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Abstract

We consider the problem of scheduling two identical rail mounted gantry cranes (twin cranes) working

within a single storage area (block) at a seaport. The cranes, referred to as seaside crane and landside

crane, cannot pass each other. Our focus is on peak times, where the minimization of dwell times of

vessels at the berth is typically the major objective of port authorities. We allow the seaside crane to

drop inbound containers at intermediate positions where the landside crane takes over and delivers the

containers to their target slots. Earlier studies have shown that allowing the cranes to cooperate in this

manner is beneficial, at least when there are no containers that are already stored in the block at the

beginning of the planning horizon and that have to be delivered to the landside handover point by the

landside crane within given time windows. In this paper, we analyze if the positive effect of letting the

cranes cooperate persists when these latter jobs are present. This might have a critical impact, because

these tasks are performed close to the landside whereas supporting the seaside crane is performed rather

close to the seaside. We present complexity results and some general problem insights. Furthermore,

we introduce lower bounds and develop heuristic procedures that apply these bounds. The performance

of the algorithms is evaluated in computational tests.
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1. Introduction

The use of standardized loading units that can be handled by different modes of transport has

become one of the most time- and cost-effective ways of shipping cargo. Especially containers play an

important role in modern freight business. The equipment required for handling containers is available

almost all over the world. The number of containers handled is especially large at seaports. Large

ports handle several ten thousand twenty-foot equivalent units (TEU) per day on average, so that

sophisticated logistic processes at those seaports are of great importance for guaranteeing time- and

cost-efficient transport.
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The typical movement of an inbound container, i.e. a container arriving at the port with a ship,

within a seaport can be described as follows. The container is unloaded by a quay crane and it is

then passed to a reach stacker, a straddle carrier, an automated guided vehicle, or some similar device.

It is then taken to one of dozens of storage areas, called blocks, for intermediate storage. A block is

usually equipped with gantry cranes, which transport the container from a handover point located on

the seaside to its designated storage position. When the container is ready to be loaded onto a train or

to be picked up by a truck, one of the block’s gantry cranes transports the container to a handover point,

which is usually located on the other side of the block, i.e. the landside. Then, again, the container is

handled by some reach stacker or the like, and it is finally loaded onto a train or a truck. For the sake of

completeness, it shall be mentioned that some containers that arrive by ship will be loaded onto another

ship, which implies that these containers leave the block on the seaside (transit containers). Outbound

containers, i.e. containers that arrive by train or truck and have to be loaded onto a ship, process the

same steps in reverse order.

1.1. Problem Setting and Contribution

Our main focus in this paper lies on scheduling the gantry cranes working within a single block. A

common configuration of a block features two identical rail mounted gantry cranes as depicted in Figure

1. This layout is usually referred to as a twin system (see, for example, [1]). Based on this layout,

seaside landside 

seaside
crane 

landside
crane 

container storage 

Figure 1: Schematic layout of a twin system

we will refer to the cranes as the seaside crane and the landside crane, respectively. For a detailed

description of the situation at the port of Hamburg, we refer to Speer et al. [2].

Each crane can move a container in three dimensions. First, the spreader allows for lifting and

dropping the container. Usually, during lifting and dropping, no other movements of the container are

possible. Second, each crane can move along tracks, allowing for traveling along the long (horizontal)

side of the block. Whenever a crane moves in this direction, the spreader can concurrently move along

the short (vertical) side of the block. As these two kinds of movements can be performed simultaneously,

and as the block is very long but not very wide, spreader movements along the short side are almost

never time critical. Therefore, vertical spreader moves will be neglected in our considerations, as it is

often done in other approaches for container terminals (e.g. [3, 4]).

The scheduling of twin cranes is usually embedded into higher scheduling tasks. Therefore, we

assume that a designated storage position within the block is given for each container, so that capacity
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constraints or stacking constraints do not have to be considered. Furthermore, reshuffling of containers

is not in the scope of our analysis, especially because the corresponding operations are commonly

performed in off-peak times, while we focus on peak times.

The main challenge of a twin-crane configuration is that the cranes cannot pass each other as they

share the same tracks, but working areas of both cranes must overlap because containers enter the block

on one side and may leave the block on the other side. Thus, when scheduling the container moves to

be performed by the cranes, interference constraints have to be taken into account.

The workload of the cranes varies significantly over time. It usually reaches its peak when a

vessel is to be unloaded at the berth. Accordingly, our considerations will focus on this critical time

period. Driven by cost requirements, the minimization of dwell times of vessels at the berth is the

major objective of port authorities. Therefore, containers that have to be unloaded from a ship are

assigned highest priority and the seaside crane stores containers in the block nonstop. It is a common

procedure to let the landside crane perform other duties in the meantime, as, for example, delivering

inbound containers to the landside handover point. However, it might be beneficial to let the cranes

cooperate, i.e. let the landside crane support the seaside crane in storing inbound containers by allowing

the seaside crane to drop inbound containers at intermediate positions, where the landside crane takes

over and delivers the containers to their target slots. Briskorn et al. [5] raise the question whether this

can considerably decrease the time required for storing a set of inbound containers. The authors find:

“This [i.e. letting the cranes cooperate] is something for terminal operators to consider, seeing that it is

not an uncommon policy in practice to assign only the seaside crane exclusively to stacking containers,

while the landside crane is supposed to exclusively handle container transfers to the hinterland. Our

study suggests that, at least if no hinterland traffic is currently to be handled, a lot of time can be saved

if the landside crane helps out at the seaside during peak times.” Even though their study shows that

the commonly used procedure in practice bears potential for optimization, they study a scenario which

might not be applicable in many cases. The landside crane might still have to deliver some containers

that are already stored in the block at the beginning of the planning horizon to the landside handover

point, or it may have to store containers that are waiting at the landside handover point in the block.

Usually, these container moves should be kept at a minimum, e.g. by assigning corresponding containers

to other blocks with less workload. However, even if the landside crane has to perform just a few of

these tasks, this might have a critical impact, as these tasks are performed close to the landside, whereas

supporting the seaside crane is performed rather close to the seaside, which induces long travel times.

In this paper, we therefore want to answer the question of whether it is possible to save significant time

during storing inbound containers if the seaside crane is supported by the landside crane, which in turn

has to perform some tasks on the landside.

1.2. Related Literature

A general overview on operations research challenges arising at container terminals is given by

Steenken et al. [6] and Stahlbock and Voß [7]. When it comes to seaport operations, a major focus lies

on berth allocation problems and the scheduling of quay cranes. For these problems, literature reviews

are given by Bierwirth and Meisel [8, 9]. However, there are also numerous approaches for optimizing
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processes at the storage blocks. A review has recently been given by Carlo et al. [10]. With respect to

crane scheduling within the storage area, some very recent approaches can be found in the literature.

They are not yet included in [10], so that we outline these papers in this section.

A simple approach for coping with crane interferences is to assign fixed working areas to each crane

(see, e.g., [11]). However, if we consider situations with containers entering the storage area on the

short side of the block and leaving the block on the other short side, this approach is not applicable

because working areas must overlap. In this case, interferences must be prohibited during the scheduling

procedure. One of the first approaches to this problem is given by Ng [12], who presents an integer

program that includes non-crossing constraints. Dorndorf and Schneider [13] consider a three crane

setting, where twin cranes are complemented by a third crane. The latter crane is larger than the twin

cranes and can therefore pass them. However, the twin cranes can only pass the larger crane if it is not

currently lifting or dropping a container. The authors present a branch and bound method for solving

this problem. If inbound containers are exclusively served by the seaside crane, the landside crane may

perform other tasks. Ehleiter and Jaehn [3], for example, assume that the landside crane repositions

containers within the block, so that they receive more advantageous positions for future operations.

However, the landside crane must always give way to the seaside crane.

