
Which items should be stored together? A basic partition problem to
assign storage space in group-based storage systems

Dominik Kressa,∗, Nils Boysenb, Erwin Pescha,c

aUniversity of Siegen, Management Information Science, Kohlbettstraße 15, 57068 Siegen, Germany
bFriedrich-Schiller-University Jena, Operations Management, Carl-Zeiß-Straße 3, 07743 Jena, Germany

cCenter of Advanced Studies in Management, HHL Leipzig, Jahnallee 59, 04109 Leipzig, Germany

Abstract

We consider a basic partition problem that subdivides stock keeping units (SKUs) into disjoint

subsets, such that the minimum number of groups has to be accessed when retrieving a given

order set under a pick-by-order policy. We formalize this SKU partition problem and show

its applicability in a wide range of storage systems that are based on separating their storage

space into groups of SKUs stored in separate areas; examples are carousel racks and mobile

shelves. We analyze the computational complexity and propose two mathematical models for

the problem under consideration. Furthermore, we present an ejection chain heuristic and a

branch and bound procedure. We analyze these algorithms and the mathematical models in

computational tests.

Keywords: Warehousing, Storage assignment, Partitioning, Ejection chain

This is an Accepted Manuscript of an article published by Taylor & Francis in IISE Transactions
on 02 Aug 2016, available online: http://dx.doi.org/10.1080/0740817X.2016.1213469

1. Introduction

The storage assignment problem is among the most essential decision problems to be solved

in any warehouse. Each stock keeping unit (SKU) is to be assigned a storage position from

where it is to be retrieved during order picking. In many warehouses, the detailed slotting,

i.e., the decision on the specific shelf each SKU is stored in, is less of an issue, but the problem

rather reduces to a partition problem; SKUs are to be jointly stored in one area or group, so

that picking-orders can efficiently and conveniently be retrieved without having to access too

many groups. In this context, we treat the following basic partition problem, which we denote

as the SKU partition problem: Consider a given set of SKUs, which are to be partitioned into

groups of equal size, and a deterministic set of picking-orders each defining a subset of SKUs

demanded by an order’s customer. Depending on the partitioning of items, orders require

different numbers of groups to be accessed during order picking. We refer to these numbers as

∗Corresponding author
Email addresses: dominik.kress@uni-siegen.de (Dominik Kress), nils.boysen@uni-jena.de (Nils

Boysen), erwin.pesch@uni-siegen.de (Erwin Pesch)

http://dx.doi.org/10.1080/0740817X.2016.1213469

the orders’ group numbers. Our objective is to find a partitioning of SKUs that minimizes the

weighted sum of group numbers over all picking-orders.

Let us illustrate the SKU partition problem based on an example: Consider n = 12 SKUs,

s1, s2, . . . , s12, to be partitioned into k = 2 groups, each of size C = n
k = 6, and m = 5

picking-orders, o1 = {s1, s2, s6}, o2 = {s1, s4, s10, s11}, o3 = {s3, s7, s9}, o4 = {s5, s8, s12}, and

o5 = {s9, s11}, which all have weight wσ = 1, σ ∈ {1, . . . ,m}. Two different solutions for this

problem instance are depicted in Figure 1, where orders are represented by edges connecting

the relevant SKUs. While the first solution (Figure 1a) contains only a single order, o5, that

requires an access of both groups during retrieval, the second solution (Figure 1b) has two of

these orders, i.e., o2 and o4. Thus, the objective values of these solutions, i.e., the total number

of groups accessed when retrieving all orders, amount to m+1 = 6 and m+2 = 7, respectively.

s1 s2

s4 s6

s10 s11

group 1

s3 s5

s7 s8

s9 s12

group 2

(a) First solution

s1 s2

s4 s6

s10 s12

group 1

s5 s3

s8 s7

s11 s9

group 2

(b) Second solution

Figure 1: Two solutions to an example instance of the SKU partition problem

1.1. Applications and literature review

In general, partition problems have plenty potential applications in a wide range of areas.

We, however, focus on warehousing and introduce three applications (see Figure 2), where the

assignment of storage space to SKUs corresponds to the SKU partition problem.

A carousel (see Figure 2a) is a special kind of automated storage and retrieval system, in

which linked shelves or drawers are turned in an oval closed loop. Required SKUs are turned

towards the front and are accessed (typically by a human order picker) via a window-like pick

face. These parts-to-picker systems either rotate horizontally or vertically and they are typically

applied to store small or medium sized items in a space-efficient, yet easy to access manner. A

recent literature survey on carousels is provided by Litvak & Vlasiou (2010). A similar system,

to which our SKU partition problem is also applicable, is based on vertical lift modules, where

SKUs are stored on trays brought to the pick face by some lift (see, for example, Meller &

Klote, 2004). Depending on the current position of the loop, the picker can conveniently access

all active shelves that are currently displayed in the pick face. A major source for picker idle

time is the time it takes to rotate the carousel in order to change the set of shelves presented in

2

(a) Vertical carousel

(b) Mobile shelves

(c) Pick-to-belt with stat. pickers

Figure 2: Applications of the SKU partition problem

the pick face. If we think of a subset of SKUs that can simultaneously be accessed as a group,

then our basic partition problem can directly be applied to determine groups that minimize

the number of carousel moves when having to retrieve a given order set. The order weights

can be applied to indicate the frequency with which each order (presumably) occurs. Once a

grouping of SKUs is obtained, groups are to be assigned to specific shelf segments. However,

this aspect is beyond the scope of this paper.

A vast body of literature on carousels has accumulated over the recent decades. Instead

of trying to summarize all these papers, we refer to the excellent survey paper by Litvak &

Vlasiou (2010). Most of these papers treat decision problems differing from the one considered

in this paper, e.g., order sequencing or throughput estimation. The existing papers on the

storage assignment problem in carousels either treat random storage (Hwang & Ha, 1991), a

two-class based storage (Ha & Hwang, 1994; Hwang & Ha, 1994), presuppose the so-called

organ pipe arrangement (Abdel-Malek & Tang, 1994; Bengü, 1995; Litvak, 2006; Vickson &

Fujimoto, 1996), or treat shared storage, where SKUs of the same type are stored in multiple

positions (Hassini, 2008; Jacobs et al., 2000; Kim, 2005). All these approaches considerably

deviate from our group-based view on the storage location problem in carousels. The main

distinction of our view on the problem is a given order set, which is often not yet available when

deciding on the storage locations, e.g., when facing highly volatile demands of final customers.

However, given order sets are realistic in intermediate warehouses, which have to repeatedly

assemble picking orders for parts demanded by predefined, cyclically produced production lots.

A more detailed discussion of our assumptions is provided in Section 2.3.

Another form of compact storage relies on mobile shelves (see Figure 2b). Here, the parallel

racks of a warehouse are close-packed and mounted on rails, so that the neighboring racks need

3

to be moved aside to open a specific aisle that allows access to a rack. Traditionally, mobile

shelves (also denoted as roller racks) are moved manually, e.g., by turning a star handle, and

applied for storing rarely accessed books in libraries. However, mobile rack systems can also

be automated, which means that some strong engine is applied to move the racks once a

button or ripcord is activated. Automated mobile racks are mainly applied in refrigerated

warehouses, e.g., for frozen food or pharmaceuticals, where saving energy by compact storage

is an important issue (Boysen et al., 2014). Fully loaded racks are very heavy, so that moving

the racks and opening an aisle causes considerable waiting time for a picker (with or without a

picking vehicle). Warehouse equipment manufacturer SSI Schäfer (2014), for instance, reports

on a real-world system where the racks only move with 4 m/min compared to 115 m/min

accomplished by the picking vehicle. In such a setting, waiting due to aisle movements becomes

the main driver of picking performance, which in turn gives rise to our basic partition problem.

Again, a suited partition of SKUs to be accessed via the same aisle reduces the aisle movement

when retrieving a given order set.

In spite of their long tradition, just a few papers on mobile shelves have been published.

The few papers existing rather treat the order sequence problem (Boysen et al., 2014; Chang

et al., 2007; Hu et al., 2009) and assume given storage locations.

Especially in the automotive industry, the sequencing of parts required by the final as-

sembly lines is often carried out in multiple, u-shaped pick stations (see Figure 2c), which

are interconnected by a conveyor belt system distributing totes, bins or containers associated

with the picking-orders (Boysen et al., 2015). Typical picking stations contain man-high racks

closely packed in a u-shaped area, so that a picker can retrieve the items located in his/her

area without excessive walking. As processing an order in a station requires lead time, e.g.,

for receiving a container from the conveyor, scanning it, and identifying the demanded parts

on the pick list, it seems, thus, advantageous to partition SKUs among stations, such that the

number of station visits over all picking-orders is minimized.

Literature on stationary pickers in u-shaped stations is rare. Only Glock & Grosse (2012)

treat the storage location and order processing in these stations. They, however, treat a far

more complex industry case, which bears no resemblance to our problem.

With regard to its mathematical structure, our SKU partition problem has some similarities

to graph partitioning and vertex coloring. However, to the best of the authors’ knowledge such

a problem has yet not been treated in these areas. Thus, it can be concluded that the SKU

partition problem has not been covered in the literature and has a wide range of potential

applications.

4

1.2. Contribution and paper structure

In this paper we will analyze the SKU partition problem, which - as described above -

is a basic decision problem reducing the group-based storage assignment it to its very core.

We aim to compare two mathematical models and develop efficient solution algorithms. The

problem under consideration can then serve as a building block or elementary subproblem in

all of the applications described in Section 1.1. In the following, however, we focus on one of

the applications, i.e., the storage assignment in carousel racks.

The paper is structured as follows. In Section 2, we provide a formal definition of the SKU

partition problem, accompanied by an analysis of its computational complexity (Section 2.1),

mathematical models (Section 2.2), and a discussion of simplifying assumptions with respect

to the application of storage assignment in carousel racks (Section 2.3). Section 3 introduces

solution algorithms. This includes a heuristic “ejection chain” procedure in Section 3.1 as

well as a branch and bound approach in Section 3.2. A comprehensive computational study

is subject of Section 4. The mathematical models and the algorithms are analyzed in Section

4.1. The effectiveness of the group-based view with respect to picker idle time is investigated

in Section 4.2. Finally, Section 5 concludes the paper.

