
Incentive Compatible Mechanisms for Scheduling Two-Parameter Job
Agents on Parallel Identical Machines to Minimize the Weighted

Number of Late Jobs†

Dominik Kressa,∗, Sebastian Meiswinkela, Erwin Pescha,b

aUniversity of Siegen, Management Information Science, Kohlbettstr. 15, 57068 Siegen, Germany
bCenter for Advanced Studies in Management, HHL Leipzig, Jahnallee 59, 04109 Leipzig, Germany

Abstract

We consider the problem of designing polynomial time truthful mechanisms for machine schedul-

ing problems with parallel identical machines where some of the jobs’ characteristics are private

information of their respective owners and a central decision maker is in charge of computing

the schedule. We study a two-parameter setting, where weights and due dates are private

information while processing times are publicly known. The global objective is to minimize the

sum of the weights of those jobs that are completed after their due dates. We derive a set of

properties that is equivalent to the well known condition of cycle monotonicity, which is a gen-

eral condition for truthful mechanisms in non-convex valuation function domains. Our results

utilize knowledge about the underlying scheduling problem, so that the resulting properties are

easier to implement and verify than the general condition of cycle monotonicity. We illustrate

the use of our results by analyzing an example algorithm that has recently been proposed in

the literature for the case of one machine.

Keywords: Algorithmic mechanism design, Machine scheduling, Truthfulness, Game theory,

Logistics

1. Introduction and Contribution

When analyzing exact and heuristic methods for solving scheduling problems, we often

assume that a central decision maker is equipped with all relevant data related to the problem.

However, there exist many real world applications where this is not the case because part of

the relevant data is private information of selfish players who aim to influence the solution

determined by the scheduling algorithm by submitting false information to the decision maker.

In some cases, however, the decision maker can extract the true information by designing an

appropriate algorithm that sets the right incentives for these players. This in turn enables the

∗Corresponding author
Email addresses: dominik.kress@uni-siegen.de (Dominik Kress),

sebastian.meiswinkel@uni-siegen.de (Sebastian Meiswinkel), erwin.pesch@uni-siegen.de (Erwin Pesch)

† This is an Accepted Manuscript of an article published by Elsevier in Discrete Applied Mathematics,
available online: https://doi.org/10.1016/j.dam.2017.08.026

c© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://

creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.dam.2017.08.026
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


decision maker to generate “fair” solutions with respect to some social criterion that considers

the interests of all players. The design of such algorithms is subject of a field of research that

is usually referred to as algorithmic mechanism design [1].

1.1. Basic Problem Setting and Applications

In this paper we will consider scheduling problems with parallel (identical) machines and

publicly known processing times. These problems will be considered in the context of algo-

rithmic mechanism design, with the job-owners being strategic players or agents. The agents

are assumed to be risk-neutral. Each job-owner reports a valuation function to the mecha-

nism. This valuation function may deviate from the true valuation function, which is private

information of the job-owner. The mechanism itself is composed of a social choice function

and payment functions. In the context of scheduling problems, the social choice function (or

allocation function) determines a feasible schedule based on the valuation functions reported to

the mechanism. A typical objective of the social choice function is maximizing social welfare,

which corresponds to maximizing the sum of all valuation functions. However, each job-owner

selfishly aims to maximize her utility function, which corresponds to the sum of her valuation

of the schedule and a corresponding (potentially negative) payment from the mechanism to the

job-owner. Thus, it is likely that the job-owner lies about the valuation function in order to

achieve a greater utility function value than in the case of reporting the true valuation function.

Obviously, if the job-owners do not report their true valuation functions to the mechanism, it

is impossible to design a mechanism that maximizes social welfare. To overcome this prob-

lem, it is necessary to design the mechanism to be (dominant strategy) incentive compatible

or truthful. That is, the mechanism must guarantee that reporting the true valuation function

always maximizes the utility function of a rationally acting agent.

As described by Kovalyov and Pesch [2], applications of this problem setting can, for

instance, be found in the field of intermodal transport, where some kind of service provider

operates cranes in a container terminal (e.g. at a sea port or a rail-road terminal) to load and

unload trains. The service provider has service contracts with its customers. Each contract is

related to a specific customer of the service provider and vice versa. Each customer requests

a train to be loaded or unloaded in a given planning period. These requests correspond to

jobs to be processed by the service provider. A similar setting may arise when considering the

problem of determining an execution sequence for computer tasks that have been accepted by a

computing service provider who operates computing devices. In both examples, the customers

compete for quick execution of their jobs in the schedule determined by the service provider

for the planning period. The processing time for each job is publicly known. Jobs may incur

2



additional costs to their owners if their completion time is too large, for example because of

strict deadlines and corresponding contractual penalties. The related parameters are private

information of the customers. The service provider’s revenue for executing a job is fixed.

Hence, the service provider seeks to determine a “fair” schedule that takes into account the

interests of all customers. To generate this schedule, the service provider must know the private

information of the players. Hence, the service provider must design an incentive compatible

algorithm for scheduling the execution of the jobs.

1.2. Related Literature

A general introduction to the field of algorithmic mechanism design can be found in Nisan

et al. [3]. Additionally, there is a fairly large amount of publications dealing with mechanism

design in the context of machine scheduling. An excellent overview is given by Heydenreich

et al. [4]. A literature overview and a classification scheme is presented by Kress et al. [5].

One of the most important general results in the field of mechanism design is the Vickrey-

Clarke-Groves mechanism (VCG mechanism), that was suggested by Vickrey [6] and gener-

alized by Clarke [7] and Groves [8]. A mechanism is called a VCG mechanism, if the social

choice function maximizes social welfare, i.e. the sum of all valuation functions, and if the

payment functions are of some special structure. A VCG mechanism is incentive compatible,

but a major drawback is the need for finding optimal solutions to the underlying problem of

maximizing social welfare, which may be NP-hard (see, for instance, Nisan [9]). Hence, in the

context of scheduling problems, VCG mechanisms are oftentimes not appropriate even if the

objective function of the specific scheduling problem corresponds to maximizing social welfare.

One must therefore make use of other theoretical results related to incentive compatibility that

are suitable for approximate and heuristic algorithms. These results oftentimes turn out to

“boil down to a certain algorithmic condition of monotonicity” [10].

One can identify two streams of literature dealing with mechanism design in the context

of scheduling problems. The first group of publications presumes that the machines are selfish

agents (machine agents); see Christodoulou and Koutsoupias [11] and Kress et al. [5] for an

overview. These papers follow the seminal work of Nisan and Ronen [12] and include Lavi and

Swamy [10], Archer and Tardos [13], Christodoulou et al. [14], Koutsoupias and Vidali [15].

The second stream of literature assumes that the jobs are selfish agents (job agents), which is

the perspective taken in this paper.

Angel et al. [16, 17, 18], Auletta et al. [19], and Christodoulou et al. [20], for example,

consider the design of incentive compatible mechanisms in different settings with parallel iden-

tical machines, parallel related machines, and parallel unrelated machines. The job agents may

3



manipulate the schedule by providing false information regarding the processing times. Angel

et al. [16] also consider online settings, where the existence of jobs is unknown until their release

dates. The global objective in all settings is to minimize the makespan.

