
DASP3rd Chapter 11 - Exercises

1 Neural Network and Convolutional Neural Network

1. Fit the function y = max(sin(x),−0.2) with a feedforward neural network in [−1, 1].

– The content of the file dasp_chap11_ex1_NN.m is explained here. At first, random
data points are generated to create the input and ground truth labels x, y. Figure 1 shows
the sampled data points. More points can be sampled for a better performance.

numdatapoints = 1000;
x = 2*(rand(1,numdatapoints)-0.5);
y = max(sin(x),-0.2);

0 200 400 600 800 1000
Samples

-0.2

0

0.2

0.4

0.6

0.8

1

O
ut

pu
t

Figure 1: Training data.

– According to exercise 1 (a), the number of layers and the layer dimensions are defined. 1
hidden layer is selected and there are 3 layers including the input and output. The input
layer, the hidden layer, and the output layer sizes are 1, 5, and 1 respectively.

numhiddenlayers = 1
n = 1;
k = 5*ones(1,numhiddenlayers);

– The network contains 2 set of weight matrices and bias vectors. The weight matrices
between the input and hidden layer, and the hidden and output layer are 1× 5 and 5× 1
respectively. They are initialized randomly and normalized by their dimensions. The bias
vectors are initialized with zeros. The network can be illustrated as in Fig. 2.

1



Figure 2: Illustration of the example neural network.

w = cell(1,numhiddenlayers+1);
b = cell(1,numhiddenlayers+1);
for i = 1:numhiddenlayers+1
if i == 1
%% input->hidden
w{i} = (2*rand(n,k(i))-1)/(n*k(i));
b{i} = zeros(1,k(i));
elseif i == numhiddenlayers+1
%% hidden->output
w{i} = (2*rand(k(i-1),1)-1)/(k(i-1)*1);
b{i} = zeros(1,1);
else
%% hidden->hidden if numhiddenlayers > 1
w{i} = (2*rand(k(i-1),k(i))-1)/(k(i-1)*k(i));
b{i} = zeros(1,k(i));
end
end

– The network is trained for N = 50 epochs. The corresponding loss reduces as shown in
Fig. 3.

for i = 1:N
[E(i),w,b] = functions.nnfit(x,y,w,b,n);
end

– The feedforward, backpropagation and parameter update takes place within the function
nnfit.m. Input data is divided into snippets and processed by the network layers.
ReLU is used as the activation function. A sum of squared error is used as a loss metric
and the gradient is backpropagated through the layers. The update terms are calculated
and multiplied by learning rates before updating the parameters with stochastic gradient
descent.

function [E,w,b] = nnfit(x,y,w,b,n)

2



0 10 20 30 40 50
Epoch

1

2

3

4

5

6

7

E
rr

or

10-4

Figure 3: Loss curve.

L = length(x);
numlayers = length(w);
%% placeholder for hidden layers
h1 = cell(1,numlayers);
h2 = cell(1,numlayers-1);
dh2 = cell(1,numlayers-1);
dh2h1 = cell(1,numlayers-1);

%% train and update
for i = 1:L-n+1

%% get data snippet
x_i = x(i:i+n-1);
y_i = y(i+n-1);

%% feedforward operation
for j = 1:numlayers
if j == 1
h1{j} = x_i*w{j}+b{j};
h2{j} = max(h1{j},0);
elseif j == numlayers
h1{j} = h2{j-1}*w{j}+b{j};
else
h1{j} = h2{j-1}*w{j}+b{j};
h2{j} = max(h1{j},0);
end
end

%% error and backpropagation

3



-1 -0.5 0 0.5 1
Input

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

O
ut

pu
t

ground truth
estimated - 50 epoch

Figure 4: Ground truth vs approximation.

de = -2*(y_i-h1{end});
E = sum(de.^2);
for j = numlayers:-1:1
if j == numlayers
dh2{j-1} = de*w{j}';
dw{j} = h2{j-1}'*de;
db{j} = de;
elseif j == 1
dh2h1{j} = h2{j};dh2h1{j}(dh2h1{j}>0)=1;
dw{j} = x_i'*(dh2{j}.*dh2h1{j});
db{j} = dh2{j}.*dh2h1{j};
else
dh2h1{j} = h2{j};dh2h1{j}(dh2h1{j}>0)=1;
dh2{j-1} = (dh2{j}.*dh2h1{j})*w{j}';
dw{j} = h2{j-1}'*(dh2{j}.*dh2h1{j});
db{j} = dh2{j}.*dh2h1{j};
end