2. Detailed problem definition and analysis

Let S = {s1, . . . , sn}, |S| = n, be the set of SKUs. Furthermore, define the order set O,

|O| = m, to be the set of picking-orders oσ, σ = 1, . . . ,m, i.e., O = {o1, . . . , om}. Each picking-

order oσ ∈ O is represented by the set of SKUs demanded within the order, i.e., oσ ⊆ S.

Furthermore, each picking-order oσ ∈ O is assigned a nonnegative weight wσ ∈ N, which

corresponds to the frequency with which oσ is to be picked. We refer to the number of SKUs

within order oσ ∈ O by |oσ|. Our task is to partition S into a given number of k groups, i.e.,

disjoint subsets S1, . . . , Sk with
⋃
j∈{1,...,k} Sj = S. For a given partitioning, we define

χ(oσ) :=

k∑
j=1

H (|oσ ∩ Sj |)

as the group number of order oσ ∈ O, i.e., the number of groups that have to be accessed when

picking it. Here,

H(δ) =


0 if δ ≤ 0

1 if δ > 0

is the Heaviside step function. Our SKU partition problem aims to determine a partitioning

of S, such that all groups have equal size C, i.e., |Sj | = n
k = C ∀ j = 1, . . . , k, and the total

5

(weighted) number of groups that have to be accessed when retrieving all orders is minimized,

i.e., min→ F (S1, . . . , Sk) =
∑

oσ∈O χ(oσ) · wσ.

In what follows, we will assume that C > 1 because the case C = 1 is trivial.

2.1. Computational complexity

Consider an edge-weighted graph G = (V,E) with vertex set V and edge set E. If V is

to be partitioned into two non-empty components without any restriction on the size of these

subsets and such that the sum of the edge weights of the edges incident to vertices of different

components is minimum, then this problem (the 2-Cut problem) can be solved in polynomial

time by a repeated application of a Max-Flow algorithm (Karp, 1972). However, when the

size of both subsets is to be the same, the 2-Cut problem is strongly NP-hard (Garey et al.,

1976). This problem is often called the (weighted) bisection problem; see Karpinski (2002) for

approximability results.

We will now show that SKU partition is NP-hard in the strong sense by reduction from

the bisection problem.

Consider an instance G(V,E) of the bisection problem with an even number n of vertices

in set V and m edges in set E. For the sake of simplicity, consider unit edge weights. Note,

however, that the same reasoning applies for positive and integer edge weights that are equal

for all edges in E.

Construct an instance of SKU partition with n SKUs and k = 2. Assume that there are

m orders with two different SKUs each. Each order can be identified with an edge in E and

there is a one-to-one correspondence between SKUs and vertices of G. The SKUs of an order

are assumed to be identical to the SKUs assigned to both adjacent vertices that correspond to

the order-defining edge in G. Let B be a given integer.

Assume there is a bisection of V into two subsets V1 and V2 of the same size, where the

number of edges that connect vertices from both subsets does not exceed B. Assign all SKUs

that correspond to vertices of V1 to the first group and those SKUs identified with vertices

of V2 to the second group of the SKU partition instance. It is immediately obvious that the

number of orders that pick SKUs from both groups does not exceed the value of B if there is

a bisection with at most B edges in the cut. Thus, we have:

Theorem 1. The SKU partition problem is strongly NP-hard, even if the order weights wσ are

equal (and non-zero) for all σ = 1, . . . ,m, k = 2, and each order consists of only two SKUs.

6

2.2. Mathematical models for the SKU partition problem

The SKU partition problem can be expressed as a mixed integer programming (MIP) model

in multiple ways. A straightforward model uses variables

xij :=


1 if si is assigned to Sj ,

0 else,

∀ i ∈ {1, . . . , n}, j ∈ {1, . . . , k},

and

yσj :=


1 if Sj is accessed when picking oσ,

0 else,

∀ j ∈ {1, . . . , k}, σ ∈ {1, . . . ,m}.

Additionally, we define the following binary parameters:

aσi :=


1 if si is demanded within oσ,

0 else,

∀ i ∈ {1, . . . , n}, σ ∈ {1, . . . ,m}.

Then, a mathematical model is as follows.

.min
x,y

m∑
σ=1

k∑
j=1

wσyσj (1)

. s.t. .
k∑
j=1

xij = 1 . ∀ i ∈ {1, . . . , n}, (2)

.

n∑
i=1

xij = C . ∀ j ∈ {1, . . . , k}, (3)

.aσixij ≤ yσj . ∀ i ∈ {1, . . . , n}, σ ∈ {1, . . . ,m}, j ∈ {1, . . . , k}, (4)

.xij ∈ {0, 1} . ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . , k}, (5)

.yσj ≥ 0 . ∀σ ∈ {1, . . . ,m}, j ∈ {1, . . . , k}. (6)

Objective function (1) minimizes the total weighted number of group access operations

over all picking-orders. Constraints (2) and (3) ensure that each SKU is assigned to a group

and that the maximum group size is considered, respectively. In (4), care is taken that once an

SKU is contained in an order and assigned to a group, then this group is to be accessed when

retrieving the order. Finally, the domains of variables are defined in (5) and (6). Note that

yσj , σ ∈ {1, . . . ,m}, j ∈ {1, ..., k}, need not be defined as a binary variable, since these values

are guaranteed automatically.

Another model is based on mathematical formulations of the well-known clique partitioning

7

problem (see, for example, Dorndorf & Pesch, 1994; Jaehn & Pesch, 2013, and the references

therein). Let

zij :=


1 if si and sj are stored in the same group,

0 else,

∀ i, j ∈ {1, . . . , n}, j > i, (7)

and define continuous nonnegative variables qσij for all oσ ∈ O and si, sj ∈ oσ, i < j. qσij takes

the value 1, if SKUs si and sj , i < j, are in the same group and in the same order oσ and

if there exists no SKU sl, l < i, within the same group that is included in oσ as well. If si

and sj are not in the same group, then qσij is zero. An example is presented below. Then a

mathematical formulation of SKU Partition is as follows.

.min
z,q

m∑
σ=1

wσ(|oσ| −
∑
si∈oσ

∑
sj∈oσ ,j>i

qσij) (8)

. s.t. .
∑

j∈{1,...,i−1}

zji +
∑

j∈{i+1,...,n}

zij = C − 1. ∀ i ∈ {1, . . . , n}, (9)

.zij + zjl − zil ≤ 1 . ∀ 1 ≤ i < j < l ≤ n, (10)

.zij − zjl + zil ≤ 1 . ∀ 1 ≤ i < j < l ≤ n, (11)

.− zij + zjl + zil ≤ 1 . ∀ 1 ≤ i < j < l ≤ n, (12)

.qσij ≤ zij . ∀ oσ ∈ O, si, sj ∈ oσ, i < j (13)

.qσjl ≤ 2− (zij + zil) . ∀ oσ ∈ O, si, sj , sl ∈ oσ, i < j < l (14)

.zij ∈ {0, 1} . ∀ i, j ∈ {1, . . . , n}, i < j, (15)

.qσij ≥ 0 . ∀ oσ ∈ O, si, sj ∈ oσ, i < j. (16)

Constraints (9) guarantee that each group is composed of exactly C SKUs. Constraints

(10)–(12) are well known from mathematical formulations of the clique partitioning problem

(Dorndorf & Pesch, 1994; Jaehn & Pesch, 2013). They guarantee transitivity, i.e., if SKUs

si and sj belong to the same group and SKUs sj and sl belong to the same group, then si

and sl must also belong to the same group. Constraints (13) set the continuous variables qσij ,

oσ ∈ O and si, sj ∈ oσ, i < j, to zero if SKUs si and sj are not in the same group. Restrictions

(14) set qσjl, oσ ∈ O and si, sj , sl ∈ oσ, i < j < l, to zero, if SKUs si, sj and sl are in the

same group. Observe that the sum over all continuous variables that are related to a specific

picking-order oσ ∈ O is directly related to the number of group access operations needed to

pick oσ. An example is presented in Figure 3, where the SKUs have been partitioned into

two groups, S1 = {s1, s2, s3} and S2 = {s4, s5, s6}. All edges depicted in the figure (solid and

8

dashed) represent positive variables z. Let us consider a picking-order o1 = {s1, s2, s3, s4} (grey

vertices). Then the solid edges represent corresponding positive variables q1
ij , i < j ∈ {1, . . . , 4},

in an optimal solution with the groups being fixed. It is easy to see that the number of groups

that have to be accessed to pick the order corresponds to the number of elements of the order

minus the number of positive variables q1
ij , i.e., 4 − 2 = 2. Hence, the objective function (8)

s1

s2 s3

s4

s5 s6

group S1

q1
12 = 1 q1

13 = 1

group S2

Figure 3: Illustration of the variables of model (8)–(16)

minimizes the (weighted) number of group access operations over all picking-orders. Finally,

constraints (15) and (16) define the domains of the variables.

2.3. Simplifying assumptions

In order to derive the rather basic problem described above from the applications described

in Section 1.1, some simplifying assumptions are inevitable. The most elementary ones are listed

and discussed in the following.

First, we presuppose exactly the same number of SKUs as there are storage positions. If

this assumption does not hold in the real world, we can simply introduce “dummy” SKUs that

are not contained in any order. Furthermore, we assume that no assignment restrictions exist

and any SKU can be assigned to any storage position. This allows for reducing the storage

assignment to a partition problem, in which one can abstract from an explicit assignment of

SKUs to storage positions. The exact slotting is postponed to a successive planning step, which

is a potential direction for future research.

In line with the prior assumption, the sequence of the picking-orders is neglected and we

assume that orders are picked according to the pick-by-order policy without batching. Orders

are thus retrieved one at a time, so that all relevant groups are accessed until all SKUs of the

current order are collected. Hereafter, the next order is started to be picked. If orders are

to be retrieved more than once during the planning horizon, this is represented by the order

weights. Hence, we presuppose that the picking effort is mainly affected by the total number of

group access operations, i.e., when the shelves of a carousel have to be rotated while an order

is picked or when the retrieval of a new order is started.