Other authors analyze the global objective of minimizing the total weighted completion

time. Duives et al. [21] and Hoeksma and Uetz [22], for instance, assume that there is only

one machine and restrict themselves to considering discrete valuation function domains. They

consider a one-parameter setting, where the processing time of each job is public knowledge

and the job’s weights are private information (see also Hain and Mitra [23] for a related model

with processing times being private information), and a two-parameter setting, where both

processing times and weights are private information. They derive optimal mechanisms that

are not only truthful, but at the same time minimize the total (expected) payments that

are made to the job-owners. In some applications, however, one may want to achieve different

properties of the payments. For example, Suijs [24] presents (“budget balanced”) VCG payment

functions for the one-parameter case in continuous valuation function domains such that the

clients, on average, neither win nor lose money (see also [25, 26, 27] for related and more general

results).

Some papers deal with mechanism design in online machine scheduling. For example,

Heydenreich et al. [28] study an online version of parallel machine scheduling to minimize

total weighted completion time, where processing times, weights and release dates are private

information of the job-owners. Porter [29] additionally considers private information on due

dates in the one machine case where the global objective is to minimize the sum of the weights

of those jobs that are completed after their respective due dates.

1.3. Contribution and Outline of this Paper

Scheduling problems with the global objective of minimizing the sum of the weights of

those jobs that are completed after their respective due dates have received little attention in

the mechanism design literature (an example is [29]). We will contribute to closing this gap by

considering a setting with job-owners controlling two private parameters, namely the weights

and due dates of their jobs, and are therefore referred to as two-parameter agents. Processing

times are assumed to be publicly known. As mentioned above, one will typically have to make

use of monotonicity conditions when constructing incentive compatible mechanisms for NP-

hard scheduling problems. In case of non-convex valuation function domains, the monotonicity

condition of interest is usually referred to as cycle monotonicity. However, due to the general

nature of this condition, it is not always easy to design an algorithm that is cycle monotone.

We therefore contribute to the literature by deriving a set of conditions that is equivalent to

4



cycle monotonicity for the scheduling problems under consideration in this paper. Our results

utilize knowledge about the underlying optimization problem, so that the resulting conditions

are easier to implement and verify than the general condition of cycle monotonicity. We will

illustrate the use of our results by analyzing an example algorithm that has recently been

proposed by Kovalyov and Pesch [2], who consider a similar setting for risk-averse agents and

one machine. Our results therefore also extend these authors’ prior findings.

The remainder of this paper is organized in four sections. Section 2 introduces the notation,

the scheduling problems, as well as the mechanism design setting under consideration in this

paper in detail. Furthermore, it presents the monotonicity condition of interest. Section 3 then

presents our main result, i.e. the derivation of conditions that guarantee cycle monotonicity for

our scheduling domain, which is then illustrated based on an example algorithm for the case

of one machine in Section 4. Finally, Section 5 summarizes the paper.

2. Preliminaries

We will start our deliberations by introducing the relevant scheduling problems and the

related mechanism design setting in detail in Sections 2.1 and 2.2. We will then introduce

some additional notation in Section 2.3 and define the condition of cycle monotonicity and its

implications in Section 2.4.

The number sets used throughout this paper are defined in Table 1.

Table 1: Number sets used throughout the paper

R, Q real (rational) numbers
R>0, Q>0 positive real (rational) numbers
R≥0, Q≥0 non-negative real (rational) numbers

2.1. Scheduling Domain

The scheduling problems under consideration in this paper presume that there is a set

J = {1, . . . , n} of n ≥ 2 jobs and a set M = {m1, . . . ,mm} of m parallel (identical) machines.

Each job i ∈ J must be processed exactly once by an arbitrary machine mj ∈M . Each machine

processes jobs one after another, starting from time zero, without idle time. Preemption of

jobs is not allowed. We denote the processing time of job i ∈ J by ti ∈ Q>0. The set of all

feasible solutions of the problem of scheduling all jobs i ∈ J on machines mj ∈M is denoted by

O. A given schedule o ∈ O determines the completion time Ci(o) of all jobs i ∈ J . In addition

to its processing time ti, each job i ∈ J is associated with a weight wi ∈ Q≥0 and a due date

di ∈ Q≥0. If i is on time, that is, if it completes before or at di in a given schedule o ∈ O,

then it incurs no cost to the owner of the job. Otherwise, the job is late and it incurs cost wi.

5



We define a corresponding cost indicator function Udi : R→ {0, 1}, which is equal to one if its

argument is larger than di and zero otherwise. The problem is to find a schedule o ∈ O that

minimizes the total scheduling cost of all job-owners,
∑n

i=1 wiUdi(Ci(o)), i.e. that maximizes

social welfare. This problem is denoted by P ||
∑

wiUi in the literature [30] and is known to be

NP-hard in the strong sense for m arbitrary [30, 31, 32]. When considering only one machine,

i.e. m = 1, the problem is weakly NP-hard [33, 34] and it is denoted by 1||
∑

wiUi [30].

Table 2 summarizes the scheduling notation used throughout the paper.

Table 2: Scheduling notation used throughout the paper

J set of jobs J = {1, . . . , n}
M set of parallel (identical) machines M = {m1, . . . ,mm}
O set of feasible solutions of scheduling problem
Ci completion time of job i ∈ J Ci : O → R>0

ti processing time of job i ∈ J ti ∈ Q>0

di due date of job i ∈ J di ∈ Q≥0

wi weight of job i ∈ J wi ∈ Q≥0

2.2. Mechanism Design Domain

We assume that each job i ∈ J has an associated owner (also referred to as customer or

client). Moreover, each owner possesses exactly one job. Thus, in the remainder of this paper

we can identify a job by its owner and vice versa. Each job-owner i ∈ J has a (true) valuation

function vti : O → R that maps every feasible schedule of the considered scheduling domain to

a real value. Negative values can, for example, relate to costs incurred to the job-owner due to

waiting for the associated job to be completed.

The mechanism design setting described in Section 1.1 is depicted in more detail in Figure

1. As mentioned above, each job-owner i ∈ J reports a valuation function vi, which may

1

vt1

V1

...

n
vtn

Vn

J
o
b
-o
w
n
er
s

Mechanism

f
p1, . . . , pn

Schedule

o

private inf.

public inf.

v1

vn

p1(v)

pn(v)

f(v)

o

o

Figure 1: Problem setting

deviate from the true valuation function vti , to the mechanism. vti is private information

of the job-owner and is thus sometimes referred to as the job-owner’s type. Each valuation

function vi, i ∈ J , is element of a publicly known set Vi ⊆ R|O|, which is referred to as the

6



valuation function domain. We define V := V1 × · · · × Vn. Furthermore, we denote the vector

of all valuation functions reported to the mechanism by v = (v1, . . . , vn) and the vector of all

valuation functions reported to the mechanism except of vi by v−i = (v1, . . . , vi−1, vi+1, . . . , vn).

For the sake of notational convenience, we will use v and (vi, v−i) interchangeably.

In the context of the scheduling domain described in Section 2.1, we will consider wi and

di as private information of job-owner i ∈ J . Thus, the valuation functions vi take the form

vi(o) = −wiUdi(Ci(o)) with o ∈ O for all i ∈ J . Hence, Vi 6= R|O|. The processing times of all

jobs are assumed to be public information. This setting is denoted by P |priv{wi, di}, Ui|
∑

wiUi

when using the classification scheme of Kress et al. [5]. Basically, this scheme extends the

well known three field notation of Graham et al. [30], in our case P ||
∑

wiUi, by including

mechanism design related information: priv{wi, di} refers to the fact that job-owners posses

private information on weights and due dates, and Ui indicates that each job-owner aims for

having her job completed on time.

The mechanism (f, p1, . . . , pn) itself is composed of a social choice function f : V → O

and payment functions p1, . . . , pn, with pi : V → R for all i ∈ J . A feasible schedule o ∈ O

determined by the social choice function determines the completion time Ci(f(v)) of all jobs

i ∈ J .