All of the aforementioned approaches have in common that the cranes do not cooperate in the sense

that preemption of inbound container processing is allowed with the landside crane finishing processing

the container. Cooperating cranes are analyzed by Briskorn et al. [5], whose setting is very similar to

ours. However, there are no containers that are stored in the block at the beginning of the planning

horizon and that have to be moved to the landside handover point (landside jobs). The problem is

analyzed for two scenarios, one in which the sequence of inbound containers is given and one in which

this sequence is part of the optimization. The authors refer to the former problem as the preemptive

crane scheduling problem with a given unloading sequence (PCSP-S) and, amongst other heuristics,

propose a heuristic algorithm based on the ideas of a bucket brigade. As mentioned above, they conclude

that handover operations can significantly reduce the time required for storing all containers in both

scenarios.

Note that PCSP-S bears some similarities to scheduling twin robots on a line. These robots have

to adhere non-crossing constraints and may allow for handover operations (see, for example, [14, 15]).

Finally, note that a test instance generator for crane scheduling tasks at seaports is available online at

www.instances.de/dfg [16].

1.3. Overview of the Paper

As motivated above, this paper aims to extend PCSP-S to include landside jobs. We refer to

the resulting problem as the preemptive crane scheduling problem with a given unloading sequence and

additional landside jobs (PCSP-SL).

The paper is organized as follows. In Section 2, we will present PCSP-SL in detail and define the

notation used throughout the paper. Next, in Section 3, we will analyze the computational complexity

of PCSP-SL and present some general problem insights. Section 4 is devoted to solution procedures,
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including the introduction of lower bounds, for PCSP-SL. Computational results are presented in Section

5. The paper closes with a conclusion in Section 6.

2. Detailed Problem Description and Notation

Consider a single storage block with two identical rail mounted gantry cranes c, the seaside crane

(c = w) and the landside crane (c = l), that cannot pass each other. Assume that the slots (storage

positions) s in the storage block are arranged along a single straight line and are numbered from 0 to

S + 1 with slot 0 being the input/output point (I/O) on the seaside and slot S + 1 being the I/O point

on the landside (see Figure 2). As mentioned in Section 1, assuming the slots to be arranged in this

manner is not restrictive for real-world yard settings, as the spreader’s vertical movement is typically

fast enough to complete its positioning during the crane’s horizontal movement. The storage capacity

of the slots is assumed to be sufficiently large throughout the planning horizon.

s = 0 s = 1 s = 2 . . . s = S
s =
S + 1

crane c = w
init. pos. σw

crane c = l
init. pos. σl

seaside jobs (ordered):
I = {w1, . . . , wn}

target slot (wi ∈ I):
si ∈ {1, . . . , S + 1}

landside jobs:
J = {l1, . . . , lm}

source slot (lj ∈ J):
aj ∈ {1, . . . , S}
earl. finish time (lj ∈ J):
rj ∈ N
deadline (lj ∈ J):
dj ∈ N

Seaside Landside

container flow

Figure 2: Representation of the storage area and notation used throughout the paper

The time horizon under consideration is divided into a finite number of intervals (time slots) [t−1, t]

of equal length, each starting at time instant t − 1 and ending at time instant t, t = 1, 2, . . . We will

refer to the length of a time interval as a time unit. Starting from a given slot of the storage block,

each crane can move to an adjacent slot within one time unit. The number of time units required to

lift (also referred to as pick up in the remainder of this paper) or drop a container while not moving

between slots is denoted by p ∈ N.

We restrict ourselves to considering an unidirectional flow of inbound containers from seaside to

landside through the storage block (Figure 2), with seaside jobs I = {w1, . . . , wn} originating at the

seaside (slot 0) and landside jobs J = {l1, . . . , lm} having to be moved to the landside (slot S + 1).

Each seaside job wi ∈ I has an associated target slot si ∈ {1, . . . , S + 1}. Similarly, landside jobs lj ∈ J

originate from a given source slot aj ∈ {1, . . . , S}. We assume that the seaside jobs are ordered with

respect to a given pick-up sequence, i.e. job wi ∈ I needs to be picked up and moved to a slot s > 0 by

the seaside crane before job wj ∈ I \{wi}, j > i, can be picked up. Additionally, each landside job lj ∈ J

has an associated earliest time slot rj ∈ N (earliest finish time) and a latest time slot dj ∈ N (deadline)

at the end of which it may be (must be) delivered to the I/O point S+1. The earliest finish time rj and

the deadline dj define the time window [rj , dj ] of landside job lj ∈ J . Hence, in our problem setting, a

crane may start processing a landside job before its earliest finish time at the cost of potentially having

to wait at the I/O point, e.g. because the receiving truck has not yet arrived. Preemption of jobs is

allowed, meaning that a single container can be lifted and dropped by both cranes before it reaches
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its target slot. We assume that each job may be processed by each crane at most once and refer to a

preempted job as a handover container. Landside jobs may only be processed by the landside crane.

A crane schedule is defined by the positions xc,t of both cranes c ∈ {w, l} at all time instants t

of the time horizon as well as the cranes’ operations in the respective time slots. Concerning these

operations, we say that crane c moves left (right) in time slot t, if xc,t = xc,t−1 − 1 (xc,t = xc,t−1 + 1).

The initial locations of the twin cranes are σw = xw,0 ∈ {0, . . . , S} and σl = xl,0 ∈ {1, . . . , S + 1} with

σw < σl. A crane is waiting (also denoted as operation ◦) if it is neither moving left (operation ←) or

right (operation →) nor lifting (operation ↑) or dropping (operation ↓) a container. A crane that has

lifted (dropped) a container in time slots t−p+1 to t and that drops (lifts) this very (the next) container

in time slots t′ + 1 to t′ + p is referred to as loaded (unloaded) at time instants t, . . . , t′. Additionally,

a crane is referred to as unloaded from time instant 0 until it starts lifting the first container. In all

other time instants, the crane is neither considered being loaded nor unloaded. A crane that is loaded

(unloaded) at time instants t − 1 and t, t > 0, is said to be loaded (unloaded) in time slot t. Finally,

for a given schedule, we denote by yi,t, i ∈ {1, . . . , n} the position (slot) of seaside job wi in the storage

area at time instant t. Analogously, we define zj,t, j ∈ {1, . . . ,m}, as the position of landside job lj at

time instant t.

The objective is to find a feasible crane schedule that minimizes the makespan Cmax of seaside

container processing (seaside makespan), being defined as the earliest time instant at which all seaside

containers have been dropped at their target slots. Landside jobs with deadlines less or equal to

Cmax, i.e. JCmax := {lj ∈ J |dj ≤ Cmax}, must be dropped off on time. Additionally, as practical

applications do not allow for being mindless of landside jobs being processed after Cmax, i.e. infeasibility

should not occur right after Cmax, a solution is only considered being feasible if a next landside job lj ,

j ∈ arg minlj∈J\JCmax dj , can still be dropped off on time.

Table 1 accompanies Figure 2 in summarizing the notation used in this paper.

Table 1: Additional notation used throughout the paper

t = 1, 2, . . . index of time interval (slot) [t− 1, t]

p ∈ N time units required to lift or drop a container. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xc,t ∈
{
{0, ..., S} if c = w

{1, ..., S + 1} if c = l
position of crane c at time instant t

yi,t ∈ {0, . . . , S + 1} position of job wi ∈ I at time instant t

zj,t ∈ {1, . . . , S + 1} position of job lj ∈ J at time instant t

3. Problem Insights

We will start our analysis of the problem at hand by analyzing its computational complexity in

Section 3.1. Afterwards, in Section 3.2, we will present some general observations based on example

instances of PCSP-S with counterintuitive optimal solutions.

3.1. Computational Complexity

If no landside jobs have to be processed by the landside crane, i.e. if J = ∅, PCSP-SL corresponds

to the problem PCSP-S as described by Briskorn et al. [5]. As the authors prove PCSP-S to be NP-hard
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in the strong sense, PCSP-SL is NP-hard in the strong sense as well.

Contrary to PCSP-S, where it is easy to find a feasible solution, e.g. by not using handovers at all,

this is not the case for PCSP-SL.

Proposition 1 The problem of deciding whether there exists a feasible solution to an instance of PCSP-

SL is NP-hard in the strong sense.