The influence of the specific storage locations within a group is not considered. On the one

hand, specific positions may indeed be of minor relevance in the real world. In a carousel, for

instance, the pick face is comparatively small, so that all active shelf positions can conveniently

9

be reached by the picker. On the other hand, specific positions within a group can still be

considered in a successive planning step.

Moreover, we presuppose a dedicated storage policy, with all SKUs of the same type being

stored in a unique storage position. Because the locations of SKUs do not change, popular

items can be stored in especially convenient locations and workers can learn the topology of the

warehouse. On the negative side, dedicated storage does not use space efficiently, since storage

space has to be dimensioned according to the maximum amount of stored items per SKU (see

Bartholdi III & Hackman, 2014). One of our further assumptions is a predefined order set,

which is discussed below. Given this assumption, identifying popular items is fairly easy and,

therefore, properly dimensioning the storage space is not complicated by uncertain demands,

so that applying dedicated storage seems a natural choice in our setting. Shared storage, where

more than one location is assigned to each SKU, seems better suited in uncertain environments,

so that we leave the integration of shared storage into our problem setting up to future research.

To reduce the SKU partition problem to its very core, we, furthermore, assume that all

SKUs require identical storage space. In the real world, this assumption holds, whenever either

only standardized bins or containers are applied (e.g. in carousel racks) or unit-loads like ISO-

pallets are utilized (e.g. in mobile shelves or pick-to-belt applications). Furthermore, all groups

are assumed to have equal capacity, which is typically fulfilled in the applications described in

Section 1.1.

Finally, from a practitioner’s point of view, the most debatable assumption is certainly the

deterministic order set. Typically, storage assignment is a long- to mid-term decision, so that

picking-orders are not available and hardly predictable. This is especially true for warehouses

that have to serve volatile demands of final customers. Therefore, existing research either only

considers how often each SKU is demanded or integrates correlations among product pairs into

the storage assignment problem. However, a given order set may be a valid approximation of

reality in intermediate warehouses, where, for instance, recurrent orders for parts consumed

by cyclically produced production lots in a low-variety make-to-stock supply chain are picked

(Boysen & Stephan, 2013). Moreover, even in a volatile environment where anticipating an

order set is bound to forecast errors, assuming a deterministic order set may still be better

than completely neglecting that some products are frequently ordered together.

3. Algorithms

As we have shown in Section 2.2, the SKU partition problem can be modelled based on

model formulations for the clique partitioning problem. Concerning this latter problem, it is

well known that ejection chain heuristics, which are based on an idea of Glover (1996) and

10

Pesch & Glover (1997), perform well (Dorndorf et al., 2008; Dorndorf & Pesch, 1994). This

motivated us to implement an ejection chain based heuristic for the SKU partition problem,

which we will describe in Section 3.1.

Dorndorf & Pesch (1994) present a branch and bound method for the clique partitioning

problem that was later improved by Jaehn & Pesch (2013). We will make use of some of their

results to construct a branch and bound method based on model (8)–(16) for the SKU partition

problem. This method will be subject of Section 3.2.

3.1. Ejection chain heuristic

Glover (1996) describes the idea of an ejection chain heuristic as follows: “Ejection chain

procedures are based on the notion of generating compound sequences of moves, leading from

one solution to another, by linked steps in which changes in selected elements cause other

elements to be ‘ejected from’ their current state, position or value assignment.” In our case,

a move alters a given (not necessarily feasible) solution by selecting an SKU sl ∈ Ss from a

group Ss (source group) and inserting it into a group St (target group), t 6= s. Once a move

has been performed, the next move is initiated by “ejecting” an SKU sl̂ ∈ St, l̂ 6= l, from St,

i.e., the target group of the preceding move becomes the source group of the next move. This

results in a series of successional moves that result in a number of solutions that we refer to as

reference solutions. Obviously, if a resulting reference solution is infeasible, we can “eject the

infeasibility” by moving an SKU from the (unique) group with C + 1 elements to the (unique)

group with C − 1 elements (repair move) to construct a feasible solution, referred to as a trial

solution. Figure 4 illustrates the basic idea of an ejection chain heuristic for the SKU partition

problem.

S1

S2

S3

S1

S2

S3

S1

S2

S3

S1

S2

S3

S1

S2

S3

 Input Solution Reference Solution 1 Reference Solution 2

 Trial Solution 1 Trial Solution 2

Figure 4: Illustration of ejection chain heuristic

Algorithm 1 describes the framework of the ejection chain heuristic for SKU partition. For

a detailed overview, we refer to Appendix A. Given a feasible input solution (inSol) to an

11

Data: feasible solution inSol; parameters maxChainLength, tabuLength
Result: feasible solution bestSol
// Step 0: initialize

1 initialize tabuList;
2 do

// Step 1: initiate ejection chain from every SKU si ∈ S
3 for all groups Sj, j ∈ {1, . . . , k}, and all SKUs si ∈ Sj of inSol do
4 clear tabuList;

// Step 1a: first move of the chain

5 generate refSol by determining the best move of si from Sj to any targetGroup;
6 update tabuList and set sourceGroup = targetGroup;

// Step 1b: first repair move of the chain

7 generate trialSol by determining best repair move; potentially update bestSol;
8 for chainLength = 2 to maxChainLength do

// Step 1c: terminate

9 if all SKUs of sourceGroup of refSol are tabu then break;
10 else

// Step 1d: other moves of the chain

11 alter refSol by determining the best move of any non-tabu SKU sl of sourceGroup to
any targetGroup;

12 update tabuList and set sourceGroup = targetGroup;
// Step 1e: other repair moves of the chain

13 if refSol is feasible then potentially update bestSol;
14 else generate trialSol by determining best repair move; potentially update bestSol;

15 end

16 end

17 end
18 if new best solution has been found then inSol = bestSol;

19 while a new best solution has been found;

Algorithm 1: Ejection chain heuristic

instance of SKU partition, the heuristic initiates an ejection chain from every SKU si (Line 3),

i ∈ {1, . . . , n}, i.e. there are n ejection chains of maximum length maxChainLength (maximum

number of moves that a chain is composed of) to be explored based on the input solution. If

this results in an improved solution, this solution is used to restart the overall process (loop

2–19). A tabu list (Line 1) of length tabuLength is used to prevent the algorithm from cycling

when generating a chain. The first move of a chain is performed in Line 5. Here, the change of

the objective function value of the input solution due to generating several infeasible solutions

by tentatively deleting si from its present group and inserting it into every other group is

analyzed. The best solution found in this manner is set as the reference solution (refSol) and

the tabu list is updated. Hereafter, the best possible repair move is performed and the best

solution (bestSol) known so far is potentially updated (Line 7). The corresponding move is

determined by checking every potential move of non-tabu SKUs from the group of size C+1 to

the group of size C − 1 of the reference solution. For every other move of the chain, Algorithm

1 proceeds analogously (loop 8–16). Here, altering a reference solution (Line 11) corresponds

to checking every potential move of all non-tabu SKUs of the source group (sourceGroup) that

corresponds to the target group (targetGroup) of the last move of the chain (Lines 6 and 12)

to every other group. The chain terminates, if maxChainLength moves have been performed

12

or if all SKUs of sourceGroup are tabu (Line 9).

When implementing Algorithm 1, it is of specific importance to quickly compute the in-

crease ∆(sl, Ss, St), l ∈ {1, . . . , n}, s, t ∈ {1, . . . , k}, s 6= t, of the objective function value

of a solution when performing a move of SKU sl from source group Ss to target group St.

In this context we define two matrices. First, the m × n matrix A = (aσi) is defined as

in Section 2.2. An element aσi of A takes the value 1, if SKU si ∈ S is demanded within

order oσ ∈ O. Otherwise, it takes the value 0. Note that, given an instance of SKU parti-

tion, A is independent of a specific solution. This does not hold true for the second matrix

B(S1, . . . , Sk) = (bσj(S1, . . . , Sk)) of size m × k, where the elements bσj are defined to be the

number of SKUs of order oσ ∈ O that are included in group Sj , j ∈ {1, . . . , k} (order-group

matrix). In order to ease notation, however, we will write B instead of B(S1, . . . , Sk) in the

following, as the corresponding solution will always become clear from the context. After ini-

tialization of both matrices at the beginning of the ejection chain method, we need to make

sure to update matrix B upon altering a solution. Given A, B, sl, and s 6= t, the computation

of ∆(sl, Ss, St) is fairly straightforward (see Appendix A): After initializing ∆(sl, Ss, St) = 0,

we iterate over all orders oσ ∈ O. If sl is included in a specific order oσ and if bσs = 1 and

bσt ≥ 1, then ∆(sl, Ss, St) decreases by wσ. If, however, bσs > 1 and bσt = 0, then ∆(sl, Ss, St)

increases by wσ.

3.2. Branch and bound

We will now describe a branch and bound method for the SKU partition problem. It is

based on model (8)–(16) and adapts some of the ideas of Dorndorf & Pesch (1994) and Jaehn

& Pesch (2013). The notation used throughout this section is similar to the one in Jaehn &

Pesch (2013). It is presented in Table 1.

Table 1: Branch and bound notation

Symbol Definition Description

λ λ ∈ {0, 1, . . . } Node of the search tree
Z Z := {zij |i, j ∈ {1, . . . , n}, i < j} Binary variables (7)

Zλ Zλ ⊆ Z z variables fixed to zero or one at λ

Z̄λ Z̄λ ⊆ Zλ z variables fixed to one at λ

δλ(si) δλ(si) :=
∑
zji∈Z̄λ zji +

∑
zij∈Z̄λ zij min. size of group that contains si ∈ S at λ

We enumerate the nodes of the search tree by λ ∈ {0, 1, . . . }. The root node λ = 0

corresponds to the SKU partition instance under consideration. Here, we determine a feasible

solution by any heuristic that is then improved by calling the ejection chain method described

in Section 3.1. The upper bound ub is set to the corresponding objective function value.

