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Abstract

We present a survey of recent developments in the field of sequential competitive location
problems, including the closely related class of voting location problems, i.e. problems
of locating resources as the result of a collective election. Our focus is on models where
possible locations are not a priori restricted to a finite set of points. Furthermore, we
restrict our attention to problems defined on networks. Since a line, i.e. an interval of
one-dimensional real space, may be interpreted as a special type of network and because
models defined on lines might contain ideas worth adopting in more general network
models, we include these models as well, yet without describing them in detail for the
sake of brevity.

Keywords: location, competitive location, sequential location, spatial competition,
network location

1. Introduction and scope of review

Location problems are concerned with the location of (physical or nonphysical) re-
sources in some given space. Much work in this field has, for example, been devoted to
the choice of optimal locations in networks according to some criterion, e.g. the minimiza-
tion/maximization of the sum of weighted distances to the vertices (median/antimedian
problems) or the minimization of the maximum/maximization of the minimum weighted
distance to any vertex (center/anticenter problems). Competitive location models addi-
tionally incorporate the fact that location decisions have been or will be made by inde-
pendent decision-makers who will subsequently compete with each other, e.g. for market
share when we think of locating facilities such as gas stations or supermarkets. The lo-
cation space under consideration does not necessarily need to be of geographical nature:
Political parties, for example, are concerned with locating in issue spaces; products may
be positioned in characteristics spaces.

The study of competitive location problems is rooted in the work of Hotelling (1929),
who studied the location choice and pricing decision of two competitors on a finite line with
uniformly spread consumers. A large number of publications have been devoted to this
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field of research since then. Thus, several efforts in classifying and reviewing competitive
location models have been made. Table 1 lists some of the resulting publications.

Table 1: Competitive location problems - reviews and classifications.

Authors and year Class Type

Dasci (2011) competitive location classical contributions, review
Plastria (2001) static competitive location taxonomy and review
Eiselt & Laporte (1996) sequential competitive location taxonomy and review
Drezner (1995a) competitive location in the plane review
Serra & ReVelle (1995) competitive location in discrete space review
Eiselt et al. (1993) competitive location taxonomy and bibliography
Eiselt (1993) competitive location taxonomy
Eiselt & Laporte (1989) competitive location taxonomy and review
Friesz et al. (1988) competitive location in networks taxonomy and review
Graitson (1982) competitive location on a line review

Competitive location problems can be classified with respect to multiple components
(see, for example, Eiselt, 1993; Eiselt & Laporte, 1989, 1996; Eiselt et al., 1993; Friesz et al.,
1988; Hamacher & Nickel, 1998; Plastria, 2001). Most important, the representation of
the underlying location space traditionally gives rise to three classes: d-dimensional real
space, network and discrete space. Distances need to be calculated by some metric in
each of these classes. We follow ReVelle & Eiselt (2005) in differentiating only between
d-dimensional real space and network location problems, each of which further being
subdivided into continuous and discrete problems (see Figure 1). A discrete problem
arises, when the set of candidate locations is assumed to be finite and known a priori. In
a continuous problem, any point of the network or the d-dimensional space is a potential
location site. By identifying finite dominating sets - finite sets of points to which at least
one of the optimal solutions must belong - we are able to transform some special classes
of continuous location problems into discrete problem classes a posteriori (Hooker et al.,
1991). Moreover, as discrete sets of potential facility sites may easily become very large,
one may consider treating those sets as continuous entities (see, for instance, Dasci &
Laporte, 2005).

location space

d-dimensional 

real space
network

discretecontinuous
discretization

treat as continuous
discretecontinuous

discretization

treat as continuous

Figure 1: Location spaces.

Note that there is an overlap of d-dimensional real spaces and networks. Hotelling’s
line, for instance, can be interpreted as a network with two vertices and a connecting edge
or, alternatively, as an interval of R1. Other models are somewhere in between network
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and d-dimensional models. Suárez-Vega et al. (2010), for example, consider a “buffer”
around a network to represent the space of potential locations.

Other fundamental categories of competitive location theory are related to game the-
oretic aspects. Competition itself may be static (present and fixed), competitors may
enter in a simultaneous or sequential fashion, or we can think of dynamic competition,
i.e. players who repeatedly reoptimize their locations (see Figure 2). Sequential locational
competition, dating back to Hay (1976) and Prescott & Visscher (1977), is characterized
by two types of players: leaders, who choose locations at given instants, anticipating
the subsequent actions of later entrants, and followers, who make their location decisions
based on the past decisions of the leaders. The solution concept generally employed in
sequential location problems is the Stackelberg equilibrium (von Stackelberg, 1934): As-
suming rational players, the location of each player is determined by backward induction.
Simultaneous locational games (as the one of Hotelling, 1929), in contrast, usually use the
concept of a Nash equilibrium. Here we are seeking situations where no player unilaterally
has the incentive to relocate.

competition

sequentialsimultaneousdynamicstatic

Figure 2: Competition.

Note that the number of players may be exogenously given or determined endoge-
nously, e.g. by incorporating fixed location cost. The same holds for the sequence of
location and the numbers of resources to be located by each player.

It is generally agreed that the work on competitive location problems on (general)
networks is rooted in the work of Slater (1975) and Hakimi (1983) (see Eiselt & Laporte,
1996; Smith et al., 2009, for more details). Hakimi (1983) formally introduced the terms
(r|Xp)-medianoid problem and (r|p)-centroid problem for sequential games with one leader
(L) and one follower (F) locating p and r facilities, respectively. Note that r and p are
arbitrary input parameters. Knowing the p locations of L, denoted by Xp = (x1, ..., xp),
F faces the problem of optimally locating r facilities (with respect to some objective
function): the (r|Xp)-medianoid problem. We denote a feasible location decision of F
by Yr = (xp+1, ..., xp+r) and an optimal location decision by Y ∗r = (x∗p+1, ..., x

∗
p+r). L’s

problem, the (r|p)-centroid problem, is to locate p facilities, anticipating F’s subsequent
behavior. An optimal solution to this latter problem is denoted by X∗p = (x∗1, ..., x

∗
p).

Note that, differing from other authors as Spoerhase & Wirth (2010), we use the terms
(r|Xp)-medianoid and (r|p)-centroid problem in a rather broad sense, subsuming a whole
variety of choice rules and player objectives under these terms.

Another category that is related to game theory is the incorporation of pricing in com-
petitive facility or product location models. Traditional spatial pricing policies include
mill pricing (all customers are charged the same price for the good itself, all transport
costs are passed to the customers), uniform delivered pricing (all customers of a facil-
ity are charged the same price, no matter where they are located at) and spatial price
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discrimination (prices for different customers are customer-location-specific) (see, for ex-
ample, Anderson et al., 1992b; Eiselt & Laporte, 1996; Eiselt et al., 1993; Garćıa Pérez
et al., 2004). Prices may be set simultaneously to the location decisions or in a separate
stage, either sequentially or simultaneously. Alternatively, one can incorporate paramet-
ric prices. The equilibrium concepts used for combined location price games depend on
which of these situations is implemented (Eiselt et al., 1993).

Other ingredients of competitive location models include characteristics of the targeted
group, as, for example, customers or voters. They may be distributed over the representa-
tion of the location space according to some density function or we may consider discrete
locations. The type of demand for the resources, that are to be located, may be determin-
istic or stochastic, elastic or inelastic (dependent on or independent of the conditions of
its supply). Furthermore, we may take different types of choice rules into consideration:
a choice rule is said to be deterministic (or binary), when the total demand of a customer
(voter etc.) is served by a single located resource; it is said to be probabilistic, if demand
is split over multiple located resources. Probabilistic choice rules include partially binary
(splitting only over one of the locations of each player) and proportional (splitting over
all locations) behavior. Note that, at least in the case of a binary choice rule, one has
to make assumptions concerning the location of two facilities in the same point of the
network (co-location). A common assumption in the field of competitive location prob-
lems is to break ties in favor of the leader (see, for example, Hakimi, 1990; Hansen &
Labbé, 1988; Hansen & Thisse, 1981) or, similarly, not allowing co-location at all (see,
for example, Granot et al., 2010; Shiode & Drezner, 2003). Alternatively, ties may be
broken equally as, for instance, in Dasci et al. (2002). Both, the existence and nature
of equilibria in competitive location models, may vary according to different assumptions
concerning co-location: Hakimi (1990) designs the above-mentioned tie breaking rule to
“avoid [...] trivial solutions”. Similarly, Granot et al. (2010) analyze the effect of allowing
or not allowing co-location in their model in detail.

A whole variety of other features may be incorporated into competitive location prob-
lems. They include incomplete information: For example, information about marginal
costs of production may be asymmetric. Moreover, different types of players pursue dif-
ferent types of objectives: public firms, for instance, maximize domestic welfare, while
private firms maximize profits. We may consider multiple products or multiple markets
as well.

