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Introduction

The Baron-Ferejohn Model is first presented by Baron and Ferejohn in Bargaining in Legisla-
ture (1989). It is widely accepted, widely used and has a great impact. Agranov and Tergiman
(2014) refer to the model as "the most popular formal model used to study multilateral bargain-
ing" (75). The goal is to negotiate the distribution of a resource. The general setting is - roughly
summarised - the following: successive rounds of bargaining follow until a majority is reached
in favour of a proposal for the distribution of a resource. The proposal is made by a group
member that is randomly selected for each round. Baron and Ferejohn show that in many cases
there are unique strategies for (risk neutral) proposers and respondents, which lead to a proposal
being made in the first round that achieves a majority. Crucial for these results is that Baron
and Ferejohn assume that a respondent agrees to a distribution proposal if it provides at least as
much for her or him as she or he expects for the following round(s). Baron and Ferejohn begin
their investigation with the simplest case, that three players negotiate a maximum of two ses-
sions. This case is also the basis for the research in this article. They show that under these
conditions, the bargaining ends in the first round when the proposer offers 1/3 of the resource
to a (randomly chosen) respondent and keeps 2/3 for himself. This advantage of the proposer is
also shown in other versions of the BF model and is called proposer-power. The details are
presented in the chapter "The Baron Ferejohn-Model".

What is meant by a need in the sense used here is discussed in the chapter "Need". In addition
to some basic remarks and a brief historical and scientific classification, this chapter takes a
first step into formalization: A need is an individual quantity whose (absolute) value indicates
how much an individual needs of the good available for distribution in order to survive'. Ex-
amples can be the (individual) number of calories an individual needs to consume (in a given
period of time) or a corresponding financial endowment that allows the purchase of a suffi-
ciently large quantity.

The relevance of need in the BF model arises because - as will be shown in this article — strat-
egies and solutions taking into account (individual) need turn out significantly different than
when - as in the BF model - need is neglected. An essential and easily comprehensible reason
for this is the following: If the (individual) need of a player is above the (general) value for
approval determined by Baron and Ferejohn, she cannot approve without acting in a highly
irrational manner. This becomes especially clear if the need for survival is assumed and a player
dies if his need is not met. Neglecting needs would therefore only be legitimate if it could be
assumed that participating players, at least in general, have a need for the good to be distributed
that is less than the value determined by Baron and Ferejohn. However, this is a very strong
assumption, which is generally not fulfilled, especially in the area of scarce goods.

To address this, the main section of this article, entitled "Bargaining in the Baron Ferejohn
Model under Consideration of Need," develops and discusses strategies that consider need and
the associated bargaining solutions.

Following the obligatory first chapter of the main part "Definitions, Notations and Desiderata",
an approach is presented under the title "A Naive Approach", which is convincing at first sight,
but which is described as naive in anticipation of the further results: (Individual) lower limits
of approval defined by (individual) needs are introduced into the BF model. A respondent
agrees if he is offered the maximum of the value determined analogously to the procedure of
Baron and Ferjohn and his need.

This seems to disadvantage players with large needs because their approval may be more ex-
pensive than the approval of players with small needs and the former therefore do not receive

! That it is the value an individual needs to survive is a simplification made to focus on essential aspects.



an offer from the proposer. Accordingly, players with small needs seem to benefit. This is re-
ferred to as the "plausible assumption" and is also referred to as low-need power. By the way,
anyone who has the impression that this model is more unfair than the BF model is mistaken?,
because this modelling shows only generally existing power imbalances, which are ignored in
the BF model.

In the following chapter "Counter Intuitive Results of the Naive Approach" examples are given
which show that the plausible assumption does not seem to be correct: players with small need
turn out to be the most expensive players, players with large need turn out to be the cheapest.
The latter therefore receive an offer which they agree to, bringing the negotiation to an end and
leaving players with smaller needs empty-handed and not even having their needs met. That
this surprising result can be easily explained from the right perspective is a first point that makes
the heart of a theorist beat faster: because players with low need assume to be preferred, they
have a high expectation value. These high expectation values make their approval expensive
and possibly more expensive than the approval of players with high need.

However, it is not the plausible assumption that is wrong, but the naive approach, which is why
it is called this in advance. For if players have different large needs, they have different scope
for bargaining, in the sense that a player with a small need can accept a smaller offer than a
player with a large need. A player with a small need can, in a sense, undercut a player with a
large need by being willing to accept an offer that is smaller than the offer that a player with a
large need can accept (as long as it is at least as large as its own need). This is referred to as the
"cheaper rule". In this way, a player may not realize his expected value, but at least covers his
need. Here, the player prevents a competing player from receiving an offer, which is the only
rational decision because it also stops the bargaining from ending abruptly because said other
player accepts said offer. The details of these considerations can be found in the chapter "An
improved approach".

Thus, the complexity increases significantly compared to the BF model. Whereas in the BF
model a respondent must consider only one parameter - the expected value, which is the same
for all players - here a respondent must not only determine his own lower limit for approval
from his own expected value and his own need according to the naive approach, but also these
values for a competing respondent, in order to avoid being undercut. However, this is not the
end of the matter, because similar considerations show that an upper limit can be derived from
the resource, the expected value, and the need of the proposer, with respect to what the proposer
can offer a respondent at most, because a proposer - analogous to the considerations from the
perspective of a respondent - does not make any offers, with which it is associated that less than
the maximum of its own expected value and its own need remains for himself from the resource
minus the offer to the most favourable respondent. In order to determine whether a bargaining
solution can be reached at all and, if so, what it looks like, the needs and expected values of all
players as well as the size of the resource have to be taken into account®. A simple — admittedly
very poor - purely combinatorial estimation of the complexity on the basis of these seven vari-
ables shows more than 3 million case distinctions®.

2 The impression of such injustice could arise because, following Matthew's principle "To those who have will be
given.", it could be said: "To those who need little will be given (and not to those who need it more urgently)".

3 More precisely, it turns out that - case-specifically - the expected value of one player does not have to be taken
into account.

*1f you permute the seven variables (without repetition) you get 7! = 5,040 cases. Each permutation results in 36

case distinctions depending on the expression of three possible relations between the sizes (greater than,
equal to, less than), so that there are purely combinatorial 5,040%*3"6 = 3,674,160 case distinc-

tions.
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That this complexity can be reduced to only 50 case distinctions for the first session and only
12 more for the second makes the heart of a theorist beat faster a second time and is an essential
result of this article. And even this comparatively small number of case distinctions still gives
an overcomplex impression of the solutions. For on the one hand, the solution of a concrete
bargaining situation can be read off from the scheme developed for this purpose in only three
steps, and on the other hand many of these cases could be summarized (which is refrained from
in order to give priority to a presentation that is as systematic and comprehensible as possible
over a presentation that is as concise as possible, and because possible criteria according to
which the cases could be summarized are partly opposing each other). In this respect, it must
be emphasized that it is thanks to the scheme developed for this purpose that the results are
nevertheless so comparatively clear and simple. This scheme as well as the derivation of the
case differentiations and the case specific solutions can be found in the appendix ("Case Dif-
ferentiations and Solutions - Derivation"), the results are summarized in the chapter "Case Dif-
ferentiations and Solutions - Overview". This is followed by the chapter "Numerical Examples
and Discussion". Central results are:

a) There is not, as in the BF model, the one proposition in which everything cumulates. The
complexity does not allow that. But - this is also an important result - the complexity does not
increase (contrary to what combinatorial estimates suggest) compared to the BF model to an
extent that it would no longer be manageable or comprehensible.

b) The plausible assumption or the low-need-power (according to which a player with a small
need benefits from the consideration of need) is confirmed, albeit in a much more differentiated
form than initially assumed. The central statement in this context is that if a bargaining solution
is reached, then the player with the smallest need - if this is unambiguous - is involved and his
need is (at least) covered. However, this may be associated with the player receiving much less
than he would receive according to the BF model.

c¢) Closely related to this, proposer power is relativized (according to which the proposer re-
ceives significantly more than the respondent). Proposer power can decrease significantly com-
pared to the BF model, but it can also increase significantly. Particularly interesting in this
context are indications that players who do not have need information may assume conditions
that lead to a weaker proposer-power than the one predicted by the BF model when taking need
into account. It may be possible to derive explanations for empirical findings that the BF model
overestimates proposer power.

The detailed description of the 3 player/2 sessions case under consideration of need is followed
in the chapter "An Outlook on Generalizations" by a short outlook on the treatment of bargain-
ing with more than 3 players and more than 2 sessions under consideration of need. The chapter
"Summary and Conclusion" gives an overview of the main results and concludes the article.

The Baron Ferejohn-Model

The basic setting of the (closed rule) Baron Ferejohn model is the following: Given is a nor-
malized resource of size 1 to be distributed. Risk-neutral players are assumed. Among the play-
ers, a proposer is chosen at random with equal probability to propose a distribution. This distri-
bution proposal is formulated in the form of shares of the resource for the individual players. It
is assumed that the proposer agrees with the distribution proposal. The other players vote on
the distribution proposal (on the distribution proposal as a whole, not just on the allocation that
the proposal provides for the voting respondent). If a majority (including the proposer's pre-
sumed approval) approves the proposal, it is adopted. Each player then receives the share of the
resource that the distribution proposal provides for him, and the bargaining ends. If no majority
is reached, the bargaining goes to the next session. In the next session, the same procedure is
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followed as before, a proposer is again chosen randomly among all players (and not only among
the players who were not chosen as proposer before) with equal probability. If the number of
sessions is finite and there is no majority in the last session, all players are left empty-handed.
A respondent agrees if he is offered at least his expected value for the next session.

In the case that 3 players are involved and the bargaining ends after 2 sessions (as assumed in
this article), Baron and Ferejohn show that already in the first session the following bargaining
solution achieves a majority: The proposer offers exactly one respondent one third of the re-
source and keeps the rest of the resource in the amount of two thirds for himself. The respondent
agrees as a risk-neutral player because the share of the resource offered to him corresponds to
his expected value’. This advantage of the proposer is called proposer-power.

The basic-setting of the BF model for the 3-player/2-sessions-case is adopted in this paper with
the following modification: Because the (absolute) size of the resource determines whether the
needs of the players needed for a majority can be met, and therefore different sized resources
can lead to different outcomes, it is simpler not to assume the resource to be normalized and to
negotiate not for shares but for absolute values. It is assumed that not only the size of the re-
source but also the individual needs are known to all players.

Need

The question of what the need of an individual is cannot by discussed without reference to the
question what the endowment of the individual should be sufficient for. The answers differ
widely. The possibly most influential approach to classify needs is Maslow's theory of human
motivation (1943). The theory holds that there is a hierarchy of needs with physiological needs
at the bottom, outranked by safety, love/belonging, and esteem needs, and with self-actualiza-
tion at the top. The lower the need is in the hierarchy, the stronger it is. Absolute concepts of
poverty like the basic needs approach (see Streeten 1981) rely on expert knowledge regarding
the minimum cost diet that secures physical survival of an individual (Seidl 1988). Studying
the living conditions of the working class in York, Rowntree (1901) for instance defined “fam-
ilies whose total earnings are insufficient to obtain the minimum necessaries for the mainte-
nance of merely physical efficiency” (86) as poor. Living standards in a society can grow or
shrink. Restricting needs purely to physical survival would ignore the fact that the satisfaction
of both physiological and psychological needs contributes to mental health and thus the well-
being of people (Deci and Ryan 2000; Ryan and Deci 2000). Sociological relative deprivation
theories (Runciman 1966; Townsend 1974) carry the subjectivity of needs to the extreme. Ac-
cording to Runciman (1966) a person is in need if she does not have something, somebody else
has it, she wants to have it, and she thinks that obtaining it is realistic. Both the purely absolute
and the relative view of need and poverty were harshly criticized by Sen (1983). He proposed
the concept of absolute neediness instead. A person is absolutely needy if she does not have the
capability, say, in terms of income, to partake in the commonly accepted activities of the com-
munity. This is the so-called capabilities approach (Sen 2009; Nussbaum 2000, 2011). But there
are more. For example, Braybrooke (1987) argues for the goal of a normal course of life, Dan-
iels (1981) for a normal range of opportunities, Schuppert (2013) for agency and Sher (2014)
for ‘leverage’, meaning the capacity to acquire additional goods. A general discussion of the
goals at which need fulfilment could aim is given by Miller (1999, chapter 10).

5 Since all players in the last session go away empty-handed if no majority is reached, Baron and Ferejohn assume
that every respondent in the last session agrees to a distribution proposal that provides for an allocation of 0 for
him and all other respondents. This results in an expected value of 1/3 for all players in the first session. Springhorn
shows in " Capitulate for Nothing? Does Baron and Ferejohn's Bargaining Model Fail Because No One Would
Give Everything for Nothing?" that this assumption is not plausible, but also that the expected values and other

results of Baron and Ferejohn hold even under plausible assumptions.
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So, it is easy to see that the question of what need is not easy to answer. It should be noted that
it is generally assumed that need is something individual. Collective variables such as a general
poverty line, which - in a certain sense - could be used to understand what need is, are simpli-
fications (which have their justification in certain contexts), but the need for a good of one
individual is generally not equal to the need of another individual. Accordingly, individual
needs are assumed here as well (although the case where everyone has the same need is con-
sidered as one case among many). The statements in this article aim to take into account a
concept of need that is as comprehensive as possible. Therefore, it is only assumed that need is
quantifiable. In addition, it shall be assumed that need sets clearly defined limits, which a player
does not fall below in his decision making. This is done in order to exclude trade-offs, so that
a player could agree to distribution proposals even if the allocation intended for him is "some-
what" below his need. Faced with the alternative of going empty otherwise, such trade-offs can
play a large role. For example, put simply, a little social participation is better than none at all.
To illustrate this point, a player is assumed to die if it falls below an approval floor imposed by
need, and thus it has no option to approve to a proposal that does not award it at least an allo-
cation equal to its need. That such lower limits exist is undisputed and is discussed in the basic
needs approach. However, the remarks are not intended and should not be understood as rec-
ommending or suggesting that it is appropriate to negotiate for essential goods according to the
models discussed here. The distribution of goods necessary for survival must undoubtedly be
carried out according to other standards. The fact that in this article the term of need is treated
in such a way that an individual dies if her need is not met is a purely theoretical aggravation.
The statements apply even if survival does not depend on it, but in such a case fewer clear limits
are to be assumed, which would make the explanations more difficult.

Basic Definitions, Notations and Desiderata
The set of players is denoted by P.

The resource to be distributed is denoted by res; it is assumed that res > 0°.

An arbitrary player is referred to by p, different arbitrary players are distinguished by an index:
Px, Pys .., certain (fixed) players are denoted by 1, j, k, ....

An arbitrary session is referred to by s, different arbitrary sessions are distinguished by an index:
Sxs Sys -

The (necessary for survival) need of a player is denoted by n(p).

E(p, sx, sy) denotes the expected value of a player p in session sx for session sy. Analogous to
the BF model, it is assumed that all players go away empty handed if the number of sessions to
be played is finite and no majority is obtained in the last session. Therefore, the expected value
in a last session is set to 0.

The proposer in session s is denoted by p(s).

An arbitrary respondent in session s is denoted by r(s), if different respondents are to be distin-
guished in the same session, this is indicated by an indexing: rx(s), 1y(s), ... The set of respond-
ents in session s is denoted by R(s) :={peP: p # p(s) }.

