
This is a post-peer-review, pre-copyedit version of an article published in OR Spectrum.
The final authenticated version is available online at link.springer.com:
https://dx.doi.org/10.1007/s00291-018-0512-8

Mechanism Design for Machine Scheduling Problems
Classification and Literature Overview

Dominik Kress · Sebastian Meiswinkel · Erwin
Pesch

June 17, 2019

Abstract This paper provides a literature overview on (direct revelation) algorith-
mic mechanism design in the context of machine scheduling problems. Here, one
takes a game theoretic perspective and assumes that part of the relevant data of the
machine scheduling problem is private information of selfish players (usually ma-
chines or jobs) who may try to influence the solution determined by the scheduling
algorithm by submitting false data. A central planner is in charge of controlling and
designing the algorithm and a rewarding scheme that defines payments among plan-
ner and players based on the submitted data. The planner may, for example, want to
design algorithm and payments such that reporting the true data always maximizes
the utility functions of rationally acting players, because this enables the planner to
generate fair solutions with respect to some social criterion that considers the inter-
ests of all players. We review the categories and characterizing problem features of
machine scheduling settings in the algorithmic mechanism design literature and ex-
tend the widely accepted classification scheme of Graham et al. (Ann Discrete Math
5, 1979, 287–326) for scheduling problems to include aspects relating to mechanism
design. Based on this hierarchical scheme, we give a systematic overview of recent
contributions in this field of research.

Keywords Algorithmic mechanism design · Machine scheduling · Game theory ·
Incentive compatibility

D. Kress (B) · S. Meiswinkel · E. Pesch
Management Information Science
University of Siegen
Kohlbettstr. 15, 57068 Siegen, Germany
E-mail: {dominik.kress, sebastian.meiswinkel, erwin.pesch}@uni-siegen.de

E. Pesch
Center for Advanced Studies in Management
HHL Leipzig
Jahnallee 59, 04109 Leipzig, Germany

2 Kress et al.

1 Introduction and Scope of Review

There exists a tremendous body of literature that focuses on intersections of (algorith-
mic aspects of) computer science and game theory (as well as economic theory). The
resulting fields of intersecting disciplines are usually referred to as algorithmic game
theory (an excellent introduction and overview is given by Nisan et al., 2007). Many
research articles in this field focus on auction contexts (see Krishna, 2010). Recently,
however, there has been a growing interest in taking a game theoretic perspective on
machine scheduling problems, which has resulted in a fairly large amount of research
articles that we aim to review and classify in this article.

Broadly speaking, scheduling problems are concerned with allocating scarce re-
sources over time to perform a set of tasks with the objective of optimizing one or
more performance measures (Błażewicz et al., 2007; Leung, 2004). Resources, tasks
and performance measures can be of very different nature. As indicated above, we
will focus on resources that (directly) represent some kind of processor or machine,
i.e. machine scheduling problems, and set the scope of our literature review, that
complements the articles by Heydenreich et al. (2007) and Christodoulou and Kout-
soupias (2009), to include research on

• machine scheduling problems
• in offline-settings, where all information regarding the problem is known or has

been announced (see below) at the unique time of planning,
• in a non-cooperative game theoretic context, where players cannot form coali-

tions
• and have private information on their own characteristics which they directly (but

not necessarily truthfully) announce by making a single claim,
• in the presence of a central authority that is in charge of designing a rewarding

scheme and the scheduling algorithm that determines the final schedule based on
the information submitted by the players and the publicly known information.

In order to give a systematic record of the academic efforts in the above field of
research, we provide a corresponding hierarchical classification scheme. This scheme
augments the classification scheme by Graham et al. (1979) for machine scheduling
problems, which is widely used and generally accepted in the scheduling community.
We are motivated by the fact that adoptions and extensions of Graham et al. (1979)
have been successfully implemented in a variety of other problem fields (see, for
example, Allahverdi et al., 2008; Boysen and Fliedner, 2010; Boysen et al., 2007,
2009; Brucker et al., 1999; Potts and Kovalyov, 2000).

1.1 Scope of Review

In this section, we present details on the scope of our literature review and addition-
ally introduce the notation used throughout this article. For the sake of brevity, we
assume the reader to be familiar with the basic theory of machine scheduling prob-
lems and the main concepts of game theory and refer to Błażewicz et al. (2007),
Leung (2004), and Fudenberg and Tirole (1991) for comprehensive introductions to
these fields of research.

Mechanism Design for Machine Scheduling Problems 3

1.1.1 Machine Scheduling Problems

The notation used in the scheduling and (algorithmic) game theory communities
is not always compatible. Therefore, we will sometimes deviate from the standard
scheduling notation. Basically, a machine scheduling problem is characterized by a
set J of n jobs (tasks) and a set M of m machines. A feasible schedule o assigns ma-
chines of the set M to jobs of the set J in order to complete all jobs under a set of
imposed constraints. We denote the set of all feasible schedules of a given machine
scheduling problem by O. Jobs and machines are characterized by certain parameters,
e.g. processing times or speeds. Furthermore, there exist different performance mea-
sures. We assume the reader to be aware of the corresponding definitions and restrict
ourselves to giving an overview of the notation relevant for this article in Table 1.

Table 1 Notation: machine scheduling problems

J set of jobs |J|= n
M set of machines |M|= m
O set of feasible solutions of scheduling problem

ti j processing time of job j ∈ J on machine i ∈M
• single machine or identical (parallel) machines: ti j = t j ∀ i ∈M
• uniform (parallel) machines: ti j = t j/si for a given speed si
• unrelated (parallel) machines: ti j = t j/si j for a given speed si j

w j weight of job j ∈ J
r j release date of job j ∈ J
d j due date or deadline of job j ∈ J

C j completion time of job j ∈ J C j : O→ R≥0
U j unit penalty of job j ∈ J: 1 if j completes strictly after d j , 0 otherwise U j : O→{0,1}
Li load of machine i ∈M Li : O→ R≥0

As mentioned above, Graham et al. (1979) present a widely used and generally
accepted classification scheme for machine scheduling problems. It represents a spe-
cific problem by a three-field notation, α|β |γ , where α describes the machine en-
vironment, β refers to job characteristics, and γ relates to the (global) performance
measure (optimality criterion). Each field of the triple includes multiple elements,
e.g. α = α1,α2, . . . , that represent specific problem properties. The empty symbol,
◦, denotes the default value of an element and is skipped when a triple is actually
specified.

1.1.2 Algorithmic Game Theory

The games considered throughout this paper have three basic elements: players, strat-
egy spaces, and utility functions. Furthermore, we will restrict ourselves to consider-
ing non-cooperative games. That is, players cannot form coalitions in order to gener-
ate group decisions. In the context of machine scheduling problems, players may be
machines or jobs. More generally, one may also think of “owners” of multiple ma-
chines or jobs that act as single players. Each player has an associated strategy space

4 Kress et al.

that represents the options that the player can select from when the game is played.
For example, when the players correspond to jobs, each job may be allowed to se-
lect a machine to be processed on. A player’s utility function assigns a utility level to
every vector of strategies, i.e. each combination of strategies that can potentially be
selected by all players. With respect to machine scheduling problems, the utility level
could, for instance, correspond to the completion time of a given job.

We will consider fairly specific problem settings in the field of algorithmic game
theory for machine scheduling problems. These settings are characterized by the exis-
tence of (rational and selfish) players, who are typically referred to as agents and can
make a single claim on some pieces of information that may affect the final schedule.
Furthermore, there exists a central authority/planner, who is in charge of designing
an interaction protocol, a rewarding scheme (e.g. payments among players), and a
scheduling algorithm that determines the final schedule. Within this scope, there are
two main streams of literature that differ in the type of information that the agents
possess and in the way that the information affects an instance of the considered
machine scheduling problem (see Figure 1).

Players/Central Authority

AGENTS(MACHINES ORJOBS)

Stream “Algorithmic Mechanism Design”
(direct revelation)

Stream “Scheduling Games”

CENTRAL AUTHORITY/PLANNER

Machine Scheduling Prob./Rewarding Scheme

MATHEMATICAL MODEL

parameters

variables

. . .

ALGORITHM REW. SCHEME

announce agent characteristics
(private information)

select agent-specific
machine-job assignment

designs and controls

schedule “rewards”

problem instance

PUBLIC INFORMATION

Fig. 1 Algorithmic mechanism design (in case of direct revelation) and scheduling games

1. In this article, we will focus on one of these streams, which presumes that the
agents have private information on some of their own characteristics. Jobs, for
instance, may privately know their due dates or job weights. The remaining data,
e.g. the number of machines and jobs, is usually assumed to be publicly known.
The central planner designs some protocol of interaction that the agents have to
follow. This protocol may be fairly general. We will, however, restrict ourselves
to considering “direct protocols” that allow the agents to solely (but not necessar-
ily truthfully) announce concrete values that represent their private information
when the game begins. In terms of optimization problems, these agents therefore
fix a subset of parameters. When acting selfishly, they may try to influence the so-
lution determined by the scheduling algorithm by submitting false information if
this can increase their utility. However, by designing appropriate algorithms and
rewarding schemes that set the right incentives, the central planner can extract the

Mechanism Design for Machine Scheduling Problems 5

true information of these players, for example in order to generate fair solutions
with respect to some social criterion that considers the interests of all agents.

2. In the second stream, that we exclude from our review for the sake of brevity (the
interested reader may refer to Heydenreich et al., 2007), the (usually completely
informed) agents, again pursuing selfish goals, commit decisions on machine-
job assignments and thus implicitly fix variables of optimization problems. We
can, for example, think of jobs whose strategy spaces correspond to the set of
machines, i.e. jobs who can choose to be processed on specific machines.