Eiselt & Laporte presented a survey of sequential competitive location problems in
1996. Various publications in this field have appeared since then. It is the aim of this paper
to extend Eiselt & Laporte (1996) by reviewing some of these recent developments. Thus,
we are restricting ourselves to detailed descriptions of publications that have appeared
after Eiselt & Laporte (1996). Furthermore, we explicitly exclude location decisions in
political issue spaces and refer the reader to Osborne (1995) and the references therein.
Finally, we restrict our attention to continuous network models as described above. We
concentrate on surveying general network models in the traditional sense in detail, while
only referencing or listing publications related to R1 location spaces. We hold this to
be reasonable for the sake of brevity while not omitting interesting ideas that might be
adopted in general network models. Tables 1 (competitive location problems) and 2 (other
fields of location theory) give an overview of several selected review and classification
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papers that complement this review. We refer the reader to the books by Anderson
et al. (1992a), Daskin (1995), Drezner (1995b), Drezner & Hamacher (2002), Eiselt &
Marianov (2011), Handler & Mirchandani (1979), Love et al. (1988), Miller et al. (1996)
and Mirchandani & Francis (1990) as well.

Table 2: Other selected reviews and classifications.

Authors and year Class Type

Location problems in general
Smith et al. (2009) location historical development
ReVelle & Eiselt (2005) location review
Hale & Moberg (2003) location review
Avella et al. (1998) location state of the art and future trends
Hamacher & Nickel (1998) location classification scheme
Domschke & Krispin (1997) location review
Brandeau & Chiu (1989) location overview
Domschke & Drexl (1985) location bibliography
Tansel et al. (1983a,b) location review
Francis & Goldstein (1974) location bibliography

Discrete location problems
ReVelle et al. (2008) discrete location in special

branches
taxonomy and bibliography

Daskin (2008) discrete location taxonomy and illustrations
Current et al. (2002) discrete location review
McGinnis (1977) discrete location review

Continuous, d-dimensional location problems
Plastria (2002) continuous covering location review
Plastria (1995) continuous location problems review

Location problems with special application or context
Melo et al. (2009) facility location and supply

chain management
review

Nagy & Salhi (2007) location and vehicle routing review
Şahin & Süral (2007) hierarchical facility location review
Snyder (2006) stochastic and robust facility

location
review

Klose & Drexl (2005) facility location for distribution
system design

review

Owen & Daskin (1998) strategic facility location review
Osborne (1995) spatial political competition review
Mesa & Boffey (1996) extensive facility location in

networks
review

Erkut & Neuman (1989) undesirable facility location classification scheme and review
Aikens (1985) facility location for distribution

planning
review

Voting location problems (see Hansen et al., 1990, for an introduction), i.e. problems of
locating resources as the result of a collective election, are closely related to competitive
location problems. Even though the users vote in order to locate resources that can be
interpreted to be owned by a single decision maker, the voting process is such that a stable
location is generally characterized by the nonexistence of a strong party of users who prefer
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alternative locations, that may be seen as possible locations of a competitive decision
maker. Thus, although the focus of voting location problems is somewhat different, they
may even be interpreted as a special case of sequential competitive location problems.
There is a strategic element that these problems share (Hansen et al., 1990): Independent
decision makers (leaders and followers or voters) influence the solution by making their
decisions. Voting location problems are therefore included in this paper.

Another class of closely related location problems is concerned with coverage objec-
tives. These types of objectives model situations in which the users seek to have a resource
within a reasonable distance. “There is [...] some competitive flavor to such problems in
that [...] existing facilities may belong to one company while a second company is trying
to extract the maximum profit by locating its own facilities” (Megiddo et al., 1983). An
excellent, very recent survey on some classes of coverage problems is Berman et al. (2010).
We refer to this review and the references therein for details on coverage problems and
survey only indispensable models in this paper.

The remainder of this paper is organized as follows. The notation and definitions used
in the review are given in Section 2. Sections 3 and 4 deal with voting location problems.
Sections 5 and 6 discuss selected (r|Xp)-medianoid and (r|p)-centroid problems, respec-
tively. Section 7 is devoted to sequential location problems that cannot be interpreted
in the sense of Hakimi’s notion as described above. Furthermore, selected models on a
line are listed in tables. The sensitivity of sequential competitive location problems with
respect to the underlying modeling assumptions is subject of Section 8. The paper ends
with a conclusion in Section 9. We will generally use the terms user, customer and voter
as well as the terms facility and resource interchangeable. Furthermore, unless otherwise
stated, we will assume that the players have the objective of maximizing profit, which, in
the absence of prices, becomes equivalent to maximizing market share.

2. Notation and definitions

Unless otherwise stated, the models are described using the notation of Bandelt (1985)
throughout the paper (cf. also Bauer et al., 1993). This notation is extended to include
new features in the following sections. A network N = (V,E, λ) consists of a finite
set V (|V | = n), a finite set E (|E| = m) of two-element subsets of V and a mapping
λ : E → R+. The pair (V,E) gives a graph in the usual sense (cf. Swamy & Thulasiraman,
1981). The elements v of V are called vertices of the network. The elements e of E are
the edges. Every edge joins two distinct vertices of N . If e is a unique edge joining u and
v this is expressed by the shorthand e = [u, v]. Unless otherwise stated, we assume that
all edges are undirected, hence [u, v] = [v, u]. The value λ(e) is the length of e. We define
D̂ := maxe∈E λ(e). The points x of N (x ∈ N) are the elements of the edges (including all
vertices). Two points x and y on an edge e (x, y ∈ e) determine a subedge [x, y] of e, the
length of which is denoted by λ([x, y]). A path P (x, y) joining two points x ∈ [u, v] and
y ∈ [w, z] is either a subedge or a sequence of edges and (at most two) subedges passing
at most once through each point, where P (x, y) contains x and y but no proper connected
subset of P (x, y) does. The points x and y are the end points of P (x, y). The length
of P (x, y) is equal to the sum of the lengths of the edges and subedges. If the length of
P (x, y) is minimum among all paths connecting x and y, then P (x, y) is a shortest path; its
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length is the distance d(x, y) between x and y. We define D(p, Z) := min{d(p, z)|z ∈ Z}
for a point p ∈ N and a set of points Z ⊆ N . A cycle consists of an edge e joining two
vertices u and v and some path P (u, v) 6= e connecting u and v. A network is connected
if for any two points x and y there exists a path joining x and y. A connected network
without cycles is a tree network. A tree network where every vertex is incident to at
most two edges is a chain network. Unless otherwise stated, we assume that the networks
considered in this paper are connected and that there are no loops (edges [u, u]) at the
vertices.

A path-decomposition of a graph G = (V,E) is a sequence V1, ..., Vr of subsets of the
vertex set V , such that

1.
⋃

1≤i≤r Vi = V ,

2. there exists a Vi, i ∈ {1, ..., r}, such that u ∈ Vi and v ∈ Vi for all [u, v] ∈ E, and

3. Vi ∩ Vk ⊆ Vj holds for all 1 ≤ i < j < k ≤ r.

The pathwidth of a path-decomposition V1, ..., Vr is defined as max1≤i≤r |Vi| − 1. The
pathwidth of a graph G = (V,E) is the minimum pathwidth over all path-decompositions
of G.

Let V ′ be a subset of the vertex set of N . The network N ′ = (V ′, E ′, λ′) is the
subnetwork of N on the vertex set V ′, if E ′ is a subset of E such that each edge of E
joining u and v belongs to E ′ if and only if u and v are in V ′. The mapping λ′ is the
restriction of λ to E ′.

Almost all considered problems feature a finite number of users located at the vertices
of the network N . At each vertex there may be several users or none at all. Unless
otherwise stated, their demand is described by a weight function π : V → R+

0 , where π is
different from the zero function. For a subnetwork N ′ of N we denote by π(N ′) or π(V ′)
the sum

∑
u∈V ′ π(u) where V ′ is the vertex set of N ′.

3. Voting location: Condorcet points and related concepts

The vertex set V of a network N = (V,E, λ) with vertex weight function π is parti-
tioned into three sets with respect to any pair x, y of points and a given α ≥ 0:

[x � y] := {u ∈ V |d(u, x) + α < d(u, y)}, (1)

[x ∼ y] := {u ∈ V ||d(u, x)− d(u, y)| ≤ α)}, (2)

[y � x] := {u ∈ V |d(u, x)− α > d(u, y)}. (3)

Thus, a customer with deterministic and inelastic demand is indifferent (∼) about two
locations, if the difference of their distances to the customer is within the given threshold
α (equal for all customers in the network). π([x � y]) denotes the sum of the weights of
all those vertices which prefer (�) x to y.