The search tree is constructed by branching over z variables as defined in (7). It is system-

13

atically explored through depth-first or, alternatively, best-first search. When branching over

a specific zij ∈ Z, two child nodes of node λ are constructed by fixing zij to one in λ + 1 (zij

is added to Z̄λ+1 and Zλ+1) and to zero in λ + 2 (zij is added to Zλ+2). In both child nodes

we may fix further variables implicitly through constraint propagation.

For each node of the search tree a lower bound is determined. A node is fathomed if its

lower bound is larger than the global upper bound minus the smallest order weight of the SKU

partition instance, if all variables are fixed such that they define a feasible solution of the input

instance, or if (some) variables are fixed such that they necessarily result in infeasibility. In

the second case, we check for a potential improvement of the global upper bound. If a node is

not fathomed, it is subject of branching.

In the remainder of this section we will describe details of the lower bounds in Section

3.2.1 as well as the branching procedure and the constraint propagation in Section 3.2.2. We

will then summarize the branch and bound method in Section 3.2.3.

3.2.1. Lower bounds

A lower bound of the objective function value of an instance of SKU partition can easily be

determined by computing the minimum number of groups needed to store the SKUs included

in each order.

Proposition 1 (Lower bound l̄b
0
). Consider an instance of SKU partition with optimal objec-

tive function value F ∗. Then

F ∗ ≥
m∑
σ=1

wσ

⌈
|oσ|
C

⌉
=: l̄b

0
.

The lower bound presented in Proposition 1 can similarly be applied to the nodes λ of the

search tree within the branch and bound method when analyzing the z variables that have

been fixed to one in λ.

Proposition 2 (Lower bound l̄b
λ
). Consider an instance of SKU partition with optimal ob-

jective function value F ∗. Furthermore, let λ be an arbitrary node of the search tree. Then

F ∗ ≥
m∑
σ=1

wσ

⌈
|oσ|+ l̄(oσ, Z̄

λ)

C

⌉
=: l̄b

λ
, (17)

where

l̄(oσ, Z̄
λ) :=

∑
sj∈S\oσ

H(
∑

sl∈oσ ,zlj∈Z̄λ
zlj +

∑
sl∈oσ ,zjl∈Z̄λ

zjl).

Proof. Observe that for all orders oσ ∈ O, the value l̄(oσ, Z̄
λ) corresponds to the number

of SKUs that are not included in the order but must be stored in a group together with at

14

least one element of the order due to a z variable that has been fixed to one. Hence, the

minimum number of groups needed to store the SKUs of oσ including these l̄(oσ, Z̄
λ) SKUs is⌈(

|oσ|+ l̄(oσ, Z̄
λ)
)
/C
⌉
. This directly leads to the definition of the lower bound (17).

While the definition of l̄b
λ

in Proposition 2 is based on the set Z̄λ, one can analogously

consider the z variables that have been fixed to zero in a node λ of the search tree to define a

lower bound l̂b
λ
. To do so, define l̂(oσ, Z

λ \ Z̄λ) to be the maximum number of SKUs within an

order oσ ∈ O that pairwise cannot be stored within the same group due to the corresponding

variables having been fixed to zero in λ. Then the bound l̂b
λ

is determined as described in

Proposition 3. Again, it is based on Proposition 1.

Proposition 3 (Lower bound l̂b
λ
). Consider an instance of SKU partition with optimal ob-

jective function value F ∗. Furthermore, let λ be an arbitrary node of the search tree. Then

F ∗ ≥
m∑
σ=1

wσ max

{
l̂(oσ, Z

λ \ Z̄λ),

⌈
|oσ|
C

⌉}
=: l̂b

λ
. (18)

For each node λ of the branch and bound tree, we define

lbλ := max{l̄bλ, l̂bλ}.

3.2.2. Branching and constraint propagation

Given a non-fathomed node λ of the search tree, we generate two child nodes λ + 1 and

λ+ 2 by branching over a variable zij ∈ Z \Zλ. This variable is fixed to one in λ+ 1 and zero

in λ + 2. It is chosen such that the difference of the lower bounds l̄b
λ+1 − l̄bλ is maximized.

When determining the branching variable, subsequent constraint propagation is not considered.

However, we fix those variables to zero (in nodes λ+ 1 and λ+ 2) that, if they were chosen as

branching variables would result in problem λ+ 1 being directly fathomed due to its resulting

(large) lower bound. If l̄b
λ+1− l̄bλ = 0 no matter which branching variable is chosen, a random

branching variable is selected. Details on the branching procedure are given in Appendix B.1.

After each branching we perform logical tests that are inspired by Jaehn & Pesch (2013),

who propose to check whether variables can be fixed due to logical implications based on

the transitivity constraints (or “triangular conditions”) (10)–(12). For SKU partition, we

additionally check whether variables have to be fixed to zero or one in order to not exceed or

guarantee the desired group size C (constraints (9)). Details are presented in Appendix B.2.

The logical tests based on the triangular conditions after branching over variable zij , si, sj ∈ S,

are illustrated in Figure 5. Consider, for example, case 1 of Figure 5. The branching variable

zij has been fixed to one in node λ and there exists a (previously) fixed variable zj̄i ∈ Z̄λ, j̄ < i.

15

si sj

sj̄

zij ∈ Z̄λ

zj̄i ∈ Z̄λ

si sj

sj̄

⇒
case 1 zij ∈ Z̄λ

zj̄i ∈ Z̄λ zj̄j ∈ Z̄λ

si sj

sj̄

zij ∈ Z̄λ

zj̄i ∈ Zλ \ Z̄λ

si sj

sj̄

⇒
case 2 zij ∈ Z̄λ

zj̄i ∈ Zλ \ Z̄λ zj̄j ∈ Zλ \ Z̄λ

si sj

sj̄

zij ∈ Zλ \ Z̄λ

zj̄i ∈ Z̄λ

si sj

sj̄

⇒
case 3 zij ∈ Zλ \ Z̄λ

zj̄i ∈ Z̄λ zj̄j ∈ Zλ \ Z̄λ

Figure 5: Constraint propagation: triangular conditions

Then zj̄j must also be fixed to one. Cases 2 and 3 are similar.

The process of fixing additional variables is propagated until no more propagation is pos-

sible (see Appendix B.2). Based on the variables that have been fixed during this procedure

in a node λ of the search tree, the lower bound lbλ needs to be updated. The corresponding

procedure is presented in Appendix B.3.

3.2.3. Branch and bound algorithm

The branch and bound algorithm in its depth-first version is summarized in Algorithm 2.

4. Computational study

In order to analyze the mathematical models presented in Section 2.2 and to assess the

performance of the algorithms introduced in Section 3, we ran extensive computational tests.

The results are presented in Section 4.1. Additional tests were performed to analyze the

effectiveness of our group-based view with respect to picker idle time, which is subject of

Section 4.2. All tests were performed on an Intel Core i7-4770 CPU at 3.4GHz and 16GB of

RAM, running Windows 8 64bit. All algorithms were implemented in C ++ (Microsoft Visual

Studio 2010). We used IBM ILOG CPLEX in version 12.5 with 64bit.

Throughout this section we will use the following notation. E refers to the ejection chain

method. CX and CZ refer to calling CPLEX for model (1)–(6) and (8)–(16), respectively.

Similarly, B refers to Algorithm 2. The upper bound determined by an exact approach j ∈

{CX , CZ , B} for a specific instance I of SKU partition within a given time limit is referred to

as ubj(I). Similarly, the smallest lower bound of all not yet fathomed nodes (the child nodes of

which have not yet been constructed) within the search tree of an algorithm j ∈ {CX , CZ , B}

(global lower bound) upon termination is referred to as lbj(I). The objective function value of

16

Data: SKU partition instance I with at least one feasible solution
Result: optimal solution to I
// Step 0: initialize root node λ = 0

1 determine feasible solution (S1, . . . , Sk) by any heuristic;
2 call ejection chain heuristic (Section 3.1) to potentially improve solution (S1, . . . , Sk), and initialize

upper bound ub;

3 determine lower bound l̄b
0

(17) and set lb0 = l̄b
0

= l̂b
0
;

4 Z0 = Z̄0 = ∅; l̄(oσ, Z̄0) = l̂(oσ, Z
0 \ Z̄0) = 0 for all oσ ∈ O;

5 candidateList = {0};
6 while candidateList 6= ∅ do
7 pop element λ from candidateList;

8 if lbλ ≤ ub−minσ∈{1,...,m} wσ then
// Step 1: branch

9 determine branching variable zij (and potentially fix variables to zero in λ+ 1 and λ+ 2);
10 add nodes λ+ 1 (zij = 1) and λ+ 2 (zij = 0) to candidateList;

// Step 2: propagate constraints

11 execute constraint propagation procedure to determine sets of additionally fixed variables in
λ+ 1 and λ+ 2;

12 update Zλ+1, Z̄λ+1, Zλ+2, Z̄λ+2;
// Step 3: update lower bounds

13 update lower bounds lbλ+1 and lbλ+2 based on additionally fixed variables;
// Step 4: terminate

14 for λ̂ ∈ {λ+ 1, λ+ 2} do
15 if infeasibility is detected then

16 remove λ̂ from candidateList;
17 end

18 if Zλ̂ = Z and corresponding solution is feasible then

19 potentially update ub and remove λ̂ from candidateList;
20 end

21 end

22 end

23 end
24 return solution that corresponds to ub;

Algorithm 2: Branch and bound algorithm

the best solution to instance I determined by the ejection chain method is denoted by F̂E(I).

Finally, we define Ĉ(I) = argmin
j∈{CX ,CZ}

ubj(I).

The parameters for the ejection chain heuristic were set based on preliminary tests. As

a compromise between running time and solution quality, these tests resulted in choosing

maxChainLength = b0.9 · kc and tabuLength = b0.6 ·maxChainLengthc. We apply a fairly

simple heuristic to determine a first feasible solution within the ejection chain framework. This

heuristic first sorts the orders by nonincreasing order sizes. The groups are then filled one after

another by running through the SKUs of these orders and, if they have not yet been assigned

to a group, inserting them into the first group that does not yet contain C elements. SKUs

that are not part of any order are similarly assigned in the last phase of the heuristic.