O(px, s|p(s) = py) denotes the offer to player px in session s, given that player py is chosen as
proposer. If the chosen proposer results from the context or if the offer (or a statement related
to it) is independent of the choice of the proposer, the condition is omitted for simplicity.

® res < 0 can make sense if the distribution is not of profits but of burden. res = 0 cannot be interpreted meaning-

fully, as it is equivalent to having nothing to distribute (which makes negotiation superfluous).
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The offers of the proposer p(s) to each individual player in session s are summarized in a se-
quence with #P entries - the distribution proposal: DP(p(s), s) := (O(, s), O, s), ..., O(#P,s)).

MV (psx, s|p(s) = py) denotes the minimum approval value of player px in session s, given that
player py is chosen as proposer. If the chosen proposer results from the context or if the MV (or
a statement related to it) is independent of the choice of proposer, the condition is omitted for
simplicity. The minimum approval value can be role-dependent (proposer or respondent) and
strategy-dependent (and is indexed according to the chosen strategy if this is not clear from the
context). For a respondent, the minimum approval value indicates how much must be offered
to the respondent in order for him to agree (since the proposer anticipates this, she will not offer
more). For the proposer this designation is not quite appropriate, because according to the
(adopted) construction of Baron and Ferejohn the approval of the proposer is assumed for his
proposal, so strictly speaking the proposer does not approve (or reject). However, the proposer
is only required to make distributional proposals that provide for at least his minimum approval
value. In order not to have to introduce a further variable (for example - and perhaps more
obvious - a maximum offer value, which indicates how much the proposer can distribute at
most, if he wants to keep his minimum approval value or a minmal residual value = 1 - maxi-
mum offer value), this notation/definition is also used for the proposer, despite the not quite
appropriate designation.

If MV (px, s) </=/> MV(py, s), it is said that the approval of px in session s is cheaper (more
favorable)/equally cheap or equally expensive/more expensive than that of py, or shorter, that
px in session s is cheaper/equally cheap or equally expensive/more expensive than py.

The cheapest respondent in session s, given that py is chosen as proposer, is denoted by rc(s|p(s)=
py)- If the chosen proposer results from the context or if the chepest respondent (or a statement
related to it) is independent of the choice of proposer, the condition is omitted for simplicity.
Since the cheapest respondent does not have to be unambiguous, it is strictly speaking a set rc(s)
= {px€R(s): Ap.€R(s): MV (p.,s) < MV(px,s)}. Since, when speaking of the cheapest respond-
ent in the following, all players from this set are to be treated equivalently, it is spoken of the
cheapest respondent in the singular for the sake of simplicity.

It is said that the condition for a majority is given if and only if an r(s) exists such that MV (p(s),
s) + MV(x(s), s) <res, so the resource is at least as large as the sum of the minimal approval
values of the proposer and at least one respondent.

Desideratum’ 1 (D1):
Given py is the proposer in session s, then the following holds:

(a) the proposer py only makes distributional proposals DP(py, s) in session s for which
it holds that she herself obtains at least her minimum approval value for session s:
O(py, s|p(s) = py) = MV(py.s),

(b) a respondent r(s) agrees to a distribution proposal DP(py, s) in session s if and only
if he is offered at least his minimal approval value for session s: O(r(s), s|p(s) = py)
> MV (x(s), s).

Desideratum 1 is also valid in the original BF model, but in the BF model the minimal approval
value for all players (independent of the role) is given by the expected value (which is the same
for all players) and the minimal approval value is formulated relatively (as a share of the

" Desiderata are, so to speak, the axioms of the theory. Since in general certain requirements are placed on an
axiom system, such as that the axioms are independent (do not imply each other), but such considerations are

irrelevant here, the weaker term of desiderata is used.
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resource), so that the question of the condition for a majority (in the sense mentioned above)
does not arise. Taking need into account, however, D1 results in the following

Lemma 1 (L1):
Given py is the proposer in session s, then the following holds:

if the condition for a majority in session s does not hold (i.e., if it holds that no respond-
ent r(s) exists such that MV (py, s) + MV(r(s), s) <res), then there can be no majority in
session s for a distributional proposal.

If the condition for a majority is not met, the bargaining moves to the next session or, if there
is no further session, the bargaining ends without a solution and all players go away empty-
handed. In contrast to the BF-model, this is a principal constraint, which is given by the size of
the resource and does not depend on the decisions of the players. For the sake of simplicity, I
assume in such a case that the proposer does not make an offer to all players, including himself,
represented in the form of a distribution proposal (0, 0, ..., 0) (this avoids costly discussions of
distribution proposals for which no majority can be reached for reasons of principle).

Desideratum 2 (D2):
For an arbitrary player p and an arbitrary session s holds: MV(p, s) > n(p).

This is the first and crucial difference to the BF model. This introduces the described (individ-
ual) lower limit for approval given by the (individual) need.

Bargaining in the Baron Ferejohn-Model under Consideration of Need
A Naive Approach

Respondents' Strategy in the Naive Approach

The strategy of a respondent in session s, 1(s), is essentially determined by its minimal approval
value. Starting from the BF model, where this value is determined by the expected value of the
player, taking into account need, the expected value is bounded downward by the need of the
respondent.

MV(r(s), s) == max{E(x(s), s, s+1), n(r(s)) }
Here, the subscript n is used to denote the MV in the naive approach.

A respondent r(s) agrees to the distribution proposal of a proposer p(s) if he is offered at least
his expected value, unless his expected value is smaller than his need - in such a case he must
be offered at least his need.

Proposer's Strategy in the Naive Approach

Also, the strategy of the proposer in session s, 1(s), is essentially determined by its minimal
approval value, which in the case of the naive approach is equal to the minimal approval value
of a respondent.

MVi(p(s), s) := max{E(p(s), s, s+1), n(p(s)) }

A proposer p(s) only makes proposals with which he has at least his expected value left from
the resource (after subtracting the offers to a respondent), unless his expected value is smaller
than his need - in such a case he only makes proposals with which he has at least his need left.

If the condition for a majority in the current session is not given, Lemma 1 applies and the
proposer proposes 0 for all players.



If the condition for a majority in the current session is given, the proposer offers the MV to the
respondent with the smallest MV and keeps the rest of the resource for himself. If the respond-
ent with the smallest MV is not unique, the proposer chooses one of the respondents with the
smallest MV randomly and with equal probability, analogous to the BF model.

Counter-intuitive Results of the Naive Approach
The following example, where i has the smallest need, k has the largest need, and j's need lies
in between, supports the plausible assumption (according to which the player with the smallest

need benefits from the consideration of need)®:
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The player with the smallest need, player i, has the smallest MV in the first session and - re-
gardless of whether j or k is chosen as proposer - is preferred to the other respondent because
he is cheaper (i's MV is smaller than those of j and k). If j is chosen as proposer, j makes i an
offer equal to 1's MV, 1 agrees, the bargaining ends, and k goes away empty-handed. If k is
chosen as proposer, he also makes i an offer equal to i's MV, i agrees, the bargaining ends, and

J goes away empty-handed.

However, the next example shows that this cannot be generalized:

Session 2 Session 1
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Table 2

Unchanged, 1 has the smallest need, k the largest, and j's need is in between. Despite the fact
that i has the smallest need, in this example i is more expensive than k - the player with the
greatest need (i's MV is higher than k's MV). Accordingly, k is favoured by j and receives an
offer equal to its MV and agrees, ending the bargaining and leaving i empty-handed.

This can be taken to an extreme, so to speak: In the next example, 1 - again as the player with
the smallest need - is not only more expensive than k, whose need is also the largest in this
example, but also more expensive than player j, whose need - also as in the previous examples
- lies between that of i and j. Despite having the smallest need, i is the most expensive of all the

players (its MV is larger than that of j and k):
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Thus, the plausible assumption (in its naive version) is refuted.

8 Of particular interest are always the values for the first session. These are derived by backward induction from

the values of the second session (and the variables that are constant over all rounds).
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However, the presentation of the examples also shows why this is the case: The expected value
of i increases with i's increasing need (ceteris paribus - as always to be assumed). As long as i
is the cheapest player, he benefits because he has to be offered more for his approval. However,
it also becomes more expensive and at a certain point so expensive that other players - despite
a larger need - are cheaper than i. A small need can correlate with a large expected value - which
ironically can be understood in a certain sense as a confirmation of the plausible assumption:
players with a small need expect especially much and possibly too much.

This effect is amplified because, conversely, the expected value of the other players decreases
as i's need grows, because they, as proposer, have to offer i more as his need grows and if he is
the cheapest player despite the growing need, in order to win his approval. It is worth noting
that, according to this interaction, the effect observed in the examples occurs not only when i's
need grows, but also when the need of the others or one other player decreases, as in the fol-
lowing examples, where j's need decreases:
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4/100| 5/20|30| 0,0] 0,0/ 00| 50|20,0]300[80,0/200| 00| 50/950] 00| 50| 0,0/950|300]383]31,730,0]38331,7/683| 0,0/317/ 300|700/ 0,0/30,0| 0,0/70,0
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6/100] 5| 6[30] 0,0] 00| 00 50| 60[300[940 60| 00| 50/950 00 50 00]950|347[33,7[31,7/34,7]33,7/31,7/ 683] 00]31,7 00]683]31,7] 00]33,7]663
Table 4

One observes essentially the same effects as in the examples where i's need grows. In example
4, 1 1s the cheapest player, in example 5 it is more expensive than k, and in example 6 it is the
most expensive player.

Once these relationships are clear, it is far from surprising that the player with the smallest need
can be the most expensive player. However, it is difficult to assess the interrelationships cor-
rectly because, as will be examined in detail below, they are determined by a direct as well as
elusive indirect interplay of the influencing variables n(i), n(j), n(k) and res.

The Improved Approach

The statement that the player with the smallest need can be the most expensive player is, how-
ever, only valid under the assumption that the strategies formulated in the naive approach are
appropriate. That this is not the case is indicated in the examples, because i could prevent him-
self from going away empty-handed. i could undercut the respective competing respondent in
the sense that he accepts offers that are below the minimum approval value of the competing
respondent (which would make him cheaper than the competing respondent), but above his own
need. Thus, he would have to refrain - in certain cases - from realizing his expected value, but
he would prevent that a majority for a distribution proposal is reached without him being con-
sidered, the negotiation ends and he goes away empty-handed. Faced with the choice of insist-
ing on an offer equal to his own expected value and thus going away empty-handed, or accept-
ing a smaller offer and thus at least covering his own needs, a rational decision-maker should
not find the decision difficult: She undercuts her competitors. Anything else would be consid-
ered highly irrational, regardless of theoretically determined solutions (by the BF model) or
definitions (of a risk-neutral player whose basis for decision is, by definition, its expected
value). To take this into account, the strategy of a respondent in the improved approach is ex-
tended by the following desideratum (the cheaper rule) compared to the strategy of a respondent
in the naive approach:

Desideratum 3 (D3 ,,Cheaper-Rule*):
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If it is given that for a respondent rx(s) and the competing respondent ry(s) holds: n(rx(s))
< n(ry(s)) < E(rx(s),s,s+1), then holds:

the respondent rx(s) agrees to a distribution proposal if and only if she is offered at least
n(ry(s))-€.

By applying the cheaper-rule, the respondent rx(s) avoids that she goes away empty-handed and
her need is not met, because the competing respondent ry(s) is cheaper, therefore an offer is
made to him, he agrees to the offer and the bargaining ends, although rx(s) due to a small need
could accept offers that are below those that the competing respondent ry(s) can accept (rx(s)
undercuts ry(s) (by €)).

rx(s) achieves an optimal result if it undercuts ry(s) by the smallest possible amount €. In order
to avoid complex calculations of limit values, it shall be assumed for the sake of simplicity that
all calculations are in a discrete space of real numbers, whose elements have a finite number of
decimal places and a sufficient number of decimal places to solve all occurring equations. For
example, if (n(rx(s)) + n(ry(s)))/2 with n(rx(s)) = 1 and n(ry(s)) = 2 is to be calculated ((1+2)/2 =
1.5), a space is to be assumed which contains numbers with exactly one decimal place, so that
the smallest possible ¢ is 0.1. If rx(s) chooses a smallest possible ¢ under the conditions formu-
lated in the cheaper-rule, which results in (n(rx(s)) + n(ry(s)))/2 (the "middle" between the needs
of rx(s) and ry(s)), rx(s)’s need is met.

rx(s) does not undercut the expected value of ry(s), but its need. If rx(s) would underbid the
expected value of ry(s), ry(s) would anticipate this and in turn underbid rx(s). This regression
only ends when rx(s) underbids the need of ry(s), because then ry(s) cannot follow suit.

It is more favorable for rx(s) to undercut the need of ry(s) than to bind its approval to an offer
equal to the need of ry(s). If both respondents would agree when offered n(ry(s)), one shall
assume, analogously to the BF model, that the proposer in such a situation chooses one of the
respondents at random and with equal probability. Thus the statement is valid, because the ex-
pected value of rx(s) for the current session - before the proposer has chosen a respondent -
E(ry(s),s,s) (this is not to be confused with the expected value for the next session E(ry(s),s,s+1)),
is n(ry(s))/2. Since n(ty(s))-€ > n(ry(s))/2 (qua construction of €), rx(s) obtains a better result by
binding its approval to an offer equal to n(ry(s))-€ than by binding it to an offer equal to n(ry(s)).

Note in this context the following fact: With the consideration of need in the BF model, for a
respondent not only the necessity to need more for approval than in the BF model may arise,
the necessity to accept less than in the BF model may also arise. While the former may be
obvious, the latter is quite surprising.

Respondents' Strategy in the Improved Approach
Considering the cheaper rule changes the minimum approval value of a respondent rx(s) com-
pared to the naive approach. Taking the Cheaper Rule into account, this results as follows:

MV (1x(s), s) := max{min{E(rx(s), s, s+1), n(ry(s))-€}, n(rx(s))},
where ry(s) is the competing respondent.

A respondent rx(s) agrees with the distribution proposal of a proposer p(s) if he is offered at
least his expected value, unless the need of the competing respondent ry(s) is smaller than his
expected value - in such a case he agrees if he is offered at least n(ry(s))-€, unless n(ry(s))-¢€ is
smaller than his need - in such a case he must be offered at least his need for agreement.
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Proposer's Strategy in the Improved Approach

Unlike a respondent, the proposer cannot get into the situation where he has to prevent another
player from receiving an offer and he himself does not. Therefore, the proposer's strategy in the
improved approach does not change compared to his strategy in the naive approach (but the
amount of the offers does, since the respondents' MVs generally change with the changed strat-

egy).

Case Differentiations and Solutions — Overview

In contrast to the BF model, the solution depends not only on the individual expected value
(which is the same for all players in the BF model), but also on the choice of the proposer, the
needs of all players, the size of the resource and - which is difficult to recognize (a very de-
scriptive explanation is given in the chapter "Numerical Examples and Discussion") - the rela-
tionships between the needs and the resource. In this respect, the conditions for the MVs that
are possible in principle (and not the M Vs that are possible in principle) should be considered
in the following. The following list is complete, it includes all case distinctions that lead to
different bargaining solutions and the associated distribution proposals (repetitions have not
been removed; as explained in the appendix, with the aim of making the presentation as sys-
tematic as possible from the beginning to the end of the game). Their derivation can be found
in the appendix. Numerical examples, discussion and main results can be found in the following
chapters.