A well known concept that is based on these definitions, where α = 0 and another
parameter 0 ≤ β ≤ 1 is introduced, is the β-Condorcet point (Bandelt, 1985). A point x
of the network is said to be a β-Condorcet point, if

π([y � x]) + βπ([x ∼ y]) ≤ 0.5π(N) ∀y ∈ N. (4)
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Hence, a β-Condorcet point is any point x, such that no strict majority of customers
prefers another point to x, where β defines the behavior of indifferent customers. β-
Condorcet points are called Condorcet points (Hansen & Thisse, 1981) for β = 0, plurality
points (Wendell & McKelvey, 1981) for β = 0.5 and majority points (Wendell & Thorson,
1974) for β = 1.

It is well known that the existence of β-Condorcet points depends on the structure of
the network and the distribution of the users (see, for instance, Bandelt, 1985; Hansen &
Thisse, 1981; Hansen et al., 1986; Labbé, 1985). In tree networks, for example, the set of
Condorcet points and medians is equal, so that there always exists at least one Condorcet
point. In general networks, however, there can be a divergence between medians and
Condorcet points and the latter need not exist. Bandelt (1985) characterizes the networks
that always have a Condorcet point or a plurality point for any user distribution. He also
answers the question as to when Condorcet points and medians coincide in those networks.
A polynomial algorithm to determine the, possibly infinite, set of Condorcet points can,
for example, be found in Hansen & Labbé (1988).

The Condorcet concept has been taken some steps further during the last decade.
Campos Rodŕıguez & Moreno Pérez (2000a) define α-Condorcet points by allowing thresh-
old values α ≥ 0 (and thus using an extended preference structure compared to the one
used for the definition of Condorcet points) and setting β = 0 in (4). Obviously, there
always exists a value for α, so that at least one α-Condorcet point exists. The authors
give tight bounds for the relation of the objective function of median and center problems
at an α-Condorcet point and the optimal values of the objective functions at a median or
center in general networks and trees. These results extend similar well known results given
in Hansen & Thisse (1981) and Labbé (1985) for Condorcet points. Campos Rodŕıguez
& Moreno Pérez (2000b) modify the algorithm presented by Hansen & Labbé (1988) to
obtain a polynomial algorithm to determine the set of α-Condorcet points for a given α.

The minimum α value that guarantees the existence of an α-Condorcet point is called
tolerance distance. The corresponding α-Condorcet point, the tolerant Condorcet point,
is introduced by Campos Rodŕıguez & Moreno Pérez (2000b). The authors provide a
polynomial algorithm to compute the tolerance distance. One of their main theoretical
results states, that every point at a distance less than α from a Condorcet point is an
α-Condorcet point. However, this is not a necessary condition for α-Condorcet points.

Campos Rodŕıguez & Moreno Pérez (2003) extend the definition of α-Condorcet points
to αγ-Condorcet points by using

π([y � x]) + βπ([x ∼ y]) ≤ γπ(N) ∀y ∈ N (5)

instead of (4), where 0 ≤ γ ≤ 1.1 Thus, the proportion of customers needed to reject a
location may be different from one half. If we fix only γ and compute the tolerance distance
for this case we get γ-tolerant Condorcet points. Analogously, one may define γ-Condorcet
points by setting α = 0 or other point sets as, for example, αγ-plurality points (setting

1Note that the term βπ([x ∼ y]) is not explicitly used by Campos Rodŕıguez & Moreno Pérez (2003),
since β = 0 as it has been defined for α-Condorcet points. We include the term at this point to indicate
that a β-value different from zero may still be considered, for instance by defining αβγ-Condorcet points.
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β = 0.5) (Campos Rodŕıguez & Moreno Pérez, 2008). Unfortunately, the algorithms and
the majority of the results presented in Campos Rodŕıguez & Moreno Pérez (2003) and
Campos Rodŕıguez & Moreno Pérez (2008) are restricted to the case, where the number
of possible facility locations is a priori assumed to be finite, and thus lie beyond the scope
of this review. Nevertheless, note that the point sets defined in this section are extended
to include the case of multiple facilities in Campos Rodŕıguez & Moreno Pérez (2008).
For example, a p-Condorcet set is a set of p locations such that there is no other set of p
locations that is preferred by a strict majority of the customers.

Another contribution dealing with discrete versions of (single and multiple facility) αγ-
Condorcet and related problems is due to Noltemeier et al. (2007). The authors suggest
an extension of (1)–(3) by defining more general threshold functions δ : R+

0 × R+
0 → R+

0 ,
where δ(0, y) = 0 for all y ∈ R+

0 and δ is (weakly) monotonously increasing in both
parameters. Given a threshold function δ and a parameter β′ ≥ 0, they replace (3) (and
analogously (1) and (2)) by

[y � x] := {u ∈ V |d(u, x)− δ(β′, d(u, x)) > d(u, y)} (6)

for the single facility case and give a straight forward extension of αγ-Condorcet points
to β′γ-Condorcet points.

So far, we have only been concerned with deterministic choice rules. Bauer et al.
(1993) define a proportional choice rule and extend the concept of Condorcet points to
what they call k-optimal points, where k ∈ N ∪ {∞} is a parameter of the choice rule.
Let x 6= y be any pair of points and u1, ..., un be the vertices of the network, then the
probability for a customer located at ui to purchase at x (rather than y) is given by

pkui(x, y) :=
d(ui, y)k

d(ui, x)k + d(ui, y)k
. (7)

For very large k the decisions of the customers are alike to the deterministic decision in
the Condorcet case. The expected value of customers visiting facility x is

Ek(x, y) :=
n∑
i=1

π(ui)p
k
ui

(x, y) (8)

and a k-optimal location x is defined to be a location where Ek(x, y) ≥ 0.5π(N) for all
y ∈ N with y 6= x. One of the main results of Bauer et al. (1993) states, that k-optimal
points (if they exist) are always vertices of the network. Furthermore, the authors give a
polynomial algorithm to determine all 1-optimal locations of a network.

Figure 3 summarizes some of the relations of the point sets that have been mentioned
in this section so far.

We close this section by noting that Labbé (1990) defines anti-Condorcet points for the
case where the players want to locate the facilities as far as possible from the users in the
network. In this case no other point is allowed to be farther away from a strict majority of
the users. The author presents a linear time algorithm for finding an anti-Condorcet point
in trees. Furthermore, she gives a tight bound for the relation of the objective function
of the antimedian problem at an anti-Condorcet point and at an antimedian. Finally, the
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Figure 3: Condorcet points and related concepts.

α-anti-Condorcet point is defined analogously to the α-Condorcet point.

4. Voting location: Some (1|1)-centroid problems

Consider the preference structure (1)–(3) with α = 0. As stated in the previous
section, β-Condorcet points do not always exist in general networks. This leads to the
incorporation of a minimax objective, i.e. the search for points such that the maximal
number of users who prefer another point is minimal:

min
x∈N
{max
y∈N
{π([y � x]) + βπ([x ∼ y])}}. (9)

An optimal solution to this optimization problem is called β-Simpson point (Bandelt,
1985). β-Simpson points are called Simpson points if β = 0 (Hansen & Labbé, 1988) and
are originally due to Simpson (1969). If β = 0.5, then a β-Simpson point is called a security
point (Slater, 1975). In the view of Hakimi’s notion (Hakimi, 1983), the different kinds
of Simpson points are equivalent to those (1|1)-centroids that consider the corresponding
choice rules.

A general network contains at least one Simpson point. An algorithm of polynomial
time complexity to determine the set of Simpson points of a general network is due to
Hansen & Labbé (1988).

As in the case of α-Condorcet points, Campos Rodŕıguez & Moreno Pérez (2003)
incorporate threshold values α ≥ 0 and set β = 0 to define α-Simpson points. Consider
the definition of an αγ-Condorcet point. An α-Simpson point is then defined to be an
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αγ∗(α)-Condorcet point, where γ∗(α) is the smallest possible value that γ may take, such
that the set of αγ-Condorcet points is not empty. The definition of other point sets, as, for
example, α-security points is straight forward (see Campos Rodŕıguez & Moreno Pérez,
2008). Again, note that Campos Rodŕıguez & Moreno Pérez (2008) and Noltemeier et al.
(2007) consider the case of multiple facilities as well. Nevertheless, the results presented in
Campos Rodŕıguez & Moreno Pérez (2003, 2008) and Noltemeier et al. (2007) are mainly
concerned with discrete location problems and are thus omitted in this paper.

In their proportional model, Bauer et al. (1993) define the maximal relative k-rejection
of a point x ∈ N to be

ρk(x) := sup
x 6=y∈N

Ek(y, x)

π(N)
(10)

and, since k-optimal points need not exist in a general network, introduce k-suboptimal
points. These are the locations of the network where the maximal relative k-rejection is
minimal. The authors provide a polynomial algorithm to compute 1-suboptimal points
of a network.

