
Exponential Sine Sweep Measurement
Implementation Targeting FPGA Platforms

Alexander Klemd†, Patrick Nowak∗, Piero Rivera Benois‡, Etienne Gerat∗, Udo Zölzer∗, Bernd Klauer†
∗Dept. of Signal Processing and Communications, Helmut-Schmidt University, 22043 Hamburg, Germany

†Dept. of Computer Engineering, Helmut-Schmidt University, 22043 Hamburg, Germany
‡Signal Processing Group, University of Oldenburg, 26129 Oldenburg, Germany

Email: alexander.klemd@hsu-hh.de

Abstract—In this paper a field programmable gate array
(FPGA) is considered as a digital signal processing platform for
the implementation of an exponential sine sweep measurement
algorithm. Aiming at minimizing the required computational
resources, two strategies are proposed. Firstly, an oscillator
implemented with the coordinate rotation digital computer
(CORDIC) algorithm is used to generate the exponential sine
sweep. Secondly, only the calculations are performed that
lead to the linear impulse response of the system for a desired
length. Furthermore, aiming at minimizing the required memory
resources, the measured impulse response is stored in the memory
previously allocated to the recorded signal. In order to validate
the proposed implementation, measurements of an acoustical
system are performed using a platform that is equipped with an
FPGA and a processor. In this way, the results achieved by the
FPGA fixed-point implementation can be compared to reference
results achieved using a floating-point MATLAB implementation
running on the processor. This comparison corroborates the
validity of the proposed implementation.

I. INTRODUCTION

Measuring the impulse response of unknown systems is
an essential ability in acoustics. Most control algorithms for
active noise cancellation (ANC), need to know the impulse
response of the secondary path from the secondary speak-
ers to the error microphones. For high performance ANC
control algorithms, specialized architectures for FPGA or
ASIC platforms usually provide superior performance over
software architectures for digital signal processors (DSP) and
other processors. Additionally there are several advantages to
perform the control algorithm and the system identification on
the same FPGA platform. Firstly, the transfer of the impulse
response from the system identification component to the
control algorithm can be designed more elegantly and faster,
since the data is not leaving the FPGA chip. Secondly, since
the peripherals are part of the secondary path, the impulse re-
sponse measurement can be improved when it is conducted on
the same platform as the control algorithm. Thirdly, the FPGA
platform provides a hard real-time system with a constant
sample delay. Thus, compared to a general-purpose computer
running an operating system, no adjustments of the algorithm
have to be made to compensate for not deterministic delays.
There are different approaches on how to obtain the impulse
response of an unknown system. State-of-the-art methods use
an exponential sine sweep to excite the system [1] [2].
The algorithm is expected to be very memory-intensive,

because a convolution has to be performed with the time-
mirrored sine sweep samples that were used to excite the
system and the corresponding system response. To reduce the
demand for block-memory resources, the proposed architec-
ture generates the regular sine sweep and the time-mirrored
sine sweeps on the fly. Thus only the system response has to be
stored to perform the convolution. The architecture uses fixed-
point formats of varying precision, which is more resource
efficient than the floating-point number format. To save more
block-memory, the incoming result of the impulse response
is stored in the block-memory cells of the system response
that are not needed by the convolution anymore. Hence the
impulse response does not require additional memory.

II. SYSTEM IDENTIFICATION

In discrete-time, the first K elements of the impulse
response of a causal system h(n) are described by

ĥ(n)=

K−1∑
k=0

h(k)·δ(n−k), (1)

where δ(n) denotes the unit impulse. State-of-the-art methods
use an exponential sine sweep instead of a unit impulse δ(n)
to calculate ĥ(n) [1]. The excitation signal used by the expo-
nential sine sweep method can be mathematically described as

x(n)=A·sin

(
Ωstart ·(Lx−1)

ln(Ωend
Ωstart

)
·
(
e

n
Lx−1 ln

(
Ωend
Ωstart

)
−1

))
, (2)

where A is the chosen amplitude, Lx is the desired signal’s
length in samples, Ωstart = 2πfstart/fs and Ωend = 2πfend/fs
are the starting and ending angular frequencies, and fs is the
sampling frequency. The instantaneous angular frequency is
the derivative of the argument of the sine function over time,
which is given by

Ω(n)=Ωstart ·e
n

Lx−1 ln
(

Ωend
Ωstart

)
. (3)