We would like to stress the fact that the aforementioned fields of research are
not always clearly separated in the literature. Similarly, the terms used to identify
specific problems within these fields may differ among different articles. We will fol-
low Nisan and Ronen (2001), who define (algorithmic) mechanism design to aim at
“study[ing] how privately known preferences [...] can be aggregated towards a ‘social
choice’ ” (see also Nisan and Ronen, 1999), which corresponds to the first stream de-
scribed above. Our focus on direct protocols is usually termed direct revelation (see,
for example, Nisan, 2007). Others use the term “algorithmic mechanism design” in a
more general context, even when there is no privately owned information (see, for in-
stance, Immorlica et al., 2009). Problems in the second stream are sometimes referred
to as (machine) scheduling games (see, for instance, Harks et al., 2011; Roughgar-
den and Tardos, 2007) or load balancing games (Vöcking, 2007). These games are
closely related to the categories of congestion games (Rosenthal, 1973) and coordi-
nation mechanisms (Christodoulou et al., 2009a). In all of these areas, one is usually
interested in deciding whether (Nash) equilibria exist, how (in-)efficient these equi-
libria are when compared to socially optimal solutions, and how fast algorithms can
compute them (Harks et al., 2011; Roughgarden and Tardos, 2007).

1.1.3 Algorithmic Mechanism Design

Based on the illustration in Figure 2, we will now describe the (direct revelation)
algorithmic mechanism design setting in the context of machine scheduling problems
in more detail. The corresponding notation used throughout this article is summarized
in Table 2.

Let A denote the set of rational and selfish agents. Each agent k ∈ A has a (true)
valuation function vt

k : O→ R, that maps every feasible schedule of the considered
scheduling problem to a real value. vt

k is private information of the agent and is thus
sometimes referred to as the agent’s type. Negative values can, for example, relate to
costs incurred to a (job) agent due to waiting for being completed.

Each agent k ∈ A reports a valuation function vk, that may deviate from the true
valuation function vt

k, to the mechanism. Each valuation function vk, k ∈ A, is element
of a publicly known set Vk. We define V := V1×·· ·×V|A|. Furthermore, we denote
the vector of all valuation functions reported to the mechanism by v = (v1, . . . ,v|A|)
and the vector of all valuation functions reported to the mechanism except of vk by
v−k = (v1, . . . ,vk−1,vk+1, . . . ,v|A|). For the sake of notational convenience, we will
use v and (vk,v−k) interchangeably.

The mechanism itself is designed and controlled by a central planner. It is a pair
(f , p), composed of a social choice function f : V →O and a vector of payment func-

6 Kress et al.

1
vt

1

V1

...

|A|
vt
|A|

V|A|

Se
tA

of
ag

en
ts Mechanism

f
p1, . . . , p|A|

Schedule

o

private information

public information

v1

v|A|

p1(v)

p|A|(v)

f (v)

o

o

Fig. 2 (Direct revelation) algorithmic mechanism design (Kress et al., 2017)

Table 2 Notation: algorithmic mechanism design

A set of agents
Vk set of potential valuation functions for agent k ∈ A
V Cartesian product of sets Vk , k ∈ A V =V1×·· ·×V|A|
V−k Cartesian product of sets Vl , l ∈ A\{k} V =V1×·· ·×Vk−1×Vk+1×·· ·×V|A|

f social choice function/allocation rule f : V → O
vt

k true valuation function of agent k ∈ A Vk 3 vt
k : O→ R

vk claimed valuation function of agent k ∈ A Vk 3 vk : O→ R
pk payment function for agent k ∈ A pk : V → R
uk utility function of agent k ∈ A uk(vk,v−k) = vt

k(f (v))+ pk(v)

v−k vector of claimed valuation functions except vk , k ∈ A v−k = (v1, . . . ,vk−1,vk+1, . . . ,v|A|)

v vector of claimed valuation functions v = (v1, . . . ,v|A|)
v = (vk,v−k), k ∈ A

tions p := (p1, . . . , p|A|), with pk : V → R for all k ∈ A. The mechanism (f , p) is said
to implement the social choice function f . It is efficient, if f maximizes social wel-
fare, i.e. the sum of the valuation functions of all agents (see, e.g., Heydenreich et al.,
2008; Mitra, 2001, 2002). As described in Section 1.1.2, in the context of scheduling
problems, the social choice function is an algorithm that determines a feasible sched-
ule based on the valuation functions reported to the mechanism. It is also referred to
as the scheduling rule, allocation rule, or allocation function. As the global objec-
tive function of a scheduling problem may be non-utilitarian, i.e. differ from aiming
to maximize the sum of the valuation functions of all agents, we will use the term
efficiency in a broader sense by referring to a mechanism as efficient whenever it op-
timizes the global optimality criterion of the scheduling problem. By controlling the
allocation rule and the payment functions, the cental planner can design mechanisms
with different features.

Each agent k∈A selfishly aims to maximize the utility function uk : V →R, which
is assumed to be quasi-linear, i.e. corresponds to the sum of the agent’s valuation of
the schedule (determined by the allocation rule) and the (potentially negative) corre-
sponding payment from the mechanism, uk(vk,v−k) := vt

k(f (vk,v−k))+ pk(vk,v−k).
Sometimes it is reasonable to focus on individually rational mechanisms (also re-

Mechanism Design for Machine Scheduling Problems 7

ferred to as voluntary participation mechanisms, see Auletta et al., 2004), that assume
(or feature) the utilities of each agent to always be non-negative (see, for instance,
Hoeksma and Uetz, 2013; Nisan, 2007).

1.1.4 Randomized Mechanisms and Publicly Known Distributions

All of the above definitions consider a deterministic problem setting and assume that
the agents have no information at all about the private information of the other agents.
Unless stated otherwise, these will also be our standard assumptions throughout the
remainder of this paper. The literature, however, also considers modified settings.
Most important, one can assume the allocation rule to be non-deterministic, i.e. let
the scheduling algorithm’s logic employ some degree of randomness, or consider
randomized payments. A resulting mechanism is then referred to as a randomized
mechanism (Nisan and Ronen, 1999, 2001). Moreover, it may sometimes be appro-
priate to assume that there exists some commonly known probability distribution over
the private information of each player (Nisan, 2007). In both modified settings, agents
are usually assumed to maximize expected utilities. The definitions of the standard
setting carry over in a straightforward manner.

1.2 Article Overview

The remainder of this article is structured as follows. In Section 2, we present an
overview of problem categories and problem features that characterize machine sche-
duling settings in the algorithmic mechanism design literature. This will lay the foun-
dation for our extension of the classification scheme of Graham et al. (1979) in Sec-
tion 3 and allow a structured overview of the literature in Section 4. The article closes
with a conclusion and an illustration of research challenges that can be identified
based on the prior classification of the literature in Section 5.

2 Review of Problem Categories and Features

In addition to the classical problem categories of the classification scheme of Gra-
ham et al. (1979) and its extensions, the algorithmic mechanism design literature for
machine scheduling problems (as restricted in Section 1) can be structured based on
multiple categories, that we will present in the following sections, where we will also
discuss additional problem features that we have not yet introduced.

2.1 Categories, Risk Attitude and Private Information of Agents

With respect to categories of agents, there exist two streams of publications. The first
group of articles, that follows the seminal work of Nisan and Ronen (1999, 2001),
presumes that solely the machines are selfish agents (typically referred to as machine

8 Kress et al.

agents), i.e. A=M. Machine agents usually aim for small loads. Similarly, the second
stream of publications assumes that only the jobs are selfish agents (job agents), i.e.
A = J, mostly aiming at small completion times. Prominent examples of the latter
stream are Suijs (1996) or Angel et al. (2006). The literature on job agents that are to
be scheduled on a single machine sometimes analyzes the independence of irrelevant
alternatives (IIA) property of allocation rules (see, e.g., Heydenreich et al., 2008). It
is satisfied if the relative order of any two jobs on the machine is independent of the
committed types of all other jobs.

Of course, one may also think of more general settings, where both (a subset
of) jobs and (a subset of) machines represent selfish players of the considered game.
Even more general, there might be “owners” of multiple jobs or machines that act as
single agents. However, to the best of the authors’ knowledge, this setting has not yet
been considered in the non-cooperative literature.

Concerning the risk attitude, the vast majority of research articles assumes the
agents to be risk neutral. Exceptions are Kovalyov and Pesch (2014) and Kovalyov
et al. (2016), where job agents are assumed to be “fully” risk averse.

Mechanism design settings can also be classified with respect to the knowledge
of agents about the private information of the other agents. The standard case is to
assume that agents have no information at all about the other’s private information.
Sometimes, however, one assumes that there exists some commonly known distribu-
tion over the private information of each agent (see Section 1.1.4) or that there are
other publicly known restrictions on the private information of each agent. An exam-
ple for the latter case is to restrict privately known speed factors of machine agents
to be natural numbers that are bounded from above by a publicly known constant
(Auletta et al., 2004).

2.2 Truthfulness, VCG Mechanisms and Approximability

As indicated in Sections 1.1.2 and 1.1.3, agents selfishly aim to maximize their (ex-
pected) utilities and may therefore lie about their true valuation functions. To over-
come this problem, the central planner may want to design the mechanism such that
agents behave truthfully. The literature considers different concepts of truthfulness.
We will briefly outline the concepts that are relevant for this article in this section.