Figure 4 extends Figure 3 to give an overview of the point sets defined in this section
so far.

b-Simpson point

Simpson pointsecurity point

b=0b=0.5

a-security point a=0 a-Simpson pointa=0

ag-Condorcet 

point
k-optimal point

k-suboptimal 

point

minimax

(1|1)-centroid

deterministicproportional

Condorcet-like

min. g

Figure 4: Some (1|1)-centroid problems related to the Condorcet concept.

Spoerhase & Wirth (2010) consider the preference structure (1)–(3) and introduce the
concept of monotonous gain functions as a general model to describe several competitive
and voting location problems. They consider tree networks T = (V,E, λ) with π : V →
Q+

0 , λ : E → Q+ and λ([u, v]) = d(u, x) + d(x, v) for any point x on an edge [u, v] ∈ E.
A gain function Φ : T × T → Q maps a pair of points (y, x) to the value Φ(y, x), denoted
by Φ(y � x) as well, as a measure of the follower’s influence at point y after the leader
has located in point x. A gain function is called monotonous, if there is a function
ϕ : Q×Q→ Q such that

1. Φ(y � x) = ϕ(π([y � x]), π([x � y])) for all points (x, y) ∈ T ,

2. ϕ is monotonously increasing in the first parameter and monotonously decreasing
in the second parameter,

3. ϕ can be evaluated in constant time.

Moreover, the authors define the absolute Φ-score of a point x to be Φ(x) := maxy∈T Φ(y �
x) and the absolute Φ-score of a tree to be Φ∗ := minx∈T Φ(x). Any point y ∈ T where
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Φ(y � x) = Φ(x) is called a Φ-witness of the leader point x. An absolute Φ-solution is
a point x ∈ T with Φ(x) = Φ∗. Therefore, the α-Simpson concept, for example, can be
modeled by the monotonous gain function Γ(y � x) := π([y � x]). Thus, any absolute
Γ-solution is an α-Simpson point. Spoerhase & Wirth (2010) derive an algorithm that
finds an arbitrary element of the set of all absolute Φ-solutions for any monotonous gain
function on a tree in time O(n). The algorithm iteratively decreases the tree network,
maintaining a so called leader tree which is always guaranteed to contain an absolute
Φ-solution. Spoerhase & Wirth (2009a) extend these results (for π : V → R+

0 and
λ : E → R+) by providing an algorithm of time complexity O(n log n) to compute the set
of all absolute Φ-solutions for any monotonous gain function on a tree.

We close this section by noting that, in line with the anti-Condorcet concept, Labbé
(1990) defines anti-Simpson points without giving any concrete results.

5. (r|Xp)-medianoid problems

Consider the characteristics of a basic (r|Xp)-medianoid problem where the leader’s
facilities are located at distinct vertices: Customers are solely located at the vertices of the
network and select the closest facility (binary choice) to accommodate their deterministic,
inelastic demand. Well known results on the computational complexity of this problem
are listed in Table 3 (see, for example, Eiselt & Laporte, 1996, for more details). Megiddo
et al. (1983) show that an optimal solution to this basic (r|Xp)-medianoid problem can
be determined in O (nrmr/r!) time by discretizing the original network and applying an
enumeration procedure.

Table 3: Some complexity results on a basic (r|Xp)-medianoid problem.

Problem characteristics NP-hard Polynomial

customers located at vertices (r|Xp) on general networks
(Megiddo et al., 1983)

(r|X1) on general networks
(Hakimi, 1983)

(r|Xp): O(rn2)
on tree networks

(Megiddo et al., 1983)
binary choice (closest facility)
deterministic, inelastic
demand

A similar discretization result for this basic (r|Xp)-medianoid problem has recently
been presented by Suárez-Vega et al. (2004a) (cf. also Pelegŕın et al., 2006, 2010; Santos-
Peñate et al., 2007). The authors employ the concept of isodistant points in networks.
This concept has been introduced by Peeters & Plastria (1998) (see below). A point x
is said to be (uj, f)-isodistant relative to a customer located at uj ∈ V with π(uj) 6= 0
and an existing facility f ∈ Xp, if d(uj, x) = d(uj, f). Any (uj, f)-isodistant point for
some uj ∈ V and f ∈ Xp is called isodistant point. Pelegŕın et al. (2010) present an algo-
rithm of time complexity O(n3) to determine all isodistant points of a network for known
values of d(uj, f) for all uj ∈ V and f ∈ Xp. For the basic (r|Xp)-medianoid problem
under consideration, Suárez-Vega et al. (2004a) prove that the follower’s market share is
constant on each of the open segments of the network, that are defined by neighboring
vertices or isodistant points. Therefore, one can discretize the (r|Xp)-medianoid problem
by considering an arbitrary point on each of these segments as well as the isodistant points
and vertices of the network.
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Suárez-Vega et al. (2004a) consider extensions of the basic (r|Xp)-medianoid problem
as well (cf. also Santos-Peñate et al., 2007). For example, they analyze the case of elastic
demand. Let fuj be a nondecreasing and concave real function with fuj(0) > 1 for all
uj ∈ V . Then

MSbinary elastic(Yr, Xp) :=
∑

uj∈{ui∈V |D(ui,Yr)<D(ui,Xp)}

π(uj)

fuj(D(uj, Yr))
(11)

defines the market share of the follower. The authors show that an optimal solution
need not exist, so that we may seek ε-optimal solutions, i.e. solutions that guarantee an
objective function value at most ε units away from a known upper bound. Furthermore,
they show that an ε-optimal solution with all of the follower’s facilities located at a vertex
or sufficiently close to an isodistant point of the network always exists.

Well known results due to Hakimi (1986, 1990) are related to alternative modifications
of the basic (r|Xp)-medianoid problem. The author presents a partially binary choice
rule with inelastic demand, where fuj is a nondecreasing and concave real function with
fuj(0) > 0 for all uj ∈ V , i.e.

MSpart. binary inelastic(Yr, Xp) :=
∑
uj∈V

π(uj)fuj(D(uj, Xp))

fuj(D(uj, Xp)) + fuj(D(uj, Yr))
, (12)

a partially binary choice rule with elastic demand, where fuj is a nondecreasing and con-
cave real function with fuj(0) > 1 for all uj ∈ V , i.e.

MSpart. binary elastic(Yr, Xp) :=
∑
uj∈V

π(uj)(fuj(D(uj, Xp))− 1)[
fuj(D(uj, Xp))fuj(D(uj, Yr))− 1

] , (13)

a proportional choice rule with inelastic demand, where fuj is a nondecreasing and concave
real function with fuj(0) > 0 for all uj ∈ V , i.e.

MSprop. inelastic(Yr, Xp) :=
∑
uj∈V

∑
xi∈Yr

π(uj)

fuj (d(uj ,xi))∑
xk∈Yr∪Xp

1
fuj (d(uj ,xk))

, (14)

and, finally, a proportional choice rule with elastic demand, where fuj is a nondecreasing
linear function with fuj(0) > 1 for all uj ∈ V , i.e.

MSprop. elastic(Yr, Xp) :=
∑
uj∈V

∑
xi∈Yr

π(uj)

fuj (d(uj ,xi))−1

1 +
∑

xk∈Yp∪Xp

1
fuj (d(uj ,xk))−1

. (15)

Hakimi (1986, 1990) proves the existence of an optimal solution Y ∗r with Y ∗r ⊂ V to
the (r|Xp)-medianoid problems in all of these cases (cf. also Bauer et al., 1993, for the
proportional inelastic case). Note that in the latter two cases Hakimi assumes p+ r ≤ n.
For the proportional elastic case, Suárez-Vega et al. (2004a) show that Hakimi’s result
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remains true for fuj being nondecreasing concave real functions with fuj(0) > 1 for all uj ∈
V . Moreover, they present computational results on the performance of some heuristic
methods that are applied to problem instances of the discretized versions of the basic
(r|Xp)-medianoid problem as well as it’s extensions related to formulas (11)–(15).

Dasci et al. (2002) generalize the basic (r|Xp)-medianoid problem by additionally
associating a value δ(e) = δ([u, v]) with edge e = [u, v] ∈ E. This value represents the
uniform demand density of the edge, i.e. the unit demand per unit length. Thus, demand
may exist at any point of the network. Dasci et al. (2002) motivate this assumption
by noting that applications for problems with edge demands occur in a variety of fields.
The demand for retail products in a city, for example, usually originates at the houses
on a street rather than at the intersections of the streets. Since the basic problem with
vertex demand only is NP-hard (see Table 3), the generalized version with additional
edge demand is obviously NP-hard too. The authors show that the problem is still
NP-hard if vertex demands are dropped, by reducing the Dominating Set problem (cf.
Garey & Johnson, 1979) to the resulting (r|Xp)-medianoid problem with edge demand
only. Furthermore, they show that a simple augmentation of the discretization result of
Megiddo et al. (1983) can be applied to the (r|Xp)-medianoid problem with edge (or vertex
and edge) demands. This augmentation needs to take into account that the problem might
not have an optimal solution, so that we may seek ε-optimal solutions. As a result, Dasci
et al. (2002) are able to derive an algorithm of polynomial time complexity to compute
ε-optimal solutions of the resulting (1|Xp)-medianoid problem.