%% update SGD
w{j} = w{j}-0.01*dw{j};
b{j} = b{j}-0.001*db{j};
end
end

– The network is tested. The nntest.m function performs only the feedforward opera-
tion. Figure 4 shows the original function and the network approximations.

x = -1:0.001:1;
y = max(sin(x),-0.2);

4



y_est = functions.nntest(x,w,b,n);

5



– According to exercise 1 (b), the number of epochs is increased. The training with 500
epochs is performed, the error curve is plotted in Fig. 5, and the new network is evaluated
as shown in Fig. 6.

0 100 200 300 400 500
Epoch

0

1

2

3

4

5

6

7

E
rr

or

10-4

Figure 5: Loss curve.

-1 -0.5 0 0.5 1
Input

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

O
ut

pu
t

ground truth
estimated - 50 epoch
estimated - 500 epoch

Figure 6: Ground truth vs approximations.

6



Figure 7: Illustration of the extended neural network.

– According to exercise 1 (c), the number of layers are increased. However, 2000 points
are sampled instead of 1000 for this example. 2 hidden layers are selected which leads to
4 layers including the input and output. The input layer, the hidden layer, and the output
layer sizes are also changed to 5, 4, 4, and 1 respectively.

numhiddenlayers = 2
n = 5;
k = 4*ones(1,numhiddenlayers);

– The network contains 3 set of weight matrices and bias vectors. The weight matrices be-
tween the input and first hidden layer, the first and second hidden layer, and the second
hidden layer and output layer are 5 × 4, 4 × 4, and 4 × 1 respectively. They are initial-
ized randomly and normalized by their dimensions. The bias vectors are initialized with
zeros. The new network is illustrated in Fig. 7.

w = cell(1,numhiddenlayers+1);
b = cell(1,numhiddenlayers+1);
for i = 1:numhiddenlayers+1
if i == 1
%% input->hidden/ Weight Matrix - 5x4
w{i} = (2*rand(n,k(i))-1)/(n*k(i));
b{i} = zeros(1,k(i));
elseif i == numhiddenlayers+1
%% hidden->output/ Weight Matrix - 4x1
w{i} = (2*rand(k(i-1),1)-1)/(k(i-1)*1);
b{i} = zeros(1,1);
else
%% hidden->hidden/ Weight Matrix - 4x4
w{i} = (2*rand(k(i-1),k(i))-1)/(k(i-1)*k(i));
b{i} = zeros(1,k(i));
end
end

– The network is trained for N = 100 epochs. The corresponding loss reduces as shown in
Fig. 8. The network is then tested and Fig. 9 shows the original function and the network

7



approximation.

0 20 40 60 80 100
Epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

E
rr

or

Figure 8: Loss curve.

-1 -0.5 0 0.5 1
Input

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

O
ut

pu
t

ground truth
estimated

Figure 9: Ground truth vs approximation.

8



*

ve
ct
or
iz
ed

..
.

..
.

Figure 10: Illustration of the example convolutional neural network.

2. Use a convolution layer in the previous network.

– The content of the file dasp_chap11_ex2_CNN.m is explained here. The data gen-
eration is done similarly as in the previous example. The network structure is defined in
the next step. The layer after the input is convolutional which generates a hidden layer.
The remaining layers are fully connected. The numfclayers denote the number of
hidden layers after the first hidden layer generated by the convolutional operation. The
input layer, the hidden layers, and the output layer sizes are 5, 5 × 1 × 3 or 15 when
vectorized, 2, and 1 respectively.