1) If for any two players px and p, the following holds: n(p,) + n(p,) > res, then

1.1)p) =i DP(,1) = (0, 0, 0)
1.1.1) p(2) = i: DP(i,2) = (0, 0, 0)
1.1.2) p2) = : DP(j,2) = (0, 0, 0)
1.1.3) p(2) = k: DP(k,2) = (0, 0, 0)
1.2) p(1) =j DP(j,1) = (0, 0, 0)
1.2.1) p(2) =i: DP(i,2) = (0, 0, 0)
1.2.2) p2) =j: DP(j,2) = (0, 0, 0)
1.2.3) p(2) = k: DP(k,2) = (0, 0, 0)
1.3) p(1) =k DP(k,1) = (0, 0, 0)
1.3.1) p(2) =i: DP(i,2) = (0, 0, 0)
1.3.2) p2) = j: DP(j,2) = (0, 0, 0)
1.3.3) p(2) = k: DP(k,2) = (0, 0, 0)

2.1) If all players have equal needs: n(i) = n(j) = n(k)
and n(i) + n(j) = n() + n(k) = n(j) + n(k) <res, then

2.1.1) p(1) =i with 50% probability DP(i,1) = (res-n(j), n(j), 0) and
with 50% probability DP(i,1) = (res-n(k), 0, n(k))

21.2)p(1) =j with 50% probability DP(j,1) = (n(i), res-n(i), 0) and
with 50% probability DP(j,1) = (0, res-n(k), 0, n(k))

2.1.3) p(1) =k with 50% probability DP(k,1) = (n(i), 0, res-n(i)) and

with 50% probability DP(k,1) = (0, n(j), res-n(j))

2.2.1) If there are two players with equal need and one with smaller need: n(i) < n(j) = n(k)
and n(i) + n(j) = n() + n(k) <res, then

EG,1,2) = 1/3*res + 2/3*n(i) — 1/3*n(j)
E(,1,2) = 1/3%res — 1/3*n(i) + 1/6*n(j)
E(k,1,2) = 1/3*res — 1/3*n(i) + 1/6*n(k)
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2.2.1.1) pD) =i with 50% probability DP(i,1) = (res-n(j), n(j), 0) and
with 50% probability DP(i,1) = (res-n(k), 0, n(k))

2.2.12) p(1) = j

2.2.1.2.1) res <n(i) + n(k) DP(j,1) = (n(i), res-n(i), 0)
2.2.1.2.2) n(i) + n(j) < res < -2*n(i) + n(j) + 3*n(k) DPG,1) = (EG,1,2), res-E(i,1,2), 0)
2.2.1.2.3) res > -2*n(i) + n(j) + 3*n(k) DP(j,1) = (n(i), res-n(i), 0)
2.2.1.3)p(1) =k

2.2.1.3.1) res < n(i) + n(k) DP(k,1) = (n(i), 0, res-n(i))
2.2.1.3.2) n(i) + n(j) < res < -2*n(i) + n(j) + 3*n(k) DP(k,1) = (E(,1,2), 0, res-E(1,1,2))
2.2.1.3.3) res > -2*n(i) + n(j) + 3*n(k) DP(k,1) = (n(j)-¢, 0, res-n(j)-€)

2.2.2.1) If there are two players with equal need and one with greater need: n(i) = n(j) < n(k)
and n(i) + n(j) <res
and n(i) + n(k) = n(j) + n(k) > res, then

E(,1,2) = 1/3%res
E(,1,2) = 1/3*res

Ek,1,2)=0

2.2.2.1.1) p(1) =i

2.2.2.1.1.1) res < 3*n(j) DP(,1) = (res-n(j), n(j), 0)

2.2.2.1.1.2) 3*n(j) < res < 3*n(k) DP(,1) = (res-E(j,1,2), E(j,1,2), 0)

2.2.2.1.1.3) res > 3*n(k) DP(,1) = (res-n(k)+¢, n(k)-¢, 0)

22212)p(D) =j

2.2.2.1.2.1) res < 3*n(j) DP(j,1) = (n(i), res-n(i), 0)

2.2.2.1.2.2) 3*n(j) < res < 3*n(k) DP(,1) = (E@,1,2), res-E(i,1,2), 0)

2.2.2.1.2.3) res > 3*n(k) DP(,1) = (n(k)-¢, res-n(k)+e, 0)

2.2.213)p(1) =k D(k,1) = (0,0, 0)
222131)pR2)=1: DP(i,2) = (res-n(j), n(j), 0)
2.22.132)p(2)=j: DP(j,2) = (n(i), res-n(i), 0)
22.2.133)p2) =k DP(k,2) = (0, 0, 0)

2.2.2.2) If there are two players with equal need and one with greater need: n(i) = n(j) < n(k)
and n(i) + n(j) <res
and n(i) + n(k) = n(j) + n(k) <res, then

E(@i,1,2) = 1/3*res + 1/6*n(i)
EG,1,2) = 1/3*res + 1/6*n(j)
E(k,1,2) = 1/3*res — 1/3*n(i)

2.2.2.2.1) p(D) =i

2.2.2.2.1.1) res < 5/2%n(j) DP(,1) = (res-n(j), n(j), 0)
2.2.2.2.1.2) 5/2*n(j) < res < -1/2*n(j) + 3*n(k) DP(i,1) = (res-E(j,1,2), E(j,1,2), 0)
2.2.2.2.1.3) res > -1/2*n(j) + 3*n(k) DP(1,1) = (res-n(k)+¢, n(k)-¢, 0)
22222)p(D)=j

2.2.2.2.2.1) res < 5/2*n(j) DP(j,1) = (n(i), res-n(i), 0)
2.2.2.2.2.2) 5/2*n(j) < res < -1/2*n(j) + 3*n(k) DP(,1) = (EG,1,2), res-E(i,1,2), 0)
2.2.2.2.2.3) res > -1/2*n(j) + 3*n(k) DP(j,1) = (n(k)-¢, res-n(k)+¢, 0)
2.2.223)p(1) =k with 50% probability DP(k,1) = (n(i), 0, res-n(i)) and
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with 50% probability

2.2.3.1) If all players have different needs: n(i) < n(j) < n(k)

and n(i) + n(j) <res

DP(k,1) = (0, n(j), res-n(j))

and n(i) + n(k) > res (and thus also n(j) + n(k) > res), then

EG,1,2) = 1/3%res + 1/3*n(i) — 1/3*n(j)
E(,1,2) = 1/3*res — 1/3*n(i) + 1/3*n(j)
Ek,1,2)=0

2.2.3.1.1) p(1) =i

2.2.3.1.1) res < n(i) + 2*n(j)
2.2.3.1.2) n(i) + 2*n(j) <res < n(i) — n(j) + 3*n(k)
2.2.3.1.3) res > n(i) — n(j) + 3*n(k)

2.23.1.2) p(1) = j
2.2.3.1.2.1) res < -n(i) + 4*n(j)

2.2.3.1.2.2) -n(i) + 4*n(j) < res < -n(i) + n(j) + 3*n(k)

2.2.3.1.2.3) res > -n(i) + n(j) + 3*n(k)
2.2.3.1.3) p(1) =k

223.13.1)pQR) =i
2.2.3.13.2)p(2) =j:
223.133)p(2) =k

2.2.3.2)If all players have different needs: n(i) < n(j) < n(k)

and n(i) + n(j) <res
and n(i) + n(k) <res
and n(j) + n(k) > res, then

E(,1,2) = 1/3*res + 2/3*n(i) — 1/3*n(j)
EG,1,2) = 1/3*res — 1/3*n(i) + 1/3*n(j)
E(k,1,2) = 1/3*res — 1/3*n(i)

2.2.3.2.1) p(1) =i

2.2.3.2.1.1) res <n(i) + 2*n(j)
2.2.3.2.1.2) n(i) + 2*n(j) <res < n(i) — n(j) + 3*n(k)
2.2.3.2.1.3) res > n(i) — n(j) + 3*n(k)

2.232.2)p(1) = j

2.2.3.2.2.1) res < -2*n(i) + n(j) + 3*n(k)
2.2.3.2.2.3) res > -2*n(i) + n(j) + 3*n(k)

2.2.3.23)p(1) =k
2.2.3.2.3.1) res < n(i) — 1/2*n(j) + 3/2*n(k)

223.23.1.1) p(2) = i:
2.23.2.3.12)p(2) = j:
22323.13)p2) = k:

2.2.3.2.3.2) n(i) - 1/2*n(j) + 3/2*n(k) < res < -2*n(i) + 4*n(j)
2.2.3.2.3.3.1) res > -2*n(i) + 4*n(j) und res < n(i) + 3*n(k)

2.2.3.233.1.1) p2) = i:
2.2.3.233.12) p(2) = j:

DP(,1) = (res-n(j), n(j), 0)
DP@,1) = (E(1,1,2), res-E(i,1,2), 0)
DP(,1) = (n(k)-g, res-n(k)-¢, 0)

DP(,1) = (n(j), res-n(j), 0)
DP(,1) = (EG,1,2), res-E(i,1,2), 0)
DP(j,1) = (n(k)-¢, res-n(k)-¢, 0)

DP(k,1) = (0, 0, 0)

DP(i,2) = (res-n(j), n(j), 0)
DP(j,2) = (n(i), res-n(i), 0)
DP(k,2) = (0, 0, 0)

DP(,1) = (res-n(j), n(j), 0)
DP(,1) = (res-E(j,1,2), E(j,1,2), 0)
DP(1,1) = (res-n(k)+¢, n(k)-¢, 0)

DP(,1) = (EG,1,2), res-E(i,1,2), 0)
DP(j,1) = (n(k)-¢, res-n(k)+¢, 0)

DP(k,1) = (0, 0, 0)

DP(i,2) = (res-n(j), n(j), 0)
DP(j,2) = (n(i), res-n(i), 0)
DP(k,2) = (n(i), 0, res-n(i))

DP(k,1) = (E(i,1,2), 0, res-E(i,1,2))
DP(k,1) = (0, 0, 0)

DP(i,2) = (res-n(j), n(j), 0)
DP(j,2) = (n(i), res-n(i), 0)
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2.23.233.13)p2)=k: DP(k,2) = (n(i), 0, res-n(i))
2.2.3.2.3.3.2) res > -2*n(i) + 4*n(j) und res > n(i) + 3*n(k) DP(k,1) = (n(j)-¢, 0, res-n(j)+€)

2.2.3.3) If all players have different needs: n(i) < n(j) < n(k)
and n(i) + n(j) <res
and n(i) + n(k) <res
and n(j) + n(k) <res, then

EG,1,2) = 1/3*res + 2/3*n(i) — 1/3*n(j)
E(,1,2) = 1/3%res — 1/3*n(i) + 1/3*n(j)
E(k,1,2) = 1/3%res — 1/3*n(i)

2.233.1) p() =i

2.2.3.3.1.1) res <n(i) + 2*n(j) DP(,1) = (res-n(j), n(j), 0)
2.2.3.3.1.2) n(i) + 2*n(j) < res < n(i) — n(j) + 3*n(k) DP(,1) = (res-E(j,1,2), E(j,1,2), 0)
2.2.3.3.1.3) res > n(i) — n(j) + 3*n(k) DP(1,1) = (res-n(k)+¢, n(k)-¢, 0)
22332)p(D)=j

2.2.3.3.2.1) res < -2*n(i) + n(j) + 3*n(k) DP(,1) = (EG,1,2), res-E(i,1,2), 0)
2.2.3.3.2.2) res > -2*n(i) + n(j) + 3*n(k) DP(j,1) = (n(k)-¢, res-n(k)+¢, 0)
2.2333)p() =k

2.2.3.3.3.1) res < -2*n(i) + 4*n(j) DP(k,1) = (EG,1,2), 0, res-E(i,1,2))
2.2.3.3.3.2) res > -2*n(i) + 4*n(j) DP(k,1) = (n(j)-¢, 0, res-n(j)+€)

Numerical Examples and Discussion
The following examples all fall under case 2.2.3.3), i.e.: All players have different needs: n(i)

<n(j) <n(k) and for any two players px and py each, n(px) + n(py) <res. The second session
results as in the examples above.
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Table 5

For the first session, examples 7 to 11 consider the case where j is chosen as proposer (case
2.2.3.3.2), cf. the Overview and maybe the Derivation). In this case, 1 is the cheapest respondent,
which is why its expected value and MV are given. In this (special) case, it is impossible for i's
MYV to be equal to its need, which is why there are two case distinctions (see the Appendix for
derivation). For better understanding, a kind of case-differentiating threshold -2*n(i) + n(j) +
3*n(k) is given. Case- differentiating is this threshold in the sense that if res is smaller than this
threshold, MV (i,1) = E(i,1,2) holds and if res is greater than or equal to this threshold, MV(i,1)
=n(k)-¢ holds.
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In Example 7, the condition for MV(i,1) = E(i,1,2): res < -2*n(i) + n(j) + 3*n(k) is satisfied. j
offers i the expected value (i accepts because this is its MV under these conditions) and keeps
the rest of the resource for herself.

In Example 8, the condition for MV(i,1) = n(k)-&: res > -2*n(i) + n(j) + 3*n(k) is satisfied. j
offers 1 n(k)-¢ (i accepts because this is its MV under these conditions) and keeps the rest of the
resource for itself. Here, the cheaper rule applies because i's expected value is greater than k's
need (and 1 would go away empty handed according to the naive approach).

Examples 9 to 11 are intended to provide a better understanding, in particular, of why things
turn out to be so complex and why so many case distinctions are necessary. The results do not
differ, or do not differ significantly, from those in Example 8. However, while Example 8 dif-
fers from Example 7 (ceteris paribus) in that the need of i is larger, Example 9 differs from
Example 7 in that the need of j is smaller, Example 10 differs from Example 7 in that the need
of k is smaller, and Example 11 differs from Example 7 in that the resource is larger. All these
differences - as can be seen from the overview, the derivation and the numerical examples -
influence the MV-determining conditions either by shifting the threshold or by changing the
resource.

If you think about such changes further, the (initial) conditions change fundamentally and thus
which case is given. For example, if the resource were to decrease to 16, not even the need of
the two players with the smallest need (i and j) could be met and no solution would be found
(we would be in case 1). If the need of i would increase to 30, one would be in case 2.2.1) (two
players with equal need and one with smaller need). Would k's need drop to 2, one would be in
case 2.2.2.2) (two players with equal need and one with greater need) and so on. In each case,
this is associated with different expected values and different MV-determining thresholds.
Which threshold are valid (whether they exist at all and how large the expectation values are)
results from a complex interplay of all the needs and the resource, and it is ultimately surprising
that this complexity is not reflected in significantly more case distinctions.

In the following examples 12 and 13, the case is considered that in the first session i is chosen
as proposer (case 2.2.3.3.1) - the details can be found in the Overview and in the Appendix,
respectively).

Session 2 Session 1, p(1) =i

=i)
=i)
=i)
=i)
=i)
=k)
=k)
=k)
n(i) = n(j) + 3*n(k)
res <= n(i) + 2*n(j)
n(i) + 2*n(j) < res < n(i) = n(j) + 3*n(k)
=i)
=i)
=i)

x |res >=n(i) — n(j) + 3*n(k)
i)
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Table 6

In examples 15 and 16 the case is considered that in the first session k is chosen as proposer
(case 2.2.3.3.3)) - also for this the details can be found in the Overview and in the Appendix,
respectively).
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Table 7

The examples are for discussion of the plausible assumption and low-need power. 1 is the player
with the smallest need in each case, followed by j and then k.

