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with sequence-dependent setup times
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Abstract We consider a flexible job shop scheduling problem with sequence-
dependent setup times that incorporates heterogeneous machine operator qualifica-
tions by taking account of machine- and operator-dependent processing times. We
analyze two objective functions, minimizing the makespan and minimizing the total
tardiness, and present exact and heuristic decomposition based solution approaches.
These approaches divide the scheduling problem into a vehicle routing problem with
precedence constraints and an operator assignment problem, and connect these prob-
lems via logic inequalities. We assess the quality of our solution methods in an exten-
sive computational study that is based on randomly generated as well as real-world
problem instances.

Keywords Scheduling · Flexible job shop · Decomposition · Logic inequalities ·
Vehicle routing

1 Introduction

The well known job shop scheduling problem (JSP) is composed of a set of jobs and a
set of machines (see, e.g., Błażewicz et al., 2007). Each job consists of a set of opera-
tions that must be processed in a given sequence in order to complete the job. That is,
the processing of an operation of a job cannot be started before the preceding opera-
tion of that job is completed. There are no precedence relations among the operations
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of different jobs. Each operation must be processed on a specific machine and is asso-
ciated with a corresponding processing time. Operations may not be preempted and
each machine can process only one operation at a time. Given these restrictions, the
problem is to determine sequences of the operations that are associated with the ma-
chines with the objective of optimizing some performance measure. It is well known
that the JSP is strongly NP-hard for minimizing the makespan or the total tardiness
(Graham et al., 1979; Lenstra and Rinnooy Kan, 1979).

Real-world manufacturing systems are usually more complex than the systems
that can be represented by the classical JSP (see, e.g., Günther and Lee, 2007). Fac-
tory work floors, for example, oftentimes feature multiple machines of the same type
as well as multi-purpose machines that allow for processing different types of oper-
ations. This is taken account of in the flexible job shop scheduling problem (FJSP),
which generalizes the JSP by assuming that each operation must be processed by ex-
actly one machine out of a given set of eligible machines (Brucker and Schlie, 1990;
Hurink et al., 1994). Additionally, machines must oftentimes be prepared in order to
be able to process a specific operation. The time needed for this preparation is re-
ferred to as a setup time. The importance of explicitly incorporating setup times into
real-world scheduling problems has been discussed in the literature since the mid-
1960s (see Allahverdi, 2015; Allahverdi and Soroush, 2008; Allahverdi et al., 1999,
2008). One distinguishes two classes of setup times (see, e.g., Allahverdi et al., 1999).
If the setup time needed for some operation solely depends on the operation itself,
it is referred to as sequence-independent. If it additionally depends on the immedi-
ately preceding operation that has been processed by the machine, it is referred to as
sequence-dependent. Furthermore, real-world manufacturing systems oftentimes fea-
ture a heterogenous workforce which, for example, induces the need to take account
of differently skilled machine operators or workers (De Bruecker et al., 2015).

1.1 Problem Setting and Motivation

In this paper, we address a FJSP with sequence-dependent setup times that takes
account of differing worker skills. We will refer to this problem as the worker con-
strained FJSP with sequence-dependent setup times, and denote it by WSFJSP.

Our research is motivated by a real-world scheduling problem that has been
brought to our attention during a project with a manufacturing company located in
North Rhine-Westphalia, Germany. The company is specialized in the production
of construction components – primarily cardan shaft mounts – made of aluminium,
stainless steel, and steel. Its customers are mainly automotive suppliers. The products
are fabricated in predefined lots that we will refer to as jobs. That is, each job is com-
posed of multiple items of a specific product. The raw materials (usually aluminum
profiles) are delivered by suppliers and subsequently run through various manufac-
turing operations, e.g. sawing, lathing, milling and punching, in predefined sequences
in order to complete the final products. The items of each lot are jointly stored and
moved in steel box pallets. Therefore, a specific operation of a job must be completed
for the entire lot before the processing of the next operation of the job can be started.
The production process of an exemplary job is illustrated in Fig. 1.
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Fig. 1 Exemplary production process

There are several kinds of multi-purpose machines that are capable of performing
different manufacturing operations, so that each operation of a job is associated with
a set of eligible machines as described above. Cleaning operations, the change of
tools, and process configurations result in sequence-dependent setup times between
two consecutive operations processed on the same machine. Setup operators are not
considered to be scarce. Machine operators, on the other hand, are considered to be
a scarce resource and possess differing skills that our industry partner implements by
making use of worker-dependent processing times. The processing time of a specific
operation therefore depends on both, the machine chosen from the set of eligible ma-
chines and the worker assigned to the machine. A worker is assigned to an operation
for its entire processing time and can only process one operation at a time.

Currently, the scheduling of the production processes at our industry partner is
a daily manual task with a planning horizon of about one week. We were asked to
implement scheduling algorithms that are capable of taking account of larger plan-
ning horizons. Additionally, we were asked to analyze two different objectives. First,
based on the assumption that each job is associated with a due date at which the
production of the job is intended to be completed, the aim is to minimize the total
tardiness. Second, we were asked to provide results for minimizing the makespan.
Clearly, due to the computational complexity of the JSP for both of these objectives,
both variants of WSFJSP are strongly NP-hard.

According to the classical three-field notation by Graham et al. (1979) that was
adapted by Allahverdi (2015) and Błażewicz et al. (1983) to include setup informa-
tion and additional resource constraints, the two variants of WSFJSP considered in
this article fall into the categories FJ|res1 · 1,STsd |Cmax and FJ|res1 · 1,STsd |∑Ti,
respectively.

1.2 Related Literature

The WSFJSP combines two variants of the FJSP that have been addressed in the
literature, i.e. the FJSP with sequence-dependent setup times and the FJSP with ex-
plicit incorporation of machine operators. We will denote these variants by SFJSP and
WFJSP, respectively, and summarize the relevant literature regarding these settings
in this section. Note that machine scheduling problems with two types of resources,
e.g. machines and machine operators, are sometimes also referred to as dual-resource
constrained (DRC) systems (see, e.g. Treleven, 1989; Xu et al., 2011).

Surveys on scheduling problems with setup considerations for various machine
environments are provided by Allahverdi et al. (1999, 2008) and Allahverdi (2015).
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With respect to flexible job shops, Shen et al. (2017) consider the SFJSP with the
objective of minimizing the makespan. They present a mixed-integer programming
(MIP) formulation and a tabu search algorithm. Corresponding ant colony optimiza-
tion approaches are presented by Zhang and Liu (2012) and Rossi (2014). Alterna-
tive MIP models are given by Nourali et al. (2012) and Saidi-Mehrabad and Fattahi
(2007). The latter authors furthermore suggest another tabu search algorithm. Defer-
sha and Chen (2010) additionally consider time lag requirements and machine release
dates. They present a MIP model and a genetic algorithm. Some articles deal with ob-
jective functions that differ from minimizing the makespan. Mousakhani (2013), for
example, aims at minimizing the total tardiness. The author presents a MIP model
and proposes a metaheuristic algorithm based on iterated local search. Özgüven et al.
(2012) present MIP formulations for the SFJSP with the objective of minimizing a
weighted sum of the makespan and a specific measure for the degree of unbalanced-
ness of the machine workloads. Similarly, Bagheri and Zandieh (2011) consider min-
imizing a weighted sum of the makespan and the mean tardiness. They present a
variable neighborhood search algorithm.

The existing articles on the WFJSP with the objective of minimizing the makespan
focus on the development of metaheuristic approaches. Examples include Lei and
Guo (2014) (variable neighbourhood search), Yazdani et al. (2015) (simulated an-
nealing, vibration damping optimization), Zhang et al. (2015) (particle swarm op-
timization), and Zheng and Wang (2016) (fruit fly optimization). Paksi and Ma’ruf
(2016) analyze the objective of minimizing the total tardiness and propose a genetic
algorithm. Multiple objectives are considered by Lang and Li (2011) and Lei and Tan
(2016), the former of which also take account of uncertain processing times.

There exist only a few papers in the scheduling literature that explicitly take ac-
count of setup considerations as well as machine operator related constraints. Venditti
et al. (2010) and Behnamian (2014) consider open shop and flow shop settings, re-
spectively. Chen et al. (2003) address a FJSP which is very closely related to our set-
ting. The authors consider machine operator related constraints and group-dependent
setup times, where setup operations are necessary whenever switching between pre-
defined groups of operations. Furthermore, they allow the generation of so called
transfer lots. That is, each lot (as defined above for the WSFJSP) may be divided
into multiple transfer lots, each of which can move to the next operation as soon
as all parts within that transfer lot are completed. The objective function relates to
maximizing the on-time delivery of products and the reduction of inventory and the
number of setups. The problem is solved via a heuristic framework that makes use of
a decomposition of the overall problem into smaller subproblems.

1.3 Contribution and Overview

Based on the above literature review, it can be concluded that FJSPs with sequence-
dependent setup times and explicit incorporation of machine operators have received
little attention. We will therefore contribute to the literature by analyzing a corre-
sponding setting, namely the WSFJSP, which – as outlined above – is based on a
real-world scheduling problem. We will propose an exact solution approach that de-
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composes the WSFJSP into a vehicle routing problem (VRP) with precedence con-
straints and a worker assignment problem. These models are combined by using logic
inequalities. This exact approach will turn out to outperform an integrated MIP model
and is able to solve small instances to optimality. Moreover, in order to be able to de-
termine feasible solutions for medium and large instances within reasonable time, we
will present heuristic algorithms based on the above decomposition. Our approaches
are evaluated based on randomly generated test instances as well as real-world test
instances that are based on data that has been provided by our industry partner.

The remainder of this article is structured as follows. In Section 2, we provide a
formal definition of the WSFJSP and introduce the notation. The exact decomposition
approach is presented in Section 3, while the heuristics are subject of Section 4. The
computational tests are presented in Section 5. Finally, Section 6 concludes the paper.

