PCSP-SL instances). For each set of test

instances with given S, p, and n, the tables depict the percentage of instances that were solved to

optimality (column opt.) within the time limit, the average computational time needed to compute the

optimal solutions (column tavg), and the percentage of instances for which the solution determined by

the bucket brigade heuristics in Step 0 of Algorithm 2 was improved (column impr.).

It turns out that our DP procedure performs significantly better than CPLEX, which has shown to

only be able to solve very small instances (n = 5, S = 5, p = 1) of PCSP-S to optimality within a time

limit of 60 minutes by Briskorn et al. (2016). In contrast to these results, we can now quickly solve

instances with up to 40 slots, realistic lift and drop times, and few landside containers to optimality,

both for PCSP-S and PCSP-SL. As to be expected, the incorporation of landside containers results in

larger running times and a smaller share of instances than can be solved to optimality. However, there

24

(c) n = 10, m = 4

Figure 6: Q1 results, grouped by instance size, time limit: 2,700 s

of containers remains sufficiently small. Again, PROG can be identified to be the search strategy that

performs best.

Summing up, the PROG policy seems most appropriate amongst the strategies presented in this

article. Furthermore, we can conclude that dynamic programming in combination with bounding

techniques and dominance relations is well suited for solving small instances of PCSP-SL in a reasonable

24

amount of time in the context of the problem’s computational complexity. Q1 can therefore be positively

answered. The question of whether or not our DP also outperforms CPLEX is answered in the next

section.

5.2.2. Research Questions Q2 and Q3 - Large Instances

For research questions Q2 and Q3, we restricted ourselves to using the PROG policy. The time

limit was set to 10 minutes, as Q2 and Q3 aim to analyze the potential of using the proposed DP in

real-world settings. Below, we will additionally present results for a larger time limit of 45 minutes.

The results are given in Tables 8 (PCSP-S instances) and 9 (PCSP-SL instances). For each set of test

instances with given S, p, and n, the tables depict the percentage of instances that were solved to

optimality (column opt.) within the time limit, the average computational time needed to compute the

optimal solutions (column tavg), and the percentage of instances for which the solution determined by

the bucket brigade heuristics in Step 0 of Algorithm 2 was improved (column impr.).

Table 8: Results for PCSP-S, time limit: 600 s

S p n = 5 n = 10 n = 15 n = 20
opt.
[%]

tavg
[s]

impr.
[%]

opt.
[%]

tavg
[s]

impr.
[%]

opt.
[%]

tavg
[s]

impr.
[%]

opt.
[%]

tavg
[s]

impr.
[%]

5 1 100 0.001 60 100 0.016 100 100 17.258 100 90 28.797 100

5 100 0.002 70 100 0.086 100 100 56.227 100 60 132.24 100

10 100 0.002 90 100 0.244 100 90 3.775 100 0 - 100

15 100 0.001 70 100 0.327 100 90 72.078 100 10 4.19 100

20 100 0.001 70 100 0.087 100 100 19.24 100 10 0.002 100

10 1 100 0.008 80 80 67.428 100 10 36.049 80 0 - 50

5 100 0.038 90 90 105.211 100 50 140.829 100 10 4.460 90

10 100 0.007 100 90 3.261 100 30 159.61 100 0 - 100

15 100 0.075 80 80 27.714 100 30 49.005 100 0 - 90

20 100 0.022 100 80 63.962 100 0 - 100 0 - 90

15 1 100 1.381 60 10 185.064 70 0 - 20 0 - 20

5 100 15.46 80 40 4.44 100 10 192.116 80 0 - 60

10 100 0.337 100 70 198.443 100 10 148.414 90 0 - 70

15 100 2.461 90 50 99.606 100 0 - 80 0 - 80

20 100 0.233 90 70 123.728 100 0 - 90 0 - 90

20 1 100 8.038 100 0 - 60 0 - 60 0 - 20

5 90 4.997 100 10 229.31 90 0 - 50 0 - 30

10 100 1.482 90 50 192.785 100 0 - 90 0 - 40

15 100 9.467 80 40 189.513 100 0 - 100 0 - 60

20 100 5.072 100 40 166.812 100 0 - 90 0 - 70

40 1 30 77.879 80 0 - 50 0 - 0 0 - 10

5 20 13.147 90 0 - 30 0 - 10 0 - 0

10 70 82.872 100 0 - 60 0 - 10 0 - 20

15 60 37.08 100 0 - 40 0 - 20 0 - 0

20 60 33.734 100 0 - 40 0 - 20 0 - 0

It turns out that our DP procedure performs significantly better than CPLEX, which has shown

to only be able to solve very small instances (n = 5, S = 5, p = 1) of PCSP-S to optimality within

a time limit of 60 minutes by Briskorn et al. (2016). Basically, the authors make use of a restricted

version of the mixed-integer program for PCSP-SL presented in Appendix A, which drops all variables

and constraints needed to model the processing of landside containers. In contrast to these results,

25

Table 9: Results for PCSP-SL, time limit: 600 s

S p n = 5 n = 10 n = 15 n = 20
opt.
[%]

tavg
[s]

impr.
[%]

opt.
[%]

tavg
[s]

impr.
[%]

opt.
[%]

tavg
[s]

impr.
[%]

opt.
[%]

tavg
[s]

impr.
[%]

5 1 100 0.003 90 90 33.56 90 0 - 50 0 - 10

5 100 0.007 100 80 27.786 80 50 176.371 80 0 - 100

10 100 0.003 90 90 21.38 100 10 3.156 90 0 - 100

15 100 0.002 100 100 19.72 100 20 176.157 100 0 - 100

20 100 0.002 80 90 26.86 90 10 77.286 80 0 - 100

10 1 100 0.902 90 0 - 20 0 - 30 0 - 0

5 90 0.019 90 50 111.76 100 10 198.728 80 0 - 60

10 100 0.031 80 50 8.679 80 10 502.202 100 0 - 100

15 100 0.098 80 60 124.773 100 0 - 100 0 - 90

20 100 0.047 90 80 36 90 0 - 80 0 - 90

15 1 90 0.74 100 0 - 20 0 - 0 0 - 0

5 100 2.414 90 20 20.406 90 0 - 50 0 - 50

10 100 2.495 90 20 52.097 90 0 - 90 0 - 70

15 100 1.94 90 20 22.83 100 0 - 90 0 - 80

20 100 0.047 100 30 200.192 100 0 - 90 0 - 100

20 1 40 9.24 100 0 - 20 0 - 0 0 - 10

5 90 64.928 100 0 - 70 0 - 20 0 - 10

10 90 9.853 100 0 - 80 0 - 90 0 - 30

15 90 2.165 90 0 - 40 0 - 80 0 - 50

20 100 0.578 100 0 - 100 0 - 80 0 - 50

40 1 0 - 70 0 - 30 0 - 0 0 - 20

5 20 6.447 90 0 - 10 0 - 10 0 - 0

10 0 - 80 0 - 30 0 - 0 0 - 0

15 30 159.474 80 0 - 40 0 - 40 0 - 20

20 20 68.245 80 0 - 20 0 - 10 0 - 10

we can now quickly solve instances with up to 40 slots, realistic lift and drop times, and few landside

containers to optimality, both for PCSP-S and PCSP-SL. As to be expected, the incorporation of

landside containers results in larger running times and a smaller share of instances than can be solved

to optimality. However, there exist instances of PCSP-SL with S = 10 and n = 15 that our DP solves

to optimality. This clearly allows for positively answering Q2.