The utility function ui : V → R of player i ∈ J is (in the considered case of risk-neutral

agents) defined as ui(vi, v−i) := vti(f(vi, v−i)) + pi(vi, v−i). Hence, in order to be (dominant

strategy) incentive compatible or truthful, the mechanism must guarantee that ui(v
t
i , v−i) ≥

ui(vi, v−i) for all i ∈ J , all vi ∈ Vi, and all v−i ∈ V−i.

Table 3 summarizes the mechanism design notation used throughout the paper.

Table 3: Mechanism design notation used throughout the paper

Vi valuation function domain for client i ∈ J
V Cartesian product of sets Vi, i ∈ J V = V1 × · · · × Vn

V−i Cartesian product of sets Vj , j ∈ J \ {i} V = V1 × · · · × Vi−1 × Vi+1 × · · · × Vn

f social choice function f : V → O
vti true valuation function of client i ∈ J Vi 3 vti : O → R
vi claimed valuation function of client i ∈ J Vi 3 vi : O → R
pi payment function for client i ∈ J pi : V → R
ui utility function of client i ∈ J ui(v) = vti(f(v)) + pi(v)
v−i vector of claimed valuation functions except vi, i ∈ J v−i = (v1, . . . , vi−1, vi+1, . . . , vn)

v vector of claimed valuation functions
v = (v1, . . . , vn)
v = (vi, v−i), i ∈ J

2.3. Additional notation

In order to ease the notation throughout the remainder of this paper, we will sometimes

denote vi, i ∈ J , by vw,d
i for a given weight w ∈ Q≥0 and due date d ∈ Q≥0 that is committed

to the mechanism by client i ∈ J .

7



Obviously, social choice functions in the context of scheduling problems will have to be

established (implemented) by scheduling algorithms. With respect to these algorithms, we will

restrict ourselves to deterministic algorithms. In order to simplify the proofs throughout this

paper, we introduce some related additional notation, which is summarized in Table 4.

Table 4: Additional notation for v−i ∈ V−i fixed

clatei Smallest completion time of job i ∈ J if it
is scheduled as a late job by the scheduling
algorithm.

W d
i Set of all w such that Ci(f(vw,d

i , v−i)) ≤ d,
with i ∈ J and d fixed.

wmin
i (d) := minW d

i , i ∈ J

winf
i (d) := inf W d

i , i ∈ J

Assume i ∈ J to be an arbitrary job-owner and let v−i ∈ V−i be fixed. First, consider all

vi ∈ Vi that result in a schedule with job i being late with respect to the due date committed

to the mechanism by the respective job-owner (in the following, we will say that job i is

“scheduled as a late job”) and denote the smallest of the corresponding completion times

of job i by clatei . clatei is well defined because ti ∈ Q>0 and di ∈ Q≥0. Second, we define

W d
i := {w ∈ Q≥0 |vw,d

i ∈ Vi, Ci(f(vw,d
i , v−i)) ≤ d} and wmin

i (d) := minW d
i for a given d ∈ Q≥0.

We are aware that wmin
i (d) does not always exist. Nevertheless, for the sake of brevity of the

proofs in the following sections, we will use wmin
i (d). In case of its non-existence, it will always

be easy to bring forward analogous arguments by using winf
i (d) := inf W d

i instead of wmin
i (d)

and replacing some ≤-signs by <-signs and vice versa. If the argumentation is independent

of using wmin
i (d) or winf

i (d), we will use the latter. Furthermore, we define winf
i (d) := ∞ if

W d
i = ∅, which may, for example, be the case if d < ti. We will refer to winf

i (d) or wmin
i (d) as

a “threshold value” with respect to d.

2.4. Cycle Monotonicity

Monotonicity conditions for incentive compatible mechanisms can become fairly complex

when the sets Vi, i ∈ J , are restricted, i.e. when the valuation function domains are proper

subsets of R|O| (see, for example, Krishna [35], Lavi et al. [36]). As mentioned above, the

basic condition of interest in our setting is usually referred to as cycle monotonicity (see, for

example, Lavi and Swamy [10]).

Definition 1 (Cycle monotonicity). A social choice function f is cycle monotone if for

every player i ∈ J , every v−i ∈ V−i, every integer K, and every v1
i , . . . , v

K
i ∈ Vi,

K∑
k=1

(
vki (ak)− vki (ak+1)

)
≥ 0, (1)

8



where ak := f(vki , v−i) for 1 ≤ k ≤ K, and aK+1 := a1.

Cycle monotonicity is both necessary and sufficient for truthful mechanisms (again, see

Lavi and Swamy [10]).

Theorem 1. There exist payment functions p1, . . . , pn such that the mechanism (f, p1, . . . , pn)

is truthful iff f is cycle monotone.

It is possible to consider a simpler version of the cycle monotonicity condition, usually called

weak monotonicity, if the valuation function domains are convex. This has been observed by

Saks and Yu [37] (related results are due to [38, 36, 39]). However, we are concerned with non-

convex valuation function domains. To see this, observe that the above valuation functions

can be represented by step functions that map completion times in R>0 to Q≥0 with at most

one jump discontinuity. A convex combination of two or more of these step functions may

have more than one jump discontinuity, which implies non-convexity of the valuation function

domains.

3. Incentive Compatible Mechanisms for P|priv{wi,di},Ui|
∑

wiUi

We will now consider the mechanism design setting P |priv{wi, di}, Ui|
∑

wiUi described in

Section 2. We will introduce properties of social choice functions (Section 3.1) and show that

a subset of these properties is sufficient and each of them if necessary for truthful mechanisms

(Section 3.2), i.e. these properties are equivalent to cycle monotonicity. Our motivation stems

from the fact that, being a general condition for truthful mechanisms in non-convex valuation

function domains, cycle monotonicity is not always easy to prove when aiming to construct

a truthful mechanism for a specific problem setting. Our results, however, utilize knowledge

about P ||
∑

wiUi and are therefore easier to implement and verify. We will close this section

by deriving the payment functions of the related mechanisms in Section 3.3.

3.1. Properties of Social Choice Functions

We refer to the first relevant property as threshold monotonicity. It requires the functions

winf
i (d) to be monotonically decreasing in d for all i ∈ J and v−i ∈ V−i.

Definition 2 (Threshold monotonicity). A social choice function f is called threshold

monotone if

∀ d < d′ : winf
i (d) ≥ winf

i (d′)

for all i ∈ J and v−i ∈ V−i.

9



We will refer to a social choice function as due-date stable if the following is true for all i ∈ J

and v−i ∈ V−i: If there exists a combination of weight w and due date d with a given threshold

value that, when committed to the mechanism by agent i, results in job i being scheduled on

time with respect to d with completion time Ci, then this threshold value remains constant for

all due dates between Ci and d.

Definition 3 (Due-date stability). A social choice function f is called due-date stable if

∀w, d, d′ ∈ Q≥0 with d ≥ d′ ≥ Ci(f(vw,d
i , v−i)) : winf

i (d) = winf
i (d′)

for all i ∈ J and v−i ∈ V−i.

Hence, for any social choice function that is threshold monotone and due-date stable, the

functions winf
i (d) are step functions that are monotonically decreasing in d for all i ∈ J and

v−i ∈ V−i.

The third property, referred to as weight monotonicity, requires the sets W di
i to be con-

nected for all i ∈ J and v−i ∈ V−i. Moreover, the interval W di
i must not be bounded from

above.