In example 12, the low-need power is confirmed. i, as the proposer, benefits from the fact that
need is taken into account. He receives almost 100 percent of the resource (in the BF model he
receives 2/3), but only because the needs of j and k, even if they are larger than i's need, are
also small. j - the cheapest respondent - cannot come close to realizing hers expected value
because she has to undercut the competing respondent k. Likewise, in Example 14, i, as a re-
spondent, receives almost 50 percent as a respondent with certainty (versus 1/3 of the resource
with 50'percent probability in the BF model). Here, he benefits from the fact that his high ex-
pectation value is below the need of the competing respondent j and is (just) small enough that
the resource covers his MV and the MV of proposer k.

In contrast, examples 13 and 15 show that there is not always low-need power. In example 13,
I, as the proposer, has to offer respondent j almost 100 percent. He does so because he still
retains more than his need (1) and also more than his expected value ((2+1+1)/3 = 1.3). In
Example 15, i, as a respondent, is in the unfortunate situation of having to underbid the com-
peting respondent j, who also has a very small need, making the offer to i very small. Never-
theless, he agrees, since his need is covered and he would otherwise be left empty-handed.

Example 15 is also interesting in comparison to example 12, since the same values for the needs
and the resource are assumed for both examples and they differ only with respect to the proposer
choice. Here, the choice of the proposer determines - under otherwise identical conditions - an
offer to 1 in the amount of almost 100 percent and an offer in the amount of little more than 0
percent. This illustrates particularly clearly how fragile the solutions are with respect to alleg-
edly small changes.

Furthermore, the examples are chosen to show the variability of proposer power depending on
the given conditions. The fact that the offer to i, both when he is chosen as proposer and when
he is respondent, can be both larger and smaller than in the BF model implies that proposer
power can also be both larger and smaller than in the BF model. In examples 12 and 15, the
proposer power is (significantly) larger than in the BF model (the proposer receives close to
100 percent). In examples 13 and 14, proposer power is (significantly) smaller than in the BF
model (in example 13, the proposer gets almost nothing, in example 14, only about 50 percent).

It should also be noted that proposer power and low-need power are not correlated. In example
12, both low-need power and proposer power are large, in example 13 both low-need power
and proposer power are small, in example 14 low-need power is large and proposer power is
small, and in example 15 low-need power is small and proposer power is large.

An Outlook on Generalizations
Generalizations regarding more than 3 players and more than 2 sessions can essentially follow
the procedure described here for the 3 players/2 sessions case. It can be assumed that although
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further case distinctions are added, neither the strategies of the respondents and the proposer
change fundamentally, nor the solution structures.

For a generalization regarding n>3 players it is helpful that not all n-1 respondents have to be
considered, but at most h := ceil((n - 1)/2) + 1, i.e. the (in case of an odd number of respondents
rounded up) half of the respondents needed for a majority plus one respondent. The half of the
respondents to be considered are the cheapest respondents, the additional respondent is the next
most expensive respondent, which is to be undercut if necessary and possible. As in the 3 play-
ers/2 sessions case, the corresponding respondents can be identified on the basis of their needs.
Note that the respondent to be undercut (as well as the set of cheapest respondents) does not
have to be unique. The 3 players/2 sessions case is a special case in which h is equal to the
number of all respondents. Even if not all respondents have to be considered, the scope of the
investigations increases significantly, because in general all combinations of the three princi-
pally possible expressions of the MV of h respondents (need, expected value and need of the
competing respondent minus €) and the two principally possible expressions of the MV of the
proposer (need and expected value) have to be investigated to see if the resource is large enough
to cover them together. Besides a significant increase of case distinctions, there should be no
hurdles in determining the solutions.

Probably more difficult is the situation with respect to the extension to more than 2 sessions.
Baron and Ferejohn make their extension to more than 2 sessions under the assumption of "sta-
tionary equillibria". This essentially means that the expected values of the player do not change
from session to session - except for the last session. This assumption allows them to extend the
results for the 2 sessions case comparatively easily to cases with more than 2 sessions.’. Taking
into account need stationary equillibria are rather the exception!®, which is why a corresponding
extension is much more challenging. A crucial and open question in this context is the im-
portance of the cheaper rule in the case of more than 2 sessions. It is possible that even in the
case of an infinite number of sessions the bargaining is terminated (early) because respondents
want to prevent certain bargaining processes and undercut competing respondents. This would
facilitate the determination of solutions in the case of a finite number of sessions and possibly
enable the solution in the case of an infinite number of sessions.

Summary and Conclusion

The BF model does not take into account that players may have a need for the resource that -
from the point of view of a respondent - is above the value determined by Baron and Ferejohn
for approval, or - from the point of view of the proposer - above the value that remains for the
proposer from the resource after subtracting the offer to a respondent. If a player's need is
greater than the corresponding value, he cannot agree as a respondent and cannot make a cor-
responding distribution proposal as a proposer. This becomes especially clear if the need is a
survival need and a player dies if his need is not met. The neglect of needs would therefore only
be justified if it could be assumed that the values determined by Baron and Ferejohn cover the
needs of the players at least in general. However, this is a very strong assumption for which
there is no evidence, and which cannot be assumed, especially in the area of scarce goods.
Irrespective of this, it has been shown in this article that the strategies and solutions that emerge

® The elegance of the BF model for more than 2 sessions is precisely due to the fact that Baron and Ferejohn, with
the definition of stationary equillibria, create exactly the conditions under which simple and elegant solutions are
possible - which is not to diminish their achievement, because even the identification of conditions for simple
solutions is in general not trivial.

10 One can even observe cases of alternating MVs: Under certain conditions, the MV of a player increases from
session to session because its expected value increases from session to session, but then falls again because the
high expected value makes him unattractive for coalitions, until he becomes attractive again due to a sufficiently

small expected value, which results in an increasing expected value and so on.
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when taking need into account are fundamentally very different from those in the BF model.
The main reason for this is that the generally existing individual differences in the size of needs
create power imbalances that are decisive for bargaining. Players with small needs can accept
smaller offers as respondents than players with large needs (and thus undercut competing re-
spondents with large needs) and make larger offers as proposers than players with large needs.

In order to counter the weaknesses of the BF model, an approach was first presented that seems
convincing at first glance, but which is described as naive in anticipation of the following re-
sults. According to this approach, a respondent agrees to a distribution proposal if he is offered
at least the maximum of the value determined analogously to the procedure of Baron and
Ferjohn and it’s need. As a risk-neutral player he wants at least his expected value to be realized,
as a player with a certain need he wants at least this need to be covered. The same applies to a
proposer. However, this approach does not take into account that the respondent with the
smaller need can have such a large expected value that she is more expensive than the compet-
ing respondent and can therefore go away empty-handed, although she should not go away
empty-handed. If she wants to avoid this, she may have to accept offers that are lower than
those that the other respondent can accept - she must undercut the other respondent in this sense.
If she does so, she can - provided that the resource is sufficiently large that a distribution is
made - avoid going empty and achieve that her need is covered. Compared to the alternative of
going short and not covering one's own need, this is the only rational strategy, even if it means
that a risk-neutral player, who by definition should orientate himself to his expected value, has
to move away from such a lower limit of approval. The improved approach builds on such
considerations.

Thus, the complexity increases significantly compared to the BF model, not only with respect
to the strategies of the respondents and the proposer, but also and especially - under additional
consideration of the size of the resource - with respect to the solutions that are possible in prin-
ciple and the case-specific solutions. A simple statement about the solution(s), comparable to
the one in the BF-model, is not possible due to the complexity; rather 50 case distinctions!'!
have to be made, for each of which different solutions or thresholds for certain solutions result'?.
In view of the complexity which becomes apparent at first (also and in particular on the basis
of combinatorial estimations), it is almost surprising that only this still manageable number of
case distinctions arises, the solutions of which, moreover, generally follow a tripartite division:

1) There are the more or less trivial cases, in which it follows directly from the initial
conditions and eventually the choice of the proposer, that there cannot be a solution
in the first round and possibly also not in the second round (this includes in particular
case 1)).

i1) Similarly trivial (because similar to the BF model) are the cases in which it follows
directly from the initial conditions and eventually the choice of the proposer that a
respondent is chosen randomly and with equal probability and that he receives his
need (unlike in the BF model) (this includes in particular case 2)).

1i1) The remaining cases (the majority of cases) essentially follow a further tripartite
division: Either the respondent with the smallest need is offered its need or its ex-
pected value or the need of the competing respondent minus a small amount €. How-
ever, the conditions for this are very different, depending on which players can form
a successful coalition in the second session (determined by the size of the resource

1 Strictly speaking, there are 50 case distinctions with respect to the first session and 12 more, but trivial, ones
with respect to the second session.

12 The count includes some repetitions that have not been removed in order to give preference to a simple, sys-
tematic structure rather than to the shortest possible presentation, and because the criteria according to which the

cases could be grouped together are not clear and are sometimes in dispute.
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and the sum of their needs) and which player is chosen as proposer. In a few cases,
the initial conditions under the choice of a particular proposer are such that the case
cannot occur that the (cheapest) respondent accepts an offer equal to his need'’.
Finally, only the case 2.2.3.2.3) falls outside this framework. Here it is shown that
under the initial conditions, the choice of proposer and the conditions for a certain
MV of the (cheapest) respondent, the situation can occur that the MV of the (cheap-
est) respondent and the MV of the proposer are not covered in total by the resource.
For example, if the conditions are given under which the respondent agrees only if
he is offered at least his expected value, the situation may arise that the resource is
not large enough to cover the MV of the proposer as well, which is why there is no
distribution. It is surprising that such a situation does not occur more often, or, to
put it differently (and positively), that the conditions for a certain MV of the (cheap-
est) respondent are generally (but not always) only given if the resource is suffi-
ciently large to cover next to it the MV of the proposer that is associated with these
conditions (so that a distribution occurs in which both receive their MV). To show
this, however, proves to be quite complex and makes up a comparatively large part
of the appendix.

From this point of view, the complexity is relativized. This is also true from the point of view
that it is generally possible to read off the solution in a maximum of three steps (initial condi-
tion, choice of proposer, condition for one of a maximum of three possible MVs of the (cheap-
est) respondent) (this may be followed by a fourth but trivial (because simple and always the
same) step with regard to the second round). It should be emphasized in this respect that it is
thanks to the systematics developed for this purpose that these results can be read comparatively
easily. Without this systematics and the associated extensive investigations in the appendix, this
would not be possible.

The extent to which the solutions deviate from those of the BF model under consideration of
need can be seen in the overview of the solutions and is clearly shown in the numerical exam-
ples given. Particularly noteworthy are the results regarding the plausible assumption and the
low-need power (i.e., the question of whether players with low need benefit from taking need
into account compared to the BF model) and regarding the proposer power (i.e., the prediction
of the BF model that the proposer receives significantly more from the resource than the re-
spondent selected by him).

With regard to the plausible assumption and the low-need power, the picture is different. As
can be seen from the overview of the solutions, the player with the smallest need - if this is
unique - is always involved in the distribution - if this occurs - and his need is met. If the player
with the smallest need is respondent (if he is not chosen as proposer), the competing respondent
has the same need and if the condition for a majority is fulfilled, he is in a similar situation as
in the BF model and receives his need with a 50% probability, which can at most be considered
as an advantage or disadvantage with regard to the following aspects. If the player with the
smallest need is the respondent, if the competing respondent has a larger need and if the condi-
tion for a majority is fulfilled, the player with the smallest need receives at least his need, but
the offer to him can, as can be seen from the overview of the solutions and the numerical ex-
amples, be significantly smaller than his expected value and also significantly smaller than in
the BF model (the offer can be close to 0 percent, despite a high expected value and while in
the BF model it is always 1/3 of the resource for a (randomly) selected respondent). In short,
the advantage that one's own need is covered with certainty (at least) in most cases, is opposed

13 In these cases, there is a bipartition (and not a tripartition): Either the respondent with the smallest need is offered

its expected value or the need of the competing respondent minus €.
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by the disadvantage of a possibly very small offer. It is hardly possible to weigh this against
each other, especially since it must be taken into account that, as can also be seen from the
overview of the solutions and the numerical examples, the offer can also be significantly larger
than in the BF model (it can be close to 100 percent), but also - unlike in the BF model - the
case can occur that the resource is not distributed because the condition for a majority is not
fulfilled - which means that everyone goes away empty-handed. Whether one recognizes a low-
need power in this respect probably depends on one's own risk profile.

Closely related to this is the fact that the proposer power is relativized'*. As can be seen from
the overview of the solutions and the numerical examples, it exists in the sense and analogously
to the low-need power, that the need of the proposer - if the condition for a majority is fulfilled
- 1s covered. Unlike the player with the smallest need, the proposer with the consideration of
need does not have an advantage in the sense that it is considered with certainty - if the condition
for a majority is fulfilled - since this is also the case in the BF model. However, he may receive
much less than he would under the BF model (his allocation may be 0 percent if there is no
distribution and close to 0 percent if there is a distribution) or much more (his allocation may
be close to 100 percent). Compared to the BF model, in which the proposer always receives 2/3
of the resource, the proposer power can be significantly smaller as well as (significantly) larger.
It should be emphasized in this respect that the overview of the solutions and the numerical
examples give an indication of a possible explanation of empirical findings, according to which
the proposer power is smaller than predicted by the BF model'®: If the needs of all players are
approximately equal and if they are of such a size that the sum of the MV's of two players is
approximately equal to the resource (but not greater, so that the resource covers the needs),
proposer power weakens compared to the BF model (see in particular case 2) and example 14).
It could be that participants in studies with reference to the BF model without need information
assume a similar situation: In the absence of information, they assume that all players have
similar needs (or, more generally, approval floors). And since shares of the resource to be dis-
tributed between two players are negotiated, the situation is similar to the situation where the
sum of the needs (the approval floors) of two players equals the resource. Investigating this
further could be a profitable endeavor.

This work provides a complete solution to the 3-players/2-sessions case of the BF model con-
sidering individual need. The strategies determined for this case and the ways developed for
determining solutions are a good starting point for determining solutions for cases with more
than 3 players and more than 2 sessions as well. Furthermore, the work provides a starting point
to explain deviations between theoretical prediction and empirical findings in a central point of
the BF model.
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Appendix

Case Differentiations and Solutions - Derivation

For a rough orientation, the following procedure for determining the cases with different ex-
pected values and solutions (or limits of solutions) can be described as a disjoint decomposition
of "all possible case-defining conditions". There is no example - known to the author - of this
procedure. One should not be deterred by this description, because starting from initially simple
case distinctions, the procedure quickly becomes understandable.

In a first step, the case that in principle no bargaining solution is possible, because the resource
does not even cover the needs of any two players, is separated from the other cases. In the other
cases, it is assumed that there are at least two players whose combined needs are less than or
equal to the resource:
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1) For any two players px and py, n(px) + n(py) > res.
2) For at least two players px and py holds: n(px) + n(py) < res.