4.1. Comparison of models and performance of algorithms

We generated random sets of test instances with n ranging from 10 to 200 and different

group sizes, 2 < k ≤ n/2, as presented in Table 2. The large instances (n ≥ 100) are motivated

17

Table 2: Size of random test instances

n 10 12 14 15 16 18 20 50 100 200
k 5 3,4,6 7 3,5 4,8 3,6,9 4,5,10 5,10,25 4,5,10,20,25,50 4,5,10,20,25,50,100

from the size of real world carousel racks. Consider, for example, the different “pan carousel”

models of a well known manufacturer of vertical storage solutions (Vidir, 2015). A shelf (“car-

rier”) of such a pan carousel is around three meters wide and 0.3 meters high. The models

feature 9 to 24 carriers. The pick face allows access to exactly one carrier. If we consider

typical storage bins being used to store small to medium sized SKUs within the carousel, it is

therefore reasonable to assume a capacity of around 10 bins per carrier. This directly relates

to the large instance presented in Table 2. With respect to the other parameters, we set m

to 50, 100, or 200. For each resulting combination of n, k, and m, three sets of test instances

were constructed by randomly generating order sizes |oσ| from a uniform distribution over the

interval [1, bn5 c] in the first set, [1, bn2 c] in the second set, and [1, b2n
3 c] in the third set, for all

σ = 1, . . . ,m. The corresponding order weights wσ were drawn from a uniform distribution

over the interval [1, 10]. The SKUs of each order were randomly selected. Five instances were

generated in each set, which results in a total of 1,395 test instances.

We first determined solutions to all test instances I with CPLEX (in depth-first search

mode) for both model formulations (1)–(6) and (8)–(16) with a time limit of 60 seconds (for

each instance and each model formulation) and with the ejection chain method. In these tests,

CX or CZ found at least one feasible solution for all considered instances. The same is true for

E. Our measure of quality for the latter solution is the ratio

QE(I) := 100 ·
ubĈ(I)(I)− F̂E(I)

ubĈ(I)(I)
.

Table 3 presents corresponding results on the average quality of the ejection chain heuristic

for the small test instances, n ≤ 18, in the third column. The fourth column is related to the

percentage of instances of each set that were solved to optimality (including proving optimality)

by CPLEX for at least one of the model formulations within the time limit of 60 seconds. The

average running times of CPLEX, tĈavg, and the ejection chain heuristic, tEavg, are given in the

last two columns of the table. For the computation of tĈavg, we use the computational times

that correspond to Ĉ(I) for all instances I within the specific set. If ubCX (I) = ubCZ (I) for

an instance I, the faster model is chosen. We find that most instances were optimally solved

by CPLEX. The average quality ratios show the ejection chain heuristic to perform slightly

worse than CPLEX in terms of solution quality. However, the solutions are very close to being

optimal on average. The average running times of the ejection chain heuristic are in the range

18

Table 3: Ejection chain performance for small instances

n k avg. qualitya opt. [%]b tĈavg [s]c tEavg [s]c

10 5 -0.04 100 0.004 0.001
12 3 -0.24 100 0.54 0.001

4 -0.1 100 3.32 0.001
6 -0.09 100 8.01 0.001

14 7 -0.07 100 12.01 0.002
15 3 -0.45 100 3.25 0.001

5 -0.13 76 26.2 0.002
16 4 -0.33 73 23.14 0.002

8 -0.16 100 16.02 0.003
18 3 -0.8 96 13.02 0.001

6 0.05 44 41.27 0.003
9 -0.15 100 10.69 0.004

a Average of quality ratios QE(I) of all instances I within set.
b Percentage of instances of the set that were solved to optimality by CPLEX.
c Average comp. time used by CPLEX (index Ĉ) or the ejection chain heuristic (index E).

of only a few milliseconds.

Table 4 presents results on the quality of the ejection chain heuristic for the medium

(20 ≤ n ≤ 50) and large (n ≥ 100) instances. In contrast to the results for small instances,

Table 4: Ejection chain performance for medium and large instances

n k avg. qualitya opt. [%]b tĈavg [s]c tEavg [s]c

20 4 -0.26 42 43.99 0.003
5 0.21 33 42.58 0.003
10 -0.18 100 5.36 0.006

50 5 1.5 0 60 0.033
10 6.35 0 60 0.071
25 -0.65 100 0.54 0.089

100 4 -1.93 0 60 0.128
5 0.3 0 60 0.191
10 9.09 0 60 0.455
20 12.7 0 60 0.797
25 12.86 0 60 0.844
50 -1.22 98 7.84 0.687

200 4 -4.1 0 60 0.503
5 -1.8 0 60 0.909
10 8.39 0 60 3.254
20 15.84 0 60 5.318
25 17.39 0 60 6.227
50 18.95 0 60 7.671
100 6.87 24 59.68 6.333

a Average of quality ratios QE(I) of all instances I within set.
b Percentage of instances of the set that were solved to optimality by CPLEX.
c Average comp. time used by CPLEX (index Ĉ) or ejection chain heuristic (index E).

CPLEX was not able to find optimal solutions within the time limit for most instances. This

results in the average quality ratios being positive for most instance sets, i.e., the ejection

chain heuristic finding better solutions than CPLEX on average. Only for the cases of very

few or plenty groups, the ejection chain heuristic performs worse on average. In terms of

computational time, the ejection chain heuristic uses less than eight seconds on average for all

instance sets. The maximum computational time we encountered is around 20 seconds for an

instance with n = 200, k = 100, m = 200 and a maximum order size of 100.

19

To compare the performance of CPLEX for models (1)–(6) and (8)–(16) and to test the

performance of the branch and bound method presented in Algorithm 2, we ran tests with time

limits of 540 seconds for each small instance and 360 seconds for each medium or large instance

for each exact method. If an algorithm j ∈ {CX , CZ , B} fails to find an optimal solution (and

prove its optimality) to an instance I within this time limit, we define the optimality gap by

gapj(I) := 100 · ubj(I)− lbj(I)

lbj(I)
.

Table 5 presents the corresponding results for the small test instances. We applied depth-first

Table 5: CPLEX and branch and bound for small instances

CPLEX, model (1)–(6) CPLEX, model (8)–(16) Branch and bound, Alg. 2

n k opt.a rankCXavg
b gapCXavg

c tCXavg
d opt.a rankCZavg

b gapCZavg
c tCZavg

d opt.a rankBavg
b gapBavg

c tBavg
d

[%] [s] [%] [s] [%] [s]

10 5 100 - - 1.24 100 - - 0.004 100 - - 0.05
12 3 100 - - 0.57 100 - - 5.46 100 - - 2.57

4 100 - - 4.85 100 - - 4.18 100 - - 4.26
6 100 - - 23.22 100 - - 0.01 100 - - 0.55

14 7 82 1 77.53 47.79 100 - - 0.01 100 - - 7.54
15 3 100 - - 3.3 89 2.6 342.27 139.71 100 - - 138.71

5 80 1 90.41 91.18 87 2 13.96 27.81 67 1.13 40.75 134.09
16 4 87 1 59.65 53.91 56 2.35 44.37 108.64 33 1.2 46.77 172.20

8 62 1.94 113.82 70.18 100 - - 0.01 98 1 27.97 109.02
18 3 100 - - 13.64 36 2.9 neg. 32.28 11 1.73 50.04 133.84

6 38 1.79 115.56 112.95 56 2.15 14.28 66.24 13 1.51 46.24 123.89
9 47 2.08 135.20 88.79 100 - - 0.02 56 1.2 29.98 120.50

a Percentage of instances of the set that were solved to optimality by alg. j ∈ {CX , CZ , B}.
b Average rank rankj(I) of the upper bound determined by alg. j ∈ {CX , CZ , B} for instances I within the set that were not solved

to optimality.
c Average gap gapj(I) resulting from algorithm j ∈ {CX , CZ , B} for all instances I within the set that were not solved to optimality

by j. Negative average gaps are indicated by “neg.”
d Average comp. time for instances within the set that were solved to optimality by algorithm j ∈ {CX , CZ , B}.

search for all algorithms and all instances. At least one feasible solution was found by all

algorithms for all considered instances. For each algorithm j ∈ {CX , CZ , B}, the table includes

the percentage of instances of the test sets solved to optimality within the time limit (including

the proof of optimality), the corresponding average computational time, tjavg, as well as the

average gap, gapjavg, of the instances within each set that were not solved to optimality within

the time limit. Let I be an instance that was not solved to optimality by a specific algorithm.

Then we rank the corresponding upper bound by calling Algorithm 3. Table 5 includes the

average rank, rankjavg, of the upper bounds for the instances within each set that were not

solved to optimality within the time limit by the corresponding algorithm j. We find that CX

tends to be better than CZ in terms of the number of instances solved to optimality and the

corresponding computational times for large ratios n/k, while the opposite is true for small

ratios n/k. For the instances that were not solved to optimality by CPLEX, CX tends to result

in better upper bounds than CZ . B’s computational times for determining optimal solutions

20

Data: SKU partition instance I; upper bounds ubj(I), j ∈ {CX , CZ , B}; algorithm j̄ ∈ {CX , CZ , B}
that did not solve I to optimality

Result: rankj̄(I)
1 initialize list L(I) = (ubCX (I), ubCZ (I), ubB(I));
2 sort the elements of L(I) in nondecreasing order;

3 if ubj̄(I) = value of first element of L(I) then rankj̄(I) = 1;
4 else

5 if ubj̄(I) = value of second element of L(I) then rankj̄(I) = 2;

6 else if ubj̄(I) = value of third element of L(I) then rankj̄(I) = 3;

7 end

Algorithm 3: Ranking a solution

are relatively large. However, the upper bounds determined by B are of high quality. When

compared to CX , the optimality gap resulting from B is (on average) smaller for the instances

that were not solved to optimality.