Another contribution dealing with a (1|Xp)-medianoid problem with uniform demand
densities δ(e) on edges e ∈ E is Okunuki & Okabe (2002). The authors assume that N
is planar and that O(p) < O(n) = O(m). Furthermore, consumers with deterministic,
inelastic demand probabilistically choose among facilities. The probabilistic choice rule
is based on the (network) Huff-model. According to this model, the probability of a
customer visiting a facility is proportional to the attractiveness (for example the size) of
the facility and inversely proportional to some non decreasing, positive function gdist of
the distance to it.2 Define ai to be a measure of the attractiveness of facility i = 1, ..., p+1
and let λ > 0. The proposed model of consumer choice then defines the probability for a
customer located at point x to visit facility i ∈ 1, ..., p+ 1 as follows:

p(x, xi) :=
aie
−λd(x,xi)

p+1∑
j=1

aje−λd(x,xj)

. (16)

The expected value of customers visiting facility i located at xi is

E(xi) :=
∑

[u,v]∈E

λ([u,v])∫
x=0

p(x, xi)δ([u, v])dx. (17)

2For details on the Huff-model and related customer choice models, see the references in Okunuki &
Okabe (2002) or the reviews on consumers in location models by Drezner & Eiselt (2002) and spatial
interaction modeling by Roy & Thill (2004).
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Okunuki & Okabe (2002) derive an algorithm of time complexity O(n2 log n) to find
approximately optimal solutions to the corresponding (1|Xp)-medianoid problem. The
algorithm is based on transformations of the original network and numerical methods.

The Huff-model (with a concave function gdist) is also applied to a (1|Xp)-medianoid
problem with vertex demand only by Peeters & Plastria (1998), who point to an anomaly
of this proportional choice rule: Customers will patronize very distant facilities even
when there exist more attractive facilities that are much closer. The authors therefore
propose the usage of a modified Huff-model, the Pareto-Huff-model. In this model, the
customers located at vertex uj ∈ V will only visit a subset of facilities, denoted by
Paruj(Xp ∪ {xp+1}), that are Pareto optimal with respect to the attractiveness and the
distance:

f ∈ Paruj(Xp ∪ {xp+1})⇔ ∀g ∈ Xp ∪ {xp+1}\{f}


either ag < af ,
or d(uj, g) > d(uj, f),
or ag = af
and d(uj, g) = d(uj, f).

(18)

Demand is assumed to be deterministic and inelastic. While there always exists an optimal
solution at a vertex for the regular Huff-model, the same does not hold for the Pareto-Huff
model. Peeters & Plastria (1998) derive a discretization result which states that there is
always an optimal solution at, or an ε-optimal solution close to, a vertex or an isodistant
point of the network for any ε > 0. The authors show that there exist at most 2mn̂p
isodistant points in a network, where n̂ is the number of vertices v ∈ V with π(v) 6= 0,
and propose an O(n̂n log n + pmn̂2) enumeration algorithm to determine all (ε-)optimal
solutions of the problem. Pelegŕın et al. (2010) extend these results by proving that the
discretization result holds for the case of multiple facilities, i.e. r ≥ 1, as well.

Suárez-Vega et al. (2007b) present another model that incorporates attractiveness
levels of facilities in a network with vertex demand only. Let fuj : R+

0 → R be an increasing
and concave function for all uj ∈ V and Ap = (a1, ..., ap) and Ar = (ap+1, ..., ap+r) be
the attractiveness levels of the facilities. Furthermore, associate an attraction threshold
τuj with every vertex uj ∈ V , such that the users at uj patronize facility i at point
xi ∈ N with attractiveness level ai only if ai/fuj(d(uj, xi)) ≥ τuj . We denote a subset
SL(uj) of a set L of facility locations that capture demand at node uj ∈ V by SL(uj) :=
{xk ∈ L| ak

fuj (d(uj ,xk))
≥ τuj}. Then

MSattr.(Yr, Ar, Xp, Ap) :=
∑

uj∈{ui∈V |SYr (ui)6=∅}

π(uj)

∑
xi∈SYr (uj)

ai
fuj (d(uj ,xi))∑

xi∈SYr∪Xp (uj)

ai
fuj (d(uj ,xi))

(19)

defines the follower’s market share. Given an attractiveness level ai and a vertex uj ∈ V ,
a point x ∈ N is said to be a (uj, τuj , ai)-threshold point, if the condition fuj(d(uj, x)) =
ai/τuj holds. Each element of the set

T (ai) = ∪uj∈V {x ∈ N |x is a (uj, τuj , ai)-threshold point} (20)
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is called a threshold point with respect to the attractiveness level ai. Suárez-Vega et al.
(2007b) prove that, given Xp, Ap and Ar, there exists an optimal solution Y ∗ to the (r|Xp)-
medianoid problem under consideration, where every facility x∗i ∈ Y ∗ with attractiveness
level ai is a vertex or an element of T (ai).

While so far the models have considered location decisions based on given attractive-
ness levels, Suárez-Vega et al. (2004b) define both, locations and attractiveness levels of
the follower, as decision variables (cf. also Santos-Peñate et al., 2007). Thus, they define
what they call a (r|Xp, Ap)-medianoid problem: Given the attractiveness levels Ap and
locations Xp of the leader, the follower rationally chooses attractiveness levels Ar and
locations Xr. Obviously, one needs to include a cost of attractiveness in this case. The
authors do so by including fixed cost of attractiveness F (aj), where F is a positive, contin-
uous and non-decreasing function of a non-negative real variable, and maximizing profit,
i.e. market share minus the sum of attractiveness cost for all facilities. They analyze
inelastic vertex demand under binary, partially binary and proportional choice rules, i.e.
extensions of the basic (r|Xp)-medianoid problem and the problems related to (12) and
(14). Suárez-Vega et al. (2004b) provide discretization results for the partially binary and
proportional choice rules, while in the case of binary customer choice a discretization can
only be applied if attractiveness levels are given. Furthermore, they present some heuris-
tic algorithms and computational results for the resulting discrete problems. Suárez-Vega
et al. (2007a) extend these results by providing a discretization result for the (r|Xp, Ap)-
medianoid problem related to (15) (proportional, elastic customer choice), where fuj are
nondecreasing and concave real functions for all uj ∈ V .

Garćıa Pérez et al. (2000) (cf. also Garćıa Pérez & Pelegŕın Pelegŕın, 1997) examine a
(1|X1)-medianoid problem on a tree network with vertex customers only. The follower’s
potential locations are restricted to a given path within the tree network. Demand is
assumed to be inelastic and customers select the closest facility (binary choice). The
entrant is assumed to have two main objectives, the first is to maximize market share, the
second is to minimize the maximum travel time of the customers that are being served
by the entrant. This bicriteria optimization model might have applications in situations
where the time to attend a demand is important, as, for example, in messenger delivery
services or fast food services. The authors assume travel time to be proportional to
distance and show that the problem on a tree network can be reduced to the same type of
problem on a chain network. They define a location to be efficient, if there exists no other
location with equally large or larger market share and equally large or smaller maximum
travel time. However, since the infimum value of the maximum travel time might not
be reached for some of the provably finite number of values of possible market shares of
the follower, Garćıa Pérez et al. (2000) consider ε-efficient locations, that are defined in
line with ε-optimality, as well. Finally, the authors derive an algorithm to determine the
entire set of efficient and ε-efficient locations.