Additionally, we observe that the DP algorithm is capable of improving solutions provided by the

bucket brigade heuristics for real-world yard settings with few containers. Hence, we can positively

answer Q3 as well. The computational tests show that, given a time limit of a few minutes, it is

rewarding to apply our DP algorithm to try to improve solutions provided by the bucket brigade

heuristics.

Table 10 illustrates the effect of a larger time limit of 45 minutes on the performance of the DP

with respect to the percentage of instances that can be solved to optimality. We called the DP with

the increased time limit on all of the above instances that were not solved to optimality within the 10

minutes limit. The table depicts the percentage of these calls that returned an optimal solution. A

dash marks the settings where no call of the DP was necessary because all instances were solved to

optimality within the small time limit. The results support our above findings for research question

Q2, as quite a few additional instances were solved to optimality within the increased time limit in case

26

Table 10: Effect of increasing the time limit to 2,700 s

S p n = 5 n = 10 n = 15 n = 20

PCSP-S PCSP-SL PCSP-S PCSP-SL PCSP-S PCSP-SL PCSP-S PCSP-SL

5 1 - - - 0 - 20 100 0

5 - - - 0 - 20 25 0

10 - - - 100 100 11.11 10 0

15 - - - - 100 12.50 11.11 0

20 - - - 0 - 33.33 22.22 0

10 1 - - 50 0 22.22 0 0 0

5 - 100 0 0 0 0 0 0

10 - - 100 20 14.29 0 0 0

15 - - 50 100 0 10 0 0

20 - - 0 0 20 0 0 0

15 1 - 100 0 0 0 0 0 0

5 - - 50 0 0 0 0 0

10 - - 33.33 0 0 0 0 0

15 - - 40 50 0 0 0 0

20 - - 33.33 28.57 0 0 0 0

20 1 - 66.67 10 0 0 0 0 0

5 0 100 22.22 0 0 0 10 0

10 - 0 20 0 0 0 0 0

15 - 0 16.67 0 20 0 0 0

20 - - 16.67 10 0 0 0 0

40 1 42.86 0 0 0 0 0 0 0

5 37.5 12.5 0 0 0 0 0 0

10 0 10 0 0 0 0 0 0

15 25 28.57 0 0 0 0 0 0

20 50 37.5 10 0 0 0 0 0

of both PCSP-S and PCSP-SL.

5.2.3. Research Questions Q4 and Q5 - Beam Search

For our computational tests regarding the heuristic BS approach, we terminated Algorithm 2 (in

addition to the regular termination criteria) upon finding (in case of Q4) or improving (in case of Q5)

a feasible solution for a test instance or when a time limit of 15 minutes was reached.

Regarding the Q4 test instances, we executed the BS algorithm with multiple beam widths β ∈ {10,

20, 40, 60, 80, 100, 150, 200, 300, 500, 1000, 2000} for each test instance. The results are presented in

Figure 7.

Figures 7a and 7b depict the average runtime behaviour of the BS approach over the beam width.

Figure 7a shows that the average runtime over all instances ranges from only a few milliseconds for

small beam widths to about 55 seconds for a beam width of 2,000. The figure additionally includes

the corresponding curves for the instance subsets with five or seven storage slots, respectively. As to

be expected, a larger storage area induces the need for more computational effort. The same is true

when increasing the total number of containers, which can be seen in Figure 7b, where runtime plots

of three subsets of the test instances, i.e. instance sets with n = 5 and m = 1, n = 8 and m = 2, and

n = 10 and m = 4, are presented. As a consequence, β must be chosen carefully in order to be able to

determine a feasible solution within a reasonable amount of time when facing real-world instances of

27

40 300 500 1,000 2,000

0

20

40

60

β

ru
n
ti
m
e
[s
]

S = 5

S = 7

all instances

(a) Average runtime

20 80 150 300 500

0

2

4

6

8

β

ru
n
ti
m
e
[s
]

n = 5, m = 1

n = 8, m = 2

n = 10, m = 4

(b) Average runtime: effect of container number

40 300 500 1,000 2,000

6

8

10

12
bucket brigade heuristics

β

g
a
p
[%

]

(c) Average gap

40 300 500 1,000 2,000

40

60

80
bucket brigade heuristics

β

so
lv
ed

[%
]

(d) Avg. # of inst. for which a feas. sol. was found

Figure 7: Beam search performance for Q4 instances, time limit: 900 s

PCSP-SL.

Figures 7c and 7d compare the quality of the solutions determined by the BS approach to the

quality of the solutions determined by the bucket brigade heuristics. Figure 7c is based on all instances

I, for which a feasible solution with objective function value Cheurmax (I) was found with the respective

heuristic heur, and for which the optimal objective function value Coptmax(I) is known based on our tests

in Section 5.2.1. It plots average values of the optimality gaps, gapheur(I) = (Coptmax(I) − Cheurmax (I))/

Coptmax(I), over the beam width as well as the corresponding average optimality gap related to the bucket

brigade heuristics. Similarly, Figure 7d depicts the percentage of instances for which a feasible solution

was found by the heuristic approaches. We conclude that, while the BS approach is less reliable than

the bucket brigade heuristics with respect to finding feasible solutions for small instances of PCSP-

SL, it outperforms the bucket brigade algorithms in terms of solution quality. As the BS approach

under consideration for Q4 uses a cold start, it is reasonable to expect that a warm start that applies

the bounds determined by the bucket brigade heuristics can further improve the runtime and quality

performance. This is subject of research question Q5.

Based on our above deliberations on Q4, we conclude that it is unlikely that the BS approach will

improve a feasible solution determined by the bucket brigade algorithms in adequate time for real-

world problem instances with hundreds of containers, which is why the Q5 test instances presented

in Section 5.1 focus on real-world yard settings with few containers. The corresponding results of

our computational tests are presented in Table 11. As a reasonable compromise between runtime and

28

(a) Average runtime

40 300 500 1,000 2,000

0

20

40

60

β

ru
n
ti
m
e
[s
]

S = 5

S = 7

all instances

(a) Average runtime

20 80 150 300 500

0

2

4

6

8

β

ru
n
ti
m
e
[s
]

n = 5, m = 1

n = 8, m = 2

n = 10, m = 4

(b) Average runtime: effect of container number

40 300 500 1,000 2,000

6

8

10

12
bucket brigade heuristics

β

g
a
p
[%

]

(c) Average gap

40 300 500 1,000 2,000

40

60

80
bucket brigade heuristics

β

so
lv
ed

[%
]

(d) Avg. # of inst. for which a feas. sol. was found

Figure 7: Beam search performance for Q4 instances, time limit: 900 s

PCSP-SL.