Table 6 compares the performance of the exact algorithms for the medium and large in-

stances. We applied depth-first search for the medium instances, while, for the large instances,

Table 6: CPLEX and branch and bound for medium and large instances

CPLEX, model (1)–(6) CPLEX, model (8)–(16) Branch and bound, Alg. 2

n k opt.a rankCXavg
b gapCXavg

c tCXavg
d opt.a rankCZavg

b gapCZavg
c tCZavg

d opt.a rankBavg
b gapBavg

c tBavg
d

[%] [s] [%] [s] [%] [s]

20 4 56 1.35 88.63 49.77 33 2.93 167.51 18.16 0 1.93 63.81 -
5 33 1.37 101.26 67.90 33 2.9 54.66 4.39 0 1.67 58.05 -
10 22 2.37 149.16 48.27 100 - - 0.03 16 1.18 30.89 97.95

50 5 0 1.56 140.58 - 0 3 neg. - 0 1.44 107.88 -
10 0 2.04 266.81 - 0 2.91 neg. - 0 1.04 93.6 -
25 0 3 470.82 - 100 - - 0.54 0 1.98 40.72 -

100 4 0 1.22 72.39 - 0 3 −∞f - 0 1.78 118.67 -

5 0 1.4 116.70 - 0 3 −∞f - 0 1.6 128.66 -

10 0 2 325.32 - 0 3 −∞f - 0 1 135.31 -

20 0 2.33 699.59 - 0 2.67 −∞f - 0 1 107.77 -

25 0 2.27 802.53 - 0 2.73 −∞f - 0 1 93.57 -
50 0 3 1285.62 - 98 1 0.01 6.71 0 2 43.44 -

200 4 0 1.07 105.79 - 0 3 −∞f - 0 1.93 148.53 -

5 0 1.29 163.92 - 0 3 −∞f - 0 1.71 162.64 -

10 0 2.02 457.18 - 0 2.96 −∞f - 0 1.02 179.38 -

20 0 2.07 956.96 - 0 2.93 −∞f - 0 1 159.09 -

25 0 2.02 1213.35 - 0 2.98 −∞f - 0 1 145.83 -

50 0 2.29 2448.97 - 0 2.71 −∞f - 0 1 97.78 -
100 0 3 ∞e - 87 1 0.01 89.77 0 2 44.78 -

a Percentage of instances of the set that were solved to optimality by alg. j ∈ {CX , CZ , B}.
b Average rank rankj(I) of the upper bound determined by alg. j ∈ {CX , CZ , B} for instances I within the set that were not solved to

optimality.
c Average gap gapj(I) resulting from algorithm j ∈ {CX , CZ , B} for all instances I within the set that were not solved to optimality by
j. Negative average gaps are indicated by “neg.” If algorithm j ∈ {CX , CZ , B} does not find a feasible solution to an instance I, we
have ubj(I) =∞.

d Average comp. time for instances within the set that were solved to optimality by algorithm j ∈ {CX , CZ , B}.
e gap

CX
avg =∞ due to at least one instance I with lbCX

(I) = 0 in set.

f gap
CZ
avg = −∞ due to at least one instance I with ubCZ

(I) =∞ in set.

we applied best-first search, because preliminary tests on large instances had shown that all

algorithms tend to perform better with respect to the global bounds on the objective function

value in this mode. Obviously, the strength of CZ for small ratios n/k carries over to medium

and large instances. CX , however, is not able to find optimal solutions within the time limit

21

for instances with n ≥ 50, even in the case of large ratios n/k. In most cases, CZ is not able

to determine feasible solutions for large instances with k < n/2, while CX and B find at least

one feasible solution for all considered instances. As a result (and analogously to our findings

for the small instances), CX tends to result in better upper bounds than CZ in case of the

instances that were not solved to optimality by CPLEX. B, on average, results in the best

upper bounds with the smallest optimality gaps, while solving the least instances to optimality

(including the prove of optimality).

4.2. Effect on picker idle time

As we have stated in Section 1.1, a major source of picker idle time when using carousels

is the time it takes to rotate the carousel in order to change the set of shelves presented in the

pick face. This fact has given rise to the group-based perspective taken in this paper. In this

section we will analyze the effectiveness of this perspective with respect to picker idle time by

comparing an organ pipe arrangement and a random assignment of storage positions to SKUs

with grouping the SKUs based on the branch and bound algorithm presented in this paper.

As before, we will consider real-world carousel racks with a shelf height of around 0.3

meters and a capacity of 10 bins per shelf. The retrieval speed of such a pan carousel is 8077

mm per minute (Vidir, 2015). Thus, it takes about 2.2 seconds to rotate the carousel by one

shelf and thus change the group of SKUs presented in the pick face.

Our test sets were randomly generated as described in Section 4.1 and feature k ∈ {15, 20, 25}

shelves, n = 10k SKUs, and m ∈ {100, 200} orders. For each combination of k and m, three

sets of test instances were constructed by randomly generating order sizes |oσ| from a uniform

distribution over the interval [1, b n10c] in the first set, [1, bn5 c] in the second set, and [1, bn2 c] in

the third set, for all σ = 1, . . . ,m. The corresponding order weights wσ were drawn from a

uniform distribution over the interval [1, 10]. Five instances were generated in each set.

We applied three algorithms to solve a given instance of SKU partition. First, we applied

Algorithm 2 (in depth-first search mode) with a time limit of 540 seconds. In line with Section

1.1 and our simplifying assumptions described in Section 2.3, the assignment of groups to

specific shelves after a solution to an instance of SKU partition has been determined is left

for future research. Hence, for this algorithm, we proceeded by simply numbering the shelves

of the carousel from one to k and assigning group j ∈ {1, . . . , k} to shelf j of the carousel.

Second, we randomly assigned storage positions to SKUs. Third, we applied the organ pipe

arrangement as referenced in Section 1.1. Basically, the organ pipe arrangement first sorts

the SKUs in nonincreasing order of their overall demand. Then, based on this ordering, the

SKUs are assigned to the shelves of the carousel in groups of C. The first group (high level of

22

demand) is assigned to shelf h = d(k + 1)/2e. The next groups are assigned to shelves h − 1,

h+ 1, h− 2 and so forth.

The idle time induced by picking a specific order was approximated by determining the

smallest possible time needed for rotating the carousel to all necessary shelves, while assuming

that the first shelf can immediately be accessed and that the carousel can rotate in both

directions. The sequence of picking-orders was neglected (see Section 2.3). Hence, the total

idle time induced by picking all orders was computed by multiplying the idle time for each

order with its order weight and summing over all orders. The results are presented in Table 7.

Table 7: Picker idle time

tidleavg [min]a ratiob

n k m Algorithm 2 random organ pipe random organ pipe

150 15 100 181.17 212.88 202.71 1.18 1.12
200 392.92 436.21 429 1.11 1.09

200 20 100 267.74 305.99 294.34 1.14 1.1
200 548.42 602.56 589.71 1.1 1.08

250 25 100 338.67 387.05 369.33 1.14 1.09
200 725.04 788.02 770.26 1.09 1.06

a Average picker idle time for corresponding instance set.
b Ratio of average picker idle times (compared to Algorithm 2) for corresponding instance set.

We conclude that using Algorithm 2 results in substantially smaller (approximate) average

picker idle times when compared to random assignment of SKUs to storage positions or the

organ pipe arrangement. The larger computational effort needed to compute the corresponding

partitions therefore tends to pay off quickly.

5. Conclusion

In this paper we have introduced the SKU partition problem, which is a basic parti-

tion problem that subdivides stock keeping units (SKUs) into disjoint subsets, such that the

minimum number of groups has to be accessed when retrieving a given order set under a pick-

by-order policy. We have presented applications of SKU partition in a wide range of storage

systems that are based on separating their storage space into groups of SKUs stored in separate

areas. Furthermore, we have shown that SKU partition is NP-hard in the strong sense and we

have presented two MIP models. One of them is based on a well-known model formulation for

the clique partitioning problem. We have, then, developed an ejection chain heuristic as well

as a branch and bound procedure. In a computational study we have shown that the ejection

chain heuristic tends to provide high-quality solutions within a very short time. Furthermore,

with respect to applying the branch and bound method and solving SKU partition with CPLEX

based on the different model formulations, we have shown that CPLEX is well suited for small

to medium sized models. When the number of groups is relatively large, the clique partitioning

23

based model formulation performs best. For large instances, the branch and bound procedure

introduced in this paper results in the best upper bounds on the objective function value and

the smallest optimality gaps. Finally, we have shown that the perspective taken in this paper

results in substantially smaller (approximate) average picker idle times when compared to an

organ pipe arrangement or a random assignment of SKUs to storage positions in carousel racks.

Future research should extend our basic SKU partition problem by integrating further

peculiarities relevant for different storage systems. The rotation time of carousels between

groups, for instance, heavily depends on their assignment to specific shelf segments. In a

mobile rack setting, also the detailed slotting of SKUs within a group influences the picking

effort, if frequently demanded items are stored in the front parts of the racks.

References

Abdel-Malek, L., & Tang, C. (1994). A heuristic for cyclic stochastic sequencing of tasks on a

drum-like storage system. Computers & Operations Research, 21 , 385–396.

Bartholdi III, J. J., & Hackman, S. T. (2014). Warehouse & distribution science: Release 0.96 .

Atlanta: Georgia Institute of Technology.

Bengü, G. (1995). An optimal storage assignment for automated rotating carousels. IIE

Transactions, 27 , 105–107.

Boysen, N., Briskorn, D., & Emde, S. (2014). Sequencing of picking orders in mobile rack

warehouses. Working Paper, Friedrich-Schiller-University Jena.

Boysen, N., Emde, S., Hoeck, M., & Kauderer, M. (2015). Part logistics in the automotive

industry: Decision problems, literature review and research agenda. European Journal of

Operational Research, 242 , 107–120.

Boysen, N., & Stephan, K. (2013). The deterministic product location problem under a pick-

by-order policy. Discrete Applied Mathematics, 161 , 2862–2875.

Chang, T.-H., Fu, H.-P., & Hu, K.-Y. (2007). A two-sided picking model of M-AS/RS with an

aisle-assignment algorithm. International Journal of Production Research, 45 , 3971–3990.

Dorndorf, U., Jaehn, F., & Pesch, E. (2008). Modelling robust flight-gate scheduling as a clique

partitioning problem. Transportation Science, 42 , 292–301.

Dorndorf, U., & Pesch, E. (1994). Fast clustering algorithms. ORSA Journal on Computing ,

6 , 141–153.

24

Garey, M. R., Johnson, D. S., & Stockmeyer, L. (1976). Some simplified NP-complete graph

problems. Theoretical Computer Science, 1 , 237–267.