%% number of FC layers and input/hidden layer dims
numfclayers = 1;
n = 5;
k = 2*ones(1,numfclayers);
d = 3; % num filter groups for conv

– The network contains 3 set of weight matrices/ filter coefficients and bias vectors. In
the convolutional layer, 3 filter groups are used during the filtering operation having a
size of 3× 1× 1, each. The weight matrices in the fully connected layers have sizes of
15×2 and 2×1. The network weights are initialized randomly while the bias values are
initialized by zero. The CNN is illustrated in Fig. 10.

w = cell(1,numfclayers+2);
b = cell(1,numfclayers+2);
for i = 1:numfclayers+2
if i == 1
%% input -> conv (hidden)
w{i} = (2*rand(min(n,3),1,1,d)-1)/(min(n,3)*d);
b{i} = zeros(1,3);
elseif i == 2
%% conv (hidden) -> fc (hidden)
w{i} = (2*rand(n*d,k(i-1))-1)/(n*d*k(i-1));
b{i} = zeros(1,k(i-1));

9



0 20 40 60 80 100
Epoch

0

0.05

0.1

0.15

0.2

0.25

0.3

E
rr

or

Figure 11: Loss curve.

elseif i == numfclayers+2
%% fc (hidden) -> output
w{i} = (2*rand(k(i-2),1)-1)/(k(i-2)*1);
b{i} = zeros(1,1);
else
%% fc (hidden) -> fc (hidden) - if numfclayers > 1
w{i} = (2*rand(k(i-2),k(i-1))-1)/(k(i-2)*k(i-1));
b{i} = zeros(1,k(i-1));
end
end

– The network is trained for N = 100 epochs. The corresponding loss reduces eventually
and the network converges as shown in Fig. 11.

for i = 1:N
[E(i),w,b] = functions.cnnfit(x,y,w,b,n);
end

– The feedforward, backpropagation and parameter update takes place within the function
cnnfit.m. Input data is divided into snippets and processed by the network layers. The
first layer performs a filtering operation. Zero padding is performed and a stride of 1 is
used to retain the input height and width. The corresponding output is vectorized before
application of ReLU activation function. A sum of squared error is used as a loss metric
and the gradient is backpropagated through the layers. The update terms are calculated
and multiplied by learning rates before updating the parameters with stochastic gradient
descent.

function [E,w,b] = cnnfit(x,y,w,b,n)
L = length(x);
numlayers = length(w);

10



%% placeholder for hidden layers
h1 = cell(1,numlayers);
h2 = cell(1,numlayers-1);
dh2 = cell(1,numlayers-1);
dh2h1 = cell(1,numlayers-1);

%% train and update
for i = 1:L-n+1

%% get data snippet
x_i = x(i:i+n-1);
y_i = y(i+n-1);

%% feedforward operation
for j = 1:numlayers
if j == 1
% convolution with zero padding
% conv1 function is defined separately
h1{j} = convl(x_i,w{j},b{j});
% h1{j} vectorized before ReLU
h2{j} = max(h1{j}(:)',0);
elseif j == numlayers
h1{j} = h2{j-1}*w{j}+b{j};
else
h1{j} = h2{j-1}*w{j}+b{j};
h2{j} = max(h1{j},0);
end
end

%% error and backpropagation
de = -2*(y_i-h1{end});
E = sum(de.^2);
for j = numlayers:-1:1
if j == numlayers
dh2{j-1} = de*w{j}';
dw{j} = h2{j-1}'*de;
db{j} = de;
elseif j == 1
dh2h1{j} = h2{j};dh2h1{j}(dh2h1{j}>0)=1;
% Gradient vector reshaped to tensor
dh1 = reshape((dh2{j}.*dh2h1{j}),size(x_i,1),...

size(x_i,2),size(w{j},4));
[~,dw{j},db{j}] = dconvl(x_i,w{j},b{j},dh1);
else
dh2h1{j} = h2{j};dh2h1{j}(dh2h1{j}>0)=1;
dh2{j-1} = (dh2{j}.*dh2h1{j})*w{j}';
dw{j} = h2{j-1}'*(dh2{j}.*dh2h1{j});
db{j} = dh2{j}.*dh2h1{j};

11



end

%% update SGD
w{j} = w{j}-0.01*dw{j};
b{j} = b{j}-0.001*db{j};
end
end
end

– The network is tested with cnntest.m which performs the feedforward operation.
Figure 12 shows the original function and the network estimate.

x = -1:0.001:1;
y = max(sin(x),-0.2);
y_est = functions.cnntest(x,w,b,n);

-1 -0.5 0 0.5 1
Input

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

O
ut

pu
t

ground truth
estimated

Figure 12: Ground truth vs approximation.

Table 1: Matlab scripts

1 dasp_chap11_ex1_NN.m
nnfit.m
nntest.m

2 dasp_chap11_ex2_CNN.m
cnnfit.m
cnntest.m

12