In case 1) there can be no majority for a proposer in either the first or the second session. Re-
gardless of who is chosen as proposer, 0 is proposed for all players in the first as well as in the
second session (see the remarks on Lemma 1)). With the aim of a systematic representation
from the beginning to the end of the game, the following distinctions are made:

1.1) p(1) =1i: DP(i,1) = (0, 0, 0)

1.1.1) p(2) = i: DP(i,2) = (0, 0, 0)
1.1.2) p(2) = j: DP(j,2) = (0, 0, 0)
1.1.3) p(2) = k: DP(k,2) = (0, 0, 0)

1.2) p(1) = j: DP(,1) = (0, 0, 0)

1.2.1) p(2) = i: DP(i,2) = (0, 0, 0)
1.2.2) p(2) = j: DP(j,2) = (0, 0, 0)
1.2.3) p(2) = k: DP(k,2) = (0, 0, 0)

1.3) p(1) =k: DP(k,1) = (0, 0, 0)

1.3.1) p(2) = i: DP(i,2) = (0, 0, 0)
1.3.2) p(2) = j: DP(j,2) = (0, 0, 0)
1.3.3) p(2) = k: DP(k,2) = (0, 0, 0)

In case 2), further differentiation must be made. The cases can be given that

2.1) all players have equal needs, or
2.2) not all players have equal needs.

In case 2.1) there is no need ;-) to differentiate between players. The expected value of each
player in session 1 for session 2 depends on whether the resource is large enough to satisfy the
needs of any two players (because they all have the same). If this is not the case, case 1) is
given. Therefore, in case 2.1) only the case has to be considered that

2.1) all three players have the same need: n(i) = n(j) = n(k)
and n(i) + n(j) = n(i) + n(k) = n(j) + n(k) <res'e.

The expected value of each player is obtained as follows:
E(p,1,2) = (res-n(p) + 0.5*n(p) + 0.5%n(p))/3 = 1/3*res'”.

According to the strategy of a respondent, the following applies (quite fundamentally) to a re-
spondent:

MV(rx(1),1) = E(rx(1),1,2), 1if n(rx(1)) < E(rx(1),1,2) <n(ry(1)),
MV (rx(1),1) = n(ry(1))-¢, if n(rx(1)) < n(ry(1)) <E(1x(1),1,2),
MV (rx(1),1) = n(rx(1)), else,

16 This case is similar to the case studied by Baron and Ferejohn (the closest among all the cases listed here). If the
resource is equal to 1 and the needs are equal to the expected values, it is a correspondence.
17 Because - since the respondents are equally cheap - the proposer randomly selects one of the respondents and
makes him an offer.
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where 1y is the competing respondent. The cases MV (rx(1),1) = E(rx(1),1,2) and MV(1x(1),1) =
n(ry(1))-& can be excluded under the conditions for 2.1), because the conditions n(rx(1)) <
E(rx(1),1,2) < n(ry(1)) and n(rx(1)) < n(ry(1)) <E(rx(1),1,2) cannot be given under 2.1)'8,

As an interim result, it can be stated the following: If the proposer makes a distribution proposal,
he offers - because both respondents are equally expensive - a randomly selected respondent
his need. The respondent accepts because it is his MV and the negotiation ends.

However, the proposer makes such an offer only if the condition for a majority is given. Ac-
cording to the strategy of a proposer, its MV is given as follows (quite fundamentally):

MV(p(D),1) = E(p(1),1,2), if n(p(1)) <E(p(1),1,2),
MV (p(1),1) =n(p(1)), else.

The conditions for 2.1) guarantee that MV (p(1),1) = n(p(1)) is covered by the resource in addi-
tion to MV(1x(1),1) = n(rx(1)). Less obviously, MV (p(1),1) = E(p(1),1,2) can be covered by the
resource alongside MV (rx(1),1) = n(rx(1)). The case MV (p(1),1) = E(p(1),1,2) is given when
n(p(1)) < E(p(1),1,2). This can be transformed in 2.1) to n(p(1)) < 1/3*res. Thus, if n(p(1)) <
1/3*res, MV (p(1),1) = E(p(1),1,2). Since the needs of all players are equal, n(r(1)) < 1/3*res is
also true and thus res - n(r(1)) > 1/3*res = MV(p(1),1), which means that the proposer has
enough left to cover his MV after subtracting the offers. Thus, it cannot be the case that the
MVs of proposer and respondent cannot be covered together.

Therefore, the solution stated in the interim result is realized. Again, with the aim of a system-
atic representation from the beginning to the end of the game, a distinction is made:

2.1.1) p(1) =1i: DP(i,1) = (res-n(j), n(j), 0) with 50% probability and
DP(i,1) = (res-n(k), 0, n(k)) with 50% probability.

2.1.2)p(1) =j: DP(j,1) = (n(i), res-n(i), 0) with 50% probability and
DP(j,1) = (0, res-n(k), 0, n(k)) with 50% probability.

2.1.3)p(1) =k: DP(k,1) = (n(i), 0, res-n(i)) with 50%'s probability and

DP(k,1) = (0, n(j), res-n(j)) with 50% probability.
The procedure for 2.1) can be summarized and generalized as follows:

1) Once a differentiation is found that allows the expected values to be calculated, it is
determined whether it makes a difference which player is chosen as the proposer
(this is not the case in 2.1)).

ii) For each of these cases, the cheapest respondent is determined, its case-specific pos-
sible MVs and their case-specific conditions (in 2.1) all players are equally cheap,
there is only one possible MV for the respondent and thus no further differentiating
conditions).

i) One obtains an interim result in the form that when the proposer makes a distribution
proposal, it offers the cheapest respondent its MV, the amount of which depends on
the previously determined conditions.

iv) It remains to determine whether the resource is large enough for such a proposal to
be made, in the sense that the condition for a majority is satisfied. For this purpose,
we do not calculate how large the proposer's MV is under the conditions for a given
MV of the respondent. Instead, the question is answered whether the case can occur

18 The cheaper rule forces each respondent to be cheaper than the competitor, his need forbids him to accept an
amount smaller than his need.
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that MV(p(1),1) + MV(r_c(1),1) < res. If the question is answered in the negative,
the interim result is used to derive a proposed distribution, which is accepted be-
cause, by construction, the respondent receives his MV and the propo-ser receives
at least his MV. If the question is answered in the affirmative, further case distinc-
tions follow.

In individual cases, there are more elegant and shorter procedures. However, this procedure has
the advantage that it can be applied systematically to all further case differentiations.

In case 2.2) (not all players have equal needs), further differentiation is necessary. First, among
the cases where not all players have equal needs, the case is examined where two players have
equal needs and the third has a smaller need than the others. Analogous to case 2.1), it is as-
sumed that the resource covers the need of 1 and k and thus also j and k together, since otherwise
one would be in case 1):

2.2.1) There are two players with equal need and one with smaller need: n(i) < n(j) = n(k)
and n(i) + n(j) = n(i) + n(k) <res.

The expected values are obtained as follows:

E(1,1,2) = (res-n(j) + n(i) + n(i))/3 = 1/3*res + 2/3*n(i) - 1/3*n(j)
E@G,1,2) = (0.5*n(j) + res-n(i) + 0)/3 = 1/3*res - 1/3*n(1) + 1/6*n(j) =
E(k,1,2) = (0.5*n(k) + 0 + res-n(1))/3 = 1/3*res - 1/3*n(i) + 1/6*n(k)

Unlike in case 2.1), one has to distinguish whether one of the players with the smallest need (i)
or one of the other players is chosen as proposer:

22.1.1)p(1) =i

Since n(j) =n(k), 1 - if i makes a distribution proposal - randomly chooses one of the respondents
j or k to make it an offer. Analogous to 2.1) the cases MV (j,1) = E(j,1,2) and MV(j,1) = n(k)-¢
or MV(k,1) = E(k,1,2) and MV(k,1) = n(j)-€ can be excluded, because the conditions for this in
2.2.1) cannot be fulfilled. Thus, if i makes an offer, then with equal probability to j or k in the
amount of their need.

The important and very laborious question is: Can the case occur that i cannot make such an
offer because the resource is not large enough?

Given MV(i,1) = n(i) this is not the case, since the conditions of 2.2.1) guarantee that n(i) + n(j)
=n(i) + n(k) <res. Given MV(i,1) = E(i,1,2) this would be the case if holds:

res < n(j) + E(1,1,2)

res < n(j) + 1/3*res + 2/3*n(i) — 1/3*n(j)
3*res < 3*n(j) + res + 2*n(1) — n(j)
2*res < 2*n(1) + 2*n(j)

res < n(i) + n(j)

(NI )

However, res < n(i) + n(j) is impossible under the condition of 2.2.1), which states that n(i) +
n(j) <res.

Thus, the solution from the interim result is realized:

2.2.1.1) DP(@i,1) = (res-n(j), n(j), 0) with 50% probability and
DP(i,1) = (res-n(k), 0, n(k)) with 50% probability.

2.2.1.2)p(1) =]

AN



If j makes a distribution proposal, j offers i its MV since i is cheaper than k (because i's need is
smaller than k's, i can undercut k if necessary).

None of the MV's of i that are possible in principle MV(i,1) = n(1), MV(i,1) = E(1,1,2), and
MV (,1) = n(k)-¢) can be excluded under the conditions for 2.2.1) because:

MV(@,1) = EG,1,2), if n(i) < E(1,1,2) <n(k).

n(i) < E(1,1,2) < n(k)
S n(i) < 1/3*res + 2/3*n(i) — 1/3*n(j) < n(k)
S 3*n(i) <res + 2*n(i) — n(j) < 3*n(k)
= n(i) + n(j) <res < -2*n(i) + n(j) + 3*n(k)

(n(i) + n(j) < res may be given in 2.2.1) (if this is not satisfied, then under the conditions
of 2.2.1) n(i) + n(j) = res). res < -2*n(i) + n(j) + 3*n(k) can be given, since n(i) < n(k),
thus -2*n(1) + 3*n(k) > n(i) and thus -2*n(i) + n(j) + 3*n(k) > n(i) + n(j). Thus, the case
may be given that n(i) + n(j) <res < -2*n(i) + n(j) + 3*n(k) and thus MV(i,1) = E(i,1,2).
For the sake of comprehensiveness, such a detailed presentation will not be given in the
following; the reader is kindly requested to use this model for the following presenta-
tions).

This results in:

MV(@,1) =n(k)-e, ifres>-2*n(@) + n() + 3*n(k)'’ and

MV(,1) = n(d), else (i.e., if res <n(i) + n(j)) (since res < n(i) + n(j) is impossible
under the conditions for 2.2.1), this can be simplified to res = n(i)
+ n(j)).

As an interim result, if j proposes a distribution, it will result according to the following case
distinctions:

2.2.1.2.1) If res <n(i) + n(k), then DP(j,1) = (n(i), res-n(i), 0).
2.2.1.2.2) If n(i) + n(j) <res < -2*n(i) + n(j) + 3*n(k),

then DP(j,1) = (EG,1,2), res-E(1,1,2), 0)
2.2.1.2.3) If res > -2*n(i) + n(j) + 3*n(k), then DP(j,1) = (n(1), res-n(1), 0)

Again, it remains to be determined whether in any of these cases MV(j,1) + MV(i,1) <res can
be given (so that proposer j cannot make an appropriate distribution proposal).

For that the proposer side must be considered. Also for the proposer j none of the principally
possible MV's of j MV (j,1) =n(i) and MV(j,1) = E(j,1,2)) can be excluded under the conditions
for 2.2.1), since:

MV(,1)=EG,1,2), if  n() <EG,12)
n(j) < EG,1,2)

=3 n(j) < 1/3*res — 1/3*n(i) + 1/6*n(k)
S 6*n(j) < 2*res — 2*n(1) + n(k)
19 MV(i,1) = n(k)-g, if n(i) < n(k) <EG,1,2)

n(i) < n(k) <E(,1,2)

n(k) <E(,1,2) [since n(i) < n(k) is assumed]
n(k) < 1/3*res + 2/3*n(i) — 1/3*n(j)

3*n(k) <res + 2*n(i) — n(j)

res > -2*n(i) + n(j) + 3*n(k)

tggeg
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= 2*res > 2*n(i) + 6*n(j) — n(k)
= res > n(i) + 3*n(j) — 1/2*n(k)

MV(,1) =n(j), else (i.e. if res <n(i) + 3*n(j) — 1/2*n(k))
Therefore, for all 6 combinations

MV(,1) =n(i) and MV(j,1) =n(j),
MV(,1) =n(i) and MV(j,1) = E(,1,2),
MV(,1) =n(i) and MV(j,1) = E(j,1,2),
MV(,1) = E(,1,2) and MV(j,1) = E(,1,2),
MV(i,1) = n(k)-€ and MV(j,1) = n(j),
MV(,1) = n(k)-€ and MV(j,1) = n(j),

it is to show that the case MV(i,1) + MV(j,1) > res cannot occur.
MV(i,1) =n() und MV(,1) = n(j):
res < n(i) + n(j)
res < n(i) + n(j) impossible under the condition for 2.2.1): n(i) + n(j) <res
MV(,1) =n(i) and MV(j,1) = E(j,1,2):

res < n(i) + EG,1,2)

res <n(i) + 1/3*res - 1/3*n(i) + 1/6*n(j)
6*res < 6*n(i) + 2*res - 2*n(i) + n(j)
4*res < 4*n(1) + n(j)

res < n(i) + 1/4*n(j)

(NI

res < n(i) + 1/4*n(j) impossible under the condition for 2.2.1): n(i) + n(j) <res
MV(,1) =n(i) and MV(j,1) = E(,1,2):

res < E(i,1,2) + n(j)

res < 1/3*res + 2/3*n(i) — 1/3*n(j) + n(j)
3*res <res + 2*n(i) — n(j) + 3*n(j)
2%res < 2*n(1) + 2*n(j)

res < n(i) + n(j)

(NI )

res < n(i) + n(j) impossible under the condition for 2.2.1): n(i) + n(j) <res
MV(,1) = E(i,1,2) and MV(j,1) = E(,1,2):

res < E(1,1,2) + E(j,1,2)

res < 1/3*res + 2/3*n(i) — 1/3*n(j) + 1/3*res — 1/3*n(i) + 1/6*n(j)
6*res < 2*res + 4*n(i) — 2*n(j) + 2*res — 2*n(i) + n(j)

2%*res < 2*n(1) — n(j)

res < n(i) — 1/2*n(j)

(NI )

res < n(i) — 1/2*n(j) impossible under the condition for 2.2.1): n(i) + n(j) <res
MV(,1) = n(k)-€ and MV(j,1) = n(j):
res < n(k)-€ + n(j)

res < n(j) + n(k) — € impossible under the condition for MV(i,1) = n(k)-&: res > -
2*n(i) + n(j) + 3*n(k)
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MV(,1) = n(k)-€ and MV(j,1) = n(j):

res < n(k)-¢ + E(,1,2)

res < n(k)-€ + 1/3*res — 1/3*n(i) + 1/6*n(j)
6*res < 6*n(k) — 6*¢ + 2*res — 2*n(i) + n(j)
4*res < -2*n(i) + n(j) + 6*n(k) — 6*¢

res < -1/2*n(i) + 1/4*n(j) + 3/2*n(k) — 3/2*¢

res < -1/2*n(i) + 1/4*n() + 3/2*n(k) — 3/2%e = -1/2*n(i) + 7/4*n(j) — 3/2*¢ im-
possible under the condition for MV(j,1) = E(j,1,2): res > n(i) + 3*n(j) — 1/2*n(k)
=n(i) + 10/4*n(j)

tg80¢

Therefore, the case MV(j,1) + MV(i,1) < res cannot occur and the solutions recorded in the
interim result are realized.