2 Notation and Detailed Problem Description

We are given a set I = {1, . . . ,n} of jobs. Each job i ∈ I is associated with a set of
qi operations Oi = (i1, . . . , iqi) that have to be sequenced on a set M of machines and
that may not be preempted. The sets Oi are assumed to be ordered for all jobs i ∈ I,
which relates to the fact that, for any pair of operations i j, ik ∈Oi with j < k, i j must be
completed before the processing of ik may start. Each operation i j ∈Oi, i∈ I, must be
processed by exactly one machine out of a set of eligible machines Mi j ⊆M in order
to be completed. To simplify the notation, we define Mi j ,kl := Mi j ∩Mkl for all i,k ∈ I,
i j ∈ Oi, kl ∈ Ok. An operation can only be processed by a machine if exactly one
worker out of a given set W of workers is assigned to the machine during the entire
processing time of the operation. Each machine and each worker can process at most
one operation at a time. A job is completed if all of its operations are completed. The
completion time of an operation i j ∈Oi of job i∈ I is denoted by Ci j . The completion
time of job i∈ I is denoted by Ci. Obviously, Ci =Ciqi

for all i∈ I. The processing time
of an operation i j ∈Oi of a job i∈ I, which we denote by pm,w

i j
∈Q+

0 ∪{∞}, is assumed
to vary over different machines m ∈ Mi j and workers w ∈W , which enables us to
take account of differently skilled workers. We assume that all workers are available
during the entire planning horizon. In case of a shift-based system and a planning
horizon larger than one shift, we must therefore assume that all shifts are staffed
with equally skilled workers, so that they can replace each other at shift changeovers.
pm,w

i j
=∞ represents the case that worker w∈W is not allowed to process an operation

i j ∈Oi of a job i∈ I on machine m∈Mi j . We assume that for each operation i j ∈Oi of
a job i ∈ I and each corresponding machine m ∈Mi j , there exists at least one worker
w ∈W that can process the operation within finite time. Moreover, we assume that
sequence-dependent setup times sm

i j ,kl
∈Q+

0 occur when an operation kl ∈Ok, k ∈ I, is
processed immediately after an operation i j ∈ Oi, i ∈ I, on machine m ∈Mi j ,kl . Note
that these setup times may differ among the machines m ∈ Mi j ,kl . Setup operations
do not require the assignment of a worker. Note that we consider an offline setting
where all jobs, machines, and workers are available at the beginning of the planning
horizon. Furthermore, there are no precedence relations between jobs.
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The WSFJSP is to find a schedule, i.e. an allocation of operations to machines,
a sequence of the operations that have been allocated to each machine, and a corre-
sponding assignment of workers to operations, that is feasible with respect to the re-
strictions stated above, such that an objective function is addressed. We will consider
two objectives. First, we will consider the minimization of the makespan Cmax :=
maxi∈I Ci. Second, given a due date di ∈ Q+

0 for each job i ∈ I, we will consider the
minimization of the total tardiness ∑i∈I Ti, where the tardiness Ti of job i∈ I is defined
as Ti := max{Ci−di,0}.

Our notation is summarized in Table 1.

Table 1 Notation used throughout the paper

I set of jobs I = {1, . . . ,n}, |I|= n
M set of machines
W set of workers
Oi set of operations of job i ∈ I Oi = (i1, . . . , iqi ), |Oi|= qi
Mi j set of eligible machines for operation i j ∈ Oi of job i ∈ I Mi j ⊆M
Mi j ,kl intersection of Mi j and Mkl , where i,k ∈ I, i j ∈Oi, and kl ∈Ok Mi j ,kl := Mi j ∩Mkl

di due date of job i ∈ I di ∈Q+
0

pm,w
i j

processing time of operation i j ∈ Oi of job i ∈ I when pro-
cessed by worker w ∈W on machine m ∈Mi j

pm,w
i j
∈Q+

0 ∪{∞}

sm
i j ,kl

setup time when processing operation kl ∈ Ok of job k ∈ I
immediately after operation i j ∈ Oi of job i ∈ I on machine
m ∈Mi j ,kl

sm
i j ,kl
∈Q+

0

Ci j completion time of operation i j ∈ Oi of job i ∈ I
Ci completion time of job i ∈ I Ci =Ciqi
Cmax makespan of the schedule Cmax := max

i∈I
Ci

Ti tardiness of job i ∈ I Ti := max{Ci−di,0}

3 Decomposition Approach

There exist similarities between VRPs and machine scheduling problems, which has
resulted in several articles that have addressed machine scheduling settings from a
vehicle routing perspective. Bigras et al. (2008), for example, analyze relationships
between single machine scheduling problems with sequence-dependent setup times
and the time-dependent traveling salesman problem (TSP). Similarly, Balas et al.
(2008) model single machine problems that arise in their adapted shifting bottleneck
procedure for a JSP with sequence-dependent setup times as TSPs with time win-
dows. A similar method is applied by Tran and Beck (2012), who propose a logic-
based Benders decomposition approach for scheduling unrelated parallel machines
with sequence-dependent setup times.

In line with the aforementioned research, we propose to solve the WSFJSP in
a branch-and-cut framework by decomposing it into a VRP with precedence con-
straints (master problem, MP) and a worker assignment problem (subproblem). The
MP explicitly addresses the allocation of operations to machines and the sequencing
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of operations on each machine. The effect of the assignment of workers to opera-
tions on the objective function value is embedded into the MP by making use of
logic inequalities, a class of constraints that is inspired by the logic-based Benders
decomposition approach by Hooker and Ottosson (2003). Within our branch-and-cut
framework, these inequalities are consecutively obtained by the subproblem, which
explicitly determines an assignment of workers to operations such that the makespan
or the total tardiness is minimized based on a given allocation and sequencing deci-
sion of (a relaxed version of) the MP.

To ease the notation in the remainder of this paper, we define a dummy job 0
with due date d0 = ∞ and exactly one operation 01 with M01 = M. We set M01,i j =

Mi j ,01 = Mi j for all jobs i ∈ I and operations i j ∈ Oi. Furthermore, we set pm,w
01

= 0
for all machines m ∈M and workers w ∈W . The setup times sm

01,i j
can take arbitrary

nonnegative rational values for all machines m∈M, jobs i∈ I, and operations i j ∈Oi,
which allows for modelling the first setup operation on each machine. Furthermore,
sm

i j ,01
= 0 for all m ∈M, i ∈ I, and i j ∈ Oi.

3.1 Master Problem

As mentioned above, the master problem does not explicitly take account of the as-
signment of workers to operations. Hence, we make use of lower bounds for the
processing times, and define pm,min

i j
:= minw∈W pm,w

i j
for all jobs i ∈ I ∪{0}, opera-

tions i j ∈Oi, and machines m∈Mi j . Furthermore, we set pmin
i j

:= minm∈Mi j
pm,min

i j
for

all jobs i ∈ I∪{0} and operations i j ∈ Oi.
When considering each machine as a vehicle and each operation as a distinct cus-

tomer that must be visited (processed) exactly once, the MP corresponds to a variant
of the VRP, where precedence relations capture the fact that the operations of each
job have to follow a predefined order. The dummy operation 01 represents the depot
of the VRP and allows modelling the start and end configurations of the machines.
Following well established VRP formulations, we define the MP on a weighted, di-
rected (multi-) graph G = (V,E) with vertex set V :=

⋃
i∈I Oi∪{01} and the edge set

being composed of 2 · |Mi j ,kl | edges between any pair of vertices i j,kl ∈V , i 6= k, and
|Mi j ,iv | edges between any pair of vertices i j, iv ∈ V , v > j, as illustrated in Fig. 2.
Here, solid lines represent exemplary edges of the multigraph for some specific el-

i j kliv

sm
i j ,kl

+ pm,min
i j

sm
kl ,i j

+ pm,min
kl

sm
i j ,iv

+ pm,min
i j

∀m ∈ Mi j ,kl
∀m ∈ Mi j ,iv

Fig. 2 Illustration of the graph representation, iv, i j,kl ∈V , i 6= k, v > j
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igible machine, while dotted lines indicate that there potentially exist a number of
additional edges that correspond to the remaining eligible machines.

Define V̄ := V \ {01} and let B be a large positive number. Furthermore, for the
sake of notational convenience, define Vi j := V \ {ik|k ≤ j} (set of potential direct
successors of i j), Ṽi j :=V \{ik|k ≥ j} (set of potential direct predecessors of i j), and
V̄i j :=Vi j \{01} for all i j ∈V .

For the sake of clarity, the additional notation for the MP is summarized in Ta-
ble 2.

Table 2 Additional notation for the master problem, defined on G = (V,E)

pm,min
i j

minimum processing time of operation i j ∈Oi of job i ∈ I pro-
cessed on machine m ∈Mi j

pm,min
i j

:= min
w∈W

pm,w
i j

pmin
i j

minimum processing time of operation i j ∈ Oi of job i ∈ I pmin
i j

:= min
m∈Mi j

pm,min
i j

V set of vertices V :=
⋃

i∈I Oi ∪{01}
V̄ set of vertices without depot vertex V̄ :=V \{01}
Vi j set of potential direct successors of i j ∈V Vi j :=V \{ik|k ≤ j}
Ṽi j set of potential direct predecessors of i j ∈V Ṽi j :=V \{ik|k ≥ j}
V̄i j set of potential direct successors of i j ∈V without depot vertex V̄i j :=Vi j \{01}
B large positive number

Now, define a continuous variable ti j ∈ R+
0 for all operations i j ∈V . It represents

the time when i j is started to be processed on one of the machines. Moreover, define
a continuous variable Cmax ∈ R+

0 that represents the makespan, and a binary variable

ym
i j ,kl

:=


1, if operation kl is processed di-

rectly after operation i j on ma-
chine m

0, else

∀ i j ∈V,kl ∈Vi j ,m ∈Mi j ,kl . (1)

Then, when considering makespan minimization, a MIP formulation for the MP
is as follows:

min Cmax . (2)
s.t.

tiqi
+ ∑

kl∈Viqi

∑
m∈Miqi ,kl

ym
iqi ,kl
· pm,min

iqi
≤Cmax . ∀ i ∈ I, (3)

∑
i j∈Ṽkl

∑
m∈Mi j ,kl

ym
i j ,kl

= 1 . ∀kl ∈ V̄ , (4)

∑
i j∈V̄

ym
01,i j
≤ 1 . ∀m ∈M, (5)

∑
kl∈{ab∈Ṽi j |m∈Mab}

ym
kl ,i j
− ∑

kl∈{ab∈Vi j |m∈Mab}
ym

i j ,kl
= 0. ∀ i j ∈V,m ∈Mi j , (6)

ti j + sm
i j ,kl

+ pm,min
i j

− tkl ≤
(

1− ym
i j ,kl

)
B . ∀ i j ∈V,kl ∈ V̄i j ,m ∈Mi j ,kl , (7)
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ti j + ∑
kl∈Vi j

∑
m∈Mi j ,kl

ym
i j ,kl
· pm,min

i j
≤ ti j+1 . ∀ i j ∈ V̄ with j ≤ qi−1, (8)

ti j + pmin
i j
≤ ti j+1 . ∀ i j ∈ V̄ with j ≤ qi−1, (9)

C̃h
max ·

1− ∑
(i j ,kl ,m)∈Ph

(1− ym
i j ,kl

)

≤Cmax . ∀ logic inequalities h, (10)

ym
i j ,kl
∈ {0,1} . ∀ i j ∈V,kl ∈Vi j ,m ∈Mi j ,kl , (11)

ti j ∈ R+
0 . ∀ i j ∈V, (12)

Cmax ∈ R+
0 . . (13)

The objective function (2) minimizes the makespan of the schedule. Constraints
(3) set a lower bound on the makespan. Constraints (4) guarantee that each operation
is scheduled exactly once. Inequalities (5) ensure that there is at most one opera-
tion that is processed first on each machine. Flow conservation is enforced by con-
straints (6). Constraints (7) enforce a time increase of at least sm

i j ,kl
+ pm,min

i j
(setup

and processing) compared to ti j , if ym
i j ,kl

= 1. Constraints (8) guarantee that an op-
eration i j+1 ∈ Oi of job i ∈ I cannot start before its preceding operation i j ∈ Oi has
been processed completely. Constraints (9) are redundant to constraints (8), but have
shown to improve the computational performance in our tests. The logic inequalities
(10) correct a potential underestimation of the objective function value that is caused
by minimizing over all workers when determining the processing times that (partly)
define the edge weights of the underlying graph representation. They are explained
in more detail in Section 3.4, where we also introduce the related notation. Finally,
constraints (11)–(13) define the domains of the variables.