Figures 7c and 7d compare the quality of the solutions determined by the BS approach to the

quality of the solutions determined by the bucket brigade heuristics. Figure 7c is based on all instances

I, for which a feasible solution with objective function value Cheurmax (I) was found with the respective

heuristic heur, and for which the optimal objective function value Coptmax(I) is known based on our tests

in Section 5.2.1. It plots average values of the optimality gaps, gapheur(I) = (Coptmax(I) − Cheurmax (I))/

Coptmax(I), over the beam width as well as the corresponding average optimality gap related to the bucket

brigade heuristics. Similarly, Figure 7d depicts the percentage of instances for which a feasible solution

was found by the heuristic approaches. We conclude that, while the BS approach is less reliable than

the bucket brigade heuristics with respect to finding feasible solutions for small instances of PCSP-

SL, it outperforms the bucket brigade algorithms in terms of solution quality. As the BS approach

under consideration for Q4 uses a cold start, it is reasonable to expect that a warm start that applies

the bounds determined by the bucket brigade heuristics can further improve the runtime and quality

performance. This is subject of research question Q5.

Based on our above deliberations on Q4, we conclude that it is unlikely that the BS approach will

improve a feasible solution determined by the bucket brigade algorithms in adequate time for real-

world problem instances with hundreds of containers, which is why the Q5 test instances presented

in Section 5.1 focus on real-world yard settings with few containers. The corresponding results of

our computational tests are presented in Table 11. As a reasonable compromise between runtime and

28

(b) Average runtime: effect of container number

40 300 500 1,000 2,000

0

20

40

60

β

ru
n
ti
m
e
[s
]

S = 5

S = 7

all instances

(a) Average runtime

20 80 150 300 500

0

2

4

6

8

β

ru
n
ti
m
e
[s
]

n = 5, m = 1

n = 8, m = 2

n = 10, m = 4

(b) Average runtime: effect of container number

40 300 500 1,000 2,000

6

8

10

12
bucket brigade heuristics

β

g
a
p
[%

]

(c) Average gap

40 300 500 1,000 2,000

40

60

80
bucket brigade heuristics

β

so
lv
ed

[%
]

(d) Avg. # of inst. for which a feas. sol. was found

Figure 7: Beam search performance for Q4 instances, time limit: 900 s

PCSP-SL.

Figures 7c and 7d compare the quality of the solutions determined by the BS approach to the

quality of the solutions determined by the bucket brigade heuristics. Figure 7c is based on all instances

I, for which a feasible solution with objective function value Cheurmax (I) was found with the respective

heuristic heur, and for which the optimal objective function value Coptmax(I) is known based on our tests

in Section 5.2.1. It plots average values of the optimality gaps, gapheur(I) = (Coptmax(I) − Cheurmax (I))/

Coptmax(I), over the beam width as well as the corresponding average optimality gap related to the bucket

brigade heuristics. Similarly, Figure 7d depicts the percentage of instances for which a feasible solution

was found by the heuristic approaches. We conclude that, while the BS approach is less reliable than

the bucket brigade heuristics with respect to finding feasible solutions for small instances of PCSP-

SL, it outperforms the bucket brigade algorithms in terms of solution quality. As the BS approach

under consideration for Q4 uses a cold start, it is reasonable to expect that a warm start that applies

the bounds determined by the bucket brigade heuristics can further improve the runtime and quality

performance. This is subject of research question Q5.

Based on our above deliberations on Q4, we conclude that it is unlikely that the BS approach will

improve a feasible solution determined by the bucket brigade algorithms in adequate time for real-

world problem instances with hundreds of containers, which is why the Q5 test instances presented

in Section 5.1 focus on real-world yard settings with few containers. The corresponding results of

our computational tests are presented in Table 11. As a reasonable compromise between runtime and

28

(c) Average gap

40 300 500 1,000 2,000

0

20

40

60

β

ru
n
ti
m
e
[s
]

S = 5

S = 7

all instances

(a) Average runtime

20 80 150 300 500

0

2

4

6

8

β

ru
n
ti
m
e
[s
]

n = 5, m = 1

n = 8, m = 2

n = 10, m = 4

(b) Average runtime: effect of container number

40 300 500 1,000 2,000

6

8

10

12
bucket brigade heuristics

β

g
a
p
[%

]

(c) Average gap

40 300 500 1,000 2,000

40

60

80
bucket brigade heuristics

β

so
lv
ed

[%
]

(d) Avg. # of inst. for which a feas. sol. was found

Figure 7: Beam search performance for Q4 instances, time limit: 900 s

PCSP-SL.

Figures 7c and 7d compare the quality of the solutions determined by the BS approach to the

quality of the solutions determined by the bucket brigade heuristics. Figure 7c is based on all instances

I, for which a feasible solution with objective function value Cheurmax (I) was found with the respective

heuristic heur, and for which the optimal objective function value Coptmax(I) is known based on our tests

in Section 5.2.1. It plots average values of the optimality gaps, gapheur(I) = (Coptmax(I) − Cheurmax (I))/

Coptmax(I), over the beam width as well as the corresponding average optimality gap related to the bucket

brigade heuristics. Similarly, Figure 7d depicts the percentage of instances for which a feasible solution

was found by the heuristic approaches. We conclude that, while the BS approach is less reliable than

the bucket brigade heuristics with respect to finding feasible solutions for small instances of PCSP-

SL, it outperforms the bucket brigade algorithms in terms of solution quality. As the BS approach

under consideration for Q4 uses a cold start, it is reasonable to expect that a warm start that applies

the bounds determined by the bucket brigade heuristics can further improve the runtime and quality

performance. This is subject of research question Q5.

Based on our above deliberations on Q4, we conclude that it is unlikely that the BS approach will

improve a feasible solution determined by the bucket brigade algorithms in adequate time for real-

world problem instances with hundreds of containers, which is why the Q5 test instances presented

in Section 5.1 focus on real-world yard settings with few containers. The corresponding results of

our computational tests are presented in Table 11. As a reasonable compromise between runtime and

28

(d) Avg. # of inst. for which a feas. sol. was found

Figure 7: Beam search performance for Q4 instances, time limit: 900 s

PCSP-SL.

Figures 7c and 7d compare the quality of the solutions determined by the BS approach to the

quality of the solutions determined by the bucket brigade heuristics. Figure 7c is based on all instances

I, for which a feasible solution with objective function value Cheur
max (I) was found with the respective

heuristic heur, and for which the optimal objective function value Copt
max(I) is known based on our tests

in Section 5.2.1. It plots average values of the optimality gaps, gapheur(I) = (Copt
max(I) − Cheur

max (I))/

Copt
max(I), over the beam width as well as the corresponding average optimality gap related to the bucket

brigade heuristics. Similarly, Figure 7d depicts the percentage of instances for which a feasible solution

was found by the heuristic approaches. We conclude that, while the BS approach is less reliable than

the bucket brigade heuristics with respect to finding feasible solutions for small instances of PCSP-

SL, it outperforms the bucket brigade algorithms in terms of solution quality. As the BS approach

under consideration for Q4 uses a cold start, it is reasonable to expect that a warm start that applies

the bounds determined by the bucket brigade heuristics can further improve the runtime and quality

performance. This is subject of research question Q5.