22.13)p(l)=k
This case results analogous to case 2.2.1.2):

2.2.1.3.1) If res <n(i) + n(k), then DP(k,1) = (n(i), O, res-n(i))
2.2.1.3.2) If n(i) + n(j) < res <-2*n(i) + n(j) + 3*n(k),

then DP(k,1) = (E(i,1,2), 0, res-E(i,1,2))
2.2.1.3.3) If res > -2*n(i) + n(j) + 3*n(k), then DP(k,1) = (n(j)-¢, 0, res-n(j)-¢)

Starting from case 2.2) (not all players have the same need), the following two cases in addition
to case 2.2.1) (two players have the same need and the third has a smaller need) has to be
distinguished (which results in a disjoint decomposition of case 2.2)):

2.2.2) Two players have equal needs and the third has a greater need.
2.2.3) All players have needs of different sizes.

These cases (unlike the cases before) are to be further differentiated with respect to the size of
the resource. In the previous case differentiations, the conditions were such that the resource
either covers the needs of any pair of players, or of no pair of players (which puts us in case
1)). In cases 2.2.2) and 2.2.3), however, depending on the size of the resource, the case can
occur that the resource only covers the needs of two specific players (namely the one with the
smallest needs), but not the needs of the player with the largest need and another player, thus
ruling out the possibility that the player with the largest need can participate in a coalition that
reaches a majority. Accordingly, it must be distinguished:

2.2.2.1) There are two players with equal need and one with greater need: n(i) = n(j) < n(k)
and n(i) + n(j) <res
and n(i) + n(k) = n(j) + n(k) > res.

2.2.2.2) There are two players with equal need and one with greater need: n(i) = n(j) < n(k)
and n(i) + n(j) <res
and n(i) + n(k) = n(j) + n(k) <res.

2.2.3.1) All players have different needs: n(i) < n(j) < n(k)
and n(i) + n(j) <res
and n(i) + n(k) > res (and hence also n(j) + n(k) > res).

2.2.3.2) All players have different needs: n(i) < n(j) < n(k)
and n(i) + n(j) <res
and n(i) + n(k) <res
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and n(j) + n(k) > res.

2.2.3.3) All players have different needs: n(i) < n(j) < n(k)
and n(i) + n(j) <res
and n(i) + n(k) <res
and n(j) + n(k) <res.

The study of the cases 2.2.2.1), 2.2.2.2), 2.2.3.1) and 2.2.3.3) do not differ essentially from the
investigation of the case 2.2.1.2) and are treated very briefly. In case 2.2.3.2) the case occurs
that MV(j,1) + MV(1,1) < res cannot be excluded, which is why it is treated in more detail.

2.2.2.1) There are two players with equal need and one with greater need: n(i) = n(j) < n(k)
and n(i) + n(j) <res
and n(i) + n(k) = n(j) + n(k) > res.

EG,1,2) = (res-n(j) + n(i) + 0)/3 = 1/3%*res =
E(,1,2) = (n(j) + res-n(i) + 0)/3 = 1/3*res
Ek,1,2)=(0+0+0)/3 =0

222.1.D)p(1)=1:

r_c(1p(1)=i) = {j}

MV(,1) =E(,1,2), if n(j) < E(,1,2) <n(k)
n(j) < E(,1,2) <n(k)
n(j) < 1/3*res < n(k)
3*n(j) < res < 3*n(k)

res > 3*n(j) and res < 3*n(k)
3*n(j) < res < 3*n(k)

f  nG) <nk <EG1,2)

n(j) <n(k) <EG,1,2)

n(j) < n(k) and n(k) < 1/3*res
n(k) < 1/3*res

3*n(k) <res

res > 3*n(k)

MV(,1) =n(j), else (i.e., if res < 3*n(j))
MV(,1) =E@1,1,2), ifn(i) < E(i,1,2)

n(i) < E(1,1,2)
S n(i) < 1/3*res

1808

—e

MV(,1) = n(k)-¢,

(NN

S 3*n(i) <res
S res > 3*n(i)
MV(,1) = n@d), else (i.e., if res < 3*n(i)).

Can the case occur that MV(i,1) + MV(j,1) > res?
MV(,1) =n(j) and MV(4,1) = n(i):
res < n(i) + n(j)

res < n(i) + n(j) impossible under the condition for 2.2.2.1): n(i) + n(j) <res
20



MV(,1) =n() and MV(,1) = E(4,1,2):

res < n(j) + E(1,1,2)
s res <n(j) + 1/3*res
s 3*res < 3*n(j) + res
s 2*res < 3*n(j)
=4 res < 3/2*n(j)

res < 3/2*n(j) impossible under the condition for 2.2.2.1): n(i) + n(j) <res
MV(,1) = E(,1,2) and MV(4,1) = n(i):

res < E(j,1,2) + n(i)
res < 1/3*res + n(i)
3*res < res + 3*n(i)
2*res < 3*n(i)
res < 3/2*n(i)

(NN

res < 3/2*n(i1) impossible under the condition for 2.2.2.1): n(i) + n(j) <res
MV(,1) = E(,1,2) and MV(i,1) = E(1,1,2):

res < E(j,1,2) + E(1,1,2)
& res < 1/3*res + 1/3*res

res < 1/3*res + 1/3*res impossible
MV(j,1) = n(k)-e und MV(i,1) = n(i):
res < n(k)-€ + n(i)

res < n(i) + n(k) — € impossible under the condition for MAV(j,1) = n(k)-¢: res >
3*n(k)

MV(,1) =n(k)-e and MV(,1) = E(1,1,2):

res < n(k)-€ + E(4,1,2)

res < n(k)-e + 1/3*res
3*res < 3*n(k) — 3*e + res
2*res < 3*n(k) — 3*¢

res < 3/2*n(k) — 3/2%¢

res < 3/2*n(k) — 3/2*¢ impossible under the condition for MV (j,1) = n(k)-¢: res
> 3*n(k)

tg80¢

Therefore, the case MV(i,1) + MV(j,1) < res cannot occur.

2.2.2.1.1) Distribution proposals

2.2.2.1.1.1) If res < 3*n(j), then DP(i,1) = (res-n(j), n(j), 0)
2.2.2.1.1.2) If 3*n(j) < res < 3*n(k), then DP(i,1) = (res-E(j,1,2), E(,1,2), 0)
2.2.2.1.1.3) If res > 3*n(k), then DP(i,1) = (res-n(k)+¢, n(k)-¢, 0)

22.2.1.2)p()=j:
Analogous to 2.2.2.1.1)
2.2.2.1.2) Distribution proposals
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2.2.2.1.2.1) If res < 3*n(j), then DP(j,1) = (n(i), res-n(i), 0)
2.2.2.1.2.2) If 3*n(j) < res < 3*n(k), then DP(j,1) = (E(i,1,2), res-E(i,1,2), 0)
2.2.2.1.2.3) If res > 3*n(k), then DP(j,1) = (n(k)-¢, res-n(k)+¢, 0)

222.1.3)p(1)=k:

k has no possibility to be part of a coalition that can reach a majority under the condition
of 2.2.2.1): n(i) + n(k) = n(j) + n(k) > res.

2.2.2.1.3) Distribution proposals
2.2.2.1.3) DP(k,1) = (0, 0, 0)

2.2.2.1.3.1) p(2) = i: DP(i,2) = (res-n(j), n(j), 0)
2.2.2.1.3.2) p(2) = j: DP(j,2) = (n(i), res-n(i), 0)
2.2.2.1.3.3) p(2) = k: DP(k,2) = (0, 0, 0)

2.2.2.2) There are two players with equal need and one with greater need: n(i) = n(j) < n(k)
and n(i) + n(j) <res
and n(i) + n(k) = n(j) + n(k) <res.

E@,1,2) = (res-n(j) + n(i) + 0.5*n(i))/3 = 1/3*res + 1/6*n(i) =
EG,1,2) = (n(j) + res-n(i) + 0.5*n(j))/3 = 1/3*res + 1/6*n(j)
E(k,1,2) = (0 + 0 + res-n(i))/3 = 1/3*res — 1/3*n(i)

22221 p(1) =i
r_c(ljp()=i) = {j}
MV(,1) = E(,1.2),

—

if  n()<EG,1,2) < n(k)

n(j) < E(,1,2) <n(k)

n@j) < 1/3*res + 1/6*n(j) < n(k)

6*n(j) < 2*res + n(j) < 6*n(k)

2*res > 5*n(j) and 2*res < -n(j) + 6*n(k)
res > 5/2*n(j) and res < -1/2*n(j) + 3*n(k)
5/2*n(j) <res < -1/2*n(j) + 3*n(k)

n(j) < n(k) <E(j,1,2)

n(j) < n(k) <E(,1,2)

n(j) < n(k) < 1/3*res + 1/6*n(j)
n(k) < 1/3*res + 1/6*n(j)
6*n(k) < 2*res + n(j)

2*res > -2*n(j) + 6*n(k)

res > -n(j) + 3*n(k)

MV(,1) =n(j), else (i.e. if res < 5/2%*n(j))
MV(@,1) = EG,1,2), if n(i) < EG,1,2)

n(i) < E@,1,2)

n(i) < 1/3*res + 1/6*n(j)
6*n(i) < 2*res + n(j)
2*res > 6*n(1) — n(j)

res > 3*n(i) — 1/2*n(j)

(I I )

MV(,1) = n(k)-¢,

tggee <

—

(NI )
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MV(,1) = n@d), else (i.e. if res < 3*n(i) — 1/2*n(j))
Can the case occur that MV(i,1) + MV(j,1) > res?
MV(j,1) =n(j) und MV(,1) = n(i):

res < n(i) + n(j)

res < n(i) + n(j) impossible under the condition for 2.2.2.2): n(i) + n(j) <res

MV(,1) =n(j) and MV(,1) = E(1,1,2):

(NI )

res < n(j) + E(,1,2)

res < n(j) + 1/3*res + 1/6*n(i)
6*res < 6*n(j) + 2*res + n(i)
4*res < n(i) + 6*n(j)

res < 1/4*n(i) + 3/2*n(j)

res < 1/4*n(i) + 3/2*n(j) impossible under the condition for 2.2.2.2): n(i) + n(j)

<res

MV(,1) = E(,1,2) and MV(4,1) = n(i):

(NI )

res < E(j,1,2) + n(i)

res < 1/3*res + 1/6*n(j) + n(i)
6*res < 2*res + n(j) + 6*n(1)
4*res < n(j) + 6*n(i)

res < 1/4*n(j) + 3/2*n(i)

res < 1/4*n(j) + 3/2*n(i) impossible under the condition for 2.2.2.2): n(i) + n(j)

<res

MV(,1) =E(,1,2) and MV(3,1) = E(1,1,2):

(NN

res < E(j,1,2) + E(1,1,2)

res < 1/3*res + 1/6*n(j) + 1/3*res + 1/6*n(1)
6*res < 2*res + n(j) + 2*res + n(i)

2*res < n(j) + n(i)

res < 1/2*n(i) + 1/2*n(j)

res < 1/2*n(i) + 1/2*n(j) impossible under the condition for 2.2.2.2): n(i) + n(j)

<res

MV(,1) = n(k)-¢ and MV(4,1) = n(i):

res < n(k)-€ + n(i)

res < n(i) + n(k)-& impossible under the condition for 2.2.2.2): n(i) + n(k) <res

MV(,1) =n(k)-e and MV(,1) = E(1,1,2):

(NN

res < n(k)-€ + E(4,1,2)

res < n(k)-e + 1/3*res + 1/6*n(i)
6*res < 6*n(k) - 6*%¢ + 2*res + n(i)
4*res < n(i) + 6*n(k) - 6*¢

res < 1/4*n(i) + 3/2*n(k) - 3/2*¢

res < 1/4*n(j) + 3/2*n(k) - 3/2*¢ impossible under the condition for MV(j,1) =
n(k)-e: res > -n(j) + 3*n(k).

)



Therefore, the case MV(i,1) + MV(j,1) < res cannot occur.
2.2.2.1) Distribution proposals

2.2.2.1.1) If res < 5/2*n(j), then DP(i,1) = (res-n(j), n(j), 0)
2.2.2.1.2) If 5/2*n(j) < res < -1/2*n(j) + 3*n(k),

then DP(i,1) = (res-E(j,1,2), E(j,1,2), 0)
2.2.2.1.3) If res > -1/2*n(j) + 3*n(k), then DP(i,1) = (res-n(k)+¢, n(k)-¢, 0)

22.222)p(1) =]
Analogous to 2.2.2.2.1)
2.2.2.2.2) Distribution proposals

2.2.2.2.2.1) If res < 5/2*n(j), then DP(j,1) = (n(1), res-n(1), 0)
2.2.2.2.2.2) If 5/2*n(j) < res < -1/2*n(j) + 3*n(k),

then DP(j,1) = (E(i,1,2), res-E(i,1,2), 0)
2.2.2.2.2.3) If res > -1/2*n(j) + 3*n(k), then DP(j,1) = (n(k)-¢, res-n(k)+¢, 0)

22223)p(1) =k
r_c(lfp(D)=k) = {i,j}
MV(,1) =E@G,1,2)  if n(i) < E@1,1,2) < n(j)
n(i) < n(j) impossible under 2.2.2.2)
MV(,1) = n(j)-e, if n(i) <n() <EG,1,2)
n(i) < n(j) impossible under 2.2.2.2)
MV(,1) = n(d), else (i.e. always under 2.2.2.2.3)
MV(k,1) =Ek,1,2), if n(k) < E(k,1,2)

n(k) < E(k,1,2)
S n(k) < 1/3*res - 1/3*n(1)
S 3*n(k) < res - n(i)
S res > n(i) + 3*n(k)

MV(k,1) = n(k), else (i.e. if res <n(i) + 3*n(k)).
Can the case occur that MV(i,1) + MV(k,1) > res?
MV(,1) =n(@i) and MV(k,1) = n(k):
res < n(i) + n(k)
res < n(i) + n(k) impossible under the condition for 2.2.2.2): n(i) + n(k) <res
MV(,1) =n(i) and MV(k,1) = E(k,1,2)

res <n(i) + E(,1,2)

res < n(i) + 1/3*res - 1/3*n(1)

3*res < 3*n(i) + res - n(i)

2%res < 2*n(i)

res < n(i)

res < n(i) impossible under the condition for 2.2.2.2): n(i) + n(j) <res.

(NI )



Therefore, the case MV(j,1) + MV(k,1) < res cannot occur.

2.2.2.2.3) Distribution proposals

DP(k,1) = (n(i), 0, res-n(i)) with 50% probability and
DP(k,1) = (0, n(j), res-n(j)) with 50% probability.

2.2.3.1) All players have different needs: n(i) < n(j) < n(k)

and n(i) + n(j) <res

and n(i) + n(k) > res (and hence also n(j) + n(k) > res).