Definition 4 (Weight monotonicity). A social choice function f is called weight monotone

if

∀ vw,d
i , vw

′,d
i ∈ Vi with w < w′ : Ci(f(vw,d

i , v−i)) ≤ d⇒ Ci(f(vw
′,d

i , v−i)) ≤ d

for all i ∈ J and v−i ∈ V−i.

Next, a social choice function is late-on-time separating if any due date that can be com-

mitted to the mechanism and that allows job i to be scheduled as a late job by the scheduling

algorithm is strictly smaller than clatei for all i ∈ J and v−i ∈ V−i.

Definition 5 (Late-on-time separability). A social choice function f is called late-on-time

separating if

∀ d ∈ Q≥0 with winf
i (d) > 0 : d < clatei

for all i ∈ J and v−i ∈ V−i.

Figure 2 illustrates some implications of Definitions 2–5. Consider a job i ∈ J . Because of

Definitions 2 and 3, winf
i (di) is a monotonically decreasing step function. Note that winf

i (di) is

equal to ∞ for all di smaller than ti. Definition 4 is represented by shaded areas in the figure.

The light gray area above the graph of winf
i (di) represents all pairs (di, wi) that result in a

schedule with job i being scheduled as an on-time job if the corresponding valuation function

10



ti clateid1i d2i

(di, wi) with

i scheduled

as late job

(di, wi) with

i scheduled as

on-time job

winf
i (d) :

d ∈ [d1i , d
2
i )

0

wi

di

Figure 2: Plot of winf
i (di)

vwi,di
i is committed to the mechanism by job-owner i. All pairs (di, wi) in the dark gray area

result in schedules with job i being scheduled as a late job. For a given di, the interval W di
i is

defined by the connected light gray area above winf
i (di). As a result of Definition 5, winf

i (di)

is equal to zero for di ≥ clatei .

As we will prove in Section 3.2, each of the properties related to Definitions 2–5 is necessary

and together they are sufficient for a social choice function to be cycle monotone. However, since

there is an unlimited number of potential scheduling algorithms, we introduce an additional

property, referred to as threshold stability, that is equivalent to Definitions 2 and 3 and may be

easier to handle for specific algorithms. A simplified interpretation of this property is as follows:

Let i ∈ J and v−i ∈ V−i be fixed. If there exist two due dates that result in different threshold

values, then the completion time of the selected player i’s job will always (i.e. independent of

the weight) exceed the smaller one of the due dates when committing the larger due date.

Definition 6 (Threshold stability). A social choice function f is called threshold stable if

winf
i (d) > winf

i (d′)⇒ d < d′ ∧ ∀w ∈W d′
i : Ci(f(vw,d′

i , v−i)) > d (2)

for all i ∈ J and v−i ∈ V−i.

As indicated above, a social choice function is threshold monotone and due-date stable iff

it is threshold stable.

Lemma 1. Let f be a social choice function. Then

f is threshold monotone and due-date stable⇔ f is threshold stable.

Proof. The proof is rather simple, so that we restrict ourselves to a sketch.

“⇒”: Assuming f to be threshold monotone but not threshold stable can easily be seen

to contradict f being due-date stable.

11



“⇐”: The fact that f is threshold monotone can easily be proven by contraposition of (2).

Additionally, if f is not due-date stable but threshold monotone, this can easily be shown to

contradict f being threshold stable.

3.2. Incentive Compatibility

We will prove that satisfying Definitions 2–5 at the same time is necessary and sufficient for

incentive compatibility after having introduced a lemma that directly relates to the definition

of cycle monotonicity, i.e. Definition 1. The message of this lemma is that there exists no

sequence of valuation functions of a given player, such that (1) has two succeeding negative

summands.

Lemma 2. Let f be a social choice function satisfying Definitions 4 and 5. Furthermore, let

i ∈ J and v−i ∈ V−i be fixed. There is no sequence vki , v
k+1
i , vk+2

i ∈ Vi with

vki (ak)− vki (ak+1) < 0 ∧ vk+1
i (ak+1)− vk+1

i (ak+2) < 0, (3)

where ak := f(vki , v−i).

Proof. Let i ∈ J and v−i ∈ V−i be arbitrary but fixed. For a given k, denote the due date

and the weight that correspond to vki by dki and wk
i , respectively. First, note that the value

of a valuation function vi ∈ Vi is non-positive by definition. Additionally, if dki < Ci(ak) and

dki < Ci(ak+1), then vki (ak)−vki (ak+1) = −wk
i −(−wk

i ) = 0. Hence, vki (ak)−vki (ak+1) is negative

iff dki < Ci(ak) and dki ≥ Ci(ak+1) with winf
i (dki ) > 0 (because of Definition 4) and we must

have Ci(ak) ≥ clatei > dki ≥ Ci(ak+1), because f satisfies Definition 5. Hence, job i is scheduled

as an on-time job if client i reports vk+1
i , i.e. vk+1

i (ak+1) = 0, as otherwise Ci(ak+1) ≥ clatei .

Thus, we must have vk+1
i (ak+2) > 0 in order for (3) to be true. This, however, is not possible

by definition of vk+1
i , which concludes the proof.

We can now present our main result.

Theorem 2. A social choice function f is cycle monotone iff it satisfies Definitions 2–5, i.e.

iff f is threshold monotone, weight monotone, late-on-time separating, and due-date stable.

Proof. We will first show that f is cycle monotone if it satisfies Definitions 2–5. To do so,

let i ∈ J and v−i ∈ V−i be arbitrary but fixed. Furthermore, consider K ∈ N valuation

functions v1
i , . . . , v

K
i ∈ Vi. Denote the schedule returned by f in case of reporting vki by ak, i.e.

ak := f(vki , v−i), for k ∈ {1, . . . ,K}. Moreover, for all k ∈ {1, . . . ,K}, denote the due date and

the weight that correspond to vki by dki and wk
i , respectively.

12



Obviously, inequality (1) holds if all summands are non-negative. If at least one summand

is negative, we can partition the indices 1, . . . ,K into disjoint subsequences, such that each

subsequence consists of consecutive indices k′, . . . , k′′− 1 (with K +x ≡ x for 1 ≤ x < K) with

vk
′

i (ak′)− vk
′

i (ak′+1) < 0 (4)

and such that

k′′−1∑
j=k′

(
vji (aj)− vji (aj+1)

)
(5)

has exactly one negative summand. Using Lemma 2, we can deduce that each subsequence

consists of at least two consecutive indices.

Let k′, . . . , k′′ − 1 be an arbitrary of the above subsequences as illustrated in Figure 3.

Recall that the value of a valuation function is non-positive by definition. Thus, the only

1K. . . . . . k′ . . . k′′ − 1 k′′ . . . K 1 . . .

subsequence K + x ≡ x for 1 ≤ x < K

z

Figure 3: An arbitrary subsequence

negative summand in (5) has value −wk′
i < 0.

We will prove that there is at least one summand in (5) with a positive value greater than

wk′
i . To do so, we will identify an element z of the subsequence (see Figure 3) that features

the corresponding difference vz−1
i (az−1)− vz−1

i (az) to be larger than wk′
i . Our argumentation

is structured as follows. First, we provide some auxiliary statements. Next, we present a

characterization of the index z and show that z 6= k′+ 1. Hereafter, we prove that wz−1
i > wk′

i .

Finally, we conclude by making a case differentiation (job i is scheduled as a late job or as an

on-time job in az) and proving that vz−1
i (az−1)− vz−1

i (az) = wz−1
i > wk′

i for both cases.