Glock, C. H., & Grosse, E. H. (2012). Storage policies and order picking strategies in U-shaped

order-picking systems with a movable base. International Journal of Production Research,

50 , 4344–4357.

Glover, F. (1996). Ejection chains, reference structures and alternating path methods for

traveling salesman problems. Discrete Applied Mathematics, 65 , 223–253.

Ha, J.-W., & Hwang, H. (1994). Class-based storage assignment policy in carousel system.

Computers & Industrial Engineering , 26 , 489–499.

Hassini, E. (2008). Storage space allocation to maximize inter-replenishment times. Computers

& Operations Research, 35 , 2162–2174.

Hu, K.-Y., Chang, T.-H., Fu, H.-P., & Yeh, H. (2009). Improvement order picking in mobile

storage systems with a middle cross aisle. International Journal of Production Research, 47 ,

1089–1104.

Hwang, H., & Ha, J.-W. (1991). Cycle time models for single/double carousel system. Inter-

national Journal of Production Economics, 25 , 129–140.

Hwang, H., & Ha, J.-W. (1994). An optimal boundary for two class-based storage assignment

policy in carousel system. Computers & Industrial Engineering , 27 , 87–90.

Jacobs, D. P., Peck, J. C., & Davis, J. S. (2000). A simple heuristic for maximizing service of

carousel storage. Computers & Operations Research, 27 , 1351–1356.

Jaehn, F., & Pesch, E. (2013). New bounds and constraint propagation techniques for the

clique partitioning problem. Discrete Applied Mathematics, 161 , 2025–2037.

Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller, & J. W.

Thatcher (Eds.), Complexity of Computer Computations (pp. 85–104). New York: Plenum

Press.

Karpinski, M. (2002). Approximability of the minimum bisection problem: An algorithmic

challenge. In K. Diks, & W. Rytter (Eds.), Mathematical Foundations of Computer Sci-

ence 2002 - 27th International Symposium, MFCS 2002, Warsaw, Poland, August 2002,

Proceedings (pp. 59–67). Berlin: Springer.

Kim, B. (2005). Maximizing service of carousel storage. Computers & Operations Research,

32 , 767–772.

25

Litvak, N. (2006). Optimal picking of large orders in carousel systems. Operations Research

Letters, 34 , 219–227.

Litvak, N., & Vlasiou, M. (2010). A survey on performance analysis of warehouse carousel

systems. Statistica Neerlandica, 64 , 401–447.

Meller, R. D., & Klote, J. F. (2004). A throughput model for carousel/VLM pods. IIE

Transactions, 36 , 725–741.

Pesch, E., & Glover, F. (1997). TSP ejection chains. Discrete Applied Mathematics, 76 ,

165–181.

SSI Schäfer (2014). Vollautomatisierte Verschieberegalanlage (in German). http://www.

ssi-schaefer.de/fileadmin/ssi/documents/navigationsbaum/logistiksysteme/

vollautomatische_systeme/verschieberegallager/vollautomatisierte_v_de.pdf.

(last access: August 2015).

Vickson, R. G., & Fujimoto, A. (1996). Optimal storage locations in a carousel storage and

retrieval system. Location Science, 4 , 237–245.

Vidir (2015). Pan carousel. http://www.storevertical.com/products/

vertical-storage-system/pan-carousel. (last access: August 2015).

26

http://www.ssi-schaefer.de/fileadmin/ssi/documents/navigationsbaum/logistiksysteme/vollautomatische_systeme/verschieberegallager/vollautomatisierte_v_de.pdf
http://www.ssi-schaefer.de/fileadmin/ssi/documents/navigationsbaum/logistiksysteme/vollautomatische_systeme/verschieberegallager/vollautomatisierte_v_de.pdf
http://www.ssi-schaefer.de/fileadmin/ssi/documents/navigationsbaum/logistiksysteme/vollautomatische_systeme/verschieberegallager/vollautomatisierte_v_de.pdf
http://www.storevertical.com/products/vertical-storage-system/pan-carousel
http://www.storevertical.com/products/vertical-storage-system/pan-carousel

Appendix A. Details on the ejection chain heuristic

In this section we present details on the ejection chain heuristic introduced in Section 3.1.

First, we present details on the computation of ∆(sl, Ss, St) in Algorithm 4.

Data: matrices A and B; groups Ss, St, s 6= t; SKU sl
Result: ∆(sl, Ss, St)

1 ∆(sl, Ss, St) = 0;
2 for all orders oσ ∈ O do
3 if aσl = 1 then
4 if bσs = 1 ∧ bσt ≥ 1 then ∆(sl, Ss, St) −= wσ;
5 else if bσs > 1 ∧ bσt = 0 then ∆(sl, Ss, St) += wσ;

6 end

7 end

Algorithm 4: Computation of ∆(sl, Ss, St)

Given A, B, s ∈ {1, . . . , k}, an SKU sl ∈ Ss, and a value ∆best = ∞, Algorithm 5

determines the best move of sl̂ = sl from Ss to St̂, t̂ 6= s and the corresponding ∆(sl̂, Ss, St̂).

Data: matrices A and B; group Ss; SKU sl ∈ Ss; value ∆best

Result: sl̂; St̂; ∆best

1 for all groups St, t 6= s do
2 compute ∆(sl, Ss, St) with Alg. 4 (A, B, Ss, St, sl);

3 if ∆(sl, Ss, St) < ∆best then

4 ∆best = ∆(sl, Ss, St);
5 sl̂ = sl; St̂ = St;

6 end

7 end

Algorithm 5: Determining the best move of specific SKU

Similarly, the computation of the change of the objective function value when generating

a trial solution is presented in Algorithm 6.

Data: matrices A and B; groups Ss, St, s 6= t; tabuList
Result: ∆best; sl̂

1 ∆best =∞;
2 if all SKUs of SS are tabu then pick a random element stemp ∈ Ss and temporarily treat it as

non-tabu;
3 for all non-tabu SKUs sl in Ss do
4 compute ∆(sl, Ss, St) with Alg. 4 (A, B, Ss, St, sl);

5 if ∆(sl, Ss, St) < ∆best then

6 ∆best = ∆(sl, Ss, St); sl̂ = sl;
7 end

8 end
9 restore the tabu status of stemp if necessary;

Algorithm 6: Computation of objective function change when generating a trial solution

Algorithm 7 illustrates the details of the ejection chain heuristic. Note that we refer to the

oder-group matrix of inSol with objective function value F (inSol) by Bin. Similar notation is

used for refSol and bestSol.

27

Data: feasible solution inSol; parameters maxChainLength, tabuLength
Result: feasible solution bestSol

1 initialize tabuList;

2 ∆best =∞;
3 compute A, Bin, and F (inSol);
4 bestSol = inSol; Bbest = Bin; F (bestSol) = F (inSol);
5 do
6 for all groups Sj, j ∈ {1, . . . , k}, of inSol do
7 for all SKUs si ∈ Sj do
8 clear tabuList;

9 sourceGroup = Sj ; ∆best =∞;

10 determine targetGroup and update ∆best with Alg. 5 (A, Bin, sourceGroup, si, ∆best);
11 generate refSol from inSol by moving si from sourceGroup to tagetGroup;

12 F (refSol) = F (inSol) + ∆best;
13 update tabuList and construct Bref from BinSol;
14 sourceGroup = targetGroup;

15 Determine ∆best and sl̂ with Alg. 6 (A, Bref , sourceGroup, Sj , tabuList);

16 if F (refSol) + ∆best < F (bestSol) then
17 generate trialSol from refSol by moving sl̂ from sourceGroup to Sj ;

18 bestSol = trialSol; F (bestSol) = F (refSol) + ∆best; update Bbest;

19 end
20 for chainLength = 2 to maxChainLength do
21 if all SKUs of sourceGroup of refSol are tabu then break;
22 else

23 ∆best =∞;
24 for all non-tabu SKUs sl of sourceGroup of refSol do

25 determine/update sl̂, targetGroup, and ∆best with Alg. 5 (A, Bref ,

sourceGroup, sl, ∆best);

26 end
27 alter refSol by moving sl̂ from sourceGroup to targetGroup;

28 F (refSol) += ∆best;
29 update tabuList and Bref ;
30 sourceGroup = targetGroup;
31 if refSol is feasible and F (refSol) < F (bestSol) then
32 bestSol = refSol; F (bestSol) = F (refSol); update Bbest;
33 end
34 else
35 let sourceGroup2 (targetGroup2) be the group of refSol with C + 1 (C − 1)

elements;

36 Determine ∆best and sl̂ with Alg. 6 (A, Bref , sourceGroup2, targetGroup2,
tabuList);

37 if F (refSol) + ∆best < F (bestSol) then
38 generate trialSol from refSol by moving sl̂ from sourceGroup2 to

targetGroup2;

39 bestSol = trialSol; F (bestSol) = F (refSol) + ∆best; update Bbest;

40 end

41 end

42 end

43 end

44 end

45 end
46 if F (bestSol) < F (inSol) then inSol = bestSol; F (inSol) = F (bestSol); Bin = Bbest;

restart = true;
47 else restart = false;

48 while restart;

Algorithm 7: Ejection chain heuristic

28

Appendix B. Details on the branch and bound algorithm

In this section we present details on the branch and bound algorithm introduced in Section

3.2. In the course of the algorithm we need to store the values l̂(oσ, Z
λ \ Z̄λ) and l̄(oσ, Z̄

λ)

for all non-fathomed nodes λ of the search tree (the child nodes of which have not yet been

constructed) and all oσ ∈ O. The vales d|oσ|/Ce are stored globally (for the whole search tree)

for all oσ ∈ O.