E@,1,2) = (res-n(j) + n(i) + 0)/3
E(,1,2) = (n(j) + res-n(i) + 0)/3

E(k,1,2) = (0 + 0 + 0)/3

2.23.1.1) p(1) =i
r_c(1|p(1)=i) = {j}
MV(,1) =EG,1,2), if

(NI )

MV(,1) =n(k)-¢, if

—

(NI )

MV, 1) =n(j),
MV(@,1) = EG,1,2), if

g

MV(@,1) =n(),

= 1/3*res + 1/3*n(i) — 1/3*n(j)
= 1/3*res — 1/3*n(1) + 1/3*n(j)
=0

n(j) < E(,1,2) <n(k)

n(j) <E(,1,2) <n(k)

n(j) < 1/3*res — 1/3*n(i) + 1/3*n(j) < n(k)
3*n(j) < res —n(i) + n(j) < 3*n(k)

res > n(i) + 2*n(j) und res < n(i) — n(j) + 3*n(k)
n(i) + 2*n(j) <res < n(i) — n(j) + 3*n(k)

n(j) < n(k) <E(,1,2)

Il(]) < Il(k) S E(]’l’z)

n(j) < n(k) < 1/3*res — 1/3*n(i) + 1/3*n(j)
n(k) < 1/3*res — 1/3*n(i) + 1/3*n(j)
3*n(k) <res —n(i) + n(j)

res > n(i) — n(j) + 3*n(k)

else (i.e. res <n(i) + 2*n(j))
n(i) < E(1,1,2)

n(i) < E(1,1,2)

n(i) < 1/3*res + 1/3*n(i) — 1/3*n(j)
3*n(i) <res + n(i) — n(j)

res > 2*n(i) + n(j)

else (i.e. if res < 2*n(i) + n(j))

Can the case occur that MV(i,1) + MV(j,1) > res?
MV(,1) =n(j) and MV(4,1) = n(i):

res < n(j) + n(i)

res < n(i) + n(j) impossible under the condition for 2.2.3.1): n(i) + n(j) <res
MV(,1) =n(j) and MV(,1) = E(1,1,2):
res < n(j) + EG,1,2)

U/



res < n(j) + 1/3*res + 1/3*n(i) — 1/3*n(j)
3*res < 3*n(j) + res + n(i) — n(j)

2*res <n(i1) + 2*n(j)

res < 1/2*n(i) + n(j)

(NI )

res < 1/2*n(i) + n(j) impossible under the condition for 2.2.3.1): n(i) + n(j) <res
MV(,1) = E(,1,2) and MV(4,1) = n(i):

res < E(j,1,2) + n(i)

res < 1/3*res — 1/3*n(i) + 1/3*n(j) + n(i)
3*res <res — n(i) + n(j) + 3*n(i)

2%*res < 2*n(1) + n(j)

res < n(i) + 1/2*n(j)

(NI )

res < n(i) + 1/2*n(j) impossible under the condition for 2.2.3.1): n(i) + n(j) <res
MV(,1) = E(,1,2) and MV(i,1) = E(1,1,2):

res < E(j,1,2) + E(1,1,2)
S res < 1/3*res — 1/3*n(i) + 1/3*n(j) + 1/3*res + 1/3*n(i) — 1/3*n(j)
S res <0

res < 0 impossible according to the basic assumption
MV(,1) = n(k)-¢ and MV(4,1) = n(i):
res < n(k)-€ + n(i)

res < n(i) + n(k) — € impossible under the condition for MV(j,1) = n(k)-¢: res >
n(i) — n(j) + 3*n(k)

MV(,1) =n(k)-e and MV(4,1) = E(1,1,2):

res < n(k)-e + E(1,1,2)

res < n(k)-e + 1/3*res + 1/3*n(i) — 1/3*n(j)
3*res < 3*n(k) — 3*¢ + res + n(i) — n(j)
2*res < n(i) — n(j) + 3*n(k) — 3*¢

res < 1/2*n(i) — 1/2*n(j) + 3/2*n(k) — 3/2*¢

res < 1/2*n(i) — 1/2*n(j) + 3/2*n(k) — 3/2*¢ impossible under the condition for
MV(j,1) = n(k)-€: res > n(i) — n(j) + 3*n(k)

tgoe

Therefore, the case of MV(i,1) + MV(j,1) < res cannot occur.
2.2.3.1.1) Distribution proposals

2.2.3.1.1) If res <n(i) + 2*n(j), then DP(i,1) = (res-n(j), n(j), 0)
2.2.3.1.2) If n(i) + 2*n(j) <res < n(@i) — n(j) + 3*n(k),

then DP(i,1) = (E(i,1,2), res-E(1,1,2), 0)
2.2.3.1.3) If res > n(i) — n(§) + 3*n(k), then DP(,1) = (n(k)-¢, res-n(k)-¢, 0)

2.23.1.2) p(1) =j
r_c(1|p(1)=j) = {i}
MV(@,1)=EG,1,2), if  n@) <E@,1,2) <nk)
n(i) < EG,1,2) < n(k)

2k



MV(,1) = n(k)-¢,

MV(,1) = n(),
MV, 1) = E(j,1,2),

MV(j.1) = n(),

(NI )

(NI )

n(j) < 1/3*res + 1/3*n(i) — 1/3*n(j) < n(k)
3*n(j) <res + n(i) — n(j) < 3*n(k)
-n(i) + 4*n(j) <res < -n(i) + n(j) + 3*n(k)

n(i) < n(k) <E(,1,2)

n(i) < n(k) <E@,1,2)

n(j) < n(k) und n(k) < 1/3*res + 1/3*n(i) — 1/3*n(j)
n(k) < 1/3*res + 1/3*n(i) — 1/3*n(j)

3*n(k) <res + n(i) — n(j)

res > -n(i) + n(j) + 3*n(k)

else (i.e if res <-n(i) + 4*n(j))

f

—

(=4
(=4
=

n(j) < E(,1,2)

n(i) < EG,1,2)

n(i) < 1/3*res — 1/3*n(i) + 1/3*n(j)
3*n(i) < res — n(i) + n(j)

res > 4*n(i) — n(j)

else (i.e. if res <4*n(i) — n(j))

Can the case that MV(i,1) + MV(j,1) > res occur?

MV(,1) =n(i) and MV(j,1) = n(j):

res < n(i) + n(j)

res < n(i) + n(j) impossible under the condition for 2.2.3.1): n(i) + n(j) <res
MV(,1) =n(i) and MV(j,1) = E(,1,2):
res < n(i) + EG,1,2)

(NI )

res < n(i) + 1/3*res — 1/3*n(i) + 1/3*n(j)
3*res < 3*n(i) + res — n(i) + n(j)

2%*res < 2*n(1) + n(j)

res < n(i) + 1/2*n(j)

res < n(i) + 1/2*n(j) impossible under the condition for 2.2.3.1): n(i) + n(j) <res
MV(,1) = E(i,1,2) and MV(j,1) = n(j):
res < E(1,1,2) + n(j)

(NI )

res < 1/3*res + 1/3*n(i) — 1/3*n(j) + n(j)
3*res <res + n(i) — n(j) + 3*n(j)

2*res <n(i) + 2*n(j)

res < 1/2*n(i) + n(j)

res < 1/2*n(i) + n(j) impossible under the condition for 2.2.3.1): n(i) + n(j) <res
MV(,1) = E(i,1,2) and MV(j,1) = E(,1,2):

res < E(1,1,2) + E(j,1,2)
S res < 1/3*res + 1/3*n(i) — 1/3*n(j) + 1/3*res — 1/3*n(i) + 1/3*n(j)

= res <0

res < 0 impossible according to base assumption.

2R



MV(,1) = n(k)-€ and MV(j,1) = n(j):
res < n(k)-€ + n(j)

res < n(j) + n(k) — € impossible under the condition for MV(i,1) = n(k)-&: res > -
n(i) + n(j) + 3*n(k)

MV(,1) = n(k)-e and MV(j,1) = E(,1,2):

res < n(k)-¢ + E(,1,2)

res < n(k)-€ + 1/3*res — 1/3*n(i) + 1/3*n(j)
3*res < 3*n(k) — 3*¢ + res — n(i) + n(j)
2%*res < -n(i) + n(j) + 3*n(k) — 3*¢

res < -1/2*n(i) + 1/2*n(j) + 3/2*n(k) — 3/2*¢

res < -1/2*n(1) + 1/2*n(j) + 3/2*n(k) — 3/2*¢ impossible under the condition for
MAV(,1) = n(k)-&: res > -n(i) + n(§) + 3*n(k)

t00¢

Therefore, the case MV(i,1) + MV(j,1) < res cannot occur.
2.2.3.1.2) Distribution proposals

2.2.3.1.2.1) If res < -n(i) + 4*n(j), then DP(j,1) = (n(j), res-n(j), 0)
2.2.3.1.2.2) If -n(i) + 4*n(j) < res < -n(i) + n(j) + 3*n(k)
then DP@G,1) = (E@,1,2), res-
EG,1,2), 0)
2.2.3.1.2.3) If res > -n(i) + n(j) + 3*n(k), then DP(j,1) = (n(k)-¢, res-n(k)-¢, 0)

22.3.1.3)p(1) =k

k has no possibility to be part of a coalition that can reach a majority under the condi-
tion of 2.2.3.1): n(1) + n(k) > res (and therefore also n(j) + n(k) > res).

2.2.3.1.3) Distribution proposals
DP(k,1) = (0, 0, 0)

2.2.3.1.3.1) p(2) = i: DP(i,2) = (res-n(j), n(j), 0)
2.2.3.1.3.2) p(2) =j: DP(},2) = (n(i), res-n(i), 0)
2.2.3.1.3.3) p(2) = k: DP(k,2) = (0, 0, 0)

2.2.3.2) All players have different needs: n(i) < n(j) < n(k)
and n(i) + n(j) <res
and n(i) + n(k) <res
and n(j) + n(k) > res.

E@,1,2) = (res-n(j) + n(i) + n(i))/3 = 1/3*res + 2/3*n(i) — 1/3*n(j)
E(,1,2) = (n(j) + res-n(i) + 0)/3 = 1/3*res — 1/3*n(i) + 1/3*n(j)
E(k,1,2) = (0 + 0 + res-n(i))/3 = 1/3*res — 1/3*n(i)

22321 p(1) =i
r_c(1|p(D=i) = {j}

MV(,1)=EG,1,2), if  n(j)<EG,1,2) < n(k)

n(j) < E(,1,2) <n(k)
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n(j) < 1/3*res — 1/3*n(i) + 1/3*n(j) < n(k)
3*n(j) < res —n(i) + n(j) < 3*n(k)
n(i) + 2*n(j) <res < n(i) — n(j) + 3*n(k)

if  n(j) < n(k) <EG,1,2)

n(j) <n(k) <EG,1,2)

n(j) <n(k) < 1/3*res — 1/3*n(i) + 1/3*n(j)
n(k) < 1/3*res — 1/3*n(i) + 1/3*n(j)
3*n(k) <res —n(i) + n(j)

res > n(i) — n(j) + 3*n(k)

MV(,1) =n(j), else (i.e.. res <n(i) + 2*n(j))
MV(,1) = E@,1,2), if n(i) < E(i,1,2)

n(i) < E@,1,2)
S n(i) < 1/3*res + 2/3*n(i) — 1/3*n(j)
S 3*n(i) < res + 2*n(i) — n(j)
S res > n(i) + n(j)

MV(,1) = n(), else (i.e if res = n(i) + n(j), see 2.2.3.2): n(i) + n(j) <res)
Can the case occur that MV(i,1) + MV(j,1) > res?
MV(,1) =n(j) and MV(4,1) = n(i):

(NI )

[

MV(,1) = n(k)-¢,

(NI )

res < n(j) + n(i)
res < n(i) + n(j) impossible under the condition for 2.2.3.2): n(i) + n(j) <res
MV(,1) =n() and MV(,1) = E(1,1,2):

res < n(j) + E(,1,2)

res < n(j) + 1/3*res + 2/3*n(i) — 1/3*n(j)
3*res < 3*n(j) + res + 2*n(i) — n(j)
2%res < 2*n(1) + 2*n(j)

res < n(i) + n(j)

(NI )

res < n(i) + n(j) impossible under the condition for 2.2.3.2): n(i) + n(j) <res
MV(,1) = E(,1,2) and MV(4,1) = n(i):

res < E(j,1,2) + n(i)

res < 1/3*res — 1/3*n(i) + 1/3*n(j) + n(i)
3*res <res — n(i) + n(j) + 3*n(i)

2*res < 2*n(1) + n(j)

res < n(i) + 1/2*n(j)

(NI

res < n(i) + 1/2*n(j) impossible under the condition for 2.2.3.2): n(i) + n(j) <res
MV(,1) = E(,1,2) and MV(i,1) = E(i,1,2):

res < E(j,1,2) + E(4,1,2)

res < 1/3*res — 1/3*n(i) + 1/3*n(j) + 1/3*res + 2/3*n(i) — 1/3*n(j)
3*res <res —n(i) + n(j) + res + 2*n(i) — n(j)

res < n(i)

(NI )
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res < n(i) impossible under the condition for 2.2.3.2): n(i) + n(j) <res

MV(,1) =n(k)-e and MV(4,1) = n(i):

res < n(k)-€ + n(i)

res < n(k)-€ + n(i) impossible under the condition for MV(j,1) = n(k)-¢: res > n(i)

—n(j) + 3*n(k)

MV(,1) =n(k)-e and MV(,1) = E(i,1,2):
res < n(k)-€ + E(4,1,2)

t00¢

res < n(k)-€ + 1/3*res + 2/3*n(i) — 1/3*n(j)
3*res < 3*n(k) — 3*¢ + res + 2*n(i) — n(j)
2%*res < 2*n(1) — n(j) + 3*n(k) — 3*¢

res < n(i) — 1/2*n(j) + 3/2*n(k) — 3*¢

res <n(i) — 1/2*n(j) + 3/2*n(k) — 3*¢ impossible under the condition for MV(j, 1)
=n(k)-&: res > n(i) — n(j) + 3*n(k)

Therefore, the case MV(i,1) + MV(j,1) < res cannot occur.