Auxiliary statements: Because of (4) we have Ci(ak′+1) ≤ dk
′

i . Furthermore, winf
i (dk

′
i ) > 0,

because otherwise vk
′

i (ak′) = 0 in contradiction to (4) because of Definition 4. Define Di(d) :=

{d′ ∈ Q≥0 | winf
i (d′) = winf

i (d)}. Hence, winf
i (d) > 0 for all d ∈ Di(d

k′
i ). Moreover, job i

is scheduled as an on-time job in ak′+1, i.e. Ci(ak′+1) ≤ dk
′+1

i , because Definition 5 requires

Ci(ak′+1) ≤ dk
′

i < clatei .

Characterization of z: Denote by z the first (“minimal”) index occurring within k′ +

1, . . . , k′′ (see Figure 3) such that job i is either scheduled as a late job in az or as an on-time

job in az with dzi > d for all d ∈ Di(d
k′
i ). Note that z 6= k′ + 1 because i is not late in ak′+1

and, therefore, z = k′ + 1 would require dk
′+1

i > d for all d ∈ Di(d
k′
i ). Particularly, we would

13



have dk
′+1

i > dk
′

i and winf
i (dk

′
i ) 6= winf

i (dk
′+1

i ), which results in winf
i (dk

′
i ) > winf

i (dk
′+1

i ) by

using Definition 2 and thus induces Ci(ak′+1) > dk
′

i due to Lemma 1 and Definition 6, which

contradicts (4) as mentioned above.

wz−1
i > wk′

i : Hence, job i is scheduled as an on-time job in az−1 with a completion time less

or equal to supDi(d
k′
i ) and there exists a d ∈ Di(d

k′
i ) with dz−1

i ≤ d, because otherwise z would

not be minimal. Thus, we have winf
i (dz−1

i ) > 0 because of Definition 2 and wz−1
i ≥ wmin

i (d)

for all d ∈ Di(d
k′
i ). Furthermore, since Definition 4 is satisfied, we have wk′

i < wmin
i (d) for all

d ∈ Di(d
k′
i ). Therefore, wz−1

i > wk′
i .

Case differentiation: We now have to consider two cases. First, assume that job i is sched-

uled as a late job in az. Then Ci(az) ≥ clatei . Moreover, as shown above, winf
i (dz−1

i ) > 0. There-

fore, together with Definition 5, vz−1
i (az−1)− vz−1

i (az) = 0− (−wz−1
i ) > wk′

i . Second, assume

that job i is scheduled as an on-time job in az and dzi > d for all d ∈ Di(d
k′
i ). Then, in analogy

to the above deliberations based on Definition 2, we have winf
i (dzi ) < winf

i (dk
′

i ). Similarly, since

there is at least one d ∈ Di(d
k′
i ) with dz−1

i ≤ d, we know that winf
i (dz−1

i ) ≥ winf
i (dk

′
i ). It fol-

lows from Lemma 1 and Definition 6 that Ci(az) > dz−1
i and therefore vz−1

i (az−1)−vz−1
i (az) =

0 − (−wz−1
i ) > wk′

i . Hence - as claimed above - in both cases there exists a summand with a

positive value greater than wk′
i in (5).

We will now prove that cycle monotonicity implies the following four properties: threshold

monotonicity, weight monotonicity, late-on-time separability, and due-date stability. In order

to do so, we will show that, in terms of Theorem 1, there exists a cycle of negative length

if at least one of these properties is negated. For each example, we will assume i ∈ J and

v−i ∈ V−i to be fixed and consider a sequence of K ∈ {2, 3} valuation functions v1
i , . . . , v

K
i . As

above, for all k ∈ {1, . . . ,K}, we denote the corresponding weights and due dates by wk
i and

dki , respectively. Moreover, we define ak := f(vki , v−i), k ∈ {1, . . . ,K}.

First, assume that f is not threshold monotone. Then there exist due dates d < d′ with

winf
i (d) < winf

i (d′) and a weight w ∈W d
i with winf

i (d) ≤ w < winf
i (d′).

Chose w′ ∈ Q≥0, such that winf
i (d) ≤ w < w′ < winf

i (d′). Furthermore, set K = 2,

w1
i =w, d1

i =d,

w2
i =w′, and d2

i =d′.

Then the resulting summands of (1) are

v1
i (a1)− v1

i (a2) = 0− (−w) = w, and

v2
i (a2)− v2

i (a1) = −w′ − 0 = −w′.

14



Therefore, (1) is violated and there exists a cycle of negative length.

Now, assume that f is not weight monotone. Then there exist vw,d
i , vw

′,d
i ∈ Vi with w < w′

and Ci(f(vw,d
i , v−i)) ≤ d, such that Ci(f(vw

′,d
i , v−i)) > d.

Set K = 2,

w1
i =w, d1

i =d,

w2
i =w′, and d2

i =d.

Then

v1
i (a1)− v1

i (a2) = 0− (−w) = w, and

v2
i (a2)− v2

i (a1) = −w′ − 0 = −w′,

so that there exists a cycle of negative length.

Next, assume that f is not late-on-time separating. Then there exist values w, d, d′ ∈ Q≥0,

such that winf
i (d′) > 0, Ci(f(vw,d

i , v−i)) > d, and Ci(f(vw,d
i , v−i)) ≤ d′.

Set K = 2,

w1
i =w, d1

i =d,

w2
i =

1

2
winf
i (d′), and d2

i =d′.

Then

v1
i (a1)− v1

i (a2) = −w −

∈{−w,0}︷ ︸︸ ︷
v1
i (a2) ≤ 0, and

v2
i (a2)− v2

i (a1) = −w2
i − 0 = −1

2
winf
i (d′) < 0.

Hence, there exists a cycle of negative length.

Finally, assume that f is not due-date stable. Let w, d ∈ Q≥0 with vw,d
i ∈ Vi and

Ci(f(vw,d
i , v−i)) ≤ d. If f is not due-date stable, there exists a d′ with d ≥ d′ ≥ Ci(f(vw,d

i , v−i))

and winf
i (d) 6= winf

i (d′).

Assume winf
i (d) < winf

i (d′). Chose a weight ŵ ∈ W d
i with winf

i (d) < ŵ < winf
i (d′) and a

15



weight w′ ∈ Q≥0, such that winf
i (d′) > w′ > ŵ > winf

i (d). Set K = 3,

w1
i =ŵ, d1

i =d,

w2
i =w′, d2

i =d′,

w3
i =w, and d3

i =d.

Then the resulting summands of (1) are

v1
i (a1)− v1

i (a2) = 0−

∈{−ŵ,0}︷ ︸︸ ︷
v1
i (a2) ≤ ŵ,

v2
i (a2)− v2

i (a3) = −w′ − 0 = −w′, and

v3
i (a3)− v3

i (a1) = 0− 0 = 0,

so that there exists a cycle of negative length.

If winf
i (d) > winf

i (d′), f is not threshold monotone, so that we refer to the corresponding

part of this proof for a cycle of negative length.

3.3. Payment Functions

If a social choice function f is cycle monotone, Theorem 1 guarantees the existence of

payment functions p1, . . . , pn, such that the mechanism (f, p1, . . . , pn) is incentive compatible.

Nisan [9] proves that payment functions of a client i are unique up to an additive constant.

However, the construction of payment functions in the proof of Theorem 1 is based on finding

shortest paths in a graph with exponentially many nodes, so that it is not clear if it is possible

to efficiently compute the payments in that way. Theorem 3 therefore presents a representation

of payment functions that utilize knowledge about P ||
∑

wiUi and that are easier to analyze

with respect to the complexity of their computation.