Appendix B.1. Branching

Algorithm 8 illustrates how to determine the branching variable. It makes use of matrix

A as defined in Section 3.1. For all potential branching variables, the difference l̄b
λ+1 − l̄bλ

Data: matrix A, parent node λ
Result: branching variable zîĵ , set fixed0 of variables fixed to zero during branching

1 ∆ = 0, ∆best = 0, fixed0 = ∅; l̄(oσ, Z̄λ+1) = l̄(oσ, Z̄
λ) for all oσ ∈ O;

2 for all zij ∈ Z \ Zλ with δλ(si) < C and δλ(sj) < C do
3 ∆ = 0;

4 for all orders oσ ∈ O with (|oσ|+ l̄(oσ, Z̄
λ)) mod C = 0 and with (aσi = 1 ∧ aσj = 0) do

5 if @ sr ∈ oσ with (zrj ∈ Z̄λ ∨ zjr ∈ Z̄λ) then ∆ += wσ;
6 end
7 . . . // repeat Lines 4--6 analogously for (aσi = 0 ∨ aσj = 1)

8 if l̄b
λ

+ ∆ > ub−minσ∈{1,...,m} wσ then insert zij into fixed0, Zλ+1, and Zλ+2;

9 else if ∆ > ∆best then ∆best = ∆; zîĵ = zij ;

10 end

11 if ∆best = 0 then choose random element zij ∈ Z \ Zλ with δλ(si) < C and δλ(sj) < C; zîĵ = zij ;

12 for all orders oσ ∈ O do

13 if
(
aσî = 1 ∧ aσĵ = 0

)
∨
(
@ sr ∈ oσ with (zrĵ ∈ Z̄

λ ∨ zĵr ∈ Z̄
λ)
)
then l̄(oσ, Z̄

λ+1) += 1;

14 if
(
aσî = 0 ∧ aσĵ = 1

)
∨
(
@ sr ∈ oσ with (zrî ∈ Z̄

λ ∨ zîr ∈ Z̄
λ)
)
then l̄(oσ, Z̄

λ+1) += 1;

15 end

16 δλ+1(sî) += 1; δλ+1(sĵ) += 1;

17 l̄b
λ+1

= l̄b
λ

+ ∆best; Z̄λ+1 = Z̄λ ∪ {zîĵ}; Z
λ+1 = Zλ ∪ {zîĵ};

Algorithm 8: Determining the branching variable

is determined in Lines 2–10 of Algorithm 8. Some variables may be fixed to zero during this

process (Line 8). If l̄b
λ+1 − l̄bλ = 0 no matter which branching variable is chosen, a random

branching variable is selected (Line 11). Hereafter, the values l̄(oσ, Z̄
λ+1) for all oσ ∈ O (Lines

12–15) as well as the values δλ+1(si) for all si ∈ S are updated (Line 16).

Appendix B.2. Constraint propagation

The constraint propagation procedure for a child node λ of the search tree is presented in

Algorithm 9. The triangular conditions are checked in Lines 18–35 (cases 1 and 2 of Figure

5) and 39–42 (case 3 of Figure 5) of Algorithm 9. The process of fixing additional variables

is propagated until no more propagation is possible (loops 7–36, 37–43 and 6–52). For SKU

partition, we additionally check whether variables have to be fixed to zero in order to not

29

Data: matrix A, branching variable zîĵ , child node λ and set fixed0 constructed via branching

Result: set of variables fixed0 (additionally fixed to zero)
1 if zîĵ ∈ Z̄

λ then queue1 = {zîĵ}; queue
0 = fixed0;

2 else

3 queue1 = ∅; fixed0 = fixed0 ∪ {zîĵ}; queue
0 = fixed0; Zλ = Zλ−2 ∪ {zîĵ}; Z̄

λ = Z̄λ−2;

4 l̄b
λ

= l̄b
λ−2

; l̄(oσ, Z̄
λ) = l̄(oσ, Z̄

λ−2) for all oσ ∈ O
5 end
6 do
7 while queue1 6= ∅ do
8 pop element zij from queue1;

9 if δλ(si) = C then
10 for j̄ = 1 to i− 1 do

11 if zj̄i /∈ Zλ then push (insert) zj̄i (in)to queue0 (fixed0 and Zλ);
12 end
13 for j̄ = i+ 1 to n do

14 if zij̄ /∈ Zλ then push (insert) zij̄ (in)to queue0 (fixed0 and Zλ);
15 end

16 end

17 if δλ(sj) = C then . . . // fix variables in analogy to Lines 10--15

18 for all sj̄, j̄ < i, with (zj̄i ∈ Z̄λ ∧ zj̄j /∈ Zλ) do
19 push (insert) zj̄j (in)to queue1;

20 δλ(sj) += 1; δλ(sj̄) += 1;
21 for all orders oσ ∈ O with (aσj = 1 ∧ aσj̄ = 0) do

22 if @ sr ∈ oσ with (zrj̄ ∈ Z̄λ ∨ zj̄r ∈ Z̄λ) then

23 if (|oσ|+ l̄(oσ, Z̄
λ)) mod C = 0 then l̄b

λ
+= wσ;

24 l̄(oσ, Z̄
λ) += 1;

25 end

26 end
27 . . . // repeat Lines 21--26 analogously ∀ oσ ∈ O with aσj = 0 ∧ aσj̄ = 1

28 insert zj̄j into Z̄λ;

29 end

30 . . . // repeat Lines 18--29 analogously ∀ sj̄, j̄ < i, with zj̄j ∈ Z̄λ ∧ zj̄i /∈ Zλ
31 . . . // repeat Lines 18--30 analogously ∀ sj̄, with i < j̄ < j and j̄ > j

32 for all sj̄, j̄ < i, with ((zj̄i ∈ Zλ \ Z̄λ) ∧ (zj̄j /∈ Zλ)) ∨ ((zj̄j ∈ Zλ \ Z̄λ) ∧ (zj̄i /∈ Zλ)) do

33 push (insert) zj̄j [first case] or zj̄i [second case] (in)to queue0 (fixed0 and Zλ);
34 end
35 . . . // repeat Lines 32--34 analogously ∀ sj̄, with i < j̄ < j and j̄ > j

36 end
37 while queue0 6= ∅ do
38 pop element zij from queue0;

39 for all sj̄, j̄ < i, with ((zj̄i ∈ Z̄λ) ∧ (zj̄j /∈ Zλ)) ∨ ((zj̄j ∈ Z̄λ) ∧ (zj̄i /∈ Zλ)) do

40 push (insert) zj̄j [first case] or zj̄i [second case] (in)to queue0 (fixed0 and Zλ);
41 end
42 . . . // repeat Lines 39--41 analogously ∀ sj̄, with i < j̄ < j and j̄ > j

43 end
44 for all si ∈ S with δ(si) < C do

45 determine fix =
∣∣{zji|zji ∈ Z̄λ, j < i

}∣∣+
∣∣{zij |zij ∈ Z̄λ, j > i

}∣∣;
46 determine free =

∣∣{zji|zji /∈ Zλ, j < i
}∣∣+

∣∣{zij |zij /∈ Zλ, j > i
}∣∣;

47 if (free > 0) ∧ (fix+ free = C) then
48 push all elements of free to queue1;

49 . . . // update δλ, l̄b
λ
, l̄(oσ, Z̄

λ) ∀ oσ ∈ O, Z̄λ as in Lines 20--28

50 end

51 end

52 while queue1 6= ∅;

Algorithm 9: Constraint propagation

30

exceed or guarantee reaching the desired group size C (constraints (9)). This is done in Lines

9–17 and 44–51 of Algorithm 9. Note that the lower bound l̄b
λ

along with the values l̄(oσ, Z̄
λ)

for all oσ ∈ O is implicitly updated when fixing variables to one (for example in Lines 21–26).

Appendix B.3. Updating lower bounds

Based on the variables that have been fixed during constraint propagation in a node λ

of the search tree, the lower bound lbλ needs to be updated. The corresponding procedure is

presented in Algorithm 10. After initializing the values l̂(oσ, Z
λ \ Z̄λ) for all oσ ∈ O with the

Data: matrix A, branching variable zîĵ , child node λ constructed via branching, variables fixed0 (fixed
to zero)

Result: lbλ

1 for all orders oσ ∈ O do

2 if zîĵ ∈ Z̄
λ then l̂(oσ, Z

λ \ Z̄λ) = l̂(oσ, Z
λ−1 \ Z̄λ−1);

3 else l̂(oσ, Z
λ \ Z̄λ) = l̂(oσ, Z

λ−2 \ Z̄λ−2);

4 end
5 for all orders oσ ∈ O do
6 if ∃ zij ∈ fixed0 with aσi = aσj = 1 then
7 for all sī ∈ oσ do
8 candList = ∅;
9 for all sj̄ ∈ oσ, j̄ > ī do

10 if zīj̄ ∈ Zλ \ Z̄λ then insert sj̄ in candList;
11 end

// We assume candList to be ordered by increasing SKU indices.

12 if |candList| > 1 then
13 let sr be the first element of candList;
14 do
15 for all elements sv, v > r, of candList do

16 if zrv /∈ Zλ \ Z̄λ then delete sv from candList;
17 end
18 if sr is not the last element of candteList then increment sr (next element of

candList);

19 while sr is not the last element of candList;

20 end

21 if (candList 6= ∅) ∧ (|candList|+ 1 > l̂(oσ, Z
λ \ Z̄λ)) then

22 l̂(oσ, Z
λ \ Z̄λ) = |candList|+ 1;

23 end

24 end

25 end

26 end

27 determine l̂b
λ

with (18);

28 if l̂b
λ
> l̄b

λ
then lbλ = l̂b

λ
;

29 else lbλ = l̄b
λ
;

Algorithm 10: Updating lower bound after constraint propagation

ones from the parent node, the algorithm (if necessary) updates these values by counting the

maximum number of SKUs within the orders that pairwise cannot be stored within the same

group due to the corresponding variables having been fixed to zero (Lines 5–26). Finally, the

lower bound is determined in Lines 27–29.

31

	Introduction
	Applications and literature review
	Contribution and paper structure

	Detailed problem definition and analysis
	Computational complexity
	Mathematical models for the SKU partition problem
	Simplifying assumptions

	Algorithms
	Ejection chain heuristic
	Branch and bound
	Lower bounds
	Branching and constraint propagation
	Branch and bound algorithm

	Computational study
	Comparison of models and performance of algorithms
	Effect on picker idle time

	Conclusion
	Details on the ejection chain heuristic
	Details on the branch and bound algorithm
	Branching
	Constraint propagation
	Updating lower bounds