Based on our above deliberations on Q4, we conclude that it is unlikely that the BS approach will

improve a feasible solution determined by the bucket brigade algorithms in adequate time for real-

world problem instances with hundreds of containers, which is why the Q5 test instances presented

in Section 5.1 focus on real-world yard settings with few containers. The corresponding results of

our computational tests are presented in Table 11. As a reasonable compromise between runtime and

28

solution quality, we decided to set β = 750 for instances with S = 20 and β = 500 for instances

with S = 40, based on the results presented in Figure 7. Table 11 depicts the percentage of instances

Table 11: Beam search performance for Q5 instances, time limit: 900 s

S β feas. sol. [%] improvement no improvement

count [%] tavg [s] avg. impr. [%] count [%] tavg [s]

20 750 96.67 38.33 8.71 7.94 61.67 302.12

40 500 93.33 23.33 12.56 10.81 76.67 376.09

for which the warm start variant of our BS approach returned a feasible solution (column feas. sol.)

for the instance sets with 20 and 40 storage slots, respectively. The table then differentiates between

the instances for which the bucket brigade solution was improved and the instances for which no

improvement was found. It provides details on the relative amount of instances (column count), the

average computational time (column tavg), and the average improvement of the makespan (column avg.

impr.). We observe that a significant improvement of the objective function value was computed in

reasonable time for a substantial amount of instances. We therefore conclude by positively answering

Q5 so that the warm start variant of our BS approach seems well suited for real-world online settings

of PCSP-SL.

6. Conclusion

In this article, we have presented an exact dynamic programming procedure for the preemptive

crane scheduling problem with a given unloading sequence and additional landside jobs (PCSP-SL)

that has recently been introduced and analyzed in Briskorn et al. (2016) and Jaehn & Kress (2018).

The procedure makes use of bounding techniques and applies various dominance properties of optimal

solutions that we have introduced.

In extensive computational tests, we have shown that, among the five search policies that we have

introduced in this article, a problem specific best-first search policy that is based on a simple measure

of a state’s progress performs best. When using this strategy, the DP has shown to perform very well

for small instances with few storage slots as long as the number of containers remains sufficiently small.

Furthermore, the DP has shown to be able to quickly improve solutions determined by the bucket

brigade heuristics presented in Jaehn & Kress (2018) and to clearly outperform CPLEX in terms of

its ability to compute optimal solutions in reasonable time for small to medium sized instances with

real-world yard settings and few containers. This allows the algorithm to be applied in real-world online

settings of PCSP-SL, where container data is revealed incrementally.

In addition to our DP, we have introduced a beam search heuristic for PCSP-SL. In line with the

results for the exact approach, this heuristic has shown to be capable of improving the makespan

of solutions determined by the bucket brigade heuristics in reasonable time when few containers are

considered, so that it is a good alternative to the DP in real-world online settings of PCSP-SL.

29

These findings lead to some future research directions. Even though it is well-accepted that many

interacting decisions in seaports are decomposed and treated hierarchically, the positive results obtained

in this paper result in the question of whether some of these decisions could be combined. It should

thus be evaluated whether the combined consideration of the problem at hand with related problems

is reasonable. These related problems include the assignment of containers to blocks, the positioning

of the containers in the block, and the sequencing of the seaside containers. Moreover, one could more

thoroughly analyze the effect of serving landside containers on a vessel’s berthing time. As mentioned

before, seaside operations usually have much higher priority than landside actions and obviously, serving

landside containers may increase the berthing time of a vessel. As some high priority landside actions

are considered to be very valuable, knowledge on their effect on the berthing time allows for decisions

on how many landside actions are acceptable and how pricing schemes for these actions should be

designed.

Acknowledgements

This work was supported by the German Science Foundation (DFG) through the grant “Scheduling

mechanisms for rail mounted gantries with regard to crane interdependencies” (JA 2311/2-1, PE 514/22-

1).

References

Bierwirth, C., & Meisel, F. (2010). A survey of berth allocation and quay crane scheduling problems

in container terminals. European Journal of Operational Research, 202 , 615–627.

Bierwirth, C., & Meisel, F. (2015). A follow-up survey of berth allocation and quay crane scheduling

problems in container terminals. European Journal of Operational Research, 244 , 675–689.

Boysen, N., Briskorn, D., & Meisel, F. (2017). A generalized classification scheme for crane scheduling

with interference. European Journal of Operational Research, 258 , 343–357.

Briskorn, D., Emde, S., & Boysen, N. (2016). Cooperative twin-crane scheduling. Discrete Applied

Mathematics, 211 , 40–57.

Carlo, H. J., Vis, I. F. A., & Roodbergen, K. J. (2014). Storage yard operations in container terminals:

literature overview, trends, and research directions. European Journal of Operational Research, 235 ,

412–430.

Dorndorf, U., & Schneider, F. (2010). Scheduling automated triple cross-over stacking cranes in a

container yard. OR Spectrum, 32 , 617–632.

Ehleiter, A., & Jaehn, F. (2016). Housekeeping: foresightful container repositioning. International

Journal of Production Economics, 179 , 203–211.

30

Gharehgozli, A. H., Vernooij, F. G., & Zaerpour, N. (2017). A simulation study of the performance of

twin automated stacking cranes at a seaport container terminal. European Journal of Operational

Research, 261 , 108–128.

Jaehn, F., & Kress, D. (2018). Scheduling cooperative gantry cranes with seaside and landside jobs.

Discrete Applied Mathematics, 242 , 53–68.

Kemme, N. (2012). Effects of storage block layout and automated yard crane systems on the perfor-

mance of seaport container terminals. OR Spectrum, 34 , 563–591.

Kovalyov, M. Y., Pesch, E., & Ryzhikov, A. (2018). A note on scheduling container storage operations

of two non-passing stacking cranes. Networks, 71 , 271–280.

Lashkari, S., Wu, Y., & Petering, M. E. (2017). Sequencing dual-spreader crane operations: Mathemat-

ical formulation and heuristic algorithm. European Journal of Operational Research, 262 , 521–534.

Lee, C.-Y., & Song, D.-P. (2017). Ocean container transport in global supply chains: Overview and

research opportunities. Transportation Research Part B: Methodological , 95 , 442–474.

Lowerre, B. T. (1976). The HARPY Speech Recognition System. Ph.D. thesis Carnegie-Mellon Univer-

sity Pittsburgh, Pennsylvania.

Port of Rotterdam (2017). Port facts and figures: throughput. https://www.portofrotterdam.com/

en/the-port/port-facts-and-figures/throughput. (last accessed: 02/10/2017).

Saanen, Y. A., & Valkengoed, M. V. (2005). Comparison of three automated stacking alternatives by

means of simulation. In Proceedings of the 37th Conference on Winter Simulation (pp. 1567–1576).

ACM.