Model (2)–(13) can easily be adapted for minimizing the total tardiness instead
of the makespan. To do so, define a continuous variable Ti ∈ R+

0 , representing the
tardiness of job i, for all i ∈ I. We get:

min T = ∑
i∈I

Ti . (14)

s.t. (4)− (9), (11), (12),

tiqi
+ ∑

kl∈Viqi

∑
m∈Miqi ,kl

ym
iqi ,kl
· pm,min

iqi
−di ≤ Ti. ∀ i ∈ I, (15)

T̃ h ·

1− ∑
(i j ,kl ,m)∈Ph

(1− ym
i j ,kl

)

≤∑
i∈I

Ti . ∀ logic inequalities h, (16)

Ti ∈ R+
0 . ∀ i ∈ I. (17)

The objective function (14) minimizes the total tardiness, which we will hereafter
denote by T , of the jobs. Constraints (15) set a lower bound on the tardiness of each
job. Constraints (16) are logic inequalities that are defined in analogy to constraints
(10). Constraints (17) define the domains of the newly introduced variables.
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We denote a relaxed version of the MP, which results from considering only a
(potentially empty) subset of constraints (10) or (16), by RMP. Based on a given
solution of the MP or a RMP, we can construct a directed graph with vertex set V that
includes only those edges of G that are associated to a positive variable (1). We will
refer to this graph as the supporting graph of the solution. The supporting graph of
any feasible solution of the MP or a RMP is composed of at most |M| edge-disjoint
cycles, each of which includes the depot vertex 01, such that every vertex of the set
V̄ is included in exactly one of the cycles. Fig. 3 illustrates the supporting graph of a
feasible solution of the MP (Fig. 3a) and the corresponding Gantt chart that represents
the processing of the operations on the machines (Fig. 3b) for an example instance
with two jobs and two machines. The solid and dashed lines of Fig. 3a represent
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Fig. 3 Representation of a feasible solution of the MP

positive variables (1) that are associated to the first or second machine, respectively.
The values of the variables (12) are given next to the corresponding vertices of the
set V . Hence, in the depicted solution, machine 1 processes operations 11, 21, and
22, while machine 2 solely processes operation 12. As illustrated in the Gantt chart in
Fig. 3b, the precedence constraints among the operations of job 1 result in idle time
that precedes the setup operation which is necessary to process 12 on machine 2.

3.2 Subproblem

Based on a feasible allocation and sequencing decision of the MP or a RMP and the
true processing times, the subproblem determines an assignment of workers to op-
erations such that the makespan or the total tardiness is minimized. It is important
to note that there always exists such a feasible assignment, because the assignment
of workers to operations can only cause temporal shifts of the operations on the ma-
chines.

Let ȳ := (ȳm
i j ,kl
|i j ∈ V,kl ∈ Vi j ,m ∈ Mi j ,kl ) denote the vector of variables (1) of

a solution of the MP or a RMP and refer to the corresponding value of the objec-
tive function (2) or (14) by C̄max and T̄ , respectively. Based on ȳ, we can construct
parameters that specify the machines that process the operations:

z̄m
i j

:=

{
1, if ∑kl∈{ab∈Ṽi j |m∈Mab}

ȳm
kl ,i j

= 1

0, else
∀ i j ∈ V̄ ,m ∈Mi j . (18)
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In analogy to the variables of the MP, we additionally define continuous variables
t̃i j ∈ R+

0 for all operations i j ∈ V , as well as continuous variables C̃max ∈ R+
0 and

T̃i ∈ R+
0 for all jobs i ∈ I. Moreover, we define the following binary variables:

xw
i j

:=

1, if operation i j is processed by
worker w

0, else
∀ i j ∈ V̄ ,w ∈W, (19)

xw
i j ,kl

:=

1, if operations i j and kl are pro-
cessed by worker w

0, else
∀ i j,kl ∈ V̄ , i j 6= kl ,w ∈W, (20)

vi j ,kl :=


1, if the processing of operation kl starts

before the processing of operation i j
finishes

0, else

∀ i j,kl ∈ V̄ , i j 6= kl . (21)

We furthermore define xw
01

:= 1 for all workers w ∈W .
The subproblem for makespan minimization is then defined as follows:

min C̃max . (22)
s.t.

t̃iqi
+ ∑

m∈Miqi

∑
w∈W

z̄m
iqi
· xw

iqi
· pm,w

iqi
≤ C̃max . ∀ i ∈ I, (23)

∑
w∈W

xw
i j
= 1 . ∀ i j ∈ V̄ , (24)

t̃i j + sm
i j ,kl

+ pm,w
i j
− t̃kl ≤

(
1− ȳm

i j ,kl
· xw

i j

)
B . ∀ i j ∈V,kl ∈ V̄i j ,

. m ∈Mi j ,kl ,w ∈W, (25)

t̃i j + ∑
m∈Mi j

∑
w∈W

z̄m
i j
· xw

i j
· pm,w

i j
≤ t̃i j+1 . ∀ i j ∈ V̄ with j ≤ qi−1, (26)

xw
i j ,kl
≥ xw

i j
+ xw

kl
−1 . ∀ i j,kl ∈ V̄ , i j 6= kl ,w ∈W, (27)

t̃i j + ∑
m∈Mi j

∑
w∈W

z̄m
i j
· xw

i j
· pm,w

i j
− t̃kl ≤ B · vi j ,kl . ∀ i j,kl ∈ V̄ , i j 6= kl , (28)

xw
i j ,kl
≤ 2− vi j ,kl − vkl ,i j . ∀ i j,kl ∈ V̄ , i j 6= kl ,w ∈W, (29)

xw
i j
∈ {0,1} . ∀ i j ∈V,w ∈W, (30)

xw
01
= 1 . ∀w ∈W, (31)

xw
i j ,kl
∈ {0,1} . ∀ i j,kl ∈ V̄ , i j 6= kl ,w ∈W, (32)

vi j ,kl ∈ {0,1} . ∀ i j,kl ∈ V̄ , i j 6= kl , (33)

t̃i j ∈ R+
0 . ∀ i j ∈V, (34)

C̃max ∈ R+
0 . . (35)

Given the vector ȳ of a solution of the MP or a RMP, the objective function (22)
minimizes the makespan of the schedule. Constraints (23) bound the makespan from
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below. Restrictions (24) ensure that each operation is assigned to exactly one worker.
Constraints (25) and (26) are defined in analogy to restrictions (7) and (8) of the
MP. Inequalities (27) and (28) ensure that the variables (20) and (21) are set to one
when needed. Based on these variables, constraints (29) guarantee that each worker
is assigned to at most one operation at a time. Finally, constraints (30)–(35) define
the domains of the variables.

For the case of minimizing the total tardiness, the subproblem is similarly defined
as follows:

min T̃ = ∑
i∈I

T̃i . (36)

s.t. (24)− (34),

t̃iqi
+ ∑

m∈Miqi

∑
w∈W

z̄m
iqi
· xw

iqi
· pm,w

iqi
−di ≤ T̃i. ∀ i ∈ I, (37)

T̃i ∈ R+
0 . ∀ i ∈ I. (38)

Here, the objective function (36) minimizes the total tardiness of the jobs based
on the vector ȳ of a solution of the MP or a RMP. Constraints (37) bound the tardiness
of each job from below, and constraints (38) define the domains of the tardiness
variables.

3.3 Subtour Elimination Cuts

As described in Section 3.1, the supporting graph of any feasible solution of the MP
or a RMP is composed of a set of at most |M| edge-disjoint cycles, each of which
includes the depot vertex 01, such that every vertex of the set V̄ is included in exactly
one of the cycles. For fractional solutions, that may arise during the solution process
of a standard MIP solver that relaxes the integrality constraints of the MP or a RMP,
we define the supporting graph to include all vertices of the set V as well as all edges
of G that are associated with positive relaxed variables (1). Here, the above property
needs not be true, which is illustrated in Fig. 4 based on a fractional solution of a
RMP of an example instance with two machines and two jobs, both of which consist
of two operations (refer to the previous example in Fig. 3a for an explanation of
the illustration). Each machine of the example instance is eligible for processing all
operations. As can be seen, the supporting graph of the depicted fractional solution is
composed of four edge-disjoint cycles, two of which do not contain the depot vertex
01.

We make use of the above fact to separate subtour elimination constraints that
we add to our branch-and-cut framework in addition to the logic inequalities. More
specifically, when a fractional solution arises at a node of the branch-and-bound tree,
we construct the corresponding supporting graph as described above and determine
the set A of connected components of the undirected pendent of this graph. To do so,
we make use of a depth-first search approach provided by the Boost Graph Library
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Fig. 4 Supporting graph of a fractional solution of a RMP of an example instance

(Boost, 2018). Each element of the set A is a set of vertices, each of which is included
in the respective connected component. If |A|> 1, the subtour elimination constraints

∑
i j∈S

∑
kl∈V\S

∑
m∈Mi j ,kl

ym
i j ,kl
≥ 1 ∀S ∈ A (39)

are generated and included in the branch-and-cut procedure.

3.4 Branch-and-Cut Framework

We propose to solve the WSFJSP in a branch-and-cut framework offered by a stan-
dard MIP solver. Modern solvers allow their users to guide a branch-and-cut solution
process via so called callbacks. We make use of these callbacks to consecutively gen-
erate and add logic inequalities (10) or (16) and subtour elimination constraints (39)
after having started the solver on the RMP with an empty set of logic inequalities.
This is illustrated in Algorithm 1.

The logic inequalities are indexed by h and are derived by solving subproblems
in step 3 of Algorithm 1. The basic idea is as follows. The RMP makes use of lower
bounds of the processing times, so that the objective function value of a potential
incumbent solution may be incorrect with respect to the real processing times. The
corresponding logic inequality assures that, for this specific solution, the objective
function value of the RMP implicitly takes account of the worker assignment restric-
tions and the real processing times which are explicitly modelled in the subproblem.