A mechanism is (dominant strategy) incentive compatible or truthful (Nisan,
2007) if it guarantees that reporting the true valuation function maximizes the util-
ity function of a rationally acting agent for all possible vectors of claimed valuation
functions of the other agents, i.e. if uk(vt

k,v−k)≥ uk(vk,v−k) for all k ∈ A, all vk ∈Vk,
and all v−k ∈V−k.

In case of randomized mechanisms, articles usually apply an adapted notion of
truthfulness, referred to as truthfulness in expectation. Formally, let E(uk(v)) de-
note the expected value of the utility function of agent k ∈ A over the randomiza-
tion of the mechanism. A mechanism is truthful in expectation if E(uk(vt

k,v−k)) ≥
E(uk(vk,v−k)), for all k ∈ A, vk ∈ Vk, and v−k ∈ V−k. Alternatively, one may slightly
deviate from our definition in Section 1.1.4, and define a randomized mechanism to
allow distributions over deterministic mechanisms. Then, a randomized mechanism

Mechanism Design for Machine Scheduling Problems 9

is defined to be universally truthful if every deterministic mechanism in the support
is dominant strategy incentive compatible (Nisan, 2007).

Similarly, when considering the case of publicly known probability distributions
over the type spaces of agents (that we will denote by Φk for agent k ∈ A) as de-
scribed in Section 1.1.4, one can apply a weaker notion of truthfulness, referred to as
Bayes-Nash incentive compatibility (see, for example, Duives et al., 2015; Heyden-
reich et al., 2008; Hoeksma and Uetz, 2013). Here, for each agent, telling the truth
must be (weakly) dominant in expectation over the publicly known distributions over
the type spaces of the other agents.

One of the most important general results in the field of mechanism design is the
Vickrey-Clarke-Groves mechanism (VCG mechanism), that was suggested by Vick-
rey (1961) and generalized by Clarke (1971) and Groves (1973). A mechanism is
called a VCG mechanism, if the social choice function maximizes social welfare and
if the payment functions pk(v), k ∈ A, are given by

pk(v) = hk(v−k)+
n

∑
l=1,l 6=k

vl(f (v)),

where hk(v−k) : V−k → R. Note that hk, k ∈ A, is independent of the valuation func-
tion vk ∈ Vk reported by agent k. This general definition of the payment functions
is referred to as the Groves payments. The Clarke pivot rule specifies hk(v−k) =
−maxo∈Ô ∑

n
l=1,l 6=k vl(o), k ∈ A, where Ô ⊆ O is the set of all feasible schedules that

the considered scheduling algorithm may compute. The resulting payment functions
have specific desirable properties. They are, for example, non-positive, so that the
agents never receive payments from the mechanism. Furthermore, a corresponding
mechanism is individually rational if vk(o)≥ 0 for all k ∈ A and all o ∈ Ô. The con-
cept of VCG mechanisms was further generalized by Roberts (1979) to social choice
functions that belong to the set of so called affine maximizers.

A VCG mechanism is (dominant strategy) incentive compatible, but a major
drawback is the need to find optimal solutions to the underlying problem of maximiz-
ing social welfare, which may be NP-hard (see, for instance, Nisan, 2007). Hence, in
the context of scheduling problems, VCG mechanisms are oftentimes not appropriate
even if the objective function of the specific scheduling problem corresponds to max-
imizing social welfare. Many researchers are therefore actively trying to explore the
boundary between truthfulness (in its most general sense) and computational com-
plexity for specific scheduling problems (see also Section 5). It is especially desirable
to derive truthful mechanisms with polynomial time computable allocation and pay-
ment functions that feature good approximation factors for specific settings, and to
determine strong dual bounds on approximation factors for truthful scheduling under
non-utilitarian objectives without restricting the analysis to polynomial time alloca-
tion functions. If one aims to design a concrete polynomial time truthful mechanism
for some NP-hard scheduling domain, one must make use of theoretical results that
are related to incentive compatibility and that are suitable for heuristic algorithms.
For example, one may have to assure that certain monotonicity conditions are ful-
filled by the allocation rule in order to guarantee incentive compatibility (see, e.g.,
Heydenreich et al., 2007; Lavi and Swamy, 2009, for more details).

10 Kress et al.

2.3 Models of Execution and Constraints on Committed Data

When agents possess private information on the processing times of jobs, the litera-
ture distinguishes between different models of execution. These models differ in the
length of the actual time slots that are reserved on the machines once the schedule
that has been determined by the scheduling algorithm is implemented. There are two
widely used models of execution (see, e.g., Christodoulou et al., 2007a). The strong
model of execution assumes that the schedules which are implemented based on the
computations of the scheduling algorithms always apply the true processing times
of the jobs, no matter which value has been committed by the agents. In contrast,
in the weak model of execution, the implemented schedules use the reported pro-
cessing times. A third model of execution is used by Koutsoupias (2014). Here, the
implemented processing times are defined by the maximum of the reported and the
true processing times. We refer to this model of execution as the maximum model of
execution. The weak and maximum models of execution are especially relevant in
applications where the processing of all jobs can actually be observed by the agents.
If the true processing times were applied in this case, a lie of an agent who com-
mits a processing time that is larger than its true value would be observable by the
other agents, which might not be desirable in the considered application (Koutsou-
pias, 2014). Similarly, there may be applications where the strong model of execution
is most suitable, for example when machine idle times are very costly for their owner
or not allowed at all.

Additionally, one may want to constrain the data that the agents are allowed to
report to the mechanism without publicly revealing explicit data of their private in-
formation. For example, in case of private processing times (release dates), it may be
reasonable to restrict the agents to commit processing times (release dates) that are
bounded from below by their true values (see, e.g., Angel et al., 2012; Christodoulou
et al., 2007a).

2.4 Characteristics of Payment Schemes

There exist many applications, where mechanisms may be restricted to not include
payments for compensation purposes, i.e. where pk(v) = 0 must hold for all k ∈ A
and v ∈ V (see, for example, Koutsoupias, 2014). Very broadly speaking, this “con-
straint can arise from ethical and/or institutional considerations: many political deci-
sions must be made without monetary transfers; organ donations can be arranged by
’trade’ involving multiple needy patients and their relatives, yet monetary compensa-
tion is illegal” (Schummer and Vohra, 2007). In a scheduling context, a setting with
payments “is easily challenged when it comes to computational settings. In particular
in internet domains payments are notoriously difficult to implement, mainly due to
security and banking issues” (Procaccia and Tennenholtz, 2009).

Other applications strive for mechanisms that have no surplus or deficit of mone-
tary payments that cannot be redistributed among the agents (Suijs, 1996), i.e. where
∑k∈A pk(v) = 0 for all v∈V . These payment schemes are usually referred to as budget
balanced.

Mechanism Design for Machine Scheduling Problems 11

Some articles aim to design Bayes-Nash or dominant strategy incentive compati-
ble mechanisms for scheduling problems that minimize the sum of the (expected) pay-
ments (see, for instance, Duives et al., 2015; Heydenreich et al., 2008; Hoeksma and
Uetz, 2013). Mechanisms of this type are usually referred to as optimal mechanisms
(see also Hartline and Karlin, 2007). Usually, these articles focus on individually ra-
tional mechanisms or some approximation guarantee of the scheduling algorithms
(given truthful commitments of the agents).

2.5 Other Problem Categories and Features

There exist some mechanism design related problem features that do not fall into the
categories of the above sections. In the following, we list the features that are relevant
for this article.

A mechanism is called anonymous if, whenever two agents switch all of their
properties, these two agents also switch positions in the resulting schedule (see, for
example, Ashlagi et al., 2012).

In a mechanism with verification, the calculation of the payments depends on the
results of the execution of the schedule (see, e.g., Nisan and Ronen, 1999, 2001).
If, for example, the processing time of a job is part of the private information of an
agent, additional information on the true processing time becomes available after the
execution of the schedule, which depends on the model of execution.

Next, a mechanism is called envy-free, if no agent is able to improve her util-
ity function value by switching both, the position in the schedule and the realized
payments, with another agent (see, for instance, Kayı and Ramaekers, 2010, 2015).

A mechanism is task-independent if its allocation function decides on the allo-
cation of each job separately, i.e. without considering the characterizing parameters
of the other jobs (see, for instance, Christodoulou et al., 2010; Dobzinski and Sun-
dararajan, 2008).

When considering a mechanism design setting with machine agents, a mechanism
is called locally-decisive, if each agent can enforce her allocation by reporting very
low or high values but cannot determine how the remaining jobs are allocated among
the other agents (see, e.g., Christodoulou et al., 2008).

3 Classification Scheme

We are now ready to present our extension of the classification scheme of Graham
et al. (1979). The resulting scheme is extensible, i.e. it allows for including more
features when needed.

3.1 Review of Selected Elements of Graham et al. (1979)

We will first review parts of the notation introduced by Graham et al. (1979). With
respect to the machine environment α they define:

• Machine environment, α1 ∈ {◦,P,Q,R, . . .}
◦ Single machine, i.e. m = 1.

12 Kress et al.

P Identical (parallel) machines.
Q Uniform (parallel) machines.
R Unrelated (parallel) machines.

• Number of machines, α2 ∈ {◦,N}
◦ m is variable.
pos. int. m There exists a constant number m of machines.

Regarding the job characteristics β , we will only make use of a few elements
introduced by Graham et al. (1979):

• Release dates, β4 ∈ {◦,r j}
◦ No release dates are specified.
r j Release dates per job are specified.

• Processing times, β6 ∈ {◦, t j = 1, . . .}
◦ Processing times are arbitrary.
t j = 1 Each job has unit processing time.