Garćıa et al. (2010) incorporate prices into a (r|Xp)-medianoid problem on a network.3

As, in most markets, the choice of location is less flexible than the choice of prices,

3Note that Garćıa et al. (2010) assume that multiple players are initially located in the network. These
players may be interpreted as a single opponent from the point of view of the entrant. Thus, we may
interpret the problem setting as a (r|Xp)-medianoid problem.
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locational models usually assume that simultaneous price competition occurs after the
location decisions have been made. Thus, Garćıa et al. (2010) allow the players to change
prices in a simultaneous pricing game (Betrand game) after the follower’s entry. The
follower anticipates the price competition in this separate stage when making the location
decisions. The players are assumed to be profit maximizers and employ spatial price
discrimination. Customers are located at the vertices of the network and patronize the
facility that offers the lowest price (binary choice). The price sensitive demand at a vertex
uj ∈ V of the network is described by a continuous and strictly decreasing function quj(p)
of the price p ∈ [0, pmaxuj

], where pmaxuj
is the reservation price of the users at uj. Note

that spatial price discrimination is applied to (r|Xp)-medianoid problems with constant
vertex demand by Pelegŕın et al. (2006) (for r = 1) and Pelegŕın et al. (2010) as well.
Garćıa et al. (2010) assume that the players are able to price below pmaxuj

for each uj ∈ V .
Furthermore, they assume that the marginal delivered cost (the sum of marginal cost
of production and transportation) at each uj ∈ V is independent of the amounts sold
and that the players will not price below their marginal delivered cost. Therefore, a
separate Betrand game takes place for every vertex of the network for any fixed set of
locations. Garćıa et al. (2010) show that each player will monopolize the set of vertices
where his marginal delivered cost is lower than the minimum marginal delivered cost
of the other players. The players then either set the optimal monopoly price or the
price equal to the minimum marginal delivered cost of the competitors in each of their
monopolized vertices and a price equal to their minimum marginal delivered cost in the
other vertices. Thus, the location price problem is reduced to a location problem if all
players are assumed to set these equilibrium prices. The authors then additionally assume
the marginal production cost to be a positive concave function on an edge of the network
and the marginal transportation cost to be a positive, concave and increasing function
with respect to the distance of a facility to a vertex of the network. They prove that,
under these assumptions, there exists a set of vertices which is an optimal solution to the
(r|Xp)-medianoid problem.

We close this section by extending Table 3 in listing complexity results that have been
explicitly mentioned in the surveyed papers in Table 4. Note that discretization results
might be exploited to derive further efficient algorithms (especially for r = 1).

Table 4: Some complexity results on selected (r|Xp)-medianoid problems.

Problem characteristics NP-hard Polynomial

(vertex and) edge demand
(r|Xp) on general networks

(Dasci et al., 2002)

(1|Xp): O(nm2)
ε-opt. solution on general networks

(Dasci et al., 2002)
binary choice (closest facility)
deterministic, inelastic demand

edge demand (1|Xp): O(n2 logn)
approx. opt. solution on general networks

(Okunuki & Okabe, 2002)
proportional choice (Huff model)
deterministic, inelastic demand

vertex demand (1|Xp): O(n̂n logn+ pmn̂2)
ε-opt. solution on general networks

(Peeters & Plastria, 1998)
Pareto-Huff model
deterministic, inelastic demand

6. (r|p)-centroid problems

Hakimi (1983) was the first to publish complexity results on the basic (r|p)-centroid
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problem, which we define in line with the basic (r|p)-medianoid problem, i.e. we consider
vertex customers who patronize the closest facility to accommodate their deterministic,
inelastic demand. He proved the basic (1|p)-centroid problem on a general network to
be NP-hard by reduction of the Vertex Cover problem (cf. Garey & Johnson, 1979).
Another well known result is due to Hansen & Labbé (1988) who provided an algorithm
of polynomial time complexity to determine the set of all optimal solutions to the basic
(1|1)-centroid problem on general networks (cf. already Section 4).

Table 5: Some complexity results on a basic (r|p)-centroid problem.

Problem characteristics NP-hard Polynomial

(1|p) on general networks
(Hakimi, 1983)

(1|p) on pw-bounded networks
(Spoerhase & Wirth, 2009b)

(r|p) on chain networks
(Spoerhase & Wirth, 2009b)

(1|1): O(n4m2 log(mn) log(π(N)))
on general networks

(Hansen & Labbé, 1988)

(1|p): O(n2(logn)2 log π(N) log D̂)
on tree networks

(Spoerhase & Wirth, 2009b)

customers located at vertices
binary choice (closest facility)
deterministic demand
inelastic demand

These results have recently been extended by Spoerhase & Wirth (2009b). The authors
provide a NP-hardness proof for the basic (r|p)-centroid problem on chain networks that
uses a reduction of the Partition problem (cf. Garey & Johnson, 1979). Furthermore, they
investigate the basic (1|p)-centroid problem. They show that Hakimi’s result on its com-
plexity on general networks remains true on networks of bounded pathwidth (pw-bounded
networks), while a discretization result can be utilized to design an exact algorithm of
polynomial time complexity on tree networks. Note that, differing from our network no-
tation, the authors assume π : V → Q+

0 , λ : E → Q+ and λ([u, v]) = d(u, x) + d(x, v) for
any point x on an edge [u, v] ∈ E. The complexity results are summarized in Table 5.

Based on Table 5 and Section 5, one may conclude that centroid problems are sub-
stantially harder than medianoid problems (cf. also Section 8). This is supported by
Hakimi (1983), who defines an approximate solution to a (r|p)-centroid problem as a so-
lution with an objective function value that is within a fixed positive (integer) factor α
of being optimal, where α is not a function of the size of the network. He proves that
even the problem of finding an approximate solution to the basic (1|p)-centroid problem
is NP-hard. Spoerhase & Wirth (2008) extend this result by showing that there exists a
fully polynomial time approximation scheme for the basic (r|p)-centroid problem on chain
networks with π : V → N and λ : E → N+.

Motivated by the fact that the basic (r|p)-centroid problem is polynomially time solv-
able on tree networks for r = p = 1, research in this field has focused mainly on incorpo-
rating additional features into this special case. Shiode & Drezner (2003), for example,
extend the basic (1|1)-centroid problem on a tree network by assuming that the vertex
weights at the follower’s time of entry used by the leader in his decision are stochastic;
that is, they are random variables according to mutually independent normal distribu-
tions π(uj) ∼ N(µj, σ

2
j ) with mean µj and variance σ2

j for all uj ∈ V . The follower then
locates his facility knowing the location of the leader and the vertex demands. Note that
the authors do not permit co-location, i.e. locating at the same point of the network, of
the two players. The leader wishes to minimize the maximum total demand taken away
by the follower with a satisfying probability β with 0.5 < β < 1. It is easy to see that
there always exists an optimal location of the follower at a vertex of the tree network.
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Shiode & Drezner (2003) additionally prove that there always exists an optimal solution
to this stochastic (1|1)-centroid problem at a vertex of the tree network and present a
simple efficient solution procedure based on an enumeration of the vertices and bisection.

An alternative extension to the basic (1|1)-centroid problem on tree networks is pre-
sented by Garćıa Pérez & Pelegŕın Pelegŕın (2003). The authors incorporate parametric
prices, i.e. they assume that the unit mill price of the product is fixed for each player.
Transportation cost is assumed to be a linear function of distance. The demand at each
node is served by the lower cost facility (parametric price + transportation cost). More-
over, the authors assume that each player gets a positive profit once located at an optimal
location, so that competition is possible. Hereafter, they present two O(n3 log n) algo-
rithms to generate the set X∗1 of all optimal leader locations under the assumption that
the parametric prices are different. Note that the algorithm presented by Spoerhase &
Wirth (2009a) (cf. Section 4) may be applied to compute the set X∗1 in O(n log n) time.
Garćıa Pérez & Pelegŕın Pelegŕın (2003) determine this set for equal parametric prices as
well. Furthermore, they prove that there always exists an optimal location for the follower
at a vertex of the tree network when prices are different, while this does not have to be
the case for the leader. When prices are equal, there always exists an optimal location
for the leader at a vertex, while this might not be true for the follower.

Garćıa Pérez & Pelegŕın Pelegŕın (1997) analyze the basic (1|1)-centroid problem on
a tree network for different objective functions. They, first, consider the maximization of
market share and, second, the minimization of the maximum travel time of the customers.
They prove that, if we restrict the players’ locations to a path within the tree network, the
game can be reduced to a corresponding game on a chain network and that the optimal
locations of both, the leader and the follower, can be determined analytically.