Sabuncuoğlu, I., Gocgun, Y., & Erel, E. (2008). Backtracking and exchange of information: Methods

to enhance a beam search algorithm for assembly line scheduling. European Journal of Operational

Research, 186 , 915–930.

Speer, U., & Fischer, K. (2017). Scheduling of different automated yard crane systems at container

terminals. Transportation Science, 51 , 305–324.

Stahlbock, R., & Voß, S. (2008). Operations research at container terminals: a literature update. OR

Spectrum, 30 , 1–52.

Steenken, D., Voß, S., & Stahlbock, R. (2004). Container terminal operations and operations research –

a classification and literature review. OR Spectrum, 26 , 3–49.

31

https://www.portofrotterdam.com/en/the-port/port-facts-and-figures/throughput
https://www.portofrotterdam.com/en/the-port/port-facts-and-figures/throughput

Appendix A. Mixed-Integer Program

Let T be an upper bound on the number of time slots needed to characterize an optimal solution

of an instance of PCSP-SL. The variables xc,t, c ∈ {w, l}, t ∈ {0, . . . , T}, have already been defined in

Section 2. Now, define the following additional binary variables:

lIt :=

1, if crane c = w starts lifting any container wi ∈ I at time instant t

0, else

∀ t ∈ {0, . . . , T},

lIt,i,s :=

1, if crane c = l starts lifting container wi at

time instant t in slot s

0, else

∀ t ∈ {0, . . . , T}, s ∈ {1, . . . , S}, wi ∈ I,

lJt,j :=

1, if crane c = l starts lifting container lj at time instant t

0, else

∀ t ∈ {0, . . . , T}, lj ∈ J

dIt,i,s :=

1, if crane c = w starts dropping container

wi at time instant t in slot s

0, else

∀ t ∈ {0, . . . , T}, s ∈ {1, . . . , S}, wi ∈ I,

dIt,i :=

1, if crane c = l starts dropping container wi at time instant t

0, else

∀ t ∈ {0, . . . , T}, wi ∈ I,

dJt,j :=

1, if crane c = l starts dropping container lj at time instant t

0, else

∀ t ∈ {0, . . . , T}, lj ∈ J.

Additionally, we make use of a nonnegative variable C ∈ R+
0 which represents the makespan, as well

as binary variables uj , vj and qj , lj ∈ J . uj is set to one if landside container lj ∈ J must be processed

because its deadline is not greater than C. Similarly, the binary variables vj , lj ∈ J , assure that (in

case of its existence) an additional landside container with smallest deadline larger than C is processed

by the landside crane. The variables qj , lj ∈ J , are needed for modelling purposes.

Now, let n ≥ 1 and assume without loss of generality that the landside jobs of the set J are ordered

in non-decreasing order of the deadlines of the respective jobs. Define a parameter λj for each landside

job lj ∈ J , which is set to the number of landside jobs with the same deadline as lj . Define λm+1 = 0

and vj = 0 for all j ∈ {m+ 1, . . . ,m+ λm}. Then, based on the mixed-integer program for PCSP-S by

Briskorn et al. (2016), a mathematical formulation of PCSP-SL is as follows.

.min C (A.1)

. s.t. .t · dIt,n,sn + p ≤ C . ∀t ∈ {1, . . . , T}, (A.2)

32

.t ·
∑
wi∈I

dIt,i + p ≤ C . ∀t ∈ {1, . . . , T}, (A.3)

.xc,0 = σc . ∀c ∈ {w, l}, (A.4)

.xc,t−1 − 1 ≤ xc,t ≤ xc,t−1 + 1 . ∀c ∈ {w, l}, t ∈ {0, . . . , T}, (A.5)

.xw,t ≤ xl,t − 1 . ∀t ∈ {0, . . . , T}, (A.6)

.xc,t ≤ S + 1 . ∀c ∈ {w, l}, t ∈ {1, . . . , T}, (A.7)

.

T∑
t=0

S∑
s=1

t · dIt,i,s ≤
T∑
t=0

S∑
s=1

t · dIt,j,s . ∀wi, wj ∈ I, i < j (A.8)

.xw,t′ ≤ (1− lIt) · S . ∀t ∈ {0, . . . , T − p}, t′ ∈ {t, . . . , t+ p} (A.9)

.(1−
∑
wi∈I

S∑
s=1

dIt,i,s) · S .

. +
∑
wi∈I

S∑
s=1

s · dIt,i,s ≥ xw,t′ ≥
∑
wi∈I

S∑
s=1

s · dIt,i,s. ∀t ∈ {0, . . . , T − p}, t′ ∈ {t, . . . , t+ p} (A.10)

.(1−
∑
wi∈I

S∑
s=1

lIt,i,s) · (S + 1) .

. +
∑
wi∈I

S∑
s=1

s · lIt,i,s ≥ xl,t′ ≥
∑
wi∈I

S∑
s=1

s · lIt,i,s . ∀t ∈ {0, . . . , T − p}, t′ ∈ {t, . . . , t+ p} (A.11)

.(1−
∑
wi∈I

dIt,i) · (S + 1) .

. +
∑
wi∈I

si · dIt,i ≥ xl,t′ ≥
∑
wi∈I

si · dIt,i . ∀t ∈ {0, . . . , T − p}, t′ ∈ {t, . . . , t+ p} (A.12)

.(1−
∑
li∈J

lJt,j) · (S + 1) .

. +
∑
li∈J

aj · lJt,j ≥ xl,t′ ≥
∑
li∈J

aj · lJt,j . ∀t ∈ {0, . . . , T − p}, t′ ∈ {t, . . . , t+ p} (A.13)

.xl,t′ ≥
∑
li∈J

(S + 1) · dJt,j . ∀t ∈ {0, . . . , T − p}, t′ ∈ {t, . . . , t+ p} (A.14)

.
∑
wi∈I

S∑
s=1

lIt′,i,s +
∑
lj∈J

lJt′,j ≤ 1−
∑
wi∈I

dIt,i . ∀t ∈ {0, . . . , T − p}, t′ ∈ {t, . . . , t+ p− 1}, (A.15)

.0 ≤
t∑

t′=0

(
lIt′ −

∑
wi∈I

S∑
s=1

dIt′,i,s

)
≤ 1 . ∀t ∈ {0, . . . , T} (A.16)

.0 ≤
t∑

t′=0

∑
wi∈I

S∑
s=1

lIt′,i,s +
∑
lj∈J

lJt′,j .

. −
∑
wi∈I

dIt′,i −
∑
lj∈J

dJt′,j

 ≤ 1 . ∀t ∈ {0, . . . , T} (A.17)

.0 ≤
t∑

t′=0

∑
wi∈I

(
S∑
s=1

lIt′,i,s − dIt′,i

)
≤ 1 . ∀t ∈ {0, . . . , T} (A.18)

.0 ≤
t∑

t′=0

∑
lj∈J

(
lJt′,j − dJt′,j

)
≤ 1 . ∀t ∈ {0, . . . , T} (A.19)

.

T∑
t=0

(
S∑
s=1

lIt,i,s + dIt,i,si

)
= 1 . ∀wi ∈ I (A.20)

.