Furthermore, we will make use use the following element (see, for example, Leung
and Li, 2008):

• Eligibility constraints, β7 ∈ {◦,M j}
◦ No eligibility constraints are specified.
M j Each job j ∈ J is associated with a set of eligible machines

M j ⊆M on which it can be processed.

Finally, based on Graham et al. (1979) and with respect to the (global) optimality
criterion γ , i.e. the objective function that the scheduling algorithm aims to optimize
based on the publicly known parameters and the values committed by the agents, we
define:

• Global optimality criterion, γ ∈{Cmax,∑C j,∑w jC j,maxw jC j,∑ f j(C j),∑ f (C j),

∑w j f (C j),∑w jU j,∑ f (Li),∑Li,‖L‖p,maxminLi, . . .}:
Cmax Minimize the makespan, i.e. the maximum of the completion

times.
∑C j Minimize the sum of completion times.
∑w jC j Minimize the weighted sum of completion times.
maxw jC j Minimize the maximum weighted completion time.
∑ f j(C j) Minimize the sum of functions f j of the completion times of jobs

j ∈ J.
∑ f (C j) Minimize the sum of a function f of the completion times.
∑w j f (C j) Minimize the weighted sum of a function f of the completion

times.
∑w jU j Minimize the total weight of late jobs.
∑ f (Li) Minimize the sum of a function f of the load of the machines.
∑Li Minimize the sum of the loads of the machines.
‖L‖p Minimize the lp norm of the vector of machine loads L.
maxminLi Maximize the minimum load over all machines.

Mechanism Design for Machine Scheduling Problems 13

3.2 Including Mechanism Design Settings for Machine Scheduling Problems

We can now propose additional notation that allows to include mechanism design
settings. As described in Section 2.1, the existing literature can be divided into two
groups of articles that either presume the existence of machine agents or job agents.
We therefore augment the first two fields of the classification scheme of Graham
et al. (1979), that represent the machine environment α and the job characteristics β ,
with additional elements α̂l and β̂l , l = 1,2, . . . , respectively. Here, the index l refers
to the l-th element that refers to mechanism design (indicated by the hat operator)
characteristics in the specific field.

First, in order to be able to indicate the risk attitude of the agents, we define the
elements α̂1 for machine agents and β̂1 for job agents:

• Risk attitude of agents, α̂1, β̂1 ∈ {◦,averse,seeking, . . .}
◦ No agents at all (no mechanism design setting) or all agents are

risk neutral.
averse All agents are risk averse.
seeking All agents are risk seeking.

The elements α̂2 and β̂2 specify the set of parameters that are private information
of the agents and indicate whether the other agents have some common knowledge
about this private information.

• Private information of machine agents, α̂2 ∈ {◦, privρ{. . .}, . . .}
◦ No machine agents.
privρ{. . .} Each element of the set {. . .} refers to an entity of private

information of the machine agents. A superscript τ for some
element indicates additional restrictions or assumptions on the
agents’ commitments or their implementation that do not publicly
reveal explicit data of the private information. Multiple entries in
the superscript are separated by commas.

– sτ
i : Machine agent i ∈M has private information on the speed

factor si. Potential entries in superscript τ:
- . . .

– tτ
i j: Machine agent i ∈M has private information on the

processing times ti j for all jobs j ∈ J. Potential entries in
superscript τ:

- max: The maximum model of execution is applied.
- . . .

– . . .
The subscript ρ indicates additional restrictions or assumptions
(on each piece of private information that can be committed by the
machine agents) that are based on publicly known parameters.
Multiple entries in the subscript are separated by commas.
Potential entries in subscript ρ:

14 Kress et al.

• Φ : A distribution of each machine agent’s private information
is publicly known.

• dω : The values that can be reported by the machine agents are
restricted to be elements of publicly known discrete sets. Each
element of the subscript ω indicates additional restrictions on
these sets:

- f : The sets are finite for all machine agents.
- =i: The sets are identical for all machine agents.
- = j: The sets are identical for all jobs (if relevant).
- div: The private information is divisible, i.e. it belongs to a

set C = {c1,c2, . . .}, where ci+1 is a multiple of ci ∀ i.
- c-div: The private information is c-divisible, i.e. it is a

power of a given positive constant c.
- . . .

• cω : The values that can be reported by the machine agents are
restricted to be elements of publicly known bounded and
continuous sets. Each element of the subscript ω indicates
additional restrictions on these sets:

- =i: The sets are identical for all machine agents.
- . . .

• . . .

• Private information of job agents, β̂2 ∈ {◦, privρ{. . .}, . . .}
◦ No job agents.
privρ{. . .} Each element of the set {. . .} refers to an entity of private

information of the job agents. A superscript τ for some element
indicates additional restrictions or assumptions on the agents’
commitments or their implementation that do not publicly reveal
explicit data of the private information. Multiple entries in the
superscript are separated by commas.

– rτ
j : Job agent j ∈ J has private information on its release date

r j. Potential entries in superscript τ:
- ≥: The release date committed by job agent j ∈ J is

bounded from below by the true release date.
- . . .

– dτ
j : Job agent j ∈ J has private information on its due date or

deadline d j. Potential entries in superscript τ:
- . . .

– wτ
j : Job agent j ∈ J has private information on its weight w j.

Potential entries in superscript τ:
- . . .

Mechanism Design for Machine Scheduling Problems 15

– f τ
j : Job agent j ∈ J has private information on the function f j

that maps every possible completion time of its job to a real
value. Potential entries in superscript τ:

- . . .
– tτ

j : Job agent j ∈ J has private information on its processing
time t j. Potential entries in superscript τ:

- strong: The strong model of execution is applied.
- weak: The weak model of execution is applied.
- ≥: The processing times committed by job agent j ∈ J are

bounded from below by the true processing times.
- . . .

– tτ
i j: Job agent j ∈ J has private information on its processing

times ti j that may differ among machines i ∈M. The potential
entries of the superscript τ are defined as above.

– . . .
The subscript ρ indicates additional restrictions or assumptions
(on each piece of private information that can be committed by the
job agents) that are based on publicly known parameters. Multiple
entries in the subscript are separated by commas. Potential entries
in subscript ρ:
– Φ : A distribution of each job agent’s private information is

publicly known.
– dω : The values that can be reported by the job agents are

restricted to be elements of publicly known discrete sets. Each
element of the subscript ω indicates additional restrictions on
these sets:

- f : The sets are finite for all job agents.
- . . .

– . . .

Finally, we define elements α̂3 and β̂3 that represent the (true) valuation functions
of the agents, i.e. their “local” objective functions related to the scheduling problem.

• Objective of agents, α̂3 ∈ {Li, . . .}, β̂3 ∈ {C j,U j . . .}
α̂3 = Li Each machine agent i ∈M aims to minimize its load Li.
β̂3 =C j Each job agent j ∈ J aims to minimize its completion time C j.
β̂3 =U j Each job agent j ∈ J aims to complete before or at d j, i.e. to

minimize the unit penalty function U j.

As mentioned above, our classification scheme is extensible. This is indicated by
dots in the above notation, which allow for including new problem settings for ex-
isting categories, for example when considering new entities of private information
of agents. Furthermore, when considering more general categories of agents or simi-
lar problem generalizations or extensions, one can include new symbols to represent
those settings.

16 Kress et al.

3.3 Examples

We will now illustrate the above classification scheme by presenting two examples.
P||Cmax: We are given an arbitrary number of m parallel identical machines and a

set J of n jobs. The processing time t j of any job j ∈ J is independent of the machines.
Each job can be processed by at most one machine at a time and each machine is
capable of processing at most one job at a time. The objective is to assign each job
to exactly one machine and find non-preemptive sequences of the resulting subsets
of jobs of each machine, so that the makespan is minimized. There is no private
information; a mechanism design setting is not considered.

P|priv{tstrong,≥
j },C j|Cmax: The setting is in analogy to P||Cmax, but we now con-

sider a mechanism design setting with job agents who aim to minimize their comple-
tion times. The processing time of each job agent is private information. The process-
ing times committed to the mechanism are bounded from below by their true values.
The strong model of execution is applied.

4 Literature Overview

Based on the classification scheme of Section 3, we can now present a structured
overview of the relevant literature. We will do so by presenting three tables that refer
to articles that consider problem settings with job agents (Table 3), machine agents
and unrelated machines (Table 4), and machine agents and uniform machines (Table
5).

We will make use of some additional definitions regarding approximability results
that we briefly introduce before describing the tables in detail. For a given constant
c ∈ R, a polynomial algorithm is called a c-approximation algorithm if (in case of a
minimization problem) the objective function value determined by the algorithm is
bounded from above by c times the optimal objective function value. A polynomial
algorithm with an additional arbitrary positive input parameter ε that guarantees an
objective function value which is bounded from above by 1+ ε times the optimal
objective function value, is called a polynomial-time approximation scheme (PTAS).
If the runtime of the algorithm is polynomial in the size of the problem, denoted by q,
and in 1/ε , the algorithm is called fully polynomial-time approximation scheme (FP-
TAS). Another variant of a PTAS is a quasi-polynomial-time approximation scheme
(QPTAS). A QPTAS has time complexity qpolylog(q).

Within the tables, each article, identified by its authors and publishing year, is
classified according to the extended classification scheme presented in Section 3.
Furthermore, the tables highlight the main contributions of each article (as explic-
itly stated by the authors) by specifying whether it focuses on selected properties or
restricts the analysis to specific settings. These selected properties and restrictions
slightly differ among the tables because the literature related to each table usually
takes a fairly specific perspective on mechanism design settings for machine schedul-
ing problems.