The overall process of handling a potential incumbent solution with objective
value C̄max (T̄ ) in step 3 of Algorithm 1 is as follows. First, the corresponding sub-
problem is generated and solved by a standard solver. The resulting objective func-
tion value is referred to as C̃max (T̃ ). If the subproblem is feasible and C̄max = C̃max
(T̄ = T̃ ), no logic inequality is violated and the branch-and-cut process continues
without any modification. If, however, the subproblem is feasible and C̄max (T̄ ) is
smaller than C̃max (T̃ ), we generate a logic inequality, add it to the RMP, and proceed
with the branch-and-cut solution process.

The process of separating subtour elimination cuts in step 4 of Algorithm 1 pro-
ceeds as outlined in Section 3.3. Note, however, that we do not construct these cuts for
all potential fractional solutions in order to balance the computational effort needed
for their separation and their use within the branch-and-cut procedure. Instead, we
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Input: Instance Inst of WSFJSP, parameter ρs
Output: Optimal solution of Inst

1. Initialize h := 0 (counter for logic inequalities).
2. Call standard branch-and-cut solver for the RMP of Inst with an empty set of logic

inequalities. Whenever a potential incumbent solution with vector ȳ and objective function
value C̄max (T̄ ) is found, go to 3 (solve subproblem and potentially generate and add a logic
inequality). Whenever a fractional solution arises at a node of the branch-and-bound tree and
the node cannot be pruned, go to 4 (potentially generate and add subtour elimination
constraints) with a given probability ρs.

3. Determine parameters (18) and solve the subproblem based on ȳ by making use of a standard
solver. The resulting objective function value is referred to as C̃max (T̃ ).
(a) If the subproblem is feasible and C̄max < C̃max (T̄ < T̃ ), set h := h+1, C̃h

max := C̃max
(T̃ h := T̃ ), and construct the logic inequality

C̃h
max · (1− ∑

(i j ,kl ,m)∈Ph

(1− ym
i j ,kl

))≤Cmax

(in case of makespan minimization), or

T̃ h · (1− ∑
(i j ,kl ,m)∈Ph

(1− ym
i j ,kl

))≤∑
i∈I

Ti

(in case of minimization of the total tardiness). Here

Ph :=
{
(i j,kl ,m)|ȳm

i j ,kl
= 1, i j ∈V,kl ∈Vi j ,m ∈Mi j ,kl

}
.

Add this constraint to the branch-and-cut process and continue in 2.
(b) If the subproblem is feasible and C̄max = C̃max (T̄ = T̃ ), the potential incumbent solution

becomes the new incumbent solution and the branch-and-cut process in 2 continues.
4. Construct the supporting graph of the fractional solution and determine the connected

components A of this graph. If |A|> 1, generate subtour elimination constraints (39). Add
these constraints to the branch-and-cut process and continue in 2.

Algorithm 1 Branch-and-cut framework for WSFJSP

generate subtour elimination cuts with a given probability ρs for each fractional so-
lution.

4 Decomposition Based Heuristics

Due to the computational complexity of WSFJSP, it cannot be expected that our
branch-and-cut framework is able to solve medium- to large-sized instances to opti-
mality within reasonable time. In this section, we will therefore introduce two heuris-
tic approaches that are based on the above decomposition. First, in Section 4.1, we
will present a simple approach for generating a feasible initial solution of WSFJSP.
Then, in Section 4.2, we will develop a more sophisticated improvement procedure
which is inspired by an idea presented by Della Croce et al. (2014) for a flow shop
scheduling problem with two machines.
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4.1 Generating an Initial Solution

In line with the decomposition introduced in Section 3, we generate an initial solution
of a given instance of the WSFJSP by a hierarchical approach composed of two steps.
First, based on the lower bounds of the processing times introduced in Section 3.1,
our approach allocates operations to machines and decides on the sequences of the
operations on the machines. This step corresponds to finding a solution to the RMP
with an empty set of logic inequalities. Second, given this solution, the approach
assigns workers to operations based on the correct processing times, which corre-
sponds to determining a solution to the subproblem and, thus, to the given instance
of the WSFJSP.

4.1.1 Allocation and Sequencing

The allocation and sequencing decisions are made by a priority-rule based heuristic
that follows an algorithmic idea of Giffler and Thompson (1960) for the classical JSP.
Our approach is outlined in detail in Algorithm 2.

Basically, the algorithm iteratively (loop 7–21) allocates operations that can start
being processed (when applying lower bounds of the processing times as introduced
in Section 3.1) at the respective point of time (represented by “release times”, see
lines 3–4 and 12–19), when taking account of the corresponding precedence con-
straints. Among all operations that compete for the same machine (chosen in lines
8–9) in some iteration, exactly one operation is chosen based on a priority rule (line
10). As there exists a vast amount of potential priority rules (see, for example, Haupt,
1989), we rely on a comparative study by Sels et al. (2012), who analyze the perfor-
mance of multiple priority rules for JSPs and FJSPs under different objective func-
tions, including settings with setup times. Based on the results of this analysis, we
decided to make use of two priority rules. In case of the objective of minimizing
the makespan, we apply a combination of the flow due date (FDD), the most work
remaining (MWKR), and the shortest setup time (SS) priority rules. Formally, after
having decided on a machine m∗ ∈ M, we determine the last operation ab(m∗) ∈ V
that is processed by m∗ in its current processing sequence, where ab(m∗) = 01 in case
of the empty sequence. Among all relevant candidate operations, our priority rule
then selects an operation i j with smallest value

∑
1≤k≤ j

pmin
ik

∑
j≤k≤qi

pmin
ik

+ sm∗
ab(m∗),i j

.

Similarly, in case of the objective of minimizing the total tardiness, we consider a
combination of the SS and the earliest due date (EDD) priority rules, where an oper-
ation i j with smallest value

di + sm∗
ab(m∗),i j

among the relevant candidate operations is selected.
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Input: RMP of an instance Inst of WSFJSP with an empty set of logic inequalities
Output: Feasible solution of RMP

1 Initialize U := V̄ ; // Set of operations that have not been sequenced
2 Initialize Lm := 0 ∀m ∈M; // Load of machine m
3 Initialize rm

i1
:= sm

01 ,i1
∀i ∈ I,m ∈Mi1 ; // Earliest starting time of operation i1 of

job i on machine m
4 Initialize rm

i j
:= ∞ ∀i j ∈ V̄ \{i1|i ∈ I},m ∈Mi j ; // Earliest starting time of operation

i j of job i on machine m
5 Initialize ab(m) := 01 ∀m ∈M; // Last operation sequenced on machine m
6 Initialize ci := 0 ∀i ∈ I; // Completion time of the operation of job i that has

been completed last
7 repeat
8 Determine C∗ := mini j∈U,m∈Mi j

rm
i j
+ pm,min

i j
; // Smallest possible completion time

of operations that have not been sequenced on their eligible
machines

9 Let m∗ denote a machine on which C∗ is a possible completion time;
10 Among all operations that have not been sequenced, i j ∈U , with rm∗

i j
<C∗, choose an

operation i∗j based on a priority rule and sequence it on machine m∗, starting its processing
at time rm∗

i∗j
;

11 Update Lm∗ := rm∗
i∗j

+ pm∗ ,min
i∗j

, ab(m∗) := i∗j , and ci∗ := Lm∗ ;

// Update earliest starting times of operations that have not been
sequenced

12 forall i ∈ I do
13 if i = i∗ and i∗j has a succeeding operation then
14 update rm

i∗j+1
:= max{Lm∗ ,Lm + sm

ab(m),i∗j+1
} ∀m ∈Mi∗j+1

;

15 end
16 else if i 6= i∗ then
17 rm∗

ik
:= max{ci,Lm∗ + sm∗

i∗j ,ik
} ∀ik ∈U with rm∗

ik
< ∞;

18 end
19 end
20 Update U :=U \{i∗j};
21 until U = /0;

Algorithm 2 Obtaining an initial allocation and sequencing decision

4.1.2 Worker Assignment

After having determined an initial allocation and sequencing decision, i.e. a feasible
solution of a RMP as, for instance, constructed by Algorithm 2, we proceed by com-
puting a corresponding feasible worker assignment and the resulting solution of the
given instance of the WSFJSP with a beam search approach.

In general, beam search uses a graph representation of a solution process and ap-
plies breadth-first search with a filtering process to only expand the β (beam width)
most promising nodes of the graph in each iteration. It was first used by Lowerre
(1976). Our implementation of a beam search approach for the subproblem first sorts
the operations of all jobs in non-decreasing order of the points in time when their
processing is started in a feasible solution of a RMP. It then proceeds by assigning
workers to the operations (and potentially shifting the corresponding starting times
of the operations based on the correct values of the processing times) in this order
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by constructing a search tree in a breadth-first search manner as illustrated in Fig. 5.
That is, the algorithm decides on the worker assignment for a single operation on
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Fig. 5 Illustration of the beam search algorithm for the worker assignment problem

each level of the tree and hereafter selects the β most promising nodes for further
consideration, while all other nodes are pruned. The root node represents a situation
where no worker has been assigned. A node is evaluated based on the earliest possible
completion time of the corresponding operation that results from the worker assign-
ment decisions given in the node. On the last level of the search tree, the algorithm
determines the objective function value, i.e. the makespan or the total tardiness, of
the β most promising nodes and selects a solution with minimum value.

4.2 Decomposition Based Improvement Procedure

Our improvement procedure is based on dividing the relevant time horizon into time
windows of equal length (see Section 4.2.1). Its main idea is to iterate over pairs
of time windows and – for each pair – make use of a given reference solution of a
RMP (which is altered in the course of the procedure, starting with the solution de-
termined by Algorithm 2) to decide on fixing a subset of variables (1), i.e. fixing sub-
sequences of operations on machines. The resulting problems are referred to as fixed
relaxed master problems (FRMPs, see Section 4.2.2). They have a reduced number
of free variables, which allows to quickly determine (potentially improved) feasible
solutions with a standard MIP solver by solely reoptimizing the subsequences of op-
erations that are (started to be) processed within the time windows in the reference
solution. The worker assignment decisions are handled by solving the resulting sub-
problems either heuristically by the beam search approach introduced in Section 4.1.2
or as in our exact approach.
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4.2.1 Time Windows

The length twLen of the time windows is a crucial parameter of our improvement pro-
cedure. On one hand, large time windows result in a large amount of free variables
and, consequently, induce a relatively large computational effort needed to solve the
resulting FRMPs with a MIP solver. On the other hand, the solution space is less
restricted when considering large time windows, which allows for potentially com-
puting high quality solutions. In order to balance this trade-off, it is reasonable to take
account of the average processing time of all operations when computing twLen, so
that we define a multiset P := {pm,w

i j
|i j ∈ V̄ ,m ∈Mi j ,w ∈W,0 < pm,w

i j
< ∞}, and set

twLen =


∑

p∈P
p

|P|

 .
We then define time windows twi := [(i−1) · twLen, i · twLen], i = 1,2, . . . . The num-
ber of relevant time windows is not fixed, but is implicitly specified by the current
reference solution within our improvement procedure (see Section 4.2.3).