T∑
t=0

(
dIt,i + dIt,i,si

)
= 1 . ∀wi ∈ I (A.21)

33

.

T∑
t=0

lIt,i,s ≤
T∑
t=0

dIt,i,s . ∀wi ∈ I, s ∈ {1, . . . , S} (A.22)

.(1−
T∑
t=0

lIt,i,s) · T +

T∑
t=0

t · lIt,i,s ≥
T∑
t=0

t · dIt,i,s . ∀wi ∈ I, s ∈ {1, . . . , S} (A.23)

.

T∑
t=0

t · dIt,i ≥
T∑
t=0

S∑
s=1

t · lIt,i,s . ∀wi ∈ I, (A.24)

.

T∑
t=0

t · dJt,j ≥
T∑
t=0

t · lJt,j . ∀lj ∈ J, (A.25)

.(T + 1) · uj ≥ C − dj + 0.5 . ∀lj ∈ J, (A.26)

.uj ≤
j+λj+1∑
i=j+1

vi . ∀lj ∈ J, (A.27)

.qj ≥ 0.5 · (uj + vj) . ∀lj ∈ J, (A.28)

.

T∑
t=0

dJt,j ≥ qj . ∀lj ∈ J, (A.29)

.qj · rj ≤
T∑
t=0

t · dJt,j + p ≤ dj . ∀lj ∈ J, (A.30)

.lIt ∈ {0, 1} . ∀t ∈ {0, . . . , T}, (A.31)

.lIt,i,s, d
I
t,i,s ∈ {0, 1} . ∀t ∈ {0, . . . , T}, s ∈ {1, . . . , S}, wi ∈ I, (A.32)

.lJt,j , d
J
t,j ∈ {0, 1} . ∀t ∈ {0, . . . , T}, lj ∈ J, (A.33)

.dIt,i ∈ {0, 1} . ∀t ∈ {0, . . . , T}, wi ∈ I, (A.34)

.xc,t ∈ R+
0 . ∀c ∈ {w, l}, t ∈ {0, . . . , T}, (A.35)

.C ∈ R+
0 , . (A.36)

.uj , vj , qj ∈ {0, 1} . ∀lj ∈ J, (A.37)

.vj = 0 . ∀j ∈ {m+ 1, . . . ,m+ λm}. (A.38)

Note that, in contrast to Briskorn et al. (2016), we explicitly allow for the landside crane to move left

while being loaded with a seaside container. Objective (A.1) minimizes the seaside makespan C, where

C is set to a value not smaller than the time instant when the last seaside job has been dropped in its

target slot by one of the cranes in conditions (A.2) and (A.3). Restrictions (A.4) fix the initial locations

of the cranes. Constraints (A.5) and (A.6) guarantee that each crane can move at most one slot in one

time unit and assure that the cranes do not cross, respectively. Conditions (A.7) restrict the cranes

to move within the block, i.e set the rightmost slot to S + 1. Conditions (A.8) constrain the seaside

crane to drop the seaside containers in the given sequence. Restrictions (A.9)–(A.14) guarantee that the

cranes are actually located in the slots where they lift and drop containers during the entire process of

lifting or dropping. Inequalities (A.15) ensure that the landside crane does not simultaneously lift and

drop a container in the same slot. Conditions (A.16)–(A.19) ensure that the difference of the number

of containers that have been lifted and dropped by a crane can be at most one at any time instant.

34

The fact that each seaside container must reach its target slot and that each seaside container may

be handled at most once by each crane is represented by restrictions (A.20) and (A.21). Conditions

(A.22) and (A.23) ensure that handover containers can only be picked up in a specific slot after they

have been dropped in this very slot by the seaside crane. Constraints (A.24) and (A.25) enforce the

landside crane to lift containers before they can be dropped. The system of restrictions (A.26)–(A.30)

guarantees that those landside containers that must be delivered at the landside handover point are

dropped in their respective time windows. Finally, (A.31)–(A.38) define the domains of the variables.

Appendix B. Proofs of the Dominance Properties

Appendix B.1. Proof of Property 1

Assume that we are given an optimal schedule OPT with the seaside crane being unloaded and

moving right, i.e. xw,t−1 = xw,t − 1, in some period t (the waiting case xw,t−1 = xw,t is analogous). If

yi,t−1 > 0 for all i ∈ {1, . . . , n}, the seaside crane has already processed all seaside containers in the given

schedule OPT and, because it may only process each container once, we can modify OPT by making the

seaside crane move left in periods t to t+xw,t−1− 1 (or wait in slot s = 0 if xw,t−1 = 0) and afterwards

wait in slot s = 0 without interfering with the landside crane’s operations and without influencing the

makespan of OPT. Similarly, if there exists a seaside container wî with î = min{i|yi,t−1 = 0} in OPT,

then wî will necessarily be the next container to be lifted by the seaside crane in OPT . Let us refer

to the time instant in which the crane has finished lifting wî in OPT as t̂. Then we can construct

an optimal schedule OPT′ by modifying OPT as follows. The seaside crane moves left in periods t to

t + xw,t−1 − 1 (or, if xw,t−1 = 0, starts lifting container wî), and afterwards lifts wî and waits in slot

s = 0 until time instant t̂. The remainder of OPT′ corresponds to OPT . Obviously, this does not

interfere with the landside crane’s operations and does not change the makespan.

Appendix B.2. Proof of Property 2

Assume that we are given an optimal schedule OPT with the seaside crane being loaded with

container wi ∈ I and moving left, i.e. xw,t−1 = xw,t + 1, in some period t. Denote the very time instant

in which the seaside crane has finished picking up container wi in OPT by t̄ < t and let t̂ > t be the

time instant in which wi is dropped off in its target slot si by the seaside crane in OPT. Then we can

construct an optimal schedule OPT′ by modifying the seaside crane’s operations in OPT as follows.

After having picked up container wi in t̄, the seaside crane waits in slot 0 until time instant t̂− p− si
and afterwards keeps moving right until it has reached the target slot si, where it immediately drops

container wi. The landside crane’s movements in OPT remain feasible in OPT′ because the seaside

crane reaches every slot 0 < s ≤ si at the latest possible time instant that allows to finish dropping wi

at t̂, which is feasible by assumption. Additionally, the makespan does not increase because the process

35

of dropping wi ends exactly at the same time instant t̂ as in OPT. The same reasoning holds for wi

being a handover container in OPT.

Appendix B.3. Proof of Property 3

Assume that we are given an optimal schedule OPT with the seaside crane being loaded with

container wi ∈ I and being located at the container’s target slot at time instant t − 1 (xw,t−1 = si).

First, consider the case of wi being dropped in its target slot si by the seaside crane at time instant

t̂ > t − 1 + p of OPT. Due to Property 2 we may assume that, in this case, the seaside crane waits

in slot si from time instant t− 1 to time instant t̂− p before it starts dropping the container in OPT.