This equation can be formulated as

Ω(n)=Ωstart ·αn, (4)

where

α=

(
Ωend

Ωstart

) 1
Lx−1

(5)

is the factor by which the instantaneous angular frequency
increases with each sample time n. A companion time-series
xinv(n) is generated, such that the convolution between both
results in a scaled unit impulse

Lx−1∑
k=0

x(k)·xinv(n−k)=C ·δ̂(n−Lx−1), (6)

which is time-shifted by Lx−1 samples and band-limited by
fstart and fend. The scalar C can be calculated as

C=
A2πLx ·

(
Ωstart
Ωend
−1
)

2(Ωend−Ωstart)ln
(

Ωstart
Ωend

) , (7)

following the parameters used for generating x(n) [2]. The
companion time-series xinv(n) is achieved by applying a
time-dependent exponentially-decaying amplitude correction
factor given by

Ainv(n)=α−n, (8)

to the time-mirrored sine sweep x(n) as

xinv(n)=Ainv(n)·x(Lx−1−n). (9)

All in all, the procedure using this measurement technique
complies the following steps: Firstly, the generation and
storage of the signals x(n) and xinv(n) by Eq. (2), Eq. (8)
and Eq. (9); Secondly, the excitation of the system by means
of x(n) and the recording of the system’s response

y(n)=

Lx−1∑
k=0

h(k)·x(n−k), (10)

where n∈{0,...,Lh+Lx−2} and Lh is the time required by
the system of h(n) to settle down, which can be chosen as
the estimated T60 time in samples. Thirdly, the calculation of
the convolution between y(n) and xinv(n) as

h̃(n)=

Lx+Lh−2∑
k=0

y(k)·xinv(n−k) (11)

where n∈{0,...,2·Lx+Lh−3} and the storage of the result;
Fourthly and final, the extraction of the desired impulse
response by

ĥ(n)=
1

C
·h̃(n+Lx−1) (12)

where n ∈ {0, ... ,Lh − 1}, which discards the first Lx − 1
samples, keeps the desired length of the impulse response Lh,
and divides these samples by the correlation factor in Eq. (7).

III. OSCILLATOR

To generate the sine sweep signal without using too much
memory, a recursive oscillator has been used. A simple way
to create an oscillator is to use a resonant filter and set it in a
quasi-stable state to generate a sinusoid. The cutoff frequency
fc of the filter is then used to control the oscillator’s frequency.

Since the frequency is aimed to change over time, a filter
with good stability for time-varying parameters is required.
The Gold and Rader filter is a coupled filter structure that

fulfills this requirement [3][4]. The Gold and Rader filter is
defined by the difference equations

s1(n)=rb·s1(n−1)+ra·s2(n−1), (13)
s2(n)=rb·s2(n−1)−ra·s1(n−1)+u(n−1), (14)

where a and b are the filter coefficients controlling the
cutoff frequency Ωc and the resonance. They are defined
as a=sin(Ωc), b=cos(Ωc), where Ωc =2π ·fc/fs and r the
poles radius. The filter is stable when r<1.

The oscillator is based on the filter structure, but the
stability criterion is yet set to quasi-stability by setting r=1
[5]. Additionally, the input u(n) is removed. The oscillation
of the system will be started by initializing the states s1(0)
and s2(0). The difference equations are now given as

s1(n)=b·s1(n−1)+a·s2(n−1), (15)
s2(n)=b·s2(n−1)−a·s1(n−1). (16)

z-1 z-1

s2(n)

s1(n)

a

-a

b b

Fig. 1. Block diagram of the Gold and Rader oscillator.

In quasi-stable mode the Gold and Rader filter generates two
quadrature sinusoids (shifted by 90◦) s1(n) and s2(n) shown
in the block diagram in Fig. 1. The initialization of the states
s1(0) and s2(0) defines the starting phase φ0 of the oscillator

s1(0)=sin(φ0), (17)
s2(0)=cos(φ0). (18)

Since two signals are generated, one of them can be selected
as sine sweep. In this case, s1(n) is used. The control of the
rotation frequency Ω is then done by setting the coefficients a
and b, in a similar way than to calculate the cutoff frequency
of the filter

a=sin(Ω), (19)
b=cos(Ω). (20)

The coefficients a and b are updated at every iteration
following the sweeping-up frequency geometric suite Ωup(n)
defined by