While Garćıa Pérez & Pelegŕın Pelegŕın (1997) study the variation of objective func-
tions that affect both players, Berman & Gavious (2007) analyze a two player leader
follower game on a network with differing objectives of the players. The leader, a state,
locates p facilities that provide support in case of a terrorist attack. Locating an emer-
gency facility incurs a fixed cost C > 0. Moreover, the state decides on investing resources
cprev on prevention, such that the state strategy is a vector s = (x1, ..., xp, cprev). The fol-
lower, a terrorist, attacks one of the cities, modeled as vertices of the network. For the case
of more than one leader facility the authors analyze discrete versions of the problem, while
results for a continuous version are presented for the case of one facility ((1|1)-centroid
problem). The vertex weights of the graph are interpreted as the expected damage in case
of a terrorist attack on that city. Edge weights represent the delay of shipment of resources
from the facility. The terrorist may use a mixed strategy t = (p1, ..., pn) where pi is the
probability that the terrorist will attack vertex ui ∈ V . It is assumed that

∑n
i=1 pi = 1

and pi ≥ 0 for all i. The probability for an attack to succeed is modeled by a continuous
decreasing convex function P (cprev) with P (0) > 0 and limcprev→∞ P (cprev) = 0. The
disutility in case of a successful terrorist attack on city ui is

fi := (αd(x, i) + ηi)π(ui) (21)

where x is the closest facility to the city and α > 0 represents the cost of delaying one
unit of resource due to a unit of distance. Furthermore, ηi := η + αd(i) with η > 0 and
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d(i) representing the delay at the city itself. Thus, the expected utility of the leader is
described by

US(t, s) := −P (cprev)
n∑
i=1

pifi − pC − cprev. (22)

The terrorist’s utility is defined to be

UT (t, s) :=
n∑
i=1

pi(γd(x, i) + δi)wi (23)

with δi := δ + αd(i) and δ > 0, γ > 0. Berman & Gavious (2007) show that an optimal
solution to the (1|1)-centroid problem is included in a finite set of points, called local cen-
ters, that can be determined analytically. Moreover, they show that an optimal solution
can be determined efficiently.

7. Multiple players, endogenous location and selected R1 models

So far, we have been able to interpret most of the games using Hakimi’s framework
of (r|Xp)-medianoid and (r|p)-centroid problems with problem specific assumptions and
extensions. This is no longer reasonable if we consider more complex games with, for
example, more than two players or endogenized market entry or location order. These
kinds of assumptions, as suggested by Eiselt & Laporte (1996) for future research, have
mainly been applied to linear markets. Table 6 lists some selected recent contributions.

Granot et al. (2010) allow an endogenously determined, potentially indefinite number
of players to locate one facility on a line and, in an extension to this model, a network
that may contain loops. Players locate in the location space, at fixed cost, according to
an exogenously given order as long as it is profitable for them to do so. The demand
of the uniformly spread customers is assumed to be elastic and modeled by a demand
intensity function, denoted by d(x), which is continuous and decreasing in the distance x
to the closest facility (binary choice). Thus, in the linear model (and analogously in the
network model) the revenue of a player, located at x0, from the costumers in a subinterval
(x0, x0 + r), provided he is the closest player to these customers, is

D(r) :=

∫ r

0

d(x)dx. (24)

Prices are fixed to 1. Making some assumptions with regard to the demand intensity
function and not permitting co-location, the authors show in their main result for the
network model that, in equilibrium, players will first locate at the vertices of the network
according to some easily computable order, and subsequently, they will locate on the edges.
This result can be generalized to the case of edge specific demand intensity functions.
Moreover, Granot et al. (2010) prove that the optimal number of facilities to be located
by a monopolist is strictly smaller than the number of players who will be located in
equilibrium of the competitive model if edge lengths are not too small.

Other features that have mainly been considered in sequential competitive location
models on a line include asymmetric information (concerning, for example, customer
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preferences or the cost structure of the opponent), asymmetric (direction dependent)
transportation cost, special settings in the pricing game (concerning the timing of events)
and players with different objectives (global or local players, public or private firms, etc.).
We list some related publications in Table 7.4 The reader may find interesting ideas to
be adopted in general network models in future.

8. On the influence of specific modeling assumptions

As pointed out by Eiselt & Laporte (1996), sequential competitive location prob-
lems are very sensitive with respect to the underlying modeling assumptions, especially
in terms of complexity, the existence and nature of solutions and discretization results.
D’Aspremont et al. (1979), for example, show that there is no Nash equilibrium in pure
strategies in Hotelling’s (first location then price) game with linear transportation cost.5

However, by assuming the transportation cost to increase quadratically with the distance,
the authors are able to derive a proof for the existence of a Nash equilibrium in which
the competitors locate at the opposite ends of the line segment. Other examples are re-
lated to voting theory: In Section 3 we have illustrated that the existence of Condorcet
points (and related concepts) often depends on the structure of the underlying network
and the distribution of the users. This led to the incorporation of minimax objectives
(Section 4) or a threshold value α. Sections 5–7, however, have mainly been describing
the modeling assumptions themselves in detail. It is the aim of this section to explore
the above-mentioned sensitivity of these models. In doing so, we assume the reader to be
familiar with the effects summarized in Eiselt & Laporte (1996). Moreover, we note that
the papers that have been subject of Sections 5 and 6 are mainly concerned with existence,
complexity and discretization issues, while research on R1 models (Section 7) concentrates
on effects like agglomeration, maximal differentiation, leader and follower advantages and
the existence of equilibria. Therefore, this section is divided into two parts, highlighting
the implications of general network models and models on a line separately.

Consider an arbitrary (r|p)-centroid problem on a network. Due to the sequential
nature of the game, we are (in mathematical programming terms) faced with a bilevel
(or hierarchical) optimization problem (see Bard, 1998, for an introduction to bilevel
programming). The fact that even the linear bilevel programming problem in continuous
variables is NP-hard in the strong sense (Bard, 1998, chap. 5) suggests, that we are
unlikely to be confronted with polynomially time solvable problems. Indeed, as Table 5
demonstrates, the basic (r|p)-centroid problem is NP-hard even if we consider relatively
simple network structures as, for example, chain networks. By fixing r = 1, one can
derive an efficient algorithm on tree networks; A feature which is lost when considering a
slightly more complex network class: pathwidth bounded networks. A polynomial time
algorithm for the basic (r|p)-centroid problem on general networks is only known for the
case r = p = 1. Thus, two of the major factors influencing the complexity of centroid

4Note that some of the authors analyze extensions to their models while we refer to their main models
in the Table 7.

5Note that Hotelling (1929) claimed that, in equilibrium, the two competitors will agglomerate in the
center of the line segment.
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problems are the network structure and the number of facilities to be located by the
players.6 Tables 3 and 4 show that this result carries over to the basic (r|Xp)-medianoid
problem if we treat r as an arbitrary input parameter. On tree networks, we are able to
efficiently determine an optimal solution for arbitrary values of r, while this is not the
case on general networks. Furthermore, the influence of the number of facilities on the
complexity persists when considering additional features as, for example, edge demand
(Dasci et al., 2002) or other types of choice rules (Okunuki & Okabe, 2002).

It is well known that modeling assumptions influence the existence and cardinality
of finite dominating sets of competitive location problems. This, in turn, may effect
the applicability of enumerative algorithms or the neighborhood definitions of potential
heuristic algorithms. In the case of (r|Xp)-medianoid problems (see Section 5), such
factors include:

• Binary choice: While there exists a subset of the vertex set (frequently referred to
as the “Hakimi property” or “node optimality”) that corresponds to an optimal
solution in the case of choice rules (12)–(15) (partially binary and proportional
choice with inelastic and elastic demand, respectively), finite dominating sets are
usually substantially larger in the case of binary choice rules. This is true for both,
inelastic and elastic demand (basic (r|Xp)-medianoid problem and choice rule (11)).
Furthermore, it remains true when considering (r|Xp, Ap)-medianoid problems under
different choice rules (Suárez-Vega et al., 2007a).

• Pareto optimality: The same effect arises when considering (ε-optimal solutions of)
the Pareto-Huff-model instead of the Huff-model (Peeters & Plastria, 1998).

• Edge demand: When (additionally) incorporating edge demand, one may need to
seek ε-optimal solutions (Dasci et al., 2002). The resulting effect on the cardinality
of finite dominating sets is rather small.

Discretization results concerning (r|p)-centroid problems (Section 6) are rather limited.
A basic (r|1)-centroid of a general network is always a vertex for r ≥ 2, while this is not
the case for r = 1. On tree networks, however, there always exists a vertex that is a (1|1)-
centroid (see Hakimi, 1990, and the references therein). The latter statement remains
true in the case of stochastic demand as presented by Shiode & Drezner (2003), but it
may be wrong when parametric prices are included (Garćıa Pérez & Pelegŕın Pelegŕın,
2003). An additional discretization result for the case r = p = 1 is presented by Berman
& Gavious (2007). Furthermore, Spoerhase & Wirth (2009b) derive a (non polynomial)
discretization result for the basic (1|p)-centroid problem on a tree network.

As mentioned above, modeling assumptions do not only influence the complexity and
discretization results of the underlying problem, but may also effect the existence and
nature of its solutions. In Section 5, for example, due to the potential non-existence
of optimal solutions, ε-optimal solutions had to be considered in the case of choice rule
(11), when considering edge demand or when applying the Pareto-Huff model. Results

6The dependency of complexity on network structure is well known in the (competitive and non-
competitive) location literature. Kincaid (2011) gives an overview of classical contributions in this field.

25



concerning R1 models are listed in Table 9. Those models are typically designed with
regard to analytic traceability or analyzed by simulation. Complexity issues are usually
not considered in detail.