Theorem 3. Let f be a social choice function satisfying Definitions 2–5 and let i ∈ J , vw,d
i ∈

Vi, and v−i ∈ V−i. Define

pi(v
w,d
i , v−i) :=


−winf

i (d) if Ci(f(vw,d
i , v−i)) ≤ d,

0 else.

The mechanism (f, p1, . . . , pn) is incentive compatible.

Proof. Denote the due date and weight that correspond to the true valuation function vti of

client i ∈ J by dti and wt
i , respectively. We will show that ui(v

t
i , v−i) = vti(f(vti , v−i)) +

16



pi(v
t
i , v−i) ≥ vti(f(vi, v−i)) + pi(vi, v−i) = ui(vi, v−i) for all i ∈ J , all v−i ∈ V−i, and all vi ∈ Vi.

To do so, we will consider two cases.

First, assume that Ci(f(vti , v−i)) > dti, i.e. job i ∈ J is scheduled as a late job by the

scheduling algorithm if the corresponding job-owner reports the true valuation function. Hence,

ui(v
t
i , v−i) = −wt

i . Obviously, there exists no vi ∈ Vi with Ci(f(vi, v−i)) > dti that results in

a better utility function value for client i, because the value of the client’s true valuation

function does not increase when compared to ui(v
t
i , v−i) (job i remains late with respect to

dti) and the value of the payment function is non-positive. Hence, we will now consider an

arbitrary vi ∈ Vi with Ci(f(vi, v−i)) ≤ dti. By applying Lemma 1 as well as Definitions 2 and

6 we can deduce that client i must report a valuation function with a due date d such that

there exists a d̂ ∈ Di(d
t
i) with d ≤ d̂, where Di(d) := {d′ ∈ Q≥0 | winf

i (d′) = winf
i (d)}. Hence,

winf
i (dti) ≤ winf

i (d). Furthermore, due to Definition 4 and because Ci(f(vti , v−i)) > dti, we have

winf
i (dti) > 0. Hence, by Definition 5, dti < clatei , and therefore Ci(f(vi, v−i)) < clatei , so that

the weight w of the reported valuation function vi must be at least wmin
i (d). Additionally,

note that wt
i ≤ winf

i (dti) because of Definition 4 and the fact that job i is scheduled as a

late job if client i reports vti . Hence, by using Definition 2 once more, we get ui(v
w,d
i , v−i) =

vti(f(vw,d
i , v−i)) + pi(v

w,d
i , v−i) = 0− winf

i (d) ≤ −wt
i = ui(v

t
i , v−i).

Second, consider the case Ci(f(vti , v−i)) ≤ dti. Then ui(v
t
i , v−i) = vti(f(vti , v−i))+pi(v

t
i , v−i) =

0−winf
i (dti). There exist two potential options for client i to try to increase her utility function

value. First, client i can report a larger due date in order to obtain a better payment function

value while still being scheduled as an on-time job. Then, however, Lemma 1, Definition 2

and Definition 6 guarantee that the completion time of job i is no longer less or equal to dti

and the utility function value decreases when compared to ui(v
t
i , v−i). Second, client i can

report a valuation function vi ∈ Vi, such that job i is scheduled as a late job. Then, we get

ui(vi, v−i) = vti(f(vi, v−i)) + pi(vi, v−i) = −wt
i + 0 ≤ −winf

i (dti) = ui(v
t
i , v−i) if dti < clatei and,

as a consequence of Definition 5, ui(vi, v−i) = vti(f(vi, v−i)) + pi(vi, v−i) ≤ 0 = −winf
i (dti) =

ui(v
t
i , v−i) if dti ≥ clatei . Hence, in any case, ui(vi, v−i) ≤ ui(v

t
i , v−i).

4. Applying Our Results to an Example Algorithm for 1|priv{wi, di},Ui|
∑

wiUi

In this Section, we will illustrate the use of Theorem 2 by analyzing an example algorithm

that has recently been proposed in the literature. More specifically, we will consider a heuristic

approach introduced by Kovalyov and Pesch [2], who consider a mechanism design setting

with risk averse job agents and who restrict themselves to the case of one machine, i.e. to the

scheduling problem 1||
∑

wiUi. Their algorithm has some degrees of freedom, that we constrain

by using concrete sub-algorithms. The resulting heuristic is presented in Algorithm 1. It is

17



referred to as GreedyWeight [2]. It makes use of the Earliest Due Date (EDD) order of jobs,

Algorithm 1 GreedyWeight

Step 1 Initialize a list L by sorting all jobs according to their weights in non-increasing order, breaking ties
with respect to their indices (smaller indices first). Let L[j] denote the j-th element of L. Initialize an
empty set of on-time jobs, Searly, an empty set of late jobs, Slate, and an empty set Stemp. Set k := 1.

Step 2 If k = n + 1, then go to Step 3. Else, set Stemp := Searly ∪ {L[k]}. Construct an EDD sequence SEDD

of the jobs in the set Stemp, breaking ties according to the job-indices (smaller indices first). If all jobs
of sequence SEDD are on time, then set Searly := Stemp. If at least one job of the sequence SEDD is
late, then set Slate := Slate ∪ {L[k]}. Set k := k + 1 and repeat Step 2.

Step 3 Output a schedule S∗, which is constructed as follows. On-time jobs are scheduled according to the
EDD sequence of Searly, breaking ties as described in Step 2. Afterwards, late jobs of the set Slate are
scheduled according to their SPT sequence.

which refers to an ordering of jobs such that a job with smaller due date appears earlier than a

job with larger due date. Moreover, it uses the Shortest Processing Time (SPT) order of jobs,

which is such that a job with smaller processing time appears earlier than a job with larger

processing time. Kovalyov and Pesch [2] prove GreedyWeight to be an (n− 1)-approximation

algorithm and show that it can be implemented to run in O(n2).

In order to apply Theorem 2, we will prove that the social choice function that is established

by Algorithm 1, which we will refer to by f1 throughout the remainder of this section, satisfies

Definitions 4, 5 and 6. We will begin with Definition 4.

Proposition 1. f1 is weight monotone because

Ci(f(vw,d
i , v−i)) = Ci(f(vw

′,d
i , v−i)) ∀ vw,d

i , vw
′,d

i ∈ Vi, w, w
′ ≥ wmin

i (d), w 6= w′

for all i ∈ J and v−i ∈ V−i.

Proof. Let i ∈ J and v−i ∈ V−i be arbitrary but fixed. Assume there are weights w,w′ ≥

wmin
i (d) with Ci(f(vw,d

i , v−i)) 6= Ci(f(vw
′,d

i , v−i)) and w.l.o.g. w < w′. Note that these

weights are solely considered in Step 1 of Algorithm 1. Define aw := f(vw,d
i , v−i) and aw′ :=

f(vw
′,d

i , v−i). In the following, we will consider two cases.