4.2.2 Fixed Relaxed Master Problem

Algorithm 3 presents our method of determining the variables (1) that are considered
as fixed in the FRMP that is based on a reference solution SolRMP

re f of a RMP for a

given pair of time windows twa and twb, a 6= b. Here, tref := (tre f
i j
|i j ∈ V ) refers to

the time variables of SolRMP
re f , while yref := (yre f ,m

i j ,kl
|i j ∈V,kl ∈Vi j ,m ∈Mi j ,kl ) denotes

the vector of variables (1) of SolRMP
re f . The algorithm iterates over all machines and all

pairs of operations that are consecutively sequenced on these machines in the given
solution (loop 4–18). If, for a given pair of operations, none of the starting times
of these operations lie within one of the time windows (line 7), the corresponding
variable (1) will later be fixed to one (line 8). Based on this decision, a number of
additional, directly related variables (1) will necessarily later be fixed to zero (lines
9–16). Within the algorithm, the variables that will later be fixed are stored in the sets
F0 (fix to zero) and F1 (fix to one) via their indices.

Consider an exemplary reference solution of a RMP as given in Fig. 6 (refer to
Fig. 3 for or an explanation of the illustrations) and assume that the time windows
tw1 = [0,3] and tw2 = [3,6] are considered. When, for example, analyzing yre f ,1

22,42
, the

algorithm inserts (22,42,1) into the set F1, i.e. the decision to process operation 42
directly after operation 22 on machine 1 will later be fixed, because both starting times
tre f
22

and tre f
42

lie outside of the considered time windows in the reference solution.

The set F0 is updated accordingly. When, on the other hand, analyzing yre f ,1
21,22

, no

subsequence is fixed, because tre f
21

lies inside of time window tw2.
In order to obtain the mathematical model of the FRMP based on a given ref-

erence solution SolRMP
re f and the result of Algorithm 3, the following constraints are

added to the RMP:

ym
i j ,kl

= 1 ∀(i j,kl ,m) ∈ F1,
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Input: Solution SolRMP
re f (yref, tref) of a RMP of an instance Inst of WSFJSP, time windows twa

and twb, a 6= b
Output: Sets F0 and F1

1 Initialize F1 := /0; // Set of indices of variables that will be fixed to one
2 Initialize F0 := /0; // Set of indices of variables that will be fixed to zero
3 Initialize t̂i j := tre f

i j
∀i j ∈V ; // Auxiliary variables

4 forall i j ∈V , kl ∈Vi j , m ∈Mi j ,kl with yre f ,m
i j ,kl

= 1 do
// Update auxiliary variables if operation 01 is involved

5 if kl = 01 then t̂kl := t̂i j + pm,min
i j

;

6 else if i j = 01 then t̂i j := 0;
// Check time windows twa and twb and update F0 and F1

7 if t̂i j /∈ twa and t̂i j /∈ twb and t̂kl /∈ twa and t̂kl /∈ twb then
8 F1 := F1 ∪{(i j,kl ,m)};
9 forall qv ∈Vi j \{kl} do

10 if i j 6= 01 then F0 := F0 ∪{(i j,qv,m′)|m′ ∈Mi j ,qv};
11 else if m ∈Mqv then F0 := F0 ∪{(01,qv,m)};
12 end
13 forall qv ∈ Ṽkl \{i j} do
14 if kl 6= 01 then F0 := F0 ∪{(qv,kl ,m′)|m′ ∈Mqv ,kl };
15 else if m ∈Mqv then F0 := F0 ∪{(qv,01,m)};
16 end
17 end
18 end

Algorithm 3 Determining the set of variables to be fixed
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Fig. 6 Exemplary reference solution of a RMP

ym
i j ,kl

= 0 ∀(i j,kl ,m) ∈ F0.

A MIP solver will therefore reoptimize the subsequences of operations that are started
to be processed within the given time windows in SolRMP

re f when being called on this
FRMP.
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4.2.3 Heuristic Framework

We are now ready to present the details of our decomposition based improvement
procedure in Algorithm 4. The algorithm stores solutions of RMPs, FRMPs, and the
WSFJSP instance in the data structures defined in Table 3. To ease the notation, we

Table 3 Solutions stored by the heuristic framework

SolRMP
best Best solution found for RMP

SolRMP
re f Current reference solution of RMP

SolFRMP Current solution of FRMP
Sol Current solution of WSFJSP
Solbest Best solution found for WSFJSP

refer to the value of the objective function of a solution Sol by using an additional
label, i.e. ¨Sol, throughout the algorithm.

In the initialization phase (step 1) of the algorithm, the length of the time windows
is calculated as described in Section 4.2.1, the RMP is initialized with an empty set
of logic inequalities, and an initial solution of the WSFJSP instance is determined as
described in Section 4.1. During the process of generating this solution, the reference
solution SolRMP

re f is set to the solution determined by Algorithm 2. It is potentially
altered multiple times in the course of the algorithm (steps 2e i and 2f). In the iteration
phase (step 2), the algorithm first computes the current pair of time windows (step 2a)
based on the reference solution. If all pairs have been traversed, the algorithm exits
(step 2a iii). Otherwise, the current pair of time windows is discarded with probability
1− ρtw. Then, in steps 2b and 2c, the FRMP is constructed based on the current
set of logic inequalities (see Section 4.2.2) and a solution SolFRMP of the resulting
FRMP is computed by some algorithm. If promising, i.e. if ¨SolFRMP

< ¨Solbest , a
feasible solution of the subproblem is computed by some algorithm (step 2e ii) and
the best known solution of the WSFJSP instance is potentially updated (step 2e iii).
A logic inequality is generated and added to the RMP (step 2e iv) if this is necessary.
This process of generating the FRMP and solving the corresponding subproblem is
repeated at most λ times for a given pair of time windows (steps 2e iii and 2e v).

5 Computational Study

In order to evaluate the performance of our solution approaches, we conducted exten-
sive computational tests. The tests were performed on a PC with an Intel R© CoreTM i7-
4770 CPU, running at 3.4 GHz, with 16 GB of RAM under a 64-bit version of Win-
dows 8. All algorithms were implemented in C++ (Microsoft Visual Studio 2015). We
used IBM ILOG CPLEX in version 12.7 as a MIP solver.

We implemented six approaches:

1. E-DM refers to the exact branch-and-cut approach (Algorithm 1), using CPLEX
as a standard solver.
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Input: Instance Inst of WSFJSP, parameters ρtw and λ

Output: Solution Solbest of Inst

1. Initialization:
(a) Compute and initialize twLen.
(b) Initialize the RMP of Inst with an empty set of logic inequalities.
(c) Determine SolRMP

re f by calling Algorithm 2 on the RMP. Set SolRMP
best := SolRMP

re f .
(d) Compute a feasible solution for the subproblem based on SolRMP

re f with the beam search
approach of Section 4.1.2. Retrieve the corresponding feasible solution Sol of the
WSFJSP instance. Set Solbest := Sol.

(e) Initialize counter := 1, a := 1, and b := 1.
2. Iteration:

(a) Define current pair of time windows as follows:
i. Set b := b+1.

ii. If (b−1) · twLen is not smaller than the completion time of the last operation which
is completed in SolRMP

re f , set a := a+1 and b := a+1.
iii. If (b−1) · twLen is not smaller than the completion time of the last operation which

is completed in SolRMP
re f , exit algorithm.

iv. Define twa := [(a−1) · twLen,a · twLen] and twb := [(b−1) · twLen,b · twLen].
v. Go to step 2a i with probability 1−ρtw.

(b) Determine F0 and F1 by calling Algorithm 3 on SolRMP
re f .

(c) Construct FRMP based on RMP (including the current set of logic inequalities), F0, and
F1. Compute a feasible solution SolFRMP.

(d) If ¨SolFRMP ≤ ¨SolRMP
best , update SolRMP

best := SolFRMP.

(e) If ¨SolFRMP
< ¨Solbest , do the following:

i. Update SolRMP
re f := SolFRMP.

ii. Compute a feasible solution for the subproblem based on SolRMP
re f and retrieve the

corresponding WSFJSP solution Sol.
iii. If ¨Sol < ¨Solbest , update Solbest := Sol. Else, set counter := counter+1.
iv. If ¨SolRMP

re f < ¨Sol, generate the corresponding logic inequality (10) or (16) and add it
to RMP.

v. If counter ≤ λ , go to step 2b.
(f) Update SolRMP

re f := SolRMP
best and set counter := 1.

(g) Go to step 2a.

Algorithm 4 Heuristic framework for WSFJSP

2. E-IM refers to calling CPLEX in its standard settings on an integrated MIP model
for WSFJSP. This approach is intended to be a benchmark for evaluating the
performance of E-DM. The integrated model is presented in Section 5.1.

3. H-DM refers to the heuristic framework (Algorithm 4), using CPLEX in step
2c (determining feasible solutions of FRMPs, 10 seconds time limit) and in step
2e ii (determining feasible solutions of subproblems, the time limit is set to the
remaining time with respect to the limit set for the overall heuristic framework).

4. H-DMB refers to the heuristic framework (Algorithm 4), using CPLEX in step 2c
(10 seconds time limit) and applying the beam search approach of Section 4.1.2
in step 2e ii.

5. H-HIER refers to an adapted version of the heuristic framework (Algorithm 4,
CPLEX time limit of 10 seconds in step 2c), where the subproblem is solved only
once at the very end of the procedure. That is, steps 1d and 2e are replaced by a
single call of the beam search approach on the best reference solution after having
iterated over all relevant pairs of time windows.
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6. LS refers to a local search procedure inspired by Mastrolilli and Gambardella
(2000), which we use as a benchmark heuristic when evaluating the heuristic
framework. It is presented in detail in Section 5.3.3.

Whenever calling CPLEX on a FRMP within H-DM, H-DMB, or H-HIER, we
provide the vector yref of the corresponding solution SolRMP

re f as a warm start. Simi-
larly, in H-DM, when solving a subproblem with CPLEX, we provide a lower bound
on the optimal objective function value, i.e. the objective function value of the cor-
responding FRMP. Furthermore, we provide CPLEX with the vector tref of the cor-
responding solution SolRMP

re f , which allows to quickly check if this partial solution
remains feasible for the subproblem.