With respect to the characteristics of the payment scheme (Paym.), we indicate
whether an article considers nonzero payments at all (∃) and whether the presented

M
echanism

D
esign

forM
achine

Scheduling
Problem

s
17

Table 3 Overview - Job agents

Paym. Mech. Opt. Truthfuln. Approx. Quality

Authors Classification ∃ BB IR rand. det. Me. DS/U BN/IE DB PB poly. Properties/Highlights

Suijs (1996) 1|priv{w j},C j|∑w jC j • + - ◦ • + + 1 +
Hamers et al. (1999) P|t j = 1, priv{w j},C j|∑w jC j • + ◦ • + + 1 +
Mitra (2001) 1|t j = 1, priv{ f j},C j|∑ f j(C j) • +* +* ◦ • +* +* 1*
Mitra (2002) 1|priv{w j},C j|∑w j f (C j) • +* ◦ • +* +* 1*
Hain and Mitra (2004) 1|priv{tstrong

j },C j|∑ f (C j) • +* ◦ • +* +* 1*
Angel et al. (2005, 2006) P|priv{tstrong,≥

j },C j|Cmax ◦ + • ◦ + 2− 1
m+1 (

5
3 +

1
3m) +

Mitra (2005) P|t j = 1, priv{ f j},C j|∑ f j(C j) • +* ◦ • +* +* 1*
Christodoulou et al. (2007a) P|priv{tstrong,≥

j },C j|Cmax ◦ + • ◦ + 3
2 − 1

2m
P|priv{tstrong,≥

j },C j|Cmax ◦ + ◦ • + + 2− 1
m

P|priv{tweak,≥
j },C j|Cmax ◦ + ◦ • + + 7

6 * 4
3 − 1

3m -

P2|priv{tweak,≥
j },C j|Cmax ◦ + ◦ • + + 1+

√
105−9
12

Heydenreich et al. (2008) 1|privΦ{w j},C j|∑w jC j • + ◦ • +* +* 1* + closed formula for payments*
1|privΦ ,d f {w j},C j|∑w jC j • + ◦ • +* +* 1* + closed formula for payments*
1|privΦ ,d f {w j, t

weak,≥
j },C j|∑w jC j • + ◦ • + +* > 1 opt. mech. does not satisfy IIA

Angel et al. (2009) Q|priv{tweak,≥
j },C j|Cmax ◦ + • ◦ + r(1+ ε) a +

Q|priv{tweak,≥
j },C j|Cmax • • ◦ + 1+ ε +

Angel et al. (2010, 2012) P|priv{tstrong,≥
j },C j|Cmax ◦ + • ◦ + 1.5 -

P|priv{tstrong,≥
j },C j|Cmax ◦ + • ◦ + 11

6 + 1
3m +

Pm|priv{tstrong,≥
j },C j|Cmax ◦ + • ◦ + 1.5+ ε +

P|r j, priv{tweak,≥
j ,r≥j },C j|Cmax ◦ + • ◦ + 1.5 -

R|priv{tweak,≥
i j },C j|Cmax ◦ + • ◦ + 1.5 -

Kayı and Ramaekers (2010, 2015) 1|t j = 1, priv{w j},C j|∑w jC j • + ◦ • + + 1 envy-free, anonymous
Hashimoto and Saitoh (2012) 1|t j = 1, priv{w j},C j|∑w jC j • + ◦ • + + 1 anonymous
Hoeksma and Uetz (2013) 1|privΦ ,d f {w j, t

weak,≥
j },C j|∑w jC j • + • ◦ + + 1 +

Kovalyov and Pesch (2014) 1|averse, priv{ f j},C j|∑ f j(C j) • + • ◦ +
Duives et al. (2015) 1|privΦ ,d f {w j},C j|∑w jC j • + ◦ • + + + > 1* 1* + closed formula for payments

1|privΦ ,d f {w j, t
weak,≥
j },C j|∑w jC j • + ◦ • + +* > 1 opt. mech. does not satisfy IIA

Kovalyov et al. (2016) P|averse, priv{w j,d j},U j|∑w jU j • + • ◦ + computational analysis
De and Mitra (2017) 1|priv{w j},C j|maxw jC j • + ◦ • + + 1

1|priv{w j, tweak
j },C j|maxw jC j • + ◦ • + + 1

Kress et al. (2017) 1|priv{w j,d j},U j|∑w jU j • ◦ • + + n−1 +
P|priv{w j,d j},U j|∑w jU j • ◦ • + + general characterization of DS truthf.

a with s1 ≤ s2 ≤ ·· · ≤ sm, and r := sm/s1

18
K

ress
etal.

Table 4 Overview - Unrelated machine agents

Paym. Mech. Truthfuln. Approx. Quality

Authors Classification ∃ rand. det. DS/U BN/IE DB PB poly. Additional restrictions or assumptions/Highlights

Nisan and Ronen (1999, 2001) Rm, privc=i
{ti j},Li||Cmax • ◦ • + + 1+ ε PTAS verification

R, priv{ti j},Li||Cmax • ◦ • + + 2 m +
R2, priv{ti j},Li||Cmax • • ◦ + 1.75 +

Christodoulou et al. (2007c, 2009b) R, priv{ti j},Li||Cmax • ◦ • + + 1+
√

2 m≥ 3
Christodoulou et al. (2007b, 2010) R, priv{ti j},Li||Cmax • ◦ • + + 2− 1

m
m+1

2 + fractional
R, priv{ti j},Li||Cmax • ◦ • + + m+1

2
m+1

2 + fractional, task-independent
Koutsoupias and Vidali (2007, 2013) R, priv{ti j},Li||Cmax • ◦ • + + ≈ 2.618 m≥ 4
Lavi and Swamy (2007, 2009) R, privd f ,=i{ti j},Li||Cmax • • ◦ + 3 + general technique, payments not necessarily poly. time com-

putable
R, privd f ,=i,= j{ti j},Li||Cmax • ◦ • + + 1.1 2 +

Mu’alem and Schapira (2007, 2017) R, priv{ti j},Li||Cmax • • ◦ + + 2− 1
m 0.875m +

R, privΦd f
{ti j},Li||Cmax • ◦ • + + 1.25

Christodoulou et al. (2008) R2, priv{ti j},Li||Cmax • ◦ • + + 2 locally-decisive, negative processing times allowed, charac-
terization of truthful mechanisms

Dobzinski and Sundararajan (2008) R2, priv{ti j},Li||Cmax • • ◦ + every universally truthful mechanism that yields a finite ap-
proximation factor is such that all mechanisms in its support
are task-independent

Lu and Yu (2008a) R, priv{ti j},Li||Cmax • • ◦ + + 0.8368m +
Lu and Yu (2008b) R2, priv{ti j},Li||Cmax • • ◦ + + 11

7 1.5963 + task-independent
R, priv{ti j},Li||Cmax • • ◦ + m+1

2
m+5

2 + task-independent
Ashlagi et al. (2009, 2012) R, priv{ti j},Li||Cmax • ◦ • + + m anonymous

R, priv{ti j},Li||‖L‖p • ◦ • + + m1− 1
p anonymous

R, priv{ti j},Li||∑C j • ◦ • + + m anonymous
Christodoulou and Kovács (2011) R, priv{ti j},Li||Cmax • ◦ • + + characterization of anonymous envy-free mechanisms with

n = 2
Koutsoupias (2011, 2014) R, priv{tmax

i j },Li||Cmax ◦ • ◦ + m+1
2

m+1
2 + n = 1

R, priv{tmax
i j },Li||Cmax ◦ • ◦ + m(m+1)

2 +
R, priv{tmax

i j },Li||∑Li ◦ • ◦ + m+1
2

m+1
2 +

Auletta et al. (2012, 2015) R, privd f {ti j},Li||Cmax • • ◦ +* +* various results on approximation quality
Chawla et al. (2013) R, privΦ{ti j},Li||Cmax • ◦ • + + n

m
∗

Chen et al. (2013, 2015) R2, priv{ti j},Li||Cmax • • ◦ + 1.58606 +
Daskalakis and Weinberg (2015) R, privΦd f

{ti j},Li||Cmax • ◦ • + + 2 +

Giannakopoulos and Kyropoulou (2015) R, privΦ{ti j},Li||Cmax • ◦ • + + lnm
ln lnm

∗

M
echanism

D
esign

forM
achine

Scheduling
Problem

s
19

Table 5 Overview - Uniform machine agents

Paym. Mech. Truthfuln. Approx. Quality Additional restrictions or
assumptions/HighlightsAuthors Classification ∃ IR rand. det. DS/U IE DB PB poly.