Proof We will reduce 3-PARTITION, which is defined as follows, to PCSP-SL. Given 3m′+ 1 integers

u1, . . . , u3m′ , B with
∑3m′

i=1 ui = mB and B
4 < ui <

B
2 ∀i = 1, . . . , 3m′. Is there a partition of set

{1, . . . , 3m′} into m′ subsets U1, . . . , U
′
m such that

∑
i∈Uj

ui = B ∀j = 1, . . . ,m′? Note that for every

YES-instance of 3-PARTITION, we have |Ui| = 3 ∀i = 1, . . . ,m′. Therefore, 3-PARTITION is still

NP-hard if all ui are assumed to be even (if they are not even, they can simply be multiplied by 2).

Given an instance of 3-PARTITION with all ui being even, we construct an instance of PCSP-SL,

which is described as follows. The number of slots S corresponds to parameter B and each crane is

initially located in its respective handover area. The time p required to lift or drop a container is chosen

arbitrarily. We artificially create a planning horizon of m′(B + 8p + 2) − 2p − 2 + (2p + 1) time units

by assigning n =
⌈
m′(B+8p+2)−2p−2

2p+2

⌉
+ 1 jobs to the seaside crane, each of which is designated for the

first slot. Additionally, there are m = 4m′ − 1 landside jobs, which can be split into two classes. Each

of the first 3m′ jobs j ∈ {1, . . . , 3m′} corresponds to an integer of the 3-PARTITION instance and is

initially located at the source slot aj = S + 1 − uj

2 . Its earliest finish time is zero, and it is due at

time instant m′(B + 8p+ 2)− 2p− 2. The remaining landside jobs are chosen such that their delivery

time is fixed, which is achieved by defining identical earliest finish times and due dates. For each job

j ∈ {3m′ + 1, . . . , 4m′ − 1}, we set rj = dj = (j − 3m′)(B + 8p + 2) with source slot S. The resulting

instance is summarized as follows.

S = B p ∈ N n =
⌈
m′(B+8p+2)−2p−2

2p+2

⌉
+ 1 m = 4m′ − 1

σw = 0 σl = S + 1 si = 1 ∀i = 1, . . . , n

aj = S + 1− uj

2 rj = 0 dj = m′(B + 8p+ 2)− 2p− 2 if j = 1, . . . , 3m′

aj = S rj = dj = (j − 3m′)(B + 8p+ 2) if j = 3m′ + 1, . . . , 4m′ − 1

In this instance, there are no handover containers, because each seaside job’s target slot is the first

slot. As there is no landside job located in the first slot, the schedule of the seaside crane can easily be

determined by successively moving all containers to the first slot. Each corresponding move costs 2p+ 2

time units except for the last job, which only takes 2p + 1 time units. Therefore, the makespan is at

least (m′(B + 8p+ 2)− 2p− 2) + (2p+ 1). This implies that all landside jobs have a deadline less than

Cmax, so that all of them must be processed for obtaining a feasible solution.

Let us first consider the landside jobs j = 3m′+ 1, . . . , 4m′− 1, which can be seen as ‘blockers’. As

earliest finish time and deadline coincide, their drop-off time in any feasible schedule is given. As the

landside crane only processes landside jobs and starts in slot S + 1, each processing time of a job can

be divided into the time for moving to the source slot (always starting from slot S + 1), the delivery

time (from the source slot to S + 1) and pick-up and drop-off. Thus, each blocker job takes 2 + 2p

time units for being processed. Therefore, between any two blockers (or between the start and the first
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blocker or between the last blocker and the final deadline of all landside jobs), time periods of length

B+ 6p emerge. These m′ time periods must be used for processing landside jobs j = 1, . . . 3m′. In each

of these periods, exactly three jobs must be processed. Assume it were four or more jobs. Then pick-up

and drop-off would amount to 8p, and because uj >
B
4 for all j = 1, . . . , 3m′, travel time would be

larger than B, contradicting the length of the period. Now, assume it were less than three jobs. As we

have exactly m′ time periods, we would not be able to process all landside jobs. Therefore, each period

processes exactly three jobs. If we reduce the length B + 6p of the periods by the mandatory time for

pick-up and drop-off, we get periods of length B. Thus, there exists a feasible solution, if and only if

the corresponding 3-PARTITION instance is a YES-instance. �

From a practical point of view it has to be noted that, contrary to the theoretical complexity of the

problem, finding a feasible solution is usually not very hard. This is rooted in the above mentioned fact

that landside jobs appear only sporadically in the planning horizon and that the focus is on the seaside

containers.

3.2. General Observations

Recall that we allow each job to be processed at most once by each crane. This assumption is

motivated from real world requirements of terminal operators. Even though makespan minimization has

highest priority, energy consumption for lifting containers plays an important role. Terminal operators

incorporate this aspect by allowing each crane to process each container at most once. From a theoretical

point of view, however, one may wonder whether this assumption is actually restrictive. The following

Example 1 shows that indeed, we can construct instances of PCSP-S that require a seaside container to

be processed more than once by the landside crane in every optimal schedule if it is allowed to do so.

In their analysis of PCSP-S, Briskorn et al. [5] do not explicitly address this case, while in their MIP

formulation it becomes obvious that they restrict both cranes to handle each container at most once.

Example 1 Let p = 1, σw = 0, σl = 1, S = 8, n = 6, s1 = 8, s3 = 4, s2 = s4 = s5 = s6 = 1, and

m = 0. First, consider the case of allowing each crane to process each container at most once. The

optimal makespan is 25, for example with the seaside crane dropping each container in slot 1 and the

landside crane processing w1 before w3 without needing to wait in any time slot (see Table 2, where

the landside crane’s position is indicated by l̂). While in the corresponding optimal schedule the seaside

crane is finished with dropping containers in slot 1 at time instant 23, the earliest possible time instant

for the landside crane to finish processing w1 and w3 is 25. If the landside crane were to process w3

before w1, the makespan would be at least 29; if the seaside crane were to drop w1 or w3 in slot 2 or

even further to the right to help the landside crane, it would be processing containers for at least 25

time units. Now, drop the assumption of allowing each container to be processed at most once by each

crane. Then we can determine a schedule with an optimal makespan of 23 by making the landside crane

process w1 twice (see Table 2, where the landside crane’s position is indicated by l). 2

We note that there exist examples for PCSP-SL, in which the landside crane even processes a seaside

container arbitrarily often in every optimal solution (not shown here).
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Table 2: Optimal schedules with w1 being processed once (l̂) or twice (l)

crane pos. (w and l̂) at inst. t crane pos. (w and l) at inst. t crane oper. in slot t

t 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 crane w crane l̂ crane l

0 w l̂ - - - - - - - - w l - - - - - - - - ◦ ◦ ◦
1 w l̂ - - - - - - - - w l - - - - - - - - ↑ w1 ◦ ◦
2 - w l̂ - - - - - - - - w l - - - - - - - → → →
3 - w l̂ - - - - - - - - w l - - - - - - - ↓ w1 ◦ ◦
4 w l̂ - - - - - - - - w l - - - - - - - - ← ← ←
5 w l̂ - - - - - - - - w l - - - - - - - - ↑ w2 ↑ w1 ↑ w1

6 - w l̂ - - - - - - - - w l - - - - - - - → → →
7 - w - l̂ - - - - - - - w - l - - - - - - ↓ w2 → →
8 w - - - l̂ - - - - - w - - - l - - - - - ← → →
9 w - - - - l̂ - - - - w - - - l - - - - - ↑ w3 → ↓ w1

10 - w - - - - l̂ - - - - w - l - - - - - - → → ←
11 - w - - - - - l̂ - - - w l - - - - - - - ↓ w3 → ←
12 w - - - - - - - l̂ - w l - - - - - - - - ← → ←
13 w - - - - - - - l̂ - w l - - - - - - - - ↑ w4 ↓ w1 ↑ w3