We set the large integer B to ∑i j∈V̄ (pmax
i j

+ smax
i j

) in constraint (7) of the MP and
to ∑i j∈V̄ (p̃max

i j
+ smax

i j
) in constraints (25) and (28) of the subproblem as well as in the

relevant constraints of the integrated MIP model. Here, smax
i j

:= {sm
kl ,i j
|kl ∈ Ṽi j ,m ∈

Mi j ,kl}, pmax
i j

:=max{pm,min
i j
|m∈Mi j}, and p̃max

i j
:=max{pm,w

i j
|pm,w

i j
6=∞,m∈Mi j ,w∈

W}, for all i j ∈ V̄ .

5.1 Integrated MIP model

E-IM is based on an integrated MIP model for WSFJSP. This model is in line with the
formulations of the MP and the subproblem in Section 3, but replaces the variables
(19) with variables

xm,w
i j

:=

1, if operation i j is processed by
worker w on machine m

0, else
∀ i j ∈ V̄ ,m ∈Mi j ,w ∈W.

The model for minimizing the makespan is as follows.

min Cmax . (40)
s.t. (4)− (6), (9), (11)− (13), (29), (32)− (33),

tiqi
+ ∑

m∈Miqi

∑
w∈W

xm,w
iqi
· pm,w

iqi
≤Cmax . ∀ i ∈ I, (41)

∑
i j∈{ab∈Ṽkl

|m∈Mab}
ym

i j ,kl
= ∑

w∈W
xm,w

kl
. ∀kl ∈ V̄ ,m ∈Mkl , (42)

ti j + sm
i j ,kl

+ ∑
w∈W

xm,w
i j
· pm,w

i j
− tkl ≤

(
1− ym

i j ,kl

)
B . ∀ i j ∈V,kl ∈ V̄i j ,m ∈Mi j ,kl , (43)

ti j + ∑
m∈Mi j

∑
w∈W

xm,w
i j
· pm,w

i j
≤ ti j+1 . ∀ i j ∈ V̄ with j ≤ qi−1, (44)

xw
i j ,kl
≥ ∑

m∈Mi j

xm,w
i j

+ ∑
m∈Mkl

xm,w
kl
−1 . ∀ i j,kl ∈ V̄ , i j 6= kl ,w ∈W, (45)

ti j + ∑
m∈Mi j

∑
w∈W

xm,w
i j
· pm,w

i j
− tkl ≤ B · vi j ,kl . ∀ i j,kl ∈ V̄ , i j 6= kl , (46)
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xm,w
01

= 0 . ∀m ∈Mi j ,w ∈W, (47)

xm,w
i j
∈ {0,1} . ∀ i j ∈ V̄ ,m ∈Mi j ,w ∈W. (48)

The objective function and most constraints are either identical to the ones in the MP
and the subproblem or have been adapted in a straightforward manner. Constraint
(42) connects the sequencing variables with the worker assignment variables. The
MIP model for minimizing the total tardiness modifies the objective function and
constraint (41) in analogy to Section 3. We do not present it in detail for the sake of
brevity.

5.2 Instance Generation and Parameter Settings

Our computational tests were performed on randomly generated test instances as well
as real-world test instances based on data of our industry partner.

5.2.1 Random Testbed

Our random testbed is composed of three classes of instance sets. These classes differ
in the size of the included instances (small, medium, and large), which is expressed by
an identifier size∈{s,m, l}. Each class is composed of eight sets of test instances with
differing numbers of jobs |I|, machines |M|, and workers |W |. Each set is composed of
ten instances and is denoted by size|I|,|M|,|W |, where size∈ {s,m, l}. For each instance,
the number of operations qi of jobs i ∈ I , the number of eligible machines |Mi j | for
operations i j ∈Oi of jobs i∈ I, and the integer setup times sm

i j ,kl
(including sm

01,kl
) when

processing operation kl ∈ Ok of job k ∈ I immediately after operation i j ∈ Oi of job
i ∈ I on machine m ∈Mi j ,kl are drawn from uniform distributions over the intervals
given in Table 4. Our process of generating the processing times of the operations is

Table 4 Random testbed

small instances medium instances large instances

set qi |Mi j | pi j sm
i j ,kl

set qi |Mi j | pi j sm
i j ,kl

set qi |Mi j | pi j sm
i j ,kl

s3,2,2 [2,3] [2,2] [3,6] [1,4] m10,5,4 [2,3] [2,3] [4,8] [1,5] l20,15,12 [5,10] [4,6] [5,15] [1,10]
s4,2,2 [2,3] [2,2] [3,6] [1,4] m10,5,5 [2,3] [2,3] [4,8] [1,5] l20,15,15 [5,10] [4,6] [5,15] [1,10]
s5,3,3 [2,3] [2,2] [3,6] [1,4] m10,8,6 [4,6] [3,4] [4,8] [1,5] l25,20,16 [5,10] [5,7] [5,15] [1,10]
s6,3,3 [2,3] [2,2] [3,6] [1,4] m10,8,8 [4,6] [3,4] [4,8] [1,5] l25,20,20 [5,10] [5,7] [5,15] [1,10]
s7,4,3 [2,3] [2,2] [3,6] [1,4] m15,10,8 [4,6] [3,5] [5,10] [1,7] l30,20,16 [5,7] [5,7] [5,15] [1,10]
s7,4,4 [2,3] [2,2] [3,6] [1,4] m15,10,10 [4,6] [3,5] [5,10] [1,7] l30,20,20 [5,7] [5,7] [5,15] [1,10]
s8,4,3 [2,3] [2,2] [3,6] [1,4] m20,10,8 [4,6] [3,5] [5,10] [1,7] l40,20,16 [4,6] [5,7] [5,15] [1,10]
s8,4,4 [2,3] [2,2] [3,6] [1,4] m20,10,10 [4,6] [3,5] [5,10] [1,7] l40,20,20 [4,6] [5,7] [5,15] [1,10]

as follows. We first draw auxiliary integer parameters pi j for all jobs i ∈ I and opera-
tions i j ∈ Oi from uniform distributions over the intervals given in Table 4. Based on
these parameters, we construct varying processing times over the corresponding eli-
gible machines m∈Mi j by drawing integer values pm

i j
from uniform distributions over

[b0.9 · pi j +0.5c,d1.1 · pi j−0.5e] and, in the last step, we incorporate dependencies on
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the workers w ∈W by drawing integer values pm,w
i j

from uniform distributions over
[b0.9 · pm

i j
+ 0.5c,d1.1 · pm

i j
− 0.5e]. Finally, the integer due dates di are drawn from

uniform distributions over the interval [bµi ·
(
1− Φ

2

)
+0.5c,dµi ·

(
1+ Φ

2

)
−0.5e] for

all jobs i ∈ I (cf. Vilcot and Billaut, 2008). Here,

µi :=
(

1+
Ω · |I|
|M|

)
·

∑
p∈Pi

p

|Pi|
∀i ∈ I,

where Pi is a multiset {pm,w
i j
|i j ∈Oi,m ∈Mi j ,w ∈W,0 < pm,w

i j
< ∞} for all jobs i ∈ I.

We set Φ = 0.5 and Ω = 0.3 for all small instances, Φ = 0.5 and Ω = 0.4 for all
medium instances, and Φ = 0.3 and Ω = 0.5 for all large instances.

5.2.2 Real-World Instances

As mentioned in Section 1.1, our research is motivated by a real-world problem set-
ting. Our industry partner provided us with data on its production processes, including
the processing times of the manufacturing operations on their eligible machines and
the sequence-dependent setup times, as well as the customer demands (including due
dates) over a time period of several months. Additionally, we received the relevant
information on worker qualifications needed to derive all relevant processing times.
Based on this data, we constructed ten realistic scheduling scenarios for testing our
algorithms. Each scenario consists of a set of jobs relating to the company’s product
portfolio, including the respective lot sizes and their due dates. Currently, the prod-
uct portfolio consists of more than one hundred products and the company uses 16
different multi-purpose machines for processing the manufacturing operations. The
number of eligible machines for the operations varies between one and two. The ma-
chine operators work on a shift-based system. Each shift is staffed with nine workers
of similar qualifications. We will therefore assume that nine representative machine
workers are available at all time in all of our scenarios.

In line with the random testbed, we denote each scheduling scenario – or prob-
lem instance – by r|I|,|M|,|W |. Table 5 lists all instances, including their total num-
ber of operations. Note that the number of machines is smaller than 16 in the three

Table 5 Real-world instances

instance r14,13,9 r15,11,9 r16,14,9 r25,16,9 r35,16,9 r45,16,9 r55,16,9 r60,16,9 r70,16,9 r80,16,9
∑i∈I |Oi| 34 34 38 63 84 106 136 146 162 188

smallest instances. This is because not all machines are needed for producing the re-
spective products of the scenario. These three scenarios are representative instances
that feature planning horizons of at most one week, which is what our industry part-
ner is currently capable of scheduling manually. All remaining instances have been
constructed to analyze the capability and performance of our algorithms for larger
planning horizons in a real-world context. As mentioned in Section 1.1, our industry
partner wishes to compute schedules on a daily basis. Hence, when wanting to take
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account of these planning horizons, our approaches will have to be embedded into a
rolling horizon planning approach. While we will not explicitly analyze this type of
approach in our computational study, we note at this point that all of our algorithms
are flexible enough to support a rolling horizon procedure that allows rescheduling
decisions if the WSFJSP parameters are set to appropriate values. Most important,
by appropriately setting the setup times associated to the dummy operation, one can
take account of machines that are currently processing operations at the beginning of
the planning horizon. Our model also allows for interrupting the processing of these
operations (as sometimes decided by experts of the manufacturing companies) by
appropriately (re-)defining the set of operations and the associated setup times.

The detailed data of all instances is available in supplementary files that accom-
pany this paper. The processing times of the operations for the representative workers
on the machines vary between 15 and 5280 minutes (1090 minutes on average). The
setup times range from zero to 300 minutes. Finally, the due dates of the jobs vary
between one and six weeks.

5.2.3 Parameter Settings

With respect to the parameters of Algorithms 1 and 4, we set ρs = 0.005 and λ = 3.
The remaining parameters were set based on the size of the instances (see Table 6).
Finally, we set a time limit of 3,600 seconds for each call of an algorithm. Note,

Table 6 Setup of the algorithms

small instances medium and real-world instances large instances

ρtw 1 0.4 0.2
β 25 16 8

however, that we check the current runtime of the algorithmic framework solely at
the beginning of step 2b of Algorithm 4, so that the overall runtime of the framework
upon termination may slightly exceed the time limit.