Archer and Tardos (2001); Archer (2004) Q, priv{si},Li||Cmax • + ◦ • + + 1 -
Q, priv{si},Li||Cmax • + • ◦ + 2 +
Q, priv{si},Li||∑C j • + ◦ • + + 1 +
Q, priv{si},Li||∑w jC j • ◦ • + + 2√

3
Auletta et al. (2004) Qm, privd f ,=i

{si},Li||Cmax • + ◦ • + + 2+ ε +
Qm, privd=i ,div{si},Li||Cmax • + ◦ • + + 2+ ε +
Qm, priv{si},Li||Cmax • + ◦ • + + 4+ ε +

Ambrosio and Auletta (2005, 2008) Q2, privd=i ,c−div{si},Li||Cmax • ◦ • +* +*
Q, privd=i ,c−div{si},Li||Cmax • ◦ • + + 2+ ε + experimental analysis

Andelman et al. (2005, 2007) Q, priv{si},Li||Cmax • ◦ • + + 5 +
Qm, priv{si},Li||Cmax • ◦ • + + 1+ ε FPTAS

Kovács (2005) Q, priv{si},Li||Cmax • + ◦ • + + 3 +
Kovács (2006, 2009) Q, priv{si},Li||Cmax • + ◦ • + + 2.8 +
Lavi (2007) Q, priv{si},Li||Cmax • • ◦ + 2 +

Q, priv{si},Li||Cmax • ◦ • + + 5 +
Dhangwatnotai et al. (2008, 2011) Q, priv{si},Li||Cmax • • ◦ + 1+ ε PTAS

Q, priv{si},Li||Cmax • ◦ • + + 1+ ε QPTAS
Q, priv{si},Li||‖L‖p • • ◦ + 1+ ε PTAS
Q, priv{si},Li||‖L‖p • ◦ • + + 1+ ε QPTAS
Q, priv{si},Li||maxminLi • • ◦ + 1+ ε PTAS

Epstein and van Stee (2008, 2010) Qm, priv{si},Li||maxminLi • ◦ • + + 1+ ε PTAS, FPTAS
Q, priv{si},Li||maxminLi • ◦ • + + min(m,(2+ε) s1

sm
) a +

Ferrante et al. (2009) Q, privc=i{si},Li||Cmax • + ◦ • + + c(1+ ε) b + verification
Q, privd=i{si},Li||Cmax • + ◦ • + + c b + verification

Christodoulou and Kovács (2010, 2013) Q, priv{si},Li||Cmax • ◦ • + + 1+ ε PTAS
Epstein et al. (2013, 2015) Q, priv{si},Li||Cmax • ◦ • + + 1+ ε PTAS

Q, priv{si},Li||maxminLi • ◦ • + + 1+ ε PTAS
Q, priv{si},Li||∑ f (Li) • ◦ • +* +* 1+ ε* PTAS*

Azar et al. (2015, 2017) Q, priv{si},Li|M j|Cmax • • ◦ + 2 + general technique to design IE
truthful mechanisms

a with s1 ≥ ·· · ≥ sm
b c :=approximation quality of an algorithm with certain monotonicity properties

20 Kress et al.

payment scheme is budget balanced (BB). Furthermore, we present information on
the question of whether or not the mechanisms presented in an article are individually
rational (IR). With regard to the considered mechanisms (Mech.), we indicate if they
are randomized (rand.) or deterministic (det.). The column “Opt. Me.” indicates if the
authors consider the design of optimal mechanisms. Similarly, the focus on different
concepts of truthfulness is illustrated in the column “Truthfuln.”, where we specify
whether the authors present results on or restrict their analysis to dominant strategy
truthfulness (DS), focus on universally truthful mechanisms (U), consider truthful-
ness in expectation (IE), or examine Bayes-Nash incentive compatibility (BN).

Furthermore, the tables contain information on the approximability of the consid-
ered settings. Most important, we indicate results concerning dual and primal bounds
(DB/PB) on approximation factors in the “Approx. Quality” column. Note that, with
respect to the dual bounds, the studies under consideration do not restrict to what
polynomial time mechanisms can achieve, i.e. the dual bounds even hold for expo-
nential time allocation (and payment) functions (see Section 2.2). We additionally
indicate whether a primal bound presented in some article is based on a polynomial
time allocation function and whether a PTAS, FPTAS, or QPTAS is considered (col-
umn “poly.”). If, in this context, the allocation function is a polynomial time algorithm
but the payments are not necessarily computable in polynomial time (and this is also
highlighted by the respective authors), this is specified in the last column of a table.

In the last column of the table, we present highlights of the articles as well as
additional properties (Table 3) or additional restrictions and assumptions on the con-
sidered setting (Tables 4 and 5) that are not covered by the preceding columns. In this
context, note that some articles consider relaxations of the original scheduling prob-
lems, i.e. by allowing a job to be split into arbitrary fractions among the machines.
This is usually referred to as fractional scheduling.

In order to precisely present the information in the tables, we use different sym-
bols to indicate if and how a property or restriction is handled or considered in a
given article. First, we use circles to indicate whether a given property is fulfilled or a
restriction is considered (•) or not (◦). If the authors of an article have proven a given
property to be fulfilled or restrict their analysis to a specific setting, we use a “+”, if
they have proven that a given property is not fulfilled, we use a “-”. A blank space
indicates that a property or restriction is not explicitly addressed in the corresponding
article. If a property is only fulfilled under additional constraints that are not stated
elsewhere in the table, we mark these results with a “*”.

5 Research Challenges and Conclusion

In this article, we have provided a classification scheme and a literature overview
on direct revelation mechanism design settings in the context of machine schedul-
ing problems. Based on our classification of the literature, we can identify multiple
potential directions and challenges for future research, that we briefly outline in this
section.

First and foremost, as described in Section 2.2, it is challenging to better under-
stand the boundary between truthfulness on one side and computational complexity

Mechanism Design for Machine Scheduling Problems 21

and approximation on the other side. For example, in case of R, priv{ti j},Li||Cmax,
i.e. a multi-parameter setting where machine agents possess more than one piece of
private information, Nisan and Ronen (1999, 2001) show that truthfulness excludes
optimal solutions to the underlying scheduling problem (even when allowing expo-
nential time allocation and payment functions) by providing a dual bound of 2 on
the corresponding approximation factor. This bound can, however, be beaten when
allowing randomization (see also Chen et al., 2015; Lu and Yu, 2008a,b; Mu’alem
and Schapira, 2017), which provides evidence for the “power of randomization in
algorithmic mechanism design” (Dobzinski and Dughmi, 2013). Nisan and Ronen
(1999, 2001) furthermore conjecture that no truthful deterministic mechanism can
achieve an approximation factor better than m (see Table 4). This so called Nisan-
Ronen conjecture has been settled by Ashlagi et al. (2009, 2012) when restricting
the analysis to anonymous mechanisms, but it is still open for the general case. A
related predominant question, which has especially been studied a single-parameter
setting (see Table 5), is whether or not truthful “efficient computation [is] funda-
mentally less powerful than ’classical’ efficient computation” (Dhangwatnotai et al.,
2008). Recently, for example, Christodoulou and Kovács (2010, 2013) and Epstein
et al. (2013, 2015) have provided the first truthful PTAS for Q, priv{si},Li||Cmax, the
existence of which had been a major open question ever since the work of Archer and
Tardos (2001), who provided a truthful exponential time deterministic mechanism for
minimizing the makespan in this setting.

There also remain plenty of open research questions with respect to classical ma-
chine scheduling settings. The existing research presented in Tables 3–5, for example,
solely focuses on parallel machine settings, while it may also be interesting to ana-
lyze dedicated machine environments (flow shop, open shop, or job shop problems)
in a game theoretic context. Furthermore, the literature rarely considers varying job
characteristics, as, for example, release dates in offline-settings or precedence rela-
tions.

Another interesting avenue for future research is to shift the research focus to-
wards new applications. Most existing research is motivated by the emergence of
the internet as a platform for computations (e.g., Nisan and Ronen, 2001), for exam-
ple when considering the problem of determining an execution sequence for (selfish)
computer tasks that have been accepted by a computing service provider. Another
application can be found in the literature on job agents that focuses on sequencing
problems. Mitra (2002), for instance, describes the following setting: There “is a
large multi-unit firm with each unit in need of the facility provided by a particular re-
pair and maintenance unit. The repair and maintenance unit can service only one unit
at any given time. Therefore, units which remain unattended, incur a cost for the time
they are down. In this framework, the firm’s role is that of a planner wanting to ser-
vice the units by forming a queue that minimises the total cost of waiting. Each unit’s
cost parameter is private information. The objective of the firm is to determine the
order in which the units are to be serviced.” Other applications, for example arising
in logistics or production processes like considered by Kovalyov and Pesch (2014),
can rarely be found and might thus be an interesting field of study.

Finally, there are many additional potential research directions related to game
theory and mechanism design aspects. There are, for example, only very few articles

22 Kress et al.

that consider risk averse agents. Moreover, as indicated in Section 2.1, it might be in-
teresting to consider more general settings with regard to the categories of agents. For
instance, one may let agents control multiple machines or jobs. Furthermore, the lit-
erature on job agents and uniform machine agents rarely considers multi-parameter
settings. Finally, Tables 3–5 reveal diverse literature gaps. One may, for example,
analyse budget balanced payments or the design of optimal mechanisms in case of
machine agents. For specific problem settings, it is possible to consider different mod-
els of execution, constraints on the committed data, local objective functions, etc.

Acknowledgements This work has been supported by the German Science Foundation (DFG) through
the grant “Scheduling mechanisms for rail mounted gantries with regard to crane interdependencies” (PE
514/22-1).