14 - w - - - - - l̂ - - - w l - - - - - - - → ← →
15 - w - - - - l̂ - - - - w - l - - - - - - ↓ w4 ← →
16 w - - - - l̂ - - - - w - - - l - - - - - ← ← →
17 w - - - l̂ - - - - - w - - - l - - - - - ↑ w5 ← ↓ w3

18 - w - l̂ - - - - - - - w - - l - - - - - → ← ↑ w1

19 - w l̂ - - - - - - - - w - - - l - - - - ↓ w5 ← →
20 w l̂ - - - - - - - - w - - - - - l - - - ← ← →
21 w l̂ - - - - - - - - w - - - - - - l - - ↑ w6 ↑ w3 →
22 - w l̂ - - - - - - - - w - - - - - - l - → → →
23 - w - l̂ - - - - - - - w - - - - - - l - ↓ w6 → ↓ w1
24 - w - - l̂ - - - - - (◦) →
25 - w - - l̂ - - - - - (◦) ↓ w3

Next, one may wonder if there exist instances of PCSP-S with the landside crane moving left while

being loaded with a seaside container in every optimal solution. When presenting a MIP for the variant

of problem PCSP-S in which the sequence of containers to be handled by the seaside crane is not given

but part of the decision, Briskorn et al. [5] state that “it makes no sense for [the landside crane] to

carry a container past its destination slot”. However, as they later apply this model with an additional

constraint on the sequence for solving PCSP-S, they might not have solved their instances to optimality

as the following Example 2 shows.

Example 2 Let p = 6, σw = 0, σl = 33, S = 32, n = 6, s1 = 28, s2 = s3 = 6, s4 = s5 = s6 = 1, m = 0.

Consider a feasible schedule with makespan 97 as presented in Table 3. Note that the landside crane

moves left while being loaded in time slot 51. We will now show that this schedule is the only optimal

schedule.

Table 3: Optimal schedule with landside crane moving left while being loaded

crane pos. at inst. t crane oper. in slot t

t 0 1 2 3 4 5 6 7 8 . . . 28 . . . 33 crane w crane l

00 w - - - - - - - - - - - l ◦ ◦
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. (↑ w1, →) (←)

09 - - - w - - - - - l - - - → ←
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15 - - - w - - - - - l - - - ↓ w1 ←
.
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18 w - - - - - - - - l - - - ← ←
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25 - w - - - - - - l - - - - → ←
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. (↓ w2) (←)

31 - w l - - - - - - - - - - ↓ w2 ←

32 w l - - - - - - - - - - - ← ←
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. (↑ w3) (↑ w2)

39 - w l - - - - - - - - - - → →

40 - - w l - - - - - - - - - → →

41 - - - w l - - - - - - - - → →

42 - - - - w l - - - - - - - → →

43 - - - - - w l - - - - - - → →

44 - - - - - - w l - - - - - → →
.
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. (↓ w3) (◦)

50 - - - - - - w l - - - - - ↓ w3 ◦

51 - - - - - w l - - - - - - ← ←
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. (←, ↑ w4) (↓ w2)

57 w - - - - - l - - - - - - ↑ w4 ↓ w2

58 w - - - - l - - - - - - - ↑ w4 ←

59 w - - - l - - - - - - - - ↑ w4 ←

60 w - - l - - - - - - - - - ↑ w4 ←
.
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. (↑ w4, →, ↓ w4) (↑ w1)

66 - w - l - - - - - - - - - ↓ w4 ↑ w1
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. (↓ w4, ←, ↑ w5, →, ↓ w5, ←, ↑ w6) (→)

91 - w - - - - - - - - l - - → →
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. (↓ w6) (↓ w1)

97 - w - - - - - - - - l - - ↓ w6 ↓ w1

First, observe that w1 is necessarily handed over in any optimal solution as otherwise the seaside

crane would be processing w1 and return to slot 0 for 2p+ 2s1 = 68 time units and would then have to

at least lift and drop every other container, which takes 2p(n−1) = 60 time units. Hence, the makespan

would be larger than 97. Similarly, note that the seaside crane cannot process w2 and w3 without handing

at least one of them over. This is obvious when noting that in the given schedule the seaside crane never

waits for t > 0. Now, assume that the landside crane drops both w2 and w3 in their target slots. Then

it will be processing containers for at least [(σl − s2 + 1) + 2p+ 1] + [2p+ 2] + [s3 − 1 + 2p+ s1 − 1] =

99 > 97 time units. Here, the first two terms correspond to picking up and processing w2 and w3 from

slot s2 − 1 = 5. The third term refers to picking up and processing w1 from slot 1. Note that if we

assume this latter slot to be located further to the right, the seaside crane’s processing time would be

larger than 97. Hence, we can conclude that exactly one of the containers w2 and w3 will be handed

over. Now, assume that w3 is a handover container. Then the earliest possible time instant for the

landside crane to drop w3 in s3 is [2(2p+ 2)] + [2p+ 2s2] + [2p+ s3 − 1] = 69, because the seaside crane

will necessarily have to process w2 alone (second term). Additionally, it will have to process w1, which

induces a makespan lager than 97. Summing up, w1 and w2 are handover containers in every optimal
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schedule, while the other containers are handled by the seaside crane alone. Recall that in the schedule

in Table 3 the seaside crane never waits for t > 0. Additionally, it drops its last container at time

instant 97, which is equal to the makespan of the schedule. Hence, we can conclude that the sum of the

handover slots of containers w1 and w2 is at most 4 in any optimal schedule. Moreover, it is easy to

conclude from this latter fact that the landside crane will process w2 before w1. Finally, note that this

results in the seaside crane having to wait in at least two time slots t1, t2 > 0, if w2 were set down before

w3 for any pair of potential handover slots for containers w1 and w2. Hence, the schedule in Table 3

necessarily represents the only optimal solution except for similar solutions in which the landside crane

makes unnecessary moves to the right instead of waiting in slot s2 + 1. 2

4. Solution Procedures

We will propose heuristic procedures for solving PCSP-SL. The two heuristics to be presented are

extensions of the bucket brigade principle, which is shown to perform well for PCSP-S by Briskorn et al.

[5]. Contrary to their principle, our heuristics make use of some lower bounds, so that we start with

presenting these bounds in Section 4.1, before presenting details on the heuristics in Section 4.2.

4.1. Lower Bounds

This section introduces a lower bound for PCSP-SL, which obviously holds for PCSP-S as well.

For ease of description, assume that σw = 0. Furthermore, consider an optimal solution with objective

function value t∗ and let LB be a lower bound on t∗ (e.g. LB = 0), which will iteratively be improved.

We start our deliberations with a lower bound LB(dist) on the total distance the cranes must cover

in any optimal solution until time instant t∗. Obviously, all seaside containers must be moved, so that

the cranes move at least
∑n

i=1 si time units. Landside containers with a deadline less or equal to LB

must be moved as well, which takes
∑
{j∈{1,...,m}|dj≤LB} (S + 1− aj) time units. Additionally, most

container moves force the cranes to move left unloaded. If we assumed that the cranes have to end up in

their initial positions, then the distance of all container moves would have to be covered twice. Because

the cranes cannot end up arbitrarily far from their initial positions, this second coverage of container

moves has to be performed at least partially. If we exclude unnecessary unloaded moves, the rightmost

slot that the seaside crane may end up in is sn, whereas the landside crane might end up in slot S + 1,

which is S + 1 − σl slots away from its initial position. Therefore, unloaded crane moves sum up to(∑n
i=1 si +

∑
{j∈{1,...,m}|dj≤LB} (S + 1− aj)

)
− sn − (S + 1− σl). In total, we obtain

LB(dist) := 2

 n∑
i=1

si +
∑

{j∈{1,...,m}|dj≤LB}
(S + 1− aj)

− sn − (S + 1− σl).