5.3 Results and Analysis

This section presents and analyzes the results of our computational study. Section 5.3.1
analyzes the performance of the exact approaches on the random testbed. Hereafter,
Section 5.3.2 presents the corresponding results of the heuristic approaches H-DM,
H-DMB, and H-HIER. In Section 5.3.3, we describe LS and evaluate the aforemen-
tioned heuristics against this procedure on the random testbed. Section 5.3.4 focuses
on the results for the real-world instances.

5.3.1 Exact Approaches

Table 7 presents the computational results for the exact approaches E-IM and E-
DM for the small test instances of our random testbed. It includes information about
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Table 7 Performance of exact approaches for small instances

Cmax T

E-IM E-DM E-IM E-DM

set opt. [%] tavg [s] opt. [%] tavg [s] opt. [%] tavg [s] opt. [%] tavg [s]

s3,2,2 100 0.9 100 0.3 100 1 100 0.5
s4,2,2 100 47.5 100 13.3 100 58.2 100 19.7
s5,3,3 100 36.8 100 5 100 51.1 100 12.4
s6,3,3 60 756.7 100 425.7 70 882.8 80 482.6
s7,4,3 10 2142.5 70 913.1 20 1952.9 40 944.3
s7,4,4 80 1161.6 100 112.2 50 1074.2 90 839.3
s8,4,3 - - 20 2773.1 - - - -
s8,4,4 - - 40 622.7 - - 10 3132.4

the percentage of instances within each set that were solved to optimality within the
given time limit (columns “opt.”) as well as the average computational time needed to
compute the optimal solutions (columns “tavg”) for both objectives, minimizing the
makespan Cmax or the total tardiness T . The decomposition based approach E-DM
clearly outperforms the integrated approach E-IM both with respect to the number of
instances solved to optimality and the runtimes. While this is true for both objectives,
the benefit of using the decomposition based approach is more pronounced in case
of minimizing the makespan. The maximum number of logic inequalities generated
over all calls of E-DM for the small test instances was 1,503 (235) for the objective
of minimizing the makespan (total tardiness). On average, a logic inequality was
generated and added to the branch-and-cut process in 29% (38%) of the calls of step
3 of Algorithm 1.

Unfortunately, neither of the exact approaches was able to solve instances of
medium or large size to optimality within the time limit. Table 8 therefore focuses
on illustrating the percentage of instances for which E-DM found a feasible solution.
It can be seen that E-DM returns feasible solutions for instances up to the size of the

Table 8 Capability of finding feasible solutions with E-DM within the time limit of 3,600 seconds

small instances medium instances

set Cmax [%] T [%] set Cmax [%] T [%]

s3,2,2 100 100 m10,5,4 100 100
s4,2,2 100 100 m10,5,5 100 100
s5,3,3 100 100 m10,8,6 90 100
s6,3,3 100 100 m10,8,8 90 100
s7,4,3 100 100 m15,10,8 - -
s7,4,4 100 100 m15,10,10 - 10
s8,4,3 100 100 m20,10,8 - -
s8,4,4 100 100 m20,10,10 - -

ones in the set m10,8,8 and for one instance in the set m15,10,10.
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We conclude that, while E-DM is certainly not a reasonable choice when fac-
ing large instances of WSFJSP in practice, it clearly outperforms E-IM and is able
to compute benchmark solutions that allow to assess the performance of heuristic
approaches for instances of medium size.

5.3.2 Heuristic Approaches

The performance of the heuristic approaches H-DM, H-DMB, and H-HIER in com-
parison to E-DM is illustrated in Table 9 for the small test instances. For each objec-

Table 9 Performance of heuristic approaches for small instances

Cmax T

E-DM H-DM H-DMB H-HIER E-DM H-DM H-DMB H-HIER

set Cavg
max tavg Cavg

max tavg Cavg
max tavg Cavg

max tavg T avg tavg T avg tavg T avg tavg T avg tavg
[s] [s] [s] [s] [s] [s] [s] [s]

s3,2,2 23.9 0.3 24.2 0.2 24.3 0.2 24.5 0.1 8.6 0.5 8.6 0.2 8.6 0.2 8.7 0.2
s4,2,2 30 13.3 30.4 0.4 30.5 0.4 30.7 0.3 16.2 19.7 17.3 0.5 17.4 0.4 17.4 0.3
s5,3,3 27.1 5 27.7 0.5 27.7 0.4 28 0.3 14.3 12.4 15.4 1 15.5 0.9 16 0.4
s6,3,3 29.9 425.7 31 1.5 31.1 1.2 31.8 0.9 23.8 1106.1 26.3 2.3 25.8 1.8 26.6 1.3
s7,4,3 31 1719.2 32.1 22 32.9 3.8 33.5 1.1 29.3 2537.7 30.9 42.5 31.4 9.7 35.3 3.2
s7,4,4 27.5 112.2 28.2 1.4 28.2 1.3 28.4 0.8 24.4 1115.4 26.2 6.4 26.5 6.8 26.9 2.7
s8,4,3 34.5 3436.6 35.4 63.2 36 11.0 37.6 3.4 44.7 tl 45.7 187.6 46.6 27.1 53.7 6.5
s8,4,4 29.7 2409.1 31.1 4 31 3.4 31.1 2.3 34.7 3553.3 36.6 10.2 37 10.1 36.8 7.5

tive function, each instance set, and each solution approach, the table presents infor-
mation on the average objective function values of the best solutions returned by the
respective algorithms (columns “Cavg

max” and “T avg”) as well as the average runtimes
for computing these solutions (columns “tavg”). Entries “tl” denote average computa-
tional times that correspond to or exceed the time limit of 3,600 seconds. Bold entries
highlight the best heuristic approaches with respect to the average solution quality.

Fig. 7 complements Table 9 by presenting boxplots of the objective function val-
ues returned by the algorithms (left ordinate) as well as data points (gray squares)
on the overall average of the corresponding runtimes (right ordinate) for the heuristic
approaches. Each boxplot depicts the first quartile (bottom of the box), the third quar-
tile (top of the box), the median (dotted line within the box), the minimum (bottom
whisker), and the maximum (top whisker) of the objective function values.

Based on Table 9 and Fig. 7, we observe that the solution quality of all heuris-
tic approaches is competitive when compared with the (mostly optimal, see Sec-
tion 5.3.1) solutions computed by E-DM for both objectives. That is, all heuristics
provide high quality solutions. H-DM tends to provide the best solutions at the cost
of substantially larger running times than the ones of the other heuristic approaches.
This is a result of determining optimal solutions to the subproblems within the heuris-
tic framework. Applying beam search (H-DMB) results in slightly worse solutions
when compared with the solutions determined by H-DM but clearly pays off with
respect to the running times. A similar but less pronounced effect can be observed
when comparing H-DMB and H-HIER.
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(b) Minimizing the total tardiness

Fig. 7 Computational results for small instances

Table 10 Performance of heuristic approaches for medium instances

Cmax T

E-DM H-DM H-DMB H-HIER E-DM H-DM H-DMB H-HIER

set Cavg
max tavg Cavg

max tavg Cavg
max tavg Cavg

max tavg T avg tavg T avg tavg T avg tavg T avg tavg
[s] [s] [s] [s] [s] [s] [s] [s]

m10,5,4 41.9 tl 42.2 158.8 43.6 14.3 44.4 5.8 43 tl 40.4 543.5 42.4 31.8 45.5 7
m10,5,5 38.2 tl 39.3 12.5 39.6 11.5 39.7 6.4 22.9 tl 24.3 32.9 24.7 26.2 27.3 7
m10,8,6 165 tl 57.7 tl 56.4 49.6 57.8 13.5 746.3 tl 25.5 3157.4 17.8 75.1 19 17.2
m10,8,8 198.1 tl 52.9 317.1 52.6 32.9 53.4 15.7 656.2 tl 5.8 901.4 4.6 53.8 9.3 14.4
m15,10,8 - - 84.2 tl 78.9 186.3 80 45.3 - - 154.5 tl 66.4 417.2 84.2 106.5
m15,10,10 - - 80.8 3105.2 75.7 118.1 77.7 47.9 2367 tl 64.1 2361.1 34.5 255.2 42.8 85.4
m20,10,8 - - 107.3 tl 102 525.8 103.3 140.7 - - 286.2 tl 164.5 895.3 178 216.5
m20,10,10 - - 98.6 tl 93.8 409.9 93.8 156.5 - - 224 3287.5 143 618.7 156.5 233.6

Table 10 presents the computational results for the instances of medium size. In
contrast to the results for the small instances, H-DMB now clearly outperforms H-
DM, both with respect to solution quality and computational time. Again, this mainly
results from solving the subproblems to optimality within H-DM, which causes high
computational effort for increasing instance sizes, so that less pairs of time windows
are traversed within the given time limit. Moreover, note that all heuristics outper-
form E-DM for most instance sets. When comparing H-DMB and H-HIER, we ob-
serve larger differences in the average solution qualities as in case of the small test
instances, particularly for the case of minimizing total tardiness. Nevertheless, the
runtimes are in ranges that allow the use of both H-DMB and H-HIER in real-world
scenarios. The same results hold for the large test instances, as can be seen in Ta-
ble 11, where we restrict ourselves to comparing H-DMB and H-HIER due to the
above results for the medium instances.

Summing up the above results, the frequency of computing solutions of subprob-
lems within the heuristic framework as well as the algorithms applied to determine
these solutions are components of major importance when wanting to balance the
trade-off between runtime and solution quality. When facing medium or large in-
stances, it does not pay off to try to solve the subproblems to optimality, but one must
make use of a heuristic approach. Calling this approach more often has a positive
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Table 11 Performance of H-DMB and H-HIER for large instances

Cmax T

H-DMB H-HIER H-DMB H-HIER

set Cavg
max tavg [s] Cavg

max tavg [s] T avg tavg [s] T avg tavg [s]

l20,15,12 146.6 217.3 149.7 54.1 37.7 466.7 55.8 113.3
l20,15,15 150.2 206.1 152 62.5 32.7 393.8 53.5 124.9
l25,20,16 141.3 461.6 144.5 95.3 17.4 934.4 32.4 213.2
l25,20,20 137.5 295.1 139.7 101.1 29 480.8 39.8 193.2
l30,20,16 125.2 357.6 127.7 95.3 146.8 889.3 181 208.1
l30,20,20 119 246 120.1 98.8 90.4 721.5 145.6 208.4
l40,20,16 131.8 588.8 134.8 135.6 247.6 1320.4 285.4 306.7
l40,20,20 126.2 359.8 127.9 117.2 247.3 998.1 302.1 287.8

effect on solution quality at the cost of larger runtimes. Moreover, as to be expected,
we observe that the staffing level, i.e. the ratio of the number of workers and the num-
ber of machines, influences the performance of the algorithms. Large staffing levels
allow to compute better solutions with less computational effort.