We will show that all jobs that are on time in aw are on time in aw′ as well, and that all jobs

that are late in aw are also late in aw′ . Hence, the EDD sequence of on-time jobs is identical

in aw and aw′ , so that Ci(aw) = Ci(aw′), which is a contradiction. To do so, denote the sorted

lists of jobs resulting from Step 1 of Algorithm 1 with respect to the weight of job i by L(w)

and L(w′), respectively (see Figure 4). Obviously, the set of jobs Γ1 that precede i in L(w′) are

considered in the same iteration of Step 2 of Algorithm 1 in the process of determining aw and

aw′ . Hence, these jobs cannot be on time in aw and late in aw′ or vice versa. Now, consider

the set of jobs Γ2 that precede i in L(w) and succeed i in L(w′). Assume the non-trivial case

Γ2 6= ∅. Obviously, if one of these jobs is late in aw, it must also be late in aw′ , because i is

18



h iL(w) =

Γ1 Γ2 Γ3

i hL(w′) =

Figure 4: Sorted lists of jobs L(w) and L(w′) with w < w′

considered in an earlier iteration of Step 2 of Algorithm 1 when determining aw′ than when

determining aw. Similarly, if one of these jobs, say h, is on time in aw, it is possible to finish

both i and h on time when applying Algorithm 1. Hence, the fact that job i is considered in

an earlier iteration of Step 2 when determining aw′ cannot prevent h from being scheduled on

time in aw′ as well. We are left with the set of jobs Γ3 that succeed i in L(w). As none of

the jobs of Γ1 and Γ2 have switched their status (from late to on-time or vice versa) in aw and

aw′ , the same must hold for all jobs in Γ3. Hence, as mentioned before, the EDD sequence of

on-time jobs is identical in aw and aw′ , so that Ci(aw) = Ci(aw′), which is a contradiction.

We will now turn our attention to Definition 5.

Proposition 2. f1 is late-on-time separating.

Proof. Let i ∈ J and v−i ∈ V−i be arbitrary but fixed. Note that all vi ∈ Vi that result in

a schedule with job i being scheduled as a late job feature the same completion time clatei .

This is easy to see, because Algorithm 1 schedules all late jobs after the on-time jobs and the

order of late jobs is independent of their weights and due dates. Furthermore, as specified in

Proposition 1, all w ∈ Q≥0 that result in job i being scheduled as an on-time job for a given

d ∈ Q≥0 feature the same completion time of job i. Denote this completion time by coni (d).

Obviously, if winf
i (d) > 0 for a given d ∈ Q≥0, we must have clatei > coni (d), and there exists

no w ∈ Q≥0 that results in i being scheduled as an on-time job with completion time clatei .

Thus, for all w ∈ Q≥0 with Ci(f(vw,d
i , v−i)) = clatei , we have clatei > d and, therefore, f1 is

late-on-time separating.

We are left with having to analyze f1 in the context of Definition 6.

Proposition 3. f1 is threshold stable.

Proof. Let i ∈ J and v−i ∈ V−i be arbitrary but fixed. Furthermore, let winf
i (d) > winf

i (d′)

and choose w′ ∈W d′
i such that w′ < winf

i (d). Denote the iteration in which job i is considered

in Step 2 of Algorithm 1 if client i reports weight w′ by k, and denote the temporary EDD

schedules that result from this iteration by ad
′

k if i additionally reports d′ and adk in case of

19



reporting d. Denote the set of jobs that are known to be on time after iteration k− 1 of Step 2

by A. Moreover, given a temporary EDD schedule atemp, denote the completion time of a job

j included in this schedule by Cj(a
temp).

Obviously, job i is scheduled as a late job if client i reports vw
′,d

i and as an on-time job if

i reports vw
′,d′

i .

Assume d > d′ as illustrated in Figure 5. Then the only job that can potentially be late

l iadk =

i lad
′

k =

Ci(adk) = Cl(a
d′
k )

Figure 5: Temporary schedules ad
k and ad′

k with d > d′

in adk is job i, because every other job is completed at the same time or earlier than it is

completed in ad
′

k , where all jobs are on time. Denote the job that directly precedes i in adk

by l. Furthermore, denote l’s reported valuation function by vŵ,d̂
l . Obviously, we have d ≥ d̂

(EDD sequence of jobs). Moreover, Cl(a
d′
k ) ≤ d̂ and Ci(a

d
k) = Cl(a

d′
k ). Summing up, we have

Ci(a
d
k) = Cl(a

d′
k ) ≤ d̂ ≤ d. Therefore, i is on time when reporting vw

′,d
i , which is a contradiction.

Hence, we must have d < d′.

Now assume there is at least one job j ∈ A with reported valuation function vw̄,d̄
j and

d ≤ d̄ < Cj(a
d
k) as illustrated in Figure 6. Since all jobs of the set A ∪ {i} must be on time in

ad
′

k and because the due date of job i is the only one that differs when generating the schedules,

job i must succeed job j in ad
′

k . Therefore, Ci(a
d′
k ) ≥ Cj(a

d′
k ) + ti. Now note that the jobs of

the set A that proceed j in adk proceed j in ad
′

k as well. Hence Cj(a
d
k) = Cj(a

d′
k ) + ti. Therefore,

Ci(f(vw
′,d′

i , v−i)) ≥ Ci(a
d′
k ) ≥ Cj(a

d′
k ) + ti = Cj(a

d
k) > d̄ ≥ d.

i jadk =

j iad
′

k =

d̄

Figure 6: Temporary schedules ad
k and ad′

k with d < d′

Similarly, if there is no job j ∈ A with d ≤ d̄ < Cj(a
d
k), we must have Ci(a

d
k) > d.

Additionally, increasing the due date to d′ does not result in an earlier position in the schedule.

Therefore, Ci(f(vw
′,d′

i , v−i)) ≥ Ci(a
d′
k ) ≥ Ci(a

d
k) > d.

From the above deliberations we may conclude: winf
i (d) > winf

i (d′) ⇒ d < d′ ∧ ∀w ∈

W d′
i , w < winf

i (d) : Ci(f(vw,d′
i , v−i)) > d. When additionally considering Proposition 1, we

immediately get (2).

20



By applying Lemma 1 and Theorem 2, we can now conclude:

Corollary 1. f1 is cycle monotone.

In order to obtain a truthful polynomial time mechanism based on Algorithm 1, we need to

show how to compute the payments of Theorem 3 in polynomial time, i.e. we need to analyze

the time complexity of having to compute winf
i (d) for a client i ∈ J , who has committed a

valuation function vw,d
i ∈ Vi to the mechanism based on f1. Note that, given the vector of

valuation functions committed to the mechanism, it is easy to check in polynomial time if

winf
i (d) = 0 or winf

i (d) =∞. If neither is the case, then there must exist a player j ∈ J , j 6= i,

who has committed the valuation function vŵ,d̂
j ∈ Vj , such that winf

i (d) = ŵ. Hence, we can

perform a binary search on all reported weights to find winf
i (d). This results in O(log n) calls

of Algorithm 1, which obviously is polynomial.

5. Summary and Future Research

This paper has studied the problem of designing polynomial time truthful mechanisms for

scheduling two-parameter job agents on parallel identical machines to minimize the weighted

number of late jobs. The agents are assumed to have private information on their weights and

due dates, while processing times are publicly known. We have contributed to the literature

by deriving a set of conditions that is equivalent to cycle monotonicity, which is a general

condition for incentive compatible mechanisms in non-convex valuation function domains. Our

results have utilized knowledge about the relevant scheduling problems, so that the resulting

conditions are easier to implement and verify than the general condition of cycle monotonicity.

We have illustrated this fact by making use of our results to prove incentive compatibility of

a mechanism that is established by an example algorithm that has recently been proposed by

Kovalyov and Pesch [2] for the case of one machine.

Future research may focus on several issues. With respect to the scheduling problems

considered in this paper, it may be interesting to investigate if other heuristics that have

been proposed in the literature are suitable for the construction of truthful polynomial time

mechanisms by making use of our results. Further work may also analyze the implications of

assuming the agents to be risk averse or risk seeking. Furthermore, there remain plenty of

interesting scheduling problems that have not yet been analyzed in the context of algorithmic

mechanism design.

21



Acknowledgement

This work has been supported by the German Science Foundation (DFG) through the grant

“Scheduling mechanisms for rail mounted gantries with regard to crane interdependencies” (PE

514/22-1).