Obviously,
⌈
LB(dist)/2

⌉
is a lower bound on t∗ and it could be used as LB to iteratively update

LB(dist) and LB by means of updating the landside containers to be processed before LB. However, the

resulting bound might be very weak, especially for large values of p. Let us therefore approximate the

number of lifts and drops that appear no later than t∗ in any optimal solution. Obviously, we have at
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least 2(n+ |{j ∈ {1, . . . ,m}|dj ≤ LB}|) regular lifts and drops plus a lift and a drop for each handover

container. For a given number h of handover containers, we therefore obtain the lower bound

LB(h) :=

⌈
LB(dist) + 2p(n+ |{j ∈ {1, . . . ,m}|dj ≤ LB}|+ h)

2

⌉
.

Note that, for a given LB, LB(h + 1) = LB(h) + p. Hence, LB(h) is increasing in h and LB(0)

can be used as a general lower bound. However, it might be possible to show that the seaside crane’s

workload in a solution without handover containers (more generally: with h handover containers) is

relatively large and that an additional handover container improves the solution. For a given h, we can

easily bound the processing time of the seaside crane, LB(sea), from below by assuming that there are

no crane interferences and that the h containers with the rightmost target slots are handed over in slot

1. That means that the seaside crane performs 2n lifts and drops, moves h containers to slot one, and

moves n− h containers to their target slot. Formally, we get

LB(sea)(h) := 2np+ 2

(
h+ min

I′⊆I,|I′|=n−h

∑
i∈I′

si

)
− sn.

Note that LB(sea)(h) can easily be computed iteratively. If LB(sea)(h) > LB(h), then we know

that LB(h) is loose. Furthermore, if LB(sea)(h) > LB(h+ 1), then LB(h+ 1) is a general lower bound.

We may therefore iteratively increase h until either LB(sea)(h) ≤ LB(h) or LB(sea)(h) ≤ LB(h + 1).

In the former case, LB(h) is a lower bound. If solely the latter case holds true, LB(sea)(h) is a lower

bound. Additionally, if sn 6= S + 1 in an instance of PCSP-SL, then there exists an optimal solution

with at most n− 1 handover containers. We summarize these ideas in the following algorithm.

Algorithm 1:

0. Initialization: Set LB := 0, LB∗ := 0, and h := 0.

1. Bound on hhh: If h < n− 1 and LB(h+ 1) < LB(sea)(h), then h := h+ 1 and go to Step 1.

If LB(h) < LB(sea)(h), then LB := LB(sea)(h), else LB := LB(h)

2. Iteration: If LB∗ ≥ LB, then stop. Else, set LB∗ := LB, h := 0 and go to Step 1.

The best bound is stored in LB∗. If the current bound LB is better than LB∗ in Step 2, the

procedure needs to be repeated as more landside containers might be considered when calculating

LB(h).

The calculation of the lower bound can be adapted such that it can be applied to partial solutions,

in which the movements of the cranes are fixed until a certain time instant. In such a case, the bound

can slightly be tightened, e.g. by considering initial movements of the cranes to their first pick-up slot.

4.2. Heuristic Procedures

The bucket brigade algorithm for the PCSP-S is based on some straightforward rules: If the seaside

crane is unloaded, it moves to slot 0 and picks up the next container. It then either delivers the container

12



to its target slot or, if the landside crane obstructs the passage, drops the container for handover. The

landside crane always moves left if unloaded until it meets the seaside crane. In this case, a handover

container is generated, which is then moved to its corresponding target slot by the landside crane.

Details are presented in Briskorn et al. [5]. We will refer to this set of rules with the term bucket

brigade.

As mentioned before, this simple procedure works very effectively for PCSP-S, so that we extend

it for PCSP-SL. This implies that we need to find rules for the landside crane serving the landside

containers. The set of landside containers that must still be served within the planning horizon, JLB∗ ,

is dynamically updated in the course of our algorithms, using the lower bound described above. Ad-

ditionally, the landside crane cannot always process handover containers immediately after they have

been dropped off by the seaside crane. These containers and their current positions are stored in the

set H.

The first extension of the bucket brigade principle (Algorithm 2) gives priority to landside containers

once they are available. More specifically, once the landside crane has dropped off a container, the

algorithm checks whether there is a landside container that can be served by the landside crane without

having to wait in slot S+1. If so, the landside crane serves this container. Of course, due to not waiting

for landside containers, this strategy may result in an infeasible solution. In this case, the algorithm

uses backtracking, so that the landside crane interrupts the bucket brigade earlier and therefore gives

even higher priority to landside containers.

Algorithm 2:

0. Initialization: Determine LB∗ using Algorithm 1, set JLB∗ := {lj ∈ J | dj ≤ LB∗} (set of landside

containers that must still be served by the landside crane) and (in case of its existence) insert an

additional element lj with j ∈ arg min
lj∈J\JLB∗

dj into JLB∗ . Furthermore, set t = 0 and H := ∅ (set

of handover containers waiting for landside crane handling).

1. Landside crane decision: If Jnext := {lj ∈ JLB∗ |t+ |xl,t−aj |+2p+S+1−aj ≥ rj} is not empty

(a landside container can be served by the landside crane without waiting in slot S + 1), then go

to Step 2 and pass over ljnext with jnext ∈ arg min
lj∈Jnext

dj as next landside container. Else, go to

Step 3.

2. Landside container: Let twait be the time that the landside crane must wait when directly pro-

cessing ljnext due to the seaside crane obstructing the passage. Determine tj
next

:= t + |xl,t −

ajnext | + 2p + S + 1 − ajnext + twait. If tj
next

> djnext (the time window cannot be met), go to

Step 5. Else, the landside crane serves ljnext until drop-off and the seaside crane continues bucket

brigade. Update t, H, LB∗, and JLB∗ . Go to Step 1.

3. Handover container: If H = ∅, then go to Step 4. Else, the landside crane serves a seaside

container wî until drop-off, where î ∈ arg min
wi∈Hr

yi,t if Hr := {wi|wi ∈ H, yi,t ≥ xl,t} 6= ∅, or

î ∈ arg max
wi∈H

yi,t if Hr = ∅. The seaside crane continues bucket brigade. Update t, H, LB∗, and

JLB∗ . Go to Step 1.

4. Bucket brigade: If all seaside containers have been served by the seaside crane, then stop. Else,
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continue bucket brigade with both cranes until the landside crane drops off the next container or

until the seaside crane drops off wn in its target slot while the landside crane is unloaded. Update

t, H, LB∗, and JLB∗ . Go to Step 1.

5. Backtracking: Turn back to the latest time instant t′ < t in which the landside crane has just

dropped off a container (or, if no such instant exists, to the beginning of the planning horizon)

and is about to serve a seaside container. If no such instant exists, then stop; No feasible solution

is found. Else, set t = t′, update H, LB∗, and JLB∗ , go to Step 2 and pass over ljnext with

jnext ∈ arg min
lj∈JLB∗

dj as next landside container.

In Step 2 of Algorithm 2, twait is non-zero if xw,t ≥ ajnext and the seaside crane is in the process of

dropping a container with the remaining time needed until final drop-off being no smaller than xl,t−xw,t.

An analogous situation may arise when the seaside crane is loaded and the cranes are located close to

each other. Similarly, at the end of Step 2, the remaining time to process ljnext such that it does not

miss its deadline might be so small that there is no time for the landside crane to wait for the seaside

crane to drop a container within the regular bucket brigade mode. In this case, we slightly modify the

bucket brigade rules to let the seaside crane drop its container further to the left or wait in slot 0, so

that it does not block the landside crane’s passage.

Algorithm 2 is likely to result in a feasible solution because landside containers have high priority.

This, however, might result in solutions in which the landside crane often moves unloaded between

landside and seaside. We therefore propose a second variant of the bucket brigade principle, which

bundles landside containers for sequential processing (Algorithm 3). To do so, we first focus on a

landside container with earliest deadline among the containers not yet served. Under the assumption

that this container will be dropped off right at its deadline, we add landside containers to the bundle,

whose earliest finish times allow the landside crane to process the bundle without waiting in slot S + 1

and without processing seaside containers in between. We then define a time window in which the

containers of the bundle can be processed without waiting in slot S+1. The bundle and its time window

are potentially updated, whenever the landside crane has dropped off a container. The algorithm then

checks whether the bundle can be processed within the time window. If this is not the case, it either

continues bucket brigade or uses backtracking.