Table 9: R1 - Main features and results (continues on next page).

Authors Main features Results

Demand uncertainty
Aiura (2010) Demand uncertainty in a multi period

model: Customers distributed on an un-
known interval of length 1. Later entrants
may adjust predictions on the distribution
by observing demand signals arising after
preceding firms enter the market.

Agglomeration of the three firms occurs (only) if firms
can observe signals on the customer distribution. In
this case they dislike revealing the signals and therefore
chose the same location as the preceding firm.

Bonein &
Turolla (2009)

Customers distributed on an interval of
length 1. One player is perfectly informed
while the other faces demand uncertainty.

Demand uncertainty leads to differentiation when faced
by the leader while it is an agglomeration force when
faced by the follower. Welfare losses are higher in the
latter case.

Harter (1997) Customers distributed on an unknown in-
terval of length 1.

Except from the duopoly case, firms locate almost
evenly throughout the location space.

Customer attributes
Götz (2005) Uniform customer distribution with vari-

able density (market size).
Locational patterns are in general asymmetric in the
duopoly case. Profits are non-monotonic in market
size. Equilibrium profits of all firms may be larger in
situations in which more firms are active.

Rhee (2006) Consumers differ both in their locations
and in their tastes along unobservable
characteristics (random component in cus-
tomer’s utility functions).

The more the customer choices depend on the unob-
servable characteristics, the closer to the center of the
market the follower locates. Anticipating this behav-
ior, the leader locates farther away from the center. Not
only the locations, but also the degree of first mover ad-
vantage (or disadvantage) is determined by the level of
dependence of the customer behavior on unobservable
characteristics.

Zhou &
Vertinsky
(2001)

Time dependent customer density. Inclu-
sion of interest rate. Leader monopoly
prior to follower’s entry.

The follower always maximally differentiates. The
leader chooses the center of the market if transporta-
tion cost and market growth rate are sufficiently low
and interest rate and fixed cost are sufficiently large.
Otherwise the leader will locate as far away from the
center as possible.

Different “types” of players
Beladi et al.
(2010)

Vertically related industry with one up-
stream and two downstream firms who
move sequentially. The latter produce two
out of three differentiated goods each.

A merged firm (one of the downstream firms and the
upstream firm) will locate farther away from the social
optimum than the firm outside the merger.

Heywood & Ye
(2009a,b)

Sequential games with a domestic public
firm, domestic private firms and foreign
firms. Domestic welfare is defined to be
consumer surplus plus domestic profit and
equals global welfare minus the profit of
the foreign firm.

Without considering the entry of a foreign firm, the
presence of a public firm generally increases welfare.
The entry of a foreign firm often lowers domestic wel-
fare. Privatization of the public firm may lower domes-
tic welfare but can increase global welfare.

Loertscher &
Muehlheusser
(2008)

A global player competes with local players
on two (heterogenous) linear markets with
the same product.

Agglomeration occurs across markets.

Matsumura &
Matsushima
(2003)

Sequential games with a public and a pri-
vate firm. The effect of price regulation is
considered.

The desirable role (leader or follower) of the public firm
depends on the presence of price regulation. Neither
price regulation nor privatization of the public firm im-
proves welfare.

Rothschild
et al. (2007)

Possibility of strategic contracts or merg-
ing between two out of three firms that en-
ter sequentially.

The outcomes in terms of welfare consequences and lo-
cation choice are substantially different according to
different modes of entry.

Endogenous timing
Lambertini
(1997)

The timing of entry and pricing is endoge-
nously determined. Players may locate
outside the consumer interval.

The (subgame perfect) equilibrium in pure strategies is
reached by playing sequentially in the price stage after
having set locations simultaneously.
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Table 9: (continued)

Authors Main features Results

Meza &
Tombak (2009)

Asymmetric firms with different marginal
production cost. The timing of entry is
endogenously determined.

The existence of an equilibrium in pure strategies, the
timing of events and the locations themselves depend
on the marginal cost differences. Usually, sequential
market entry naturally arises, the low cost firm takes
the role of the leader and the follower maximally dif-
ferentiates.

Asymmetric transportation cost
Lai (2001) Transportation cost is finite only in one di-

rection of travel.
No (subgame perfect) equilibrium in pure strategies.

Nilssen (1997) Asymmetric transportation cost. Locational patterns (as well as a potential first mover
advantage) depend on the explicit values of the trans-
portation costs. There exists no indifference among
late movers that want to locate between early movers.

Nilssen &
Sørgard (2002)

Asymmetric transportation cost. Public
leader, private follower.

Both, triggered differentiation and triggered agglomer-
ation, may be welfare maximizing (depending on the
asymmetry of transportation costs).

Yates (1997) Transportation cost is finite only in one di-
rection of travel.

Equilibria are symmetric in the sense that all players
obtain the same market share. Note that, in contrast to
Lai (2001), Yates (1997) considers ε-optimal locations.

Information asymmetry
Boyer et al.
(2003a,b)

Information asymmetry concerning
marginal production cost.

Information asymmetry may not cause any distortion
in the location game if a fixed cost of entry is not
present. But, in general, information plays a crucial
role in location strategies preventing the entry of a fol-
lower.

Lambertini
(2002)

An infinite time horizon is included. The
follower’s time of entry is uncertain. As
long as the follower has not entered, the
leader acts as a monopolist.

The later the follower is expected to enter, the closer
to the center of the market the leader locates.

Tyagi (2000) Marginal production cost asymmetries.
Players may locate outside the consumer
interval.

Unless the leader is certain that the follower will not
have a superior cost structure, it may be better to lo-
cate away from the market center.

Pregame investments
Matsumura &
Matsushima
(2010)

There is an ex ante marginal production
cost difference (efficient leader, inefficient
follower). Marginal production cost can be
changed by investment in a pregame stage.

An ex ante inefficient follower has a stronger incentive
to invest, given that the ex ante cost difference is suffi-
ciently large. A decrease in cost of this follower pushes
the facilities apart, resulting in increasing prices and
market share of the follower. Decreasing cost of the ex
ante efficient leader lead to decreasing differentiation
and decreasing prices.

Special pricing game
Fleckinger &
Lafay (2010)

The players (simultaneously or sequen-
tially) choose price and location at the
same time. A general transportation cost
function is applied.

There is no equilibrium in the simultaneous game while
there exist equilibria in the sequential case. The fol-
lower charges a higher price and always earns more than
the leader. Differentiation is never minimal (agglomer-
ation) nor maximal.

Tyagi (1999) The order of setting prices after the loca-
tion stage is endogenized. Players may lo-
cate outside the consumer interval.

The unique equilibrium outcome involves players
choosing sequential pricing over simultaneous pricing.
The leader in location acts as the leader in prices.

Location outside the consumer interval
Tabuchi &
Thisse (1995)

Triangular consumer density. Players may
locate outside the consumer interval.

For a symmetric triangular density, only asymmetric
equilibria (in pure strategies) exist (even for simulta-
neous choice of locations). A first mover advantage is
induced by allowing location outside the consumer in-
terval.

Location densities
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Table 9: (continued)

Authors Main features Results

Dasci &
Laporte (2005,
2007)

The players open an endogenously deter-
mined (fixed cost) number of facilities.
Strategies are defined in terms of their lo-
cation densities (no precise representation
of the locations).

The model is solvable analytically. If the follower en-
ters the market, he opens at least as many facilities as
the leader. The leader can effectively deter entry (even
in the case of a cost disadvantage). However, this may
not always be rational. Entry and entry deterrence
decisions are quite sensitive to consumer densities and
fixed cost. This is not the case for the location strate-
gies, once both players are present.

Product varieties
Peng &
Tabuchi
(2007a,b)

Competition in location and product va-
rieties. Endogenization of the number of
facilities and varieties of the players by in-
cluding a fixed cost per variety.

If each player is restricted to locating a single facility,
neither agglomeration nor maximum differentiation oc-
cur. Allowing multiple stores yields a rich set of equi-
librium outcomes.

9. Conclusion

In this paper we have presented a review of recent developments in the field of se-
quential competitive location problems with a focus on problems defined on networks.
We have included the class of voting location problems. In the latter context, we have
given an overview of different kinds of point sets in networks, as, for example, gener-
alizations of the well known Condorcet and Simpson sets, and their interrelationships.
We have outlined the features and main results of recently published (r|Xp)-medianoid
and (r|p)-centroid problems. Moreover, we have presented a tabular overview of more
complex games that have mainly been defined on linear markets. These models feature,
for example, an endogenized market entry or location order, multiple players, asymmetric
information, asymmetric transportation cost or different player objectives. Finally, we
have outlined the effects of some modeling assumptions on the complexity, the existence
and nature of solutions and discretization results of the problems under consideration.
We refer to Younies & Eiselt (2011) for ideas on future research directions.
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