In order to analyze the sensitivity of our heuristic framework to a change of the
initial reference solution of RMP (determined in step 1c of Algorithm 4), we have
implemented an additional simple priority rule that can be used in Algorithm 2 (line
10). In contrast to the priority rules described in Section 4.1.1, that make use of most
of the relevant problem parameters, this priority rule simply selects the operation with
smallest job index (SI) among the operations that have not been sequenced and that
can start to be processed at the respective point of time. Table 12 compares the perfor-
mance of the heuristic framework for the case of applying SI and the standard setting
introduced in Section 4.1.1. For the sake of brevity, we restrict ourselves to presenting

Table 12 Sensitivity of H-DMB and H-HIER to a change of the initial reference solution

Cmax T

standard setting SI standard setting SI

H-DMB H-HIER H-DMB H-HIER H-DMB H-HIER H-DMB H-HIER

class Cavg
max tavg Cavg

max tavg Cavg
max tavg Cavg

max tavg T avg tavg T avg tavg T avg tavg T avg tavg
[s] [s] [s] [s] [s] [s] [s] [s]

small 30.2 2.7 30.7 1.2 30.7 2.9 31.5 1.3 26.1 7.1 27.7 2.8 29.8 8.1 31.7 3
medium 67.8 168.5 68.8 54 72.5 120.2 75.8 30.2 62.2 296.7 70.3 85.9 114.9 302.3 133.9 87.4
large 134.7 341.5 137.1 95 166.8 446.3 175.6 122.8 106.1 775.6 137 206.9 355.5 910.3 408.7 228.8

the average objective function values and computational times over all instances of
the three instance classes (small, medium, and large) for H-DMB and H-HIER. We
observe large differences of the average objective function values, particulary for the
case of minimizing total tardiness, so that we conclude that it pays off to make use of
a well designed procedure to determine high quality initial allocation and sequencing
decisions in our heuristic framework.
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In light of the fact that H-DMB has shown to be a promising approach but uses
a heuristic to determine solutions for the subproblems in step 2e ii of Algorithm 4,
one may wonder if the use of logic inequalities within this setup of the heuristic
framework actually pays off. Table 13 therefore illustrates the effect of adding logic
inequalities by comparing the standard setting of H-DMB (see Section 4.2.3) with
the setting where the generation of logic inequalities, i.e. step 2e iv of Algorithm 4,
is disabled. Again, we restrict ourselves to presenting average values for the three

Table 13 Effect of using logic inequalities in H-DMB

Cmax T

standard setting no logic inequalities standard setting no logic inequalities

class Cavg
max tavg [s] LI [%] Cavg

max tavg [s] T avg tavg [s] LI [%] T avg tavg [s]

small 30.2 2.7 39 30.4 3.5 26.1 7.1 47 26.8 8.8
medium 67.8 168.5 91 68.5 157.9 62.2 296.7 92 63.2 280
large 134.7 341.5 95 135 357 106.1 775.6 88 113.7 849.9

classes of instances. For the standard setting, the columns “LI” present the percent-
age of executions of step 2e of Algorithm 4 that result in the generation of a logic
inequality. The results indicate that the use of logic inequalities within H-DMB has a
positive effect on the objective function values and tends to reduce (or only slightly
increase) runtimes for the small and large (medium) instances.

5.3.3 Evaluation of the Heuristic Framework against a Local Search Heuristic

As indicated above, we implemented a local search approach (LS) inspired by Mas-
trolilli and Gambardella (2000) in order to gain additional insights into the perfor-
mance of our heuristic framework. In line with Algorithm 4, LS is called on a fea-
sible allocation and sequencing decision, referred to as SolRMP, initially determined
by Algorithm 2. In the course of the algorithm, SolRMP is altered in a first-fit manner
and initially evaluated by dropping the worker assignment restrictions and making
use of the lower bounds of the processing times introduced in Section 3.1. Given
some current solution SolRMP, LS restricts the search process by computing a criti-
cal path of the so called solution graph of this solution as described by Mastrolilli
and Gambardella (2000) (see also Błażewicz et al., 2007), where sequence-dependent
setup times are taken account of in a straightforward manner. Basically, a critical path
identifies a sequence of operations, any of which fulfills the property that a delayed
start of its processing would immediately cause an increase of the makespan (without
considering worker assignment restrictions) under the given allocation and sequenc-
ing decision. Note that we make use of the makespan criterion independently of the
considered objective function when computing critical paths. A neighbor of the cur-
rent solution SolRMP is then determined by moving an operation of the critical path
to another feasible position on the same machine or to a feasible position in the se-
quence of operations on any other eligible machine. As outlined above, the objective
function value (makespan or total tardiness) of a neighbor (as well as the initial solu-
tion determined by Algorithm 2) is first evaluated based on the lower bounds of the



A worker constrained flexible job shop scheduling prob. with sequence-dependent setup times 31

processing times. If this objective function value is smaller than the one of the cur-
rently best known solution of the WSFJSP instance (including worker restrictions),
a feasible worker assignment and the corresponding objective function value is de-
termined with the beam search approach of Section 4.1.2. If the resulting objective
function value remains smaller than the one of the currently best WSFJSP solution,
SolRMP and the overall best WSFJSP solution are updated and LS proceeds by com-
puting a critical path for SolRMP. LS terminates if none of the neighbors results in an
improved objective function value.

Table 14 illustrates the average runtimes and objective function values determined
by LS in comparison with H-DMB and H-HIER, i.e. the most promising approaches
identified in Section 5.3.2, for the three instance classes. As can be seen, H-DMB and

Table 14 Performance of LS on random testbed

Cmax T

H-DMB H-HIER LS H-DMB H-HIER LS

class Cavg
max tavg [s] Cavg

max tavg [s] Cavg
max tavg [s] T avg tavg [s] T avg tavg [s] T avg tavg [s]

small 30.2 2.7 30.7 1.2 32 0.1 26.1 7.1 27.7 2.8 34.4 0.1
medium 67.8 168.5 68.8 54 71.4 10.7 62.2 296.7 70.3 85.9 119.8 7.4
large 134.7 341.5 137.1 95 138.7 66.2 106.1 775.6 137 206.9 234.4 87.6

H-HIER outperform LS with respect to the average objective function values. This
effect is especially pronounced for the objective of minimizing total tardiness, which
is probably caused by restricting LS to compute neighbors based on critical paths as
outlined above. The average computational times of LS are smaller than the ones of
H-DMB and H-HIER. However, as our practical application allows runtimes in the
ranges of the ones of the latter approaches, this effect is less of an issue. Hence, the
remainder of this computational study focusses on the decomposition based solution
approaches.

5.3.4 Results for Real-World Instances

Table 15 presents the results on the performance of E-DM as well as the heuristic
approaches for the real-world problem instances. For each instance and objective, the
table provides results on the objective function values of the solutions determined by
the algorithms. Bold elements highlight the best approaches in each row of the table.
Note that, in contrast to the results for the random testbed, the objective function
values represent minutes of real time (see Section 5.2.2).

Recall that the three smallest instances are representative instances that our in-
dustry partner is currently capable of scheduling manually. For all of these instances,
H-DM or H-DMB are able to compute solutions in at most 26 seconds while per-
forming similar to the exact approach E-DM and, in case of H-DM, even determining
optimal solutions for two instances when minimizing total tardiness. Even in case of
medium time horizons, H-DM is able to determine optimal solutions for minimiz-
ing total tardiness within reasonable time, i.e. instances r25,16,9, r35,16,9 and r55,16,9.
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Table 15 Computational results for real-world instances

Cmax T

E-DM H-DM H-DMB H-HIER E-DM H-DM H-DMB H-HIER

inst. Cmax t [s] Cmax t [s] Cmax t [s] Cmax t [s] T t [s] T t [s] T t [s] T t [s]

r14,13,9 6256 tl 6256 14.3 6274 15.9 6676 10.2 0∗ 18.5 0∗ 3.6 170 4.2 1293 2.2
r15,11,9 5375 tl 5272 13.5 5392 17.5 5475 3.3 0∗ 6.8 0∗ 0.4 0∗ 0.4 0∗ 0.2
r16,14,9 7584 tl 7584 18.7 7584 3 7584 0.2 864 tl 864 25.2 864 5.2 864 0.2
r25,16,9 8392 tl 8180 2190.4 8551 157.2 11596 66.2 2150 tl 0∗ 33.3 227 36.8 1716 12.1
r35,16,9 11993 tl 9045 tl 9333 358.7 9572 76.6 19337 tl 0∗ 50.9 0∗ 18.8 322 3
r45,16,9 25019 tl 12722 tl 12820 378.6 12884 95.5 105019 tl 233 822.9 0∗ 40.9 761 11.7
r55,16,9 29126 tl 15288 tl 14608 916.1 16391 225.4 - - 0∗ 1906.4 0∗ 310 289 20.5
r60,16,9 33993 tl 18953 tl 17180 1444.4 18953 253.1 327669 tl 947 tl 190 1300.8 1900 14.9
r70,16,9 34716 tl 21202 tl 19590 1691.2 21202 280.6 353140 tl 4675 tl 669 823.7 878 67.8
r80,16,9 - - 23492 tl 21869 2694.4 23998 490.7 - - 10230 tl 4670 1152.5 5880 105.8
∗ : optimal objective function value

When wanting to make quick decisions for medium and large time horizons, however,
it seems appropriate to make use of H-DMB or H-HIER, both of which are capable of
computing high quality solutions. For these instances, H-DMB clearly outperforms
the other approaches with respect to solution quality, which is in line with our results
for the random testbed.

Summing up, we can conclude that our algorithms are well suited for daily use
when schedules for time horizons of about one week must be computed at our indus-
try partner. Furthermore, when using H-DMB and H-HIER, our industry partner will
be able to make scheduling decisions for demand forecasts covering several weeks or
months.

6 Summary

In this paper, we have introduced a worker constrained flexible job shop scheduling
problem with sequence-dependent setup times that takes account of heterogeneous
machine operator qualifications. We have analyzed two objective functions, mini-
mizing the makespan and the total tardiness, and proposed to solve the problem in
a branch-and-cut framework by decomposing it into a vehicle routing problem with
precedence constraints (master problem) and a worker assignment problem (subprob-
lem) that are connected via logic inequalities. In addition to this exact approach, we
have presented decomposition based heuristic approaches. In an extensive computa-
tional study, we have shown that our exact decomposition approach outperforms an
integrated approach and that it allows to compute benchmark solutions for assessing
the performance of heuristic approaches for instances of medium size. Our heuristic
approaches have shown to provide high-quality solutions within reasonable time and
have proven well suited for daily use at our industry partner, who provided us with
real-world data. When setting up the decomposition based heuristics, the decisions
on the frequency of computing solutions of subproblems as well as on the algorithms
applied to determine these solutions are of major importance for finding a suitable
trade-off between runtime and solution quality.
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