References

Allahverdi A, Ng CT, Cheng TCE, Kovalyov MY (2008) A survey of scheduling
problems with setup times or costs. Eur J Oper Res 187(3):985–1032

Ambrosio P, Auletta V (2005) Deterministic monotone algorithms for scheduling on
related machines. In: Persiano G, Solis-Oba R (eds) Approximation and Online
Algorithms, 2nd International Workshop, WAOA 2004, Revised Selected Papers,
Springer, Berlin, pp 267–280

Ambrosio P, Auletta V (2008) Deterministic monotone algorithms for scheduling on
related machines. Theor Comput Sci 406(3):173–186

Andelman N, Azar Y, Sorani M (2005) Truthful approximation mechanisms for
scheduling selfish related machines. In: Diekert V, Durand B (eds) STACS 2005,
22nd Annual Symposium on Theoretical Aspects of Computer Science, Springer,
Berlin, pp 69–82

Andelman N, Azar Y, Sorani M (2007) Truthful approximation mechanisms for
scheduling selfish related machines. Theor Comput Syst 40(4):423–436

Angel E, Bampis E, Pascual F (2005) Truthful algorithms for scheduling selfish tasks
on parallel machines. In: Deng X, Ye Y (eds) Internet and Network Economics,
First International Workshop, WINE 2005, Proceedings, Springer, Berlin

Angel E, Bampis E, Pascual F (2006) Truthful algorithms for scheduling selfish tasks
on parallel machines. Theor Comput Sci 369(1–3):157–168

Angel E, Bampis E, Pascual F, Tchetgnia AA (2009) On truthfulness and approxima-
tion for scheduling selfish tasks. J Scheduling 12(5):437–445

Angel E, Bampis E, Thibault N (2010) Randomized truthful algorithms for schedul-
ing selfish tasks on parallel machines. In: López-Ortiz A (ed) LATIN 2010: Theo-
retical Informatics, 9th Latin American Symposium, Proceedings, Springer, Berlin

Angel E, Bampis E, Thibault N (2012) Randomized truthful algorithms for schedul-
ing selfish tasks on parallel machines. Theor Comput Sci 414(1):1–8

Archer A (2004) Mechanisms for discrete optimization with rational agents. PhD
thesis, Cornell University

Mechanism Design for Machine Scheduling Problems 23

Archer A, Tardos É (2001) Truthful mechanisms for one-parameter agents. In: Pro-
ceedings of the 42nd IEEE Symposium on Foundations of Computer Science,
IEEE, FOCS ’01, pp 482–491

Ashlagi I, Dobzinski S, Lavi R (2009) An optimal lower bound for anonymous
scheduling mechanisms. In: Proceedings of the 10th ACM Conference on Elec-
tronic Commerce, ACM, EC ’09, pp 169–176

Ashlagi I, Dobzinski S, Lavi R (2012) Optimal lower bounds for anonymous schedul-
ing mechanisms. Math Oper Res 37(2):244–258

Auletta V, De Prisco R, Penna P, Persiano G (2004) Deterministic truthful approxi-
mation mechanisms for scheduling related machines. In: Diekert V, Habib M (eds)
STACS 2004, 21st Annual Symposium on Theoretical Aspects of Computer Sci-
ence, Proceedings, Springer, Berlin, pp 608–619

Auletta V, Christodoulou G, Penna P (2012) Mechanisms for scheduling with single-
bit private values. In: Serna M (ed) Algorithmic Game Theory, 5th International
Symposium, SAGT 2012, Proceedings, Springer, Berlin, pp 25–36

Auletta V, Christodoulou G, Penna P (2015) Mechanisms for scheduling with single-
bit private values. Theor Comput Syst 57(3):523–548

Azar Y, Hoefer M, Maor I, Reiffenhäuser R, Vöcking B (2015) Truthful mechanism
design via correlated tree rounding. In: Proceedings of the 16th ACM Conference
on Economics and Computation, ACM, EC ’15, pp 415–432

Azar Y, Hoefer M, Maor I, Reiffenhäuser R, Vöcking B (2017) Truthful mechanism
design via correlated tree rounding. Math Prog 163(1–2):445–469

Błażewicz J, Ecker KH, Pesch E, Schmidt G, Węglarz J (2007) Handbook on
Scheduling: from Theory to Applications. Springer, Berlin

Boysen N, Fliedner M (2010) Cross dock scheduling: classification, literature review
and research agenda. Omega 38(6):413–422

Boysen N, Fliedner M, Scholl A (2007) A classification of assembly line balancing
problems. Eur J Oper Res 183(2):674–693

Boysen N, Fliedner M, Scholl A (2009) Sequencing mixed-model assembly lines:
survey, classification and model critique. Eur J Oper Res 192(2):349–373

Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained
project scheduling: notation, classification, models, and methods. Eur J Oper Res
112(1):3–41

Chawla S, Hartline JD, Malec D, Sivan B (2013) Prior-independent mechanisms for
scheduling. In: Proceedings of the 45th Annual ACM Symposium on Theory of
Computing, ACM, STOC ’13, pp 51–60

Chen X, Du D, Zuluaga LF (2013) Copula-based randomized mechanisms for truth-
ful scheduling on two unrelated machines. In: Vöcking B (ed) Algorithmic Game
Theory, 6th International Symposium, SAGT 2013, Proceedings, Springer, Berlin,
pp 231–242

Chen X, Du D, Zuluaga LF (2015) Copula-based randomized mechanisms for truth-
ful scheduling on two unrelated machines. Theor Comput Syst 57(3):753–781

Christodoulou G, Koutsoupias E (2009) Mechanism design for scheduling. Bulletin
of the EATCS 97:40–59

Christodoulou G, Kovács A (2010) A deterministic truthful PTAS for scheduling
related machines. In: Proceedings of the 21st Annual ACM-SIAM Symposium on

24 Kress et al.

Discrete Algorithms, SIAM, SODA ’10, pp 1005–1016
Christodoulou G, Kovács A (2011) A global characterization of envy-free truth-

ful scheduling of two tasks. In: Chen N, Elkind E, Koutsoupias E (eds) Internet
and Network Economics, 7th International Workshop, WINE 2011, Proceedings,
Springer, Berlin, pp 84–96

Christodoulou G, Kovács A (2013) A deterministic truthful PTAS for scheduling
related machines. SIAM J Comput 42(4):1572–1595

Christodoulou G, Gourvès L, Pascual F (2007a) Scheduling selfish tasks: about the
performance of truthful algorithms. In: Lin G (ed) Computing and Combinatorics,
13th Annual International Conference, COCOON 2007, Proceedings, Springer,
Berlin, pp 187–197

Christodoulou G, Koutsoupias E, Kovács A (2007b) Mechanism design for fractional
scheduling on unrelated machines. In: Arge L, Cachin C, Jurdziński T, Tarlecki
A (eds) Automata, Languages and Programming, 34th International Colloquium,
ICALP 2007, Proceedings, Springer, Berlin, pp 40–52

Christodoulou G, Koutsoupias E, Vidali A (2007c) A lower bound for scheduling
mechanisms. In: Proceedings of the 18th Annual ACM-SIAM Aymposium on Dis-
crete Algorithms, ACM, SODA ’07, pp 1163–1170

Christodoulou G, Koutsoupias E, Vidali A (2008) A characterization of 2-player
mechanisms for scheduling. In: Halperin D, Mehlhorn K (eds) Algorithms - ESA
2008, 16th Annual European Symposium, Proceedings, Springer, Berlin, pp 297–
307

Christodoulou G, Koutsoupias E, Nanavati A (2009a) Coordination mechanisms.
Theor Comput Sci 410(36):3327–3336

Christodoulou G, Koutsoupias E, Vidali A (2009b) A lower bound for scheduling
mechanisms. Algorithmica 55(4):729–740

Christodoulou G, Koutsoupias E, Kovács A (2010) Mechanism design for fractional
scheduling on unrelated machines. ACM Trans Algor 6(2):38:1–38:18

Clarke EH (1971) Multipart pricing of public goods. Public Choice 11(1):17–33
Daskalakis C, Weinberg SM (2015) Bayesian truthful mechanisms for job scheduling

from bi-criterion approximation algorithms. In: Proceedings of the 26th Annual
ACM-SIAM Symposium on Discrete Algorithms, ACM, SODA ’15, pp 1934–
1952

De P, Mitra M (2017) Incentives and justice for sequencing problems. Econ Theory
64(2):239––264

Dhangwatnotai P, Dobzinski S, Dughmi S, Roughgarden T (2008) Truthful approx-
imation schemes for single-parameter agents. In: Proceedings of the 49th Annual
IEEE Symposium on Foundations of Computer Science, IEEE, FOCS ’08, pp 15–
24

Dhangwatnotai P, Dobzinski S, Dughmi S, Roughgarden T (2011) Truthful approxi-
mation schemes for single-parameter agents. SIAM J Comput 40(3):915–933

Dobzinski S, Dughmi S (2013) On the power of randomization in algorithmic mech-
anism design. SIAM J Comput 42(6):2287–2304

Dobzinski S, Sundararajan M (2008) On characterizations of truthful mechanisms for
combinatorial auctions and scheduling. In: Proceedings of the 9th ACM Confer-
ence on Electronic Commerce, ACM, EC ’08, pp 38–47

Mechanism Design for Machine Scheduling Problems 25

Duives J, Heydenreich B, Mishra D, Müller R, Uetz M (2015) On optimal mechanism
design for a sequencing problem. J Scheduling 18(1):45–59

Epstein L, van Stee R (2008) Maximizing the minimum load for selfish agents. In:
Laber ES, Bornstein C, Nogueira LT, Faria L (eds) LATIN 2008: Theoretical In-
formatics, 8th Latin American Symposium, Proceedings, Springer, Berlin, pp 264–
275

Epstein L, van Stee R (2010) Maximizing the minimum load for selfish agents. Theor
Comput Sci 411(1):44–57

Epstein L, Levin A, van Stee R (2013) A unified approach to truthful scheduling on
related machines. In: Proceedings of the 24th Annual ACM-SIAM Symposium on
Discrete Algorithms, ACM, SODA ’13, pp 1243–1252

Epstein L, Levin A, van Stee R (2015) A unified approach to truthful scheduling on
related machines. Math Oper Res 41(1):332–351

Ferrante A, Parlato G, Sorrentino F, Ventre C (2009) Fast payment schemes for truth-
ful mechanisms with verification. Theor Comput Sci 410(8):886–899

Fudenberg D, Tirole J (1991) Game Theory. MIT Press, Cambridge
Giannakopoulos Y, Kyropoulou M (2015) The VCG mechanism for Bayesian

scheduling. In: Markakis E, Schäfer G (eds) Web and Internet Economics, 11th
International Conference, WINE 2015, Proceedings, Springer, Berlin, pp 343–356

Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann Discrete
Math 5:287–326

Groves T (1973) Incentives in teams. Econometrica 41(4):617–631
Hain R, Mitra M (2004) Simple sequencing problems with interdependent costs.