References

References

[1] N. Nisan, A. Ronen, Computationally feasible VCG mechanisms, in: Proceedings of the

2nd ACM Conference on Electronic Commerce (EC’00), ACM, New York, 242–252, 2000.

[2] M. Y. Kovalyov, E. Pesch, A game mechanism for single machine sequencing with zero

risk, Omega 44 (2014) 104–110.

[3] N. Nisan, T. Roughgarden, E. Tardos, V. V. Vazirani (Eds.), Algorithmic Game Theory,

Cambridge University Press, Cambridge, 2007.

[4] B. Heydenreich, R. Müller, M. Uetz, Games and mechanism design in machine scheduling

- an introduction, Production and Operations Management 16 (4) (2007) 437–454.

[5] D. Kress, S. Meiswinkel, E. Pesch, Mechanism Design for Machine Scheduling Problems –

Classification and Literature Overview, Working Paper, 2017.

[6] W. Vickrey, Counterspeculation, auctions, and competitive sealed tenders, The Journal of

Finance 16 (1) (1961) 8–37.

[7] E. H. Clarke, Multipart Pricing of Public Goods, Public Choice 11 (1) (1971) 17–33.

[8] T. Groves, Incentives in teams, Econometrica 41 (4) (1973) 617–631.

[9] N. Nisan, Introduction to mechanism design (for computer scientists), in: N. Nisan,

T. Roughgarden, E. Tardos, V. V. Vazirani (Eds.), Algorithmic Game Theory, Cambridge

University Press, Cambridge, 209–241, 2007.

[10] R. Lavi, C. Swamy, Truthful mechanism design for multidimensional scheduling via cycle

monotonicity, Games and Economic Behavior 67 (1) (2009) 99–124.

[11] G. Christodoulou, E. Koutsoupias, Mechanism Design for Scheduling, Bulletin of the

EATCS 97 (2009) 40–59.

[12] N. Nisan, A. Ronen, Algorithmic mechanism design, in: Proceedings of the 31st annual

ACM Symposium on Theory of Computing (STOC’99), ACM, New York, 129–140, 1999.

22



[13] A. Archer, É.. Tardos, Truthful mechanisms for one-parameter agents, in: Proceedings

of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS’01), IEEE,

482–491, 2001.

[14] G. Christodoulou, E. Koutsoupias, A. Vidali, A lower bound for scheduling mechanisms,

Algorithmica 55 (4) (2009) 729–740.

[15] E. Koutsoupias, A. Vidali, A lower bound of 1+ ϕ for truthful scheduling mechanisms,

Algorithmica 66 (1) (2013) 211–223.

[16] E. Angel, E. Bampis, F. Pascual, A.-A. Tchetgnia, On truthfulness and approximation for

scheduling selfish tasks, Journal of Scheduling 12 (5) (2009) 437–445.

[17] E. Angel, E. Bampis, F. Pascual, Truthful algorithms for scheduling selfish tasks on parallel

machines, Theoretical Computer Science 369 (1–3) (2006) 157–168.

[18] E. Angel, E. Bampis, N. Thibault, Randomized truthful algorithms for scheduling selfish

tasks on parallel machines, Theoretical Computer Science 414 (1) (2012) 1–8.

[19] V. Auletta, R. De Prisco, P. Penna, P. Persiano, How to route and tax selfish unsplittable

traffic, in: Proceedings of the 16th annual ACM Symposium on Parallelism in Algorithms

and Architectures (SPAA’04), ACM, New York, 196–205, 2004.

[20] G. Christodoulou, L. Gourvès, F. Pascual, Scheduling selfish tasks: about the performance

of truthful algorithms, in: G. Lin (Ed.), Computing and Combinatorics, Springer, Berlin,

187–197, 2007.

[21] J. Duives, B. Heydenreich, D. Mishra, R. Müller, M. Uetz, On optimal mechanism design

for a sequencing problem, Journal of Scheduling 18 (1) (2015) 45–59.

[22] R. Hoeksma, M. Uetz, Two dimensional optimal mechanism design for a sequencing prob-

lem, in: M. Goemans, J. Correa (Eds.), Integer Programming and Combinatorial Opti-

mization, Springer, Berlin, 242–253, 2013.

[23] R. Hain, M. Mitra, Simple sequencing problems with interdependent costs, Games and

Economic Behavior 48 (2) (2004) 271–291.

[24] J. Suijs, On incentive compatibility and budget balancedness in public decision making,

Economic Design 2 (1) (1996) 193–209.

[25] M. Mitra, Mechanism design in queueing problems, Economic Theory 17 (2) (2001) 277–

305.

23



[26] H. Hamers, F. Klijn, J. Suijs, On the balancedness of multiple machine sequencing games,

European Journal of Operational Research 119 (3) (1999) 678–691.

[27] M. Mitra, Incomplete information and multiple machine queueing problems, European

Journal of Operational Research 165 (1) (2005) 251–266.

[28] B. Heydenreich, R. Müller, M. Uetz, Mechanism design for decentralized online machine

scheduling, Operations Research 58 (2) (2010) 445–457.

[29] R. Porter, Mechanism design for online real-time scheduling, in: Proceedings of the 5th

ACM Conference on Electronic Commerce (EC’04), ACM, New York, 61–70, 2004.

[30] R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Optimization and

approximation in deterministic sequencing and scheduling: a survey, Annals of Discrete

Mathematics 5 (1979) 287–326.

[31] M. R. Garey, D. S. Johnson, Computers and Intractability - A Guide to the Theory of

NP-Completeness, Freeman, New York, 1979.

[32] M. R. Garey, D. S. Johnson, “Strong” NP-Completeness Results: Motivation, Examples,

and Implications, Journal of the ACM 25 (3) (1978) 499–508.

[33] R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller, J. W. Thatcher,

J. D. Bohlinger (Eds.), Complexity of Computer Computations, Plenum Press, New York,

85–103, 1972.

[34] E. L. Lawler, J. M. Moore, A functional equation and its application to resource allocation

and sequencing problems, Management Science 16 (1) (1969) 77–84.

[35] V. Krishna, Auction Theory, Academic Press, Amsterdam, 2010.

[36] R. Lavi, A. Mu’alem, N. Nisan, Towards a characterization of truthful combinatorial auc-

tions, in: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer

Science (FOCS’03), IEEE, 574–583, 2003.

[37] M. Saks, L. Yu, Weak monotonicity suffices for truthfulness on convex domains, in: Pro-

ceedings of the 6th ACM conference on Electronic Commerce (EC’05), ACM, New York,

286–293, 2005.

[38] S. Bikhchandani, S. Chatterji, R. Lavi, A. Mu’alem, N. Nisan, A. Sen, Weak monotonicity

characterizes deterministic dominant-strategy implementation, Econometrica 74 (4) (2006)

1109–1132.

24



[39] K. Roberts, The characterization of implementable choice rules, in: J.-J. Laffont (Ed.),

Aggregation and Revelation of Preferences, North-Holland, Amsterdam, 321–348, 1979.

25


	Introduction and Contribution
	Basic Problem Setting and Applications
	Related Literature
	Contribution and Outline of this Paper

	Preliminaries
	Scheduling Domain
	Mechanism Design Domain
	Additional notation
	Cycle Monotonicity

	Incentive Compatible Mechanisms for P|priv{wi,di},Ui|wi Ui
	Properties of Social Choice Functions
	Incentive Compatibility
	Payment Functions

	Applying Our Results to an Example Algorithm for 1|priv{wi,di},Ui|wi Ui
	Summary and Future Research