We can construct an optimal schedule OPT′ by modifying OPT with the seaside crane dropping wi in

si in time intervals t to t − 1 + p and then proceeding in line with Property 1 until t̂. Now assume

that wi is a handover container in OPT. Due to Property 2 we may assume that the corresponding

handover slot is to the right of si. Let t̄ be the time instant at which wi is dropped in this handover

slot. Then we can construct an optimal schedule OPT′′ by modifying the seaside crane’s operations in

OPT as follows. After having picked up container wi, the seaside crane waits in slot 0 until time instant

t̄ − p − si and afterwards keeps moving right to slot si, where it immediately drops wi. The landside

crane’s movements in OPT remain feasible in OPT′′ and the makespan does not increase, because the

process of dropping wi is finished at time instant t̄ as in OPT with the seaside crane being located

further to the left and wi having arrived in its target slot.

Appendix B.4. Proof of Property 4

If xl,t−1 6= xl,t + 1 in OPT, we can modify OPT by making the landside crane move left in period

t and adjust its subsequent operations accordingly. Consider time slot t of the given schedule OPT.

First, note that all seaside crane movements in OPT remain feasible in the modified schedule due to

assumption 1. Now assume that the next container to be processed by the landside crane in OPT is

any seaside container. In the modified schedule, the landside crane will be able to process the container

in the very same time intervals because of assumption 2. Next, assume that the next container to be

processed by the landside crane in OPT is a landside container lj ∈ J . The earliest possible time instant

to drop this container in slot S+ 1 in OPT is rj . Hence, the unloaded landside crane needs not lift lj in

time interval t, if t ≤ rj− (S + 1− zj,t−1 + 2p). Thus, the leftmost slot where the crane may be located

at time instant t to be guaranteed to lift lj on time is slot max{1, zj,t−1−[rj − (S + 1− zj,t−1 + 2p)− t]},
which corresponds to assumption 3.

Appendix B.5. Proof of Property 5

Assume that we are given an optimal schedule OPT with the landside crane being loaded with a

landside container lj ∈ J at time instant t − 1 and moving left in time slot t, i.e. xl,t−1 = xl,t + 1

(the case xl,t−1 = xl,t is analogous). Obviously, the earliest possible time instant t̂ > t to arrive in

36

the container’s target slot in OPT is t̂ = t + S + 2 − xl,t−1. Now, if xl,t−1 6= S + 1, we can construct

an optimal schedule OPT′ by modifying OPT such that the landside crane moves right in time slot t,

which induces the crane to be able to arrive in slot S + 1 at t + S − xl,t−1 < t̂. Hence, the makespan

does not increase while all seaside crane movements remain feasible. The same holds for the case that

xl,t−1 = S+ 1, where we can modify OPT such that the landside crane waits in S+ 1 or, if additionally

rj ≤ t− 1 + p, immediately drops the container.

Appendix B.6. Proof of Property 6

Assume that we are given an optimal schedule OPT with the landside crane being loaded with a

seaside container wi ∈ I and waiting in time slot t, i.e. xl,t−1 = xl,t, while xw,t < xl,t − 1. Assume

that the landside cranes drops wi in slot xl,t−1 at t̂ of OPT without ever moving away from xl,t−1 in

between t− 1 and t̂. In this case, we can alternatively make the crane drop the container in time slots

t to t− 1 + p and afterwards wait in slot xl,t−1 (or proceed in line with Property 4) until t̂ while being

unloaded without changing the makespan and without interfering with the seaside crane’s movements

in OPT. Now assume that the landside crane moves right from slot xl,t−1 to xl,t−1 + 1 in time slot

[t̄, t̄ + 1] with t̄ ≥ t of OPT while still being loaded with wi. Then we can alternatively make the

crane move right in time slot t and adjust its subsequent operations accordingly without influencing

the makespan and without interfering with the seaside crane’s movements in OPT. Hence, we are left

with the case of assuming that the landside crane is waiting in slot xl,t−1 in time slot t of OPT in order

to move left to slot xl,t−1− 1 while being loaded with wi in some time slot [t′, t′+ 1] with t′ ≥ t. Then,

because of Property 3, we can construct an optimal schedule OPT′ by modifying OPT as follows: the

landside crane delays lifting wi while waiting unloaded in the corresponding origin slot, such that the

seaside crane is located in the neighboring slot when the process of lifting wi is completed. Both cranes

then mutually move right, until the seaside crane reaches the relevant destination slot. The landside

crane waits in the neighboring slot while the seaside crane is dropping its container to later move left

loaded.

Appendix B.7. Proof of Property 7

Consider an optimal solution OPT to an instance of PSCP-SL in which the landside crane moves

left while being loaded with a container wi ∈ I. Because of Property 3, we can assume w.l.o.g. that wi

is picked up by the landside crane in a slot left of si in OPT. Hence, we can furthermore assume that

the landside crane continuously moves right and does not wait after having picked up the container,

until it reaches si. Now assume the only non-trivial case, i.e. the case where the landside crane must

additionally give way to the seaside crane in OPT by moving even further to the right in order to achieve

the optimal seaside makespan, while the seaside crane is loaded with a container wi′ ∈ I that it drops

in slot s′ in OPT . Then it can be seen that it is optimal for both cranes to move right together until

the landside crane has reached slot s′ + 1, where it waits for the seaside crane to drop the container.

37

Afterwards, both cranes keep moving left (Property 1), until the landside crane has reached si, where

it can now drop wi without interfering with any of the seaside crane’ succeeding movements in OPT.

Appendix B.8. Proof of Properties 8 and 9

An optimal schedule in which a lifting or dropping operation is interrupted for a given number t′

of time periods can be modified in line with the other properties such that, for example, the start

of the lifting or dropping operation is postponed by t′ time periods and is then executed without

interruption. Similarly, if a lifting operation is preceded by waiting for a given number of t̄ time

periods, one can modify the given schedule in line with the other properties, e.g. by making the crane

enter the corresponding storage slot t̄ time periods later.

Appendix C. Detection of Interferences

Consider a state s = (t, xw,t, xl,t, active, container, cw, listh, listl) and a given assignment of jobs to

the cranes, where jobl and jobw denote l’s and w’s job, respectively. Furthermore, define

• sstartl : slot, where l must begin lifting or continue processing (if active) the container that corre-

sponds to jobl

• sstopl : destination slot of the container that corresponds to jobl

• sstopw : destination slot defined by jobw

Our procedure to detect an interference is summarized in Algorithm 3. It is based on the properties of

Section 3, expects a state s and the job assignment jobl and jobw as input parameters, and returns true

in case of an interference. Basically, the algorithm assumes that there are no non-crossing constraints

and checks if the resulting crane movements cause a collision.