Algorithm 3:

0. Initialization: Determine LB∗ using Algorithm 1, set JLB∗ := {lj ∈ J | dj ≤ LB∗} and (in case

of its existence) insert an additional element lj with j ∈ arg min
lj∈J\JLB∗

dj into JLB∗ . Furthermore,

set t = 0 and H := ∅.

1. Bundling: Let jmin ∈ arg min
lj∈JLB∗

dj . If no such container exists, go to Step 4.

1.1 Initialization: Let Jbdl := {ljmin}, tmax := djmin − 2p− (S + 1− ajmin) (latest possible time

for starting pick-up of ljmin for on time drop-off), and t′ := djmin .

1.2 Iteration: Determine a landside container lj′ with earliest finish time not larger than t′ or

with the smallest earliest finish time as follows. If J ′ := {lj ∈ JLB∗\Jbdl|rj ≤ t′} 6= ∅ then
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j′ ∈ arg min
lj∈J′

dj , else j′ ∈ arg min
lj∈JLB∗\Jbdl

rj . Update t′ := djmin +
∑

lj∈Jbdl\{ljmin}
(2p + 2(S +

1 − aj)) + 2p + 2(S + 1 − aj′). If the landside crane starts processing Jbdl at tmax and can

then process lj′ without waiting, i.e. t′ ≥ rj′ , then set Jbdl := Jbdl ∪ {lj′} and go to Step 1.2.

Else, go to Step 1.3.

1.3 Time window: Determine the earliest time tmin for starting to lift ljmin , so that all containers

in Jbdl can be processed without waiting. If starting to process Jbdl at tmax results in a

deadline violation, adjust tmax accordingly. If tmax < tmin then stop; No feasible solution is

found.

2. Landside crane decision: Let twait be the time that the landside crane must wait when directly

processing ljmin due to the seaside crane obstructing the passage. If tmin > t+ |xl,t−ajmin |+ twait,

then go to Step 4. Else, if tmin ≤ t+ |xl,t − ajmin |+ twait ≤ tmax, go to Step 3. Else, go to Step 6.

3. Landside container: The landside crane serves Jbdl until final drop-off. The seaside crane contin-

ues bucket brigade. Set Jbdl := ∅. Update t, H, LB∗, and JLB∗ and go to Step 1.

4. Handover container: If H = ∅, then go to Step 5. Else, the landside crane serves a seaside

container wî until drop-off, where î ∈ arg min
wi∈Hr

yi,t if Hr := {wi|wi ∈ H, yi,t ≥ xl,t} 6= ∅, or

î ∈ arg max
wi∈H

yi,t if Hr = ∅. The seaside crane continues bucket brigade. Update t, H, LB∗, and

JLB∗ . If JLB∗ has changed, set Jbdl = ∅ and go to Step 1. Else, go to Step 2.

5. Bucket brigade: If all seaside containers have been served by the seaside crane, then stop. Else,

continue bucket brigade with both cranes until the landside crane drops off the next container or

until the seaside crane drops off wn in its target slot while the landside crane is unloaded. Update

t, H, LB∗, and JLB∗ . If JLB∗ has changed, set Jbdl = ∅ and go to Step 1. Else, go to Step 2.

6. Backtracking: Turn back to the latest time instant t′ < t in which the landside crane has just

dropped off a container (or, if no such instant exists, to the beginning of the planning horizon)

and is about to serve a seaside container. If no such instant exists, then stop; No feasible solution

is found. Else, set t = t′, update H, LB∗, JLB∗ , Jbdl, tmin, and tmax. Update ljmin and determine

twait as above. If t+ |xl,t − ajmin |+ twait > tmax, then go to Step 6. Else, go to Step 3.

Note that in Step 2 of Algorithm 3, twait is defined as in Algorithm 2. Additionally, we apply the

modified bucket brigade rules mentioned above in Step 3 of Algorithm 3, so that the seaside crane does

not block the landside crane’s passage once it has started processing a bundle of landside containers.

Moreover, note that if backtracking is triggered in Step 2 of Algorithm 3, waiting in slot S + 1 during

serving the corresponding bundle in Step 3 might be necessary.

Finally, note that in Algorithms 2 and 3 the landside crane might finish processing landside con-

tainers after all seaside containers have reached their target slots. This has to be taken into account

when determining the objective function value of the solution returned by the algorithms.
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5. Computational Study

Based on a computational study that we conducted on realistic data, we will now empirically

evaluate the effect caused by allowing the gantry cranes to cooperate when considering the presence

of both, seaside and landside jobs. We will first answer some auxiliary questions, dealing with the

appropriateness of the proposed heuristics:

Q1: Which of the two proposed heuristics performs better in terms of solution quality and the per-

centage of instances for which a feasible solution is found?

Q2: Are the runtimes of the heuristics in ranges that allow their use in real-life scenarios?

Q3: How big is the gap between the (initial) lower bound and the solutions determined by the heuris-

tics?

Answers to the first two questions, Q1 and Q2, indicate which algorithm is suited for practical

applications. An answer to Q3 provides insights into the informative value of the conclusions to be

drawn on our main research question Q4:

Q4: Is it possible to save a significant amount of time by allowing the gantry cranes to cooperate in

real-world problem settings?

If, for example, the gap is fairly large and the heuristics demonstrate that a large amount of time can

be saved by allowing the cranes to cooperate when compared to a non-cooperative setting, the research

question can positively be answered. On the other hand, a large gap and no time savings do not allow

for any positive or negative answer to the research question.

In order to obtain more managerial insights, the following question will also be analyzed:

Q5: What is the critical ratio of landside jobs to seaside jobs, above which no further improvement of

the seaside makespan is elicited by allowing the cranes to cooperate?

The answer to this question allows for determining scenarios in which cooperation usually is beneficial.

We implemented the algorithms in C ++ (Microsoft Visual Studio 2010). The computational tests

were performed on a PC with an Intel R© CoreTM i7 CPU running at 3.4 GHz and 16 GB of memory,

running Windows 8.1 64bit.

5.1. Instance Generation

We used the test data generator introduced by Briskorn et al. [16] to generate a testbed of in-

stances. These instances are publicly available at www.instances.de/dfg using the project name

PCSP-SL Data. They are based on real-world data from the Europe Container Terminals (ECT) at the

port of Rotterdam, where a block is typically about 40 TEU long, which corresponds to S = 40 (refer to

[5, 17] for details). Our assumptions are in analogy to Briskorn et al. [5]. This includes the assumption

of all data being available at the beginning of the planning horizon. When considering the landside

jobs of large instances, this assumption might not be realistic. However, we decided to keep it for two

reasons. First, this allows a comparison with the existing approaches from the literature. Second, there

is a fast development of information systems, and terminal operators already seek for obtaining early
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information on truck arrivals, e.g. through GPS signals. Moreover, we assume that cranes move along

the block at a speed of around 3 meters per second, so that a time interval of PCSP-SL corresponds

to roughly two seconds of real time. Furthermore, based on the real-world data, p = 20 is a reasonable

assumption and varying the number of seaside containers between a few hundred and 1,000 closely mim-

ics real-world settings. As mentioned in Section 1, the number of landside jobs is usually significantly

smaller than the number of seaside jobs. However, in order to be able to answer Q5, we additionally

generated instances with a large amount of landside jobs.