Ωup(n+1)=α·Ωup(n), (21)

with α being the ratio defined in Eq. (5).
The precise control over the starting phase of the oscillator

is very handy in this application, because both a sine sweep
x(n) and the corresponding inverse sine sweep xinv(n) need
to be generated that have to be perfect inverses of each other
without being stored in memory. For that matter, as the first
sine sweep is recursively generated until the last sample
Lx − 1. One extra iteration has to be performed such that

the states s1(Lx) and s2(Lx) are stored and will be reused
to generate the inverse sweep s1,inv(n). The inverse sweep
can be seen as the quadrature oscillator rotating in the other
direction. In order to simulate this for the signal s1,inv(n) the
initial states s1,inv(0) and s2,inv(0) are set as

s1,inv(0)=s1(Lx), (22)
s2,inv(0)=−s2(Lx). (23)

The coefficients a and b are updated at every iteration
following the sweeping-down frequency geometric suite
Ωdown(n) defined by

Ωdown(n+1)=
Ωdown(n)

α
, (24)

with α being the ratio defined in Eq. (5).

IV. PROPOSED ARCHITECTURE

The here proposed architecture is implemented in VHDL
and uses the fixed-point number format with custom
precisions per signal. The fixed-point format needs careful
consideration about the necessary number range and precision
of each signal, but is more hardware-efficient compared to
the floating-point format. VHDL was chosen to increase
the flexibility of the design. The design is platform- and
vendor-independent and makes extensive use of parameters
that are evaluated at synthesis time called generics. Among
other parameters the sampling rate, sweep duration, starting
and ending frequency of the sweep, length of the system to
be identified, amplitude fade length, number of CORDIC-
iterations and the bitwidths of the signals from Sec. II can
be set without code modifications. The fixed-point format for
other internal signals are derived from these signals.

A. Top-level architecture

The datapath of the top-level architecture is shown in Fig. 2
and can be divided into three main components which perform
the sine sweep generation, the convolution and the amplitude
fade of the sine sweep signal. To identify a system, the control

1/C

BRAMADC

Amplitude
Fade

Sine sweep

A
0

DAC

Fig. 2. Datapath of the top-level architecture.

logic first triggers the periodic generation of the sine sweep
from fstart to fend with the given sampling rate. That signal
is processed by the component that performs the amplitude
fade and sent to the DAC. Synchronously to the DAC, the
ADC is triggered to sample the system response. After Lx
samples, the control logic stops the excitation but records Lh
more samples. After the completion of this sweep, the control
logic sets the state of the sine sweep generator to reverse

the sweep with the maximum sampling rate possible. For the
convolution of the reversed sweep with the system response,
the block-RAM (BRAM) is traversed in the opposite direction
by the control logic in sync with the sine sweep generator. A
multiply-accumulate unit (MAC) sequentially calculates the
partial results of the convolution. According to Eq. (12), each
result of the convolution has to be divided with the scalar
C. This scalar is constant during runtime, so the division is
implemented as a multiplication with the reciprocal value.
When the first partial result of the convolution is accumulated
in the MAC and divided by C, the control logic stores the
result in the block-RAM and thus overwrites the first sample
of the system response. As the reversed system response is
shifted to the right for each partial result of the convolution,
more samples stop to overlap with the sine sweep and thus
do not contribute to the result. When the partial result of the
convolution reaches the desired length of the system to be
identified, the architecture signals its readiness and returns to
the idle state. The second port from the block-RAM can be
used by external entities to read the result.

B. Sine sweep generation

The hardware-implementation of the Gold and Rader
oscillator requires the use of trigonometric functions. Among
hardware-efficient algorithms for trigonometric functions,
the CORDIC algorithm is a simple and fast solution. A
good survey about the CORDIC equations and the processor
architecture with a focus on FPGA implementations can be
found in [6]. Besides of being capable to calculate the sine
and cosine function, the CORDIC processor in rotational
mode is also able to rotate the coordinate (x0,y0) by the
coordinate transform

xM =AM (x0cosz0−y0sinz0) (25)
yM =AM (y0cosz0+x0sinz0) (26)
zM =0 (27)

AM =1/

M∏
m=1

√
1+2−2m (28)

in M iterative steps, where z0 is the rotation angle. With the
parameters of the oscillator put into the CORDIC processor

x0 =s2(n)/AM , (29)
y0 =s1(n)/AM , (30)
z0 =ω(n), (31)

the processor output (yM , xM) returns the new states of the
oscillator s1(n+ 1) and s2(n+ 1) and thus can be used to
implement the Gold and Rader oscillator itself.
The coordinate transform of the CORDIC processor is limited
to rotation angles z0 between −π2 and π