2.2.3.2.1) Distribution proposals

2.2.3.2.1.1) If res <n(i) + 2*n(j), then DP(i,1) = (res-n(j), n(j), 0)
2.2.3.2.1.2) If n(i) + 2*n(j) <res < n(i) — n(j) + 3*n(k),

then DP(i,1) = (res-E(j,1,2), E(j,1,2), 0)

2.2.3.2.1.3) If res > n(i) — n(j) + 3*n(k), then DP(1,1) = (res-n(k)+€, n(k)-¢, 0)

2.2.3.2.2)p(1) =j

r_c(1lp(D)=j) = {i}
MV(,1) = E(i,1,2),

MV(,1) = n(k)-¢,

MV(,1) = n(),
MV, 1) = E(j,1,2),

(AN )

n(i) < E@,1,2) < n(k)

n(i) < EG,1,2) <n(k)

n(i) < 1/3*res + 2/3*n(i) — 1/3*n(j) < n(k)
3*n(i) <res + 2*n(i) — n(j) < 3*n(k)

n(i) + n(j) <res < -2*n(i) + n(j) + 3*n(k)
res < -2*n(i) + n(j) + 3*n(k)

(since under the conditions for 2.2.3.2): n(i) < n(j) < n(k) and n(i)
+ n(k) <res holds: n(i) + n(j) < res)

f

—

(NI )

n(i) < n(k) <E(,1,2)

n(i) < n(k) <E(,1,2)

n(j) < n(k) and n(k) < 1/3*res + 2/3*n(i) — 1/3*n(j)
n(k) < 1/3*res + 2/3*n(i) — 1/3*n(j)

3*n(k) <res + 2*n(i) — n(j)

res > -2*n(i) + n(j) + 3*n(k)

impossible (see MV(i,1) = E(1,1,2))

if

n(j) < E(,1,2)

n(i) < E(,1,2)
n(i) < 1/3*res — 1/3*n(i) + 1/3*n(j)
3*n(i) < res — n(i) + n(j)
20



S res > 4*n(i) — n(j)
MV(,1) =n(j), else (i.e. if res <4*n(i) — n(j))
Can the case occur that MV(i,1) + MV(j,1) > res?
MV(,1) = E(,1,2) and MV(j,1) = n(j):

res < E(i,1,2) + n(j)

res < 1/3*res + 2/3*n(i) — 1/3*n(j) + n(j)
3*res <res + 2*n(i) — n(j) + 3*n(j)
2%res < 2*n(1) + 2*n(j)

res < n(i) + n(j)

(NI )

res < n(i) + n(j) impossible under the condition for 2.2.3.2): n(i) + n(j) <res
MV(,1) = E(i,1,2) and MV(j,1) = E(,1,2):

res < E(4,1,2) + E(,1,2)
S res < 1/3*res + 2/3*n(i) — 1/3*n(j) + 1/3*res — 1/3*n(i) + 1/3*n(j)
S 3*res <res + 2*n(i) — n(j) + res — n(i) + n(j)
S res < n(i)

res < n(i) impossible under the condition for 2.2.3.2): n(i) + n(j) <res
MV(,1) = n(k)-€ and MV(j,1) = n(j):
res < n(k)-€ + n(j)

res < n(j) + n(k)-e¢ impossible under the condition for MV(j,1) = n(k)-¢: res > -
2*n(1) + n(j) + 3*n(k)

MV(,1) = n(k)-e and MV(j,1) = E(,1,2):

res < n(k)-¢ + E(j,1,2)

res < n(k)-€ + 1/3*res — 1/3*n(i) + 1/3*n(j)
3*res < 3*n(k) — 3*¢ + res — n(i) + n(j)
2%*res < -n(i) + n(j) + 3*n(k) — 3*¢

res < -1/2*n(i) + 1/2*n(j) + 3/2*n(k) — 3/2*¢

res < -1/2*n(@i) + 1/2*n(j) + 3/2*n(k) — 3/2*¢ impossible under the condition for
MV(j,1) = n(k)-¢: res > -2*n(1) + n(j) + 3*n(k)

t00¢

Therefore, the case of MV(i,1) + MV(j,1) < res cannot occur.

2.2.3.2.2) Distribution proposals

2.2.3.2.2.1) If res < -2*n(i) + n(j) + 3*n(k), then DP(j,1) = (E(i,1,2), res-E(i,1,2), 0)
2.2.3.2.2.2) If res > -2*n(i) + n(j) + 3*n(k), then DP(j,1) = (n(k)-¢, res-n(k)+¢, 0)

2.23.23)p(l) =k
r_c(1p(1)=k) = {i}
MV(,1)=EG,1,2), if  n@) <E®,1,2) <n()

n(i) < E(1,1,2) <n(j)
= n(i) < 1/3*res + 2/3*n(i) — 1/3*n(j) < n(j)
= 3*n(i) <res + 2*n(i) — n(j) < 3*n(j)

AN



S n(i) + n(j) <res < -2*n(i) + 4*n(j)
S res < -2*n(i) + 4*n(j)

(since under the conditions for 2.2.3.2): n(i) < n(j) < n(k) and
n(i) + n(k) <res holds n(i) + n(j) < res)

MV(@,1) =nG)-s, if  n(@) <nG) <BG1,2)

n(i) <n(j) <E@G,1,2)
S n(j) < 1/3*res + 2/3*n(i) — 1/3*n(j)
S 3*n(j) <res + 2*n(i) — n(j)
S res > -2*n(1) + 4*n(j)

MV(,1) =n(1), impossible (see MV(i,1) = E(1,1,2))
MV(k,1) =E(k,1,2), if n(k) < E(k,1,2)

n(k) < E(k,1,2)

n(k) < 1/3*res — 1/3*n(1)
3*n(k) < res — n(i)

res > n(i) + 3*n(k)

MV(,1) = n(k), else (i.e. if res <n(i) + 3*n(k))
Can the case occur that MV(i,1) + MV(k,1) > res?
MV(,1) = E@4,1,2) und MV(k,1) = n(k):

res < E(i,1,2) + n(k)

res < 1/3*res + 2/3*n(i) — 1/3*n(j) + n(k)
3*res <res + 2*n(1) — n(j) + 3*n(k)
2*res < 2*n(i) — n(j) + 3*n(k)

res < n(i) — 1/2*n(j) + 3/2*n(k)

res < n(i) — 1/2*n(j) + 3/2*n(k) possible

Proof: Let res = 53, n(i) = 9, n(j) = 30, and n(k) = 40. Then the case-defining
conditions are satisfied:

n(i) =9 <n(j) =30 <n(k) =40
n(i) +n(j) =9 + 30 =39 <res =53
n(i) + n(k) =9 + 40 <res =53
n(j) + n(k) =30 +40 > res = 53
MV(,1) = E(G,1,2) © n(i) + n(j) =9 + 30 =39 <res = 53 < -2*n(i) +
4*n(j) = -2*%9 + 4*¥30 = 102
MV(k,1) =n(k) © res =53 <n(i) + 3*n(k) =9 + 3*40 =111
At the same time res = 53 < n(i) — 1/2*n(j) + 3/2*n(k) = 9 — 1/2*30 + 3/2*40 =

66 bzw. MV(i,1) + MV(k,1) = E(i,1,2) + n(k) = 1/3*res + 2/3*n(i) — 1/3*n(j) +
n(k) = 1/3%53 + 2/3%9 — 1/3%30 + 40 = 1/3*53 + 36 = 53,66 > res = 53. QED

(NI

(N )

There is no reason for i to agree if he is not offered at least his expectation value
and there is no reason for k to make an offer that does not leave him with at least
his need. Therefore, the following case distinction has to be made:

If MV(,1) = E(i,1,2) and res < n(i) — 1/2*n(j) + 3/2*n(k),
then DP(k,1) = (0, 0, 0) and

A1



it MV(1,1) = E(1,1,2) and res > n(i) — 1/2*n(j) + 3/2*n(k),
then DP(k,1) = (E(1,1,2), O, res-E(3,1,2)).

MV(,1) =E(,1,2) and MV(k,1) = E(k,1,2):

res < E(i,1,2) + E(k,1,2)
S res < 1/3*res + 2/3*n(i) — 1/3*n(j) + 1/3*res — 1/3*n(i)
S 3*res <res + 2*n(i) — n(j) + res — n(i)
= res < n(i) — n(j)

res < n(i) — n(j) impossible under the condition for 2.2.3.2): n(i) + n(j) <res
MV(,1) = n(j)-e and MV (k,1) = n(k):
res < n(j)-¢ + n(k)
res < n(j) + n(k) — € possible

Proof: Let res = 11, n(i) = 1, n(j) = 3 and n(k) = 9. Then the case-defining con-
ditions are satisfied:

ni)=1<n(G)=3<nk)=9

n(i) +n(G) =4 <res=11

n(i)+nk)=10<res=11

n(G)+nk)=12>res=11

MV(,1) =n(j)-¢ © -2*n(i) + 4*n(j) =-2*1 +4*3 =10 <res=11
MV(k,1)=n(k) © res =11 <n(i) + 3*n(k) = 1 + 3*9 =28

At the same time res = 11 <n(j) +nk) -e=3+9-e=12-¢ or MV(,1) +
MV (k,1) =n(j)-€ + n(k) =3-e + 9 =12 - ¢ > res = 11 for appropriately chosen €.
QED

However, under the case-defining condition n(j) + n(k) > res, it is impossible for
j and k to form a coalition that could achieve a majority. k cannot make j an offer
that j could accept. Therefore, it is not necessary for i to underbid j (this is basi-
cally done only for the purpose of preventing the proposer from forming a coa-
lition with the competing respondent and leaving the respondent empty-handed,
even though he could accept smaller offers). Therefore, k makes no offer under
the conditions for MV(i,1) = n(j)-€ and MV(k,1) = n(k). As can be seen from the
following case, the limiting condition is not the condition for MV(i,1) = n(j)-¢,
but the condition for MV (k,1) = n(k).

MV(,1) =n(j)-e und MV (k,1) = E(k,1,2):

res < n(j)-¢ + E(k,1,2)

res < n(j)-¢ + 1/3*res — 1/3*n(i)
3*res < 3*n(j) — 3*¢ + res — n(i)
2%*res < -n(i) + 3*n(j) — 3*e

res < -1/2*n(i) + 3/2*n(j) — 3/2%*¢

res < -1/2*n(i) + 3/2*n(j) — 3/2*¢ impossible under the condition for MV(j,1) =
n(k)-&: res > -2*n(1) + 4*n(j)

(NI )

2.2.3.2.3) Distribution proposals
2.2.3.2.3.1) If res < n(i) — 1/2*n(j) + 3/2*n(k), then DP(k,1) = (0, 0, 0)

Vilo)



2.2.3.2.3.1.1) p(2) = i: DP(i,2) = (res-n(j), n(j), 0)
2.2.3.2.3.1.2) p(2) = j: DP(j,2) = (n(i), res-n(i), 0)
2.2.3.2.3.1.3) p(2) = k: DP(k,2) = (n(i), 0, res-n(i))

2.2.3.2.3.2) If n(i) - 1/2*n(j) + 3/2*n(k) <res < -2*n(i) + 4*n(j),
then DP(k,1) = (E(1,1,2), O, res-E(i,1,2))

2.2.3.2.3.3.1) If res > -2*n(1) + 4*n(j) and res < n(i) + 3*n(k)
then DP(k,1) = (0, 0, 0)

2.2.3.2.3.3.1.1) p(2) = i: DP(i,2) = (res-n(j), n(j), 0)
2.2.3.2.3.3.1.2) p(2) = j: DP(j,2) = (n(i), res-n(i), 0)
2.2.3.2.3.3.1.3) p(2) = k: DP(k,2) = (n(i), O, res-n(i))

2.2.3.2.3.3.2) If res > -2*n(1) + 4*n(j) and res > n(i) + 3*n(k)
then DP(k,1) = (n(j)-¢, 0, res-n(j)+¢

2.2.3.3) All players have different needs: n(i) < n(j) < n(k)
and n(i) + n(j) <res
and n(i) + n(k) <res
and n(j) + n(k) <res.

Compared to 2.2.3.2, n(j) + n(k) <res. Since i and j prefer each other over k, and k un-
changed prefers 1 over j, this has no effect on the expected values and the solutions un-
der the conditions that i or j are chosen as proposer. Differences arise for the solutions
when k is chosen as proposer.

EG,1,2) = (res-n(j) + n(i) + n())/3 = 1/3*res + 2/3*n(i) — 1/3*n(j)
EG,1,2) = (n(j) + res-n(i) + 0)/3 = 1/3*res — 1/3*n(i) + 1/3*n(j)
E(k,1,2) = (0 + 0 + res-n(i))/3 = 1/3*res — 1/3*n(i)

2233.1)p() =i
Analog to 2.2.3.2.1)
2.2.3.3.1) Distribution proposals

2.2.3.3.1.1) If res <n(i) + 2*n(j), then DP(i,1) = (res-n(j), n(j), 0)
2.2.3.3.1.2) If n(i) + 2*n(j) <res < n(i) — n(j) + 3*n(k),

then DP(i,1) = (res-E(j,1,2), E(j,1,2), 0)
2.2.3.3.1.3) If res > n(i) — n(j) + 3*n(k), then DP(,1) = (res-n(k)+¢, n(k)-¢, 0)

22.3.32)p(1) =]
Analogous to 2.2.3.2.2)
2.2.3.3.2) Distribution proposals

2.2.3.3.2.1) If res < -2*n(i) + n(j) + 3*n(k), then DP(j,1) = (E(4,1,2), res-E(3,1,2), 0)
2.2.3.3.2.2) If res > -2*n(i) + n(j) + 3*n(k), then DP(j,1) = (n(k)-¢, res-n(k)+¢, 0)

2.2.333)p(1) =k
r_c(ljp(1)=k) = {i}
MVG,1)=EG,1,2), if  n@) < E®,1,2) <n()

A



MV(,1) = n(j)-¢,

MV(,1) = n(),
MV(k,1) = E(k,1,2),

MV(k,1) = n(k),

(NI )

n(i) < E(1,1,2) < n(j)

n(i) < 1/3*res + 2/3*n(i) — 1/3*n(j) < n(j)
3*n(i) < res + 2*n(i) — n(j) < 3*n(j)

n(i) + n(j) <res < -2*n(i) + 4*n(j)

res < -2*n(i) + 4*n(j)

(since under the conditions for 2.2.3.3): n(i) < n(j) < n(k) und n(1)
+ n(k) <res holds: n(i) + n(j) < res)

=
=
=

if @) <n()<EG,1,2)

n(i) <n@) <E(G,1,2)
n(j) < 1/3*res + 2/3*n(i) — 1/3*n(j)
3*n(j) <res + 2*n(i) — n(j)

res > -2*n(i) + 4*n(j)

impossible (see MV(i,1) = E(1,1,2))

if

(=4
=
=

n(k) < E(k,1,2)

n(k) < E(k,1,2)

n(k) < 1/3*res — 1/3*n(1)
3*n(k) <res —n(i)

res > n(i) + 3*n(k)

else (i.e. if res <n(i) + 3*n(k))

Can the case occur that MV(i,1) + MV(k,1) > res?
MV(,1) = E(1,1,2) and MV (k,1) = n(k):
res < E(4,1,2) + n(k)

(NI )

res < 1/3*res + 2/3*n(i) — 1/3*n(j) + n(k)
3*res <res + 2*n(1) — n(j) + 3*n(k)
2*res < 2*n(i) — n(j) + 3*n(k)

res < n(i) — 1/2*n(j) + 3/2*n(k)

res < n(1) — 1/2*n(j) + 3/2*n(k) impossible under the condition for 2.2.3.3): n(j)

+ n(k) <res

MV(@,1) =E(,1,2) and MV(k,1) = E(k,1,2):

res < E(1,1,2) + E(k,1,2)
S res < 1/3*res + 2/3*n(i) — 1/3*n(j) + 1/3*res — 1/3*n(i)
S 3*res <res + 2*n(i) — n(j) + res — n(i)
= res < n(i) — n(j)

res < n(i) — n(j) impossible under the condition for 2.2.3.2): n(i) + n(j) <res
MV(,1) = n(j)-¢ and MV (k,1) = n(k):

res < n(j)-¢ + n(k)

res < n(j) + n(k) — € impossible under the condition for 2.2.3.3): n(j) + n(k) <res
MV(,1) =n(j)-¢ and MV (k,1) = E(k,1,2):
res < n(j)-¢ + E(k,1,2)

AN



res < n(j)-¢ + 1/3*res — 1/3*n(i)
3*res < 3*n(j) — 3*¢ + res — n(i)
2%*res < -n(i) + 3*n(j) — 3*e

res < -1/2*n(i) + 3/2*n(j) — 3/2%*¢

res < -1/2*n(i) + 3/2*n(j) — 3/2*¢ impossible under the condition for MV(j,1) =
n(k)-¢: res > -2*n(i) + 4*n(j)

(NI )

Therefore, the case MV(i,1) + MV(j,1) < res cannot occur.
2.2.3.3.3) Distribution proposals

2.2.3.3.3.1) If res < -2*n(i) + 4*n(j), then DP(k,1) = (E(i,1,2), 0, res-E(i,1,2))
2.2.3.3.3.2) If res > -2*n(i) + 4*n(j), then DP(k,1) = (n(j)-¢, 0, res-n(j)+¢)

AR
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