Table 4 depicts the parameter values that our testbed is based upon. The new parameters δr and

Table 4: Parameters of test instances

fixed variable

S p σw σl δr n m δd

40 20 0 20 0.7 500, 1000, 2000
⌊

n
20

⌋
,
⌊

n
10

⌋
,
⌊
n
4

⌋
,
⌊
n
2

⌋
,
⌊
2n
3

⌋
,
⌊
3n
4

⌋
1.3, 1.6

δd were applied to generate time windows for the landside jobs (see Table 5). Here, small values δd

on average result in small time windows. We generated 20 test instances for each combination of the

parameter values of Table 4, which results in a total of 720 test instances. The remaining parameters

of each instance were randomly drawn from uniform distributions on the intervals depicted in Table 5,

where C̄sea = 2pn+Sn− S
2 is the expected seaside makespan when assuming that there exist no landside

containers and that preemption of jobs is not allowed. Within the project PCSP-SL Data, the data of

Table 5: Intervals of uniform distributions for generating the container data

si, wi ∈ I aj , lj ∈ J rj , lj ∈ J dj , lj ∈ J

[1, S] [1, S] [0,
⌊
δr · C̄sea

⌋
] [rj ,

⌊
δd · δr · C̄sea

⌋
]

all instances of a specific parameter combination n, m, and δd is stored in a CSV file “n m δd.csv”, e.g.

“500 25 1.3.csv” for n = 500, m = 25, and δd = 1.3.

5.2. Computational Results

Consider an instance I of PCSP-SL with σw = 0 and let Csea(I) = 2pn + 2
∑n

i=1 si − sn be the

optimal seaside makespan when assuming that there exist no landside containers and that preemption

of jobs is not allowed. Furthermore, denote by Cmax(solI) the seaside makespan of a solution solI of I.

Then we define the saving ratio as a measure for the effect of allowing cooperation and the quality of

this solution:

sav(solI) := 100 · Csea(I)− Cmax(solI)

Csea(I)
.

Similarly, the gap of a solution solI with respect to the lower bound LB∗(I) determined by Algorithm

1 is defined as follows:

gap(solI) := 100 · Cmax(solI)− LB∗(I)

Cmax(solI)
.

Figure 3 presents the computational results for the small instances with n = 500 seaside jobs.

Here, SB (simple bucket brigade) refers to Algorithm 2, while BB (bundling bucket brigade) refers to

Algorithm 3. Figure 3a plots the average runtimes of the heuristics over the number of landside jobs.
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Figure 3: Results for the small instances, n = 500

Each data point corresponds to the average runtime of those test instances of the specific instance set

for which a feasible solution was found. The black (gray) curves correspond to instances with small

(large) time windows, i.e. δd = 1.3 (δd = 1.6). Similarly, Figures 3b and 3c depict results on the average

saving ratios and the average gaps as defined above. Again, this relates to the instances for which a

feasible solution was found. Finally, Figure 3d illustrates the percentage of instances of each set for

which no feasible solution was found with the respective algorithms. It includes curves (SB/BB) that

relate to the number of instances for which no feasible solution was found by any of the algorithms.

Figures 4 and 5 depict the computational results for the medium (n = 1000) and large (n = 2000)

instances, respectively.

The numerical values that correspond to Figures 3–5 are presented in Table A.6 in the appendix.

Table A.7 in the appendix presents some complementary results. Most important, it shows that our

method of constructing time windows (Table 5) is such that the landside jobs are indeed relevant when

constructing feasible solutions.

5.3. Evaluation of the Results

We can now answer the research questions posed above by evaluating the computational results.

Concerning Q1, Figures 3b, 4b, and 5b indicate that BB on average performs better than SB in

terms of solution quality for small ratios m/n, while the opposite is true for large ratios m/n. The

intersection point of the corresponding curves shifts towards larger ratios m/n when increasing the time

18



50 100 250 500 666 750

0

0.5

1

m

ti
m
e
[s
]

SB, δd = 1.3

BB, δd = 1.3

SB, δd = 1.6

BB, δd = 1.6

(a) Average runtime

50 100 250 500 666 750

0

10

20

m

sa
v
in
g
ra

ti
o

SB, δd = 1.3

BB, δd = 1.3

SB, δd = 1.6

BB, δd = 1.6

(b) Average saving ratio

50 100 250 500 666 750

10

12

14

16

m

g
a
p

SB, δd = 1.3

BB, δd = 1.3

SB, δd = 1.6

BB, δd = 1.6

(c) Average gap

50 100 250 500 666 750

0

20

40

60

80

m

in
st
a
n
c
e
s
[%

]

SB, δd = 1.3

BB, δd = 1.3

SB/BB, δd = 1.3

SB, δd = 1.6

BB, δd = 1.6

SB/BB, δd = 1.6

(d) No solution found

Figure 4: Results for the medium instances, n = 1000
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Figure 5: Results for the large instances, n = 2000
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windows of the landside jobs. Additionally, Figures 3d, 4d, and 5d show that SB clearly outperforms

BB with respect to the percentage of instances for which a feasible solution is found. Note, however,

that there are sporadic instances, for which BB finds a feasible solution while SB does not (see Figure

5d). These results confirm the suitability of the basic principles that the algorithms are based upon

(see Section 4.2), i.e. the assumption that bundling reduces the ability of a bucket brigade framework to

find feasible solutions, while it improves the quality of potential solutions by reducing unloaded moves

of the landside crane. Finally, note that the curves that represent the percentage of instances for which

no feasible is found (Figures 3d, 4d, and 5d) tend to increase when increasing the number of landside

containers. Similarly, this percentage is nondecreasing when time windows become smaller. Both effects

are indicated by Proposition 1.

The average runtimes of the heuristics range from only a few milliseconds to about 3.5 seconds (see

Figures 3a, 4a, and 5a). Moreover, we encountered a maximum runtime of about 5 seconds when only

considering the instance-algorithm combinations that resulted in a feasible solution (see Table A.7 in

the appendix). The number of calls of the backtracking procedures of the heuristics may be rather large,

so that the maximum time needed to terminate without having found a feasible solution was about 16

seconds (Table A.7). Nevertheless, these results allow for positively answering Q2 by concluding that

both heuristics are applicable in real-life scenarios.

Figures 3b, 4b, and 5b suggest that allowing the gantry cranes to cooperate in the presence of

landside containers offers the possibility to significantly reduce the seaside makespan when compared

to solely assigning the seaside crane to the processing of the seaside containers. This holds true as long

as the amount of landside containers is sufficiently small. More specifically, our computational results

indicate that saving ratios larger than 10 are possible if m ≤ b0.5 · nc even for relatively small time

windows. When additionally noting that real-world problem settings will hardly ever feature this many

landside containers, and when observing that the corresponding average gaps (Figures 3c, 4c, and 5c)

are fairly large (Q3), we can conclude by positively answering our main research question Q4. The

finding of Briskorn et al. [5] (see Section 1) therefore remains true when landside containers are present:

Cooperation “is something for terminal operators to consider, seeing that it is not an uncommon policy

in practice to assign only the seaside crane exclusively to stacking containers, while the landside crane

is supposed to exclusively handle container transfers to the hinterland.”

Regarding Q5, we conclude that the critical ratio of landside jobs to seaside jobs is sufficiently

large to not play an important role in realistic problem settings arising at seaports. There are two

relevant practical insights. First, as to be expected, tight time windows reduce this ratio and result

in less savings elicited by cooperation. Second, the proposed heuristics may actually result in negative

saving ratios. This is due to waiting operations when generating handover containers and, in case of

the bundling procedure (Algorithm 3), because of not allowing the seaside crane to block the landside

crane’s passage when the latter is processing a bundle (see Section 4.2).
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6. Conclusion and Outlook

We considered a problem arising in a seaport storage area in which two rail mounted gantry cranes

can perform container moves, but where interference constraints between these cranes have to be re-

spected. Once a ship is berthed, highest priority is given to quickly unloading this ship and to putting

the containers into the storage area. However, due to the interference constraints, only the seaside crane

can pick up the containers from the input/output point. Yet, one may wonder whether significant time

savings can be achieved if the landside crane supports the seaside crane by means of handover contain-

ers. Under the assumption that the landside crane does not have to perform other jobs, this question

is positively answered by Briskorn et al. [5]. In this paper, we answered this question for the case of

the landside crane having to perform some jobs on the landside of the block. To do so, we analyzed the

problem complexity and gave some counterintuitive examples of optimal solutions. For example, there

are instances in which the landside crane moves left while being loaded in any optimal solution, although

the overall container flow is exclusively to the right. A lower bound and two heuristic algorithms were

presented. In a computational study, we were able to show that the heuristics deliver promising results

if we consider realistic instances. Our main research question was then positively answered: Compared

to the situation in which seaside containers are exclusively served by the seaside crane, cooperation

might reduce the makespan by more than 20%.