Algorithm 3 (Detect Interference)

procedure detectInterference(s, jobl, jobw) . Note: sstopw is known by definition of jobw

if jobw = ∅ OR jobl = ∅ then
return false . If one of the cranes has no job: no interference

end if

. 1. determine tlstartl , t
l
stopl

, sstartl , and sstopl
if active = l then

if container = (. . . , ↑, p′) then

toperation := p′

else

toperation := 0

end if

tlstartl := t+ toperation . time instant before l can leave sstartl
sstartl := xl,t

if container = (. . . , ↓, p′) then

toperation := p′

else

toperation := p

end if

38

if container = (wi, . . . , . . .) then

tlstopl := tlstartl + toperation + |si − xl,t| . time instant before l can leave sstopl
sstopl := si

else

tlstopl := tlstartl + toperation + (S + 1− xl,t)
sstopl := S + 1

end if

else . active = w or active = ∅
if jobl = wi then

tlstartl := t+ |xl,t − hi|+ p

sstartl := hi

tlstopl := tlstartl + (si − hi) + p

sstopl := si

else . jobl = lj

tlstartl := t+ |xl,t − aj |+ p

sstartl := aj

tlstopl := tlstartl + (S + 1− aj) + p . rj doesn’t need to be considered for detecting interferences

sstopl := S + 1

end if

end if

. If the slot that l must move to in order to begin lifting or continue processing jobl is to the right of the

destination slot of jobl: no interference (Properties 3, 6, 7).

. If, for all remaining cases, the destination slot of jobw is to the left of the slot that l must move to in

order to begin lifting or continue processing jobl: no interference.

if sstartl > sstopl OR sstopw < sstartl then

return false

end if

. 2. determine tw,instartl
, and tw,instopl

if active = w then

if container = (. . . , ↑ ∨ ↓, p′) then

if sstartl > xw,t then

toperation := p′

else

toperation := −p+ p′

end if

else

if sstartl > 0 then

toperation := 0

else . l is assigned a seaside container that has not yet been dropped by w

toperation := −p
end if

end if

tw,instartl
:= t+ toperation + (sstartl − xw,t) . time instant when w has entered or can enter slot sstartl

if sstopl ≤ sstopw then

if container = (. . . , ↑, p′) then

toperation := p′

else if container = (. . . , ↓, p′) then

toperation := −p+ p′

else

toperation := 0

end if

else

39

toperation := p̄(s)

end if

tw,instopl
:= t+ toperation + (sstopl − xw,t) . time instant when w has entered or can enter slot sstopl

else . active = l or active = ∅
if sstartl = 0 then

tw,instartl
:= t+ xw,t

else

tw,instartl
:= t+ xw,t + p+ sstartl

end if

if sstopw < sstopl then

if sstartl = 0 then

tw,instopl
:= tw,instartl

+ (sstopl − sstartl) + 2p

else

tw,instopl
:= tw,instartl

+ (sstopl − sstartl) + p

end if

else

tw,instopl
:= tw,instartl

+ (sstopl − sstartl)
end if

end if

. If the destination slot of jobw is left of the destination slot of jobl and if l can leave sstartl before w enters

this slot: no interference

. If the destination slot of jobw is equal to or is located to the right of the destination slot of jobl and if l

can leave sstartl and sstopl before w enters these slots: no interference

if sstopw < sstopl AND tlstartl < tw,instartl
then

return false

else if sstopw ≥ sstopl AND tlstartl < tw,instartl
AND tlstopl < tw,instopl

then

return false

end if

. 3. check whether there is an interference between sstartl and sstopw
tl,instopw := t+ (xl,t − sstopw) . time instant when l has entered or can enter slot sstopw
if sstopw < sstopl then

tl,outstopw := tl,instopw + 2(sstopw −min{sstartl , xl,t}) + p . time instant before l can leave slot sstopw
else

tl,outstopw := tl,instopw + 2(sstopw −min{sstartl , xl,t}) + 2p

end if

if active = w then

if container = (. . . , ↑, p′) then

toperation := p′

else if container = (. . . , ↓, p′) then

toperation := −p+ p′

else

toperation := 0

end if

tw,instopw := t+ toperation + (sstopw − xw,t) . time instant when w has entered or can enter slot sstopw
twstopw := t+ (sstopw − xw,t) + p̄(s) . time instant when w finishes dropping its container

else

tw,instopw := t+ xw,t + sstopw + p

twstopw := tw,instopw + p

end if

. Interference scenarios:

. If l is active, then there must be an interference, as otherwise the procedure would already have returned

false.

40

. In all remaining cases, we have to check if there is an interference between sstartl and sstopw .

if active = l OR (twstopw ≥ t
l,in
stopw AND tl,outstopw ≥ t

w,in
stopw) then

. Additionally: Calculation of relevant time instants and waiting slots for dissolving interferences in

DP procedure (not depicted for the sake of brevity).

return true

else

. In all remaining cases: no interference.

return false

end if

end procedure

If an interference is detected, we generate two succeeding states with each crane being prioritized in

one of the states. The only exception is the case where the landside crane is assigned a seaside container

that has not yet been dropped by the seaside crane. In this case, the seaside crane has priority when

generating the succeeding state.

Appendix D. Beam Search

The following implementation of the beam search policy uses a grouped queue Q as data structure.

Each group in Q includes states of a distinct level and has a fixed maximum size β. Algorithms 4 and

5 illustrate our implementation of the push and pop methods for BS. Both methods share a variable

lastLevPop (with initial value −1) that corresponds to the next level of states that will be added to the

policy.

Algorithm 4 (Beam search: push)

procedure Push(successors)

levelOfStates := lastLevPop+ 1

for all s in successors do

Let G be the group of states representing level levelOfStates in Q

i := G.length()

for j := 0 to G.length()− 1 do

s′ := G.get(j) . s′ is the (j + 1)-th element of G.

if prog(s)/t > prog(s′)/t′ then

i := j

break

end if

end for

G.insert(i, s) . Insert s at position i of G. The length of G increases by one.

if G.length() > β then

G.remove(G.length()− 1) . Remove last element of G if it includes more than β elements.

end if

end for

end procedure

Algorithm 5 (Beam search: pop)

procedure Pop

if Q.empty() then

return ∅
end if

41

G := Q.front()

lastLevPop := level represented by group G

s := G.pop() . The first element s of G is deleted from G.

if G.empty() then

Q.pop() . An empty group is deleted from Q.

end if

return s

end procedure

42

	Introduction
	Related Literature and Contribution of this Article
	Overview of this Article

	Preliminaries
	Lower Bounds
	Bucket Brigade Heuristics

	Dominance Properties of Optimal Solutions
	Dominance Properties for the Seaside Crane
	Dominance Properties for the Landside Crane
	Dominance Properties for Both Cranes
	Summary of the Properties

	Bounded Dynamic Programming
	Definition of States
	The DP Graph
	On the Use of the Dominance Properties
	Generating the DP Graph

	Evaluation of States
	Dominance Relations Among States
	The DP Algorithm
	Beam Search

	Computational Study
	Instance Generation
	Results and Evaluation
	Research Question Q1 - Small Instances
	Research Questions Q2 and Q3 - Large Instances
	Research Questions Q4 and Q5 - Beam Search

	Conclusion
	Mixed-Integer Program
	Proofs of the Dominance Properties
	Proof of Property 1
	Proof of Property 2
	Proof of Property 3
	Proof of Property 4
	Proof of Property 5
	Proof of Property 6
	Proof of Property 7
	Proof of Properties 8 and 9

	Detection of Interferences
	Beam Search