Game Econ Behav 48(2):271–291
Hamers H, Klijn F, Suijs J (1999) On the balancedness of multiple machine sequenc-

ing games. Eur J Oper Res 119(3):678–691
Harks T, Klimm M, Möhring RH (2011) Characterizing the existence of potential

functions in weighted congestion games. Theor Comput Syst 49(1):46–70
Hartline JD, Karlin AR (2007) Profit maximization in mechanism design. In: Nisan

N, Roughgarden T, Tardos E, Vazirani VV (eds) Algorithmic Game Theory, Cam-
bridge University Press, Cambridge, pp 331–361

Hashimoto K, Saitoh H (2012) Strategy-proof and anonymous rule in queueing prob-
lems: a relationship between equity and efficiency. Soc Choice Welfare 38(3):473–
480

Heydenreich B, Müller R, Uetz M (2007) Games and mechanism design in machine
scheduling - an introduction. Prod Oper Manag 16(4):437–454

Heydenreich B, Mishra D, Müller R, Uetz M (2008) Optimal mechanisms for single
machine scheduling. In: Papadimitriou C, Zhang S (eds) Internet and Network Eco-
nomics, 4th International Workshop, WINE 2008, Proceedings, Springer, Berlin,
pp 414–425

Hoeksma R, Uetz M (2013) Two dimensional optimal mechanism design for a se-
quencing problem. In: Goemans M, Correa J (eds) Integer Programming and Com-
binatorial Optimization, 16th International Conference, IPCO 2013, Proceedings,
Springer, Berlin, pp 242–253

26 Kress et al.

Immorlica N, Li EL, Mirrokni VS, Schulz AS (2009) Coordination mechanisms for
selfish scheduling. Theor Comput Sci 410(17):1589–1598

Kayı Ç, Ramaekers E (2010) Characterizations of Pareto-efficient, fair, and strategy-
proof allocation rules in queueing problems. Game Econ Behav 68(1):220–232

Kayı Ç, Ramaekers E (2015) Corrigendum to “Characterizations of Pareto-efficient,
fair, and strategy-proof allocation rules in queueing problems” [Games Econ. Be-
hav. 68(1) (2010) 220–232]. Game Econ Behav DOI 10.1016/j.geb.2015.01.006

Koutsoupias E (2011) Scheduling without payments. In: Persiano G (ed) Algorithmic
Game Theory, 4th International Symposium, SAGT 2011, Proceedings, Springer,
Berlin, pp 143–153

Koutsoupias E (2014) Scheduling without payments. Theor Comput Syst 54(3):375–
387

Koutsoupias E, Vidali A (2007) A lower bound of 1+ ϕ for truthful scheduling mech-
anisms. In: Kučera L, Kučera A (eds) Mathematical Foundations of Computer Sci-
ence 2007, 32nd International Symposium, MFCS 2007, Proceedings, Springer,
Berlin, pp 454–464

Koutsoupias E, Vidali A (2013) A lower bound of 1+ ϕ for truthful scheduling mech-
anisms. Algorithmica 66(1):211–223

Kovács A (2005) Fast monotone 3-approximation algorithm for scheduling related
machines. In: Brodal GS, Leonardi S (eds) Algorithms - ESA 2005, 13th Annual
European Symposium, Proceedings, Springer, Berlin, pp 616–627

Kovács A (2006) Tighter approximation bounds for LPT scheduling in two special
cases. In: Calamoneri T, Finocchi I, Italiano GF (eds) Algorithms and Complexity,
6th Italian Conference, CIAC 2006, Proceedings, Springer, Berlin, pp 187–198

Kovács A (2009) Tighter approximation bounds for LPT scheduling in two special
cases. J Discrete Algorithms 7(3):327–340

Kovalyov MY, Pesch E (2014) A game mechanism for single machine sequencing
with zero risk. Omega 44:104–110

Kovalyov MY, Kress D, Meiswinkel S, Pesch E (2016) A parallel machine sched-
ule updating game with compensations and zero risk. Working Paper, National
Academy of Sciences of Belarus and University of Siegen

Kress D, Meiswinkel S, Pesch E (2017) Incentive compatible mechanisms for
scheduling two-parameter job agents on parallel identical machines to minimize
the weighted number of late jobs. Discrete Appl Math, in press

Krishna V (2010) Auction Theory, 2nd edn. Academic Press, Amsterdam
Lavi R (2007) Computationally efficient approximation mechanisms. In: Nisan N,

Roughgarden T, Tardos E, Vazirani VV (eds) Algorithmic Game Theory, Cam-
bridge University Press, Cambridge, pp 301–329

Lavi R, Swamy C (2007) Truthful mechanism design for multidimensional schedul-
ing via cycle monotonicity. In: Proceedings of the 8th ACM conference on Elec-
tronic Commerce, ACM, EC ’07, pp 252–261

Lavi R, Swamy C (2009) Truthful mechanism design for multidimensional schedul-
ing via cycle monotonicity. Game Econ Behav 67(1):99–124

Leung JYT (ed) (2004) Handbook of Scheduling: Algorithms, Models, and Perfor-
mance Analysis. CRC Press, Boca Raton

Mechanism Design for Machine Scheduling Problems 27

Leung JYT, Li CL (2008) Scheduling with processing set restrictions: A survey. In-
ternational Journal of Production Economics 116(2):251–262

Lu P, Yu C (2008a) An improved randomized truthful mechanism for scheduling un-
related machines. In: Proceedings of the 25th International Symposium on Theo-
retical Aspects of Computer Science, IBFI Schloss Dagstuhl, STACS ’08, pp 527–
538

Lu P, Yu C (2008b) Randomized truthful mechanisms for scheduling unrelated ma-
chines. In: Papadimitriou C, Zhang S (eds) Internet and Network Economics, 4th
International Workshop, WINE 2008, Proceedings, Springer, pp 402–413

Mitra M (2001) Mechanism design in queueing problems. Econ Theory 17(2):277–
305

Mitra M (2002) Achieving the first best in sequencing problems. Rev Econ Des
7(1):75–91

Mitra M (2005) Incomplete information and multiple machine queueing problems.
Eur J Oper Res 165(1):251–266

Mu’alem A, Schapira M (2007) Setting lower bounds on truthfulness: Extended ab-
stract. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms, ACM, SODA ’07, pp 1143–1152

Mu’alem A, Schapira M (2017) Setting lower bounds on truthfulness. Working Paper
Nisan N (2007) Introduction to mechanism design (for computer scientists). In: Nisan

N, Roughgarden T, Tardos E, Vazirani VV (eds) Algorithmic Game Theory, Cam-
bridge University Press, Cambridge, pp 209–241

Nisan N, Ronen A (1999) Algorithmic mechanism design (extended abstract). In:
Proceedings of the 31st Annual ACM Symposium on Theory of Computing, ACM,
STOC ’99, pp 129–140

Nisan N, Ronen A (2001) Algorithmic mechanism design. Game Econ Behav 35(1–
2):166–196

Nisan N, Roughgarden T, Tardos E, Vazirani VV (2007) Algorithmic Game Theory.
Cambridge University Press, Cambridge

Potts CN, Kovalyov MY (2000) Scheduling with batching: a review. Eur J Oper Res
120(2):228–249

Procaccia AD, Tennenholtz M (2009) Approximate mechanism design without
money. In: Proceedings of the 10th ACM Conference on Electronic Commerce,
ACM, EC ’09, pp 177–186

Roberts K (1979) The characterization of implementable choice rules. In: Laffont JJ
(ed) Aggregation and Revelation of Preferences, North-Holland, Amsterdam, pp
321–348

Rosenthal RW (1973) A class of games possessing pure-strategy Nash equilibria. Int
J Game Theory 2(1):65–67

Roughgarden T, Tardos E (2007) Introduction to the inefficiency of equilibria. In:
Nisan N, Roughgarden T, Tardos E, Vazirani VV (eds) Algorithmic Game Theory,
Cambridge University Press, Cambridge, pp 443–459

Schummer J, Vohra RV (2007) Mechanism design without money. In: Nisan N,
Roughgarden T, Tardos E, Vazirani VV (eds) Algorithmic Game Theory, Cam-
bridge University Press, Cambridge, pp 243–265

28 Kress et al.

Suijs J (1996) On incentive compatibility and budget balancedness in public decision
making. Econ Des 2(1):193–209

Vickrey W (1961) Counterspeculation, auctions, and competitive sealed tenders. J
Finance 16(1):8–37

Vöcking B (2007) Selfish load balancing. In: Nisan N, Roughgarden T, Tardos E,
Vazirani VV (eds) Algorithmic Game Theory, Cambridge University Press, Cam-
bridge, pp 517–542

	Introduction and Scope of Review
	Review of Problem Categories and Features
	Classification Scheme
	Literature Overview
	Research Challenges and Conclusion