Our main focus was the situation in which the sequence of the seaside containers is given. This

assumption is not unrealistic as the unloading sequence from a ship is usually highly restricted by

physical constraints such as stacking orders or the stability of the ship. Yet, there might be at least

some degrees of freedom when determining the sequence of the seaside containers. Future research could

analyze how much this freedom could result in time savings. The promising results obtained in this

paper, especially the rather small gap between the heuristic procedures and the lower bound, suggests

to analyze the problem at hand on a higher problem level. For example, positioning of containers within

a block, the assignment of containers to blocks, the scheduling of quay cranes, etc. could be considered

in a combined approach.
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Appendix A. Computational Results: Numerical Values

Table A.6: Computational results

instance set avg. time [s]1 avg. sav. rat.1 avg. gap1 no solution [%]
n, m, δd SB BB SB BB SB BB SB BB SB/BB

500, 25, 1.3 0.008 0.008 23.8 23.98 16.65 16.45 0 0 0
500, 50, 1.3 0.008 0.007 22.81 22.92 16.74 16.63 0 10 0
500, 125, 1.3 0.008 0.007 19.16 19.75 16.74 16.15 0 15 0
500, 250, 1.3 0.006 0.009 12.05 12.15 15.4 15.37 5 70 5
500, 333, 1.3 0.004 0.063 5.94 -0.16 12.17 17.52 30 65 30
500, 375, 1.3 0.003 0.069 0.43 -7.77 10.1 16.83 35 70 35
1000, 50, 1.3 0.058 0.057 23.98 24.11 16.45 16.32 0 0 0
1000, 100, 1.3 0.055 0.051 23.03 23.16 16.46 16.34 0 5 0
1000, 250, 1.3 0.051 0.043 19.46 19.99 16.61 16.02 0 10 0
1000, 500, 1.3 0.039 0.056 11.99 13.18 15.34 14.21 0 55 0
1000, 666, 1.3 0.112 0.292 5.19 1.88 12.43 15.51 15 70 15
1000, 750, 1.3 0.017 1.026 0.39 -6.28 9.92 16.03 45 85 45
2000, 100, 1.3 0.438 0.419 24 24.12 16.43 16.3 0 0 0
2000, 200, 1.3 0.424 0.388 22.97 23.23 16.59 16.3 0 5 0
2000, 500, 1.3 0.385 0.321 19.47 20.02 16.7 16.17 0 25 0
2000, 1000, 1.3 0.291 0.376 12.11 13.4 15.29 14.03 0 65 0
2000, 1333, 1.3 0.155 1.924 5.66 2.33 11.69 14.96 20 90 20
2000, 1500, 1.3 0.084 3.332 -0.64 -5.78 10.39 14.67 40 85 35
500, 25, 1.6 0.008 0.008 24.2 24.23 16.58 16.55 0 0 0
500, 50, 1.6 0.008 0.008 23.4 23.48 16.64 16.55 0 5 0
500, 125, 1.6 0.008 0.007 21.09 21.5 16.67 16.21 0 5 0
500, 250, 1.6 0.007 0.007 16.45 17.29 15.95 15.04 0 25 0
500, 333, 1.6 0.006 0.007 13.11 14.67 15.47 14.73 0 50 0
500, 375, 1.6 0.006 0.02 10.1 0.98 15.05 22.1 0 65 0
1000, 50, 1.6 0.058 0.056 24.33 24.35 16.37 16.35 0 0 0
1000, 100, 1.6 0.056 0.053 23.55 23.65 16.43 16.31 0 0 0
1000, 250, 1.6 0.054 0.046 21.16 21.59 16.48 16.02 0 0 0
1000, 500, 1.6 0.047 0.042 16.53 17.43 15.91 15.14 0 30 0
1000, 666, 1.6 0.042 0.048 12.85 14.22 15.28 14.27 5 60 5
1000, 750, 1.6 0.037 0.079 10.94 8.39 13.92 15.96 0 70 0
2000, 100, 1.6 0.449 0.436 24.27 24.34 16.36 16.28 0 0 0
2000, 200, 1.6 0.428 0.398 23.52 23.69 16.42 16.24 0 0 0
2000, 500, 1.6 0.401 0.335 21.05 21.48 16.45 15.96 0 20 0
2000, 1000, 1.6 0.344 0.285 16.34 17.2 15.79 14.94 0 40 0
2000, 1333, 1.6 0.313 0.299 12.72 13.92 14.87 13.6 0 55 0
2000, 1500, 1.6 0.267 0.683 10.72 9.55 13.88 14.97 0 75 0

1 Considering only those instances of the set for which a feasible solution was found.

Table A.7: Additional computational results

instance set max. time [s]1 max. time [s]2 Jcompl [%]3

n, m, δd SB BB SB BB SB BB

500, 25, 1.3 0.01 0.01 77.2 76.8
500, 50, 1.3 0.01 0.01 0.01 75.7 75.11
500, 125, 1.3 0.01 0.01 0.01 82.64 81.22
500, 250, 1.3 0.01 0.01 9.35 0.02 96.17 94.87
500, 333, 1.3 0.01 0.14 0.01 0.04 100 100
500, 375, 1.3 0.004 0.19 0.003 0.03 100 100
1000, 50, 1.3 0.07 0.09 72.9 72.6
1000, 100, 1.3 0.06 0.06 0.01 74.35 74.26
1000, 250, 1.3 0.06 0.08 0.01 80.86 80.18
1000, 500, 1.3 0.04 0.08 0.05 96.11 94.24
1000, 666, 1.3 0.89 0.83 0.21 0.3 100 100
1000, 750, 1.3 0.04 2.21 0.01 0.3 100 100
2000, 100, 1.3 0.46 0.44 72.5 72.15
2000, 200, 1.3 0.44 0.41 0.29 72.58 72
2000, 500, 1.3 0.42 0.34 0.24 80.68 79.63
2000, 1000, 1.3 0.36 0.69 0.38 96.1 93.34
2000, 1333, 1.3 0.52 2.08 0.73 15.61 100 100
2000, 1500, 1.3 0.22 4.92 0.11 2.58 100 100
500, 25, 1.6 0.01 0.01 51.2 51
500, 50, 1.6 0.01 0.02 0.01 52.1 51.68
500, 125, 1.6 0.01 0.01 0.01 55.24 54.78
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500, 250, 1.6 0.01 0.01 0.01 61.62 60.27
500, 333, 1.6 0.01 0.01 0.01 65.62 61.65
500, 375, 1.6 0.01 0.05 0.02 71.35 82.51
1000, 50, 1.6 0.06 0.06 51.2 51.3
1000, 100, 1.6 0.06 0.06 52.45 52.35
1000, 250, 1.6 0.06 0.05 54.86 54.24
1000, 500, 1.6 0.05 0.06 0.04 61.56 60.09
1000, 666, 1.6 0.05 0.06 0.06 0.04 67.01 64.43
1000, 750, 1.6 0.04 0.2 0.3 69.91 72.07
2000, 100, 1.6 0.48 0.47 53.1 53.05
2000, 200, 1.6 0.45 0.41 53.45 53.3
2000, 500, 1.6 0.42 0.35 0.3 56.78 56.43
2000, 1000, 1.6 0.37 0.35 0.22 63.43 62.35
2000, 1333, 1.6 0.35 0.4 0.25 68 66.73
2000, 1500, 1.6 0.3 1.11 0.8 70.93 71.96

1 Considering only those instances of the set for which a feasible
solution was found.

2 Considering only those instances of the set for which no feasible
solution was found.

3 Jcompl: Average percentage of landside jobs that are dropped in
slot S + 1 in the feasible solutions determined by the algorithm.
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