2 [6]. Since Ω(n)
can range between 0 and π, the CORDIC algorithm needs
additional logic to shift the number range of the rotation
angle accordingly. Consequently Ω(n) uses an unsigned
fixed-point ranging from [0,π[and z uses a signed fixed-point
format of the same bitwidth ranging from

[
−π2 ,

π
2

[
. Both

parameters use a modulo-2π representation. A value from the
Ω-register is fed into z0-register without any transformation.
Due to the different interpretation of the most significant bit
(MSB), this effectively rotates any Ω-value larger than π

2
by π and thus within the valid range of z0. To compensate
for this transformation, the initial coordinates x0 and y0 are
multiplied with −AM instead of AM . The multiplications
with AM are necessary either way, so additional hardware is
only required for the multiplexer and the constant −AM .
The datapath of the sine sweep architecture is shown in
Fig. 3. To begin the initial sweep with increasing frequency,

Ainv

1

Fig. 3. Datapath for the generation of the sine sweep using an iterative
CORDIC processor.

the registers of the CORDIC processor need to be intialized
with the initial state of the oscillator according to Eq. (17)
and (18) using a starting phase of φ0 = 0. After M cycles of
the CORDIC processor, the state of the oscillator s1(n) and
s2(n) is updated and the succeeding angular frequency Ω(n)
is calculated. After Lx samples are generated, one additional
CORDIC-iteration is started and the state is stored in s1/2(Lx).
The initial rotation frequency is stored in the register Ω(Lx).
The generation of the repeated, reversed sweep runs in
an analogous manner. One difference is the concluding
multiplication of the CORDIC output with the amplitude
correction factor Ainv(n) to obtain the reversed excitation
signal xinv(n).

C. Amplitude fade

An amplitude fade of the excitation signal is necessary to
eliminate unwanted ripple effects in the frequency response
near the starting and ending frequencies of the sweep [2].
Thus, the first and the last Nfade samples of the sweep with
the length Lx get attenuated. The amplitude fade component
multiplies the excitation signal with

Afade(n)=1−β(n) (32)

where β(n) is a recursive factor defined as

β(n)=

1 if n=0

β(n−1)2−12/Nfade if 0<n≤Nfade

β(n−1)212/Nfade if Lx−Nfade≤n<Lx
β(n−1) otherwise.

(33)

0 1 2 22 23 24

·103

0

0.5

1

||

n

A
fa

de
(n

)

Nfade =500

Nfade =1000

Nfade =1500

Nfade =2000

||

Fig. 4. The factor Afade(n) for the amplitude fade is plotted for a selection
of Nfade over the first and last 3000 samples. The total sweep length in
samples is Lx=24001.

This algorithm was chosen, because it is more hardware
efficient compared to common algorithms, such as a quadratic
equation. The architecture is plain and consists of two
sequential multiplications, one substraction and a register
for β(n). An exemplary progression of Afade(n) over 24001
samples with different Nfade values can be seen in Fig. 4.

V. EVALUATION

In order to evaluate the proposed architecture, the dSpace
MicroLabBox is used which contains both an FPGA and a
processor. It contains a Freescale QorlQ P5020 CPU with
2 cores up to 2 GHz, a Xilinx Kintex-7 XC7K325T FPGA
clocked at 100 MHz, a 16 bit ADC and DAC. In this way,
in addition to the proposed architecture on the FPGA, also a
reference measurement can be implemented on the processor
of the same prototyping hardware to obtain more comparable
results. In this reference measurement, the exponential
sine sweep is generated using a sample-based floating-point
MATLAB implementation of Eq. (2). After exciting the system
under test, the recorded sine sweep is stored by the processor
and exported into MATLAB, where the impulse response
of the system under test is calculated according to Eq. (11).
Thus, both the generation of the exponential sine sweep and
the convolution of the recorded signal with the inverse sweep
can be evaluated using the same measurement setup.

For validation purposes, the parameters of configuration
1 are chosen as Lx = 24001, fs = 48 kHz, fstart = 20 Hz,
fend =20kHz and Lh=1024. According to

Tx=
Lx−1

fs
, (34)

this results in a sweep duration of Tx = 0.5 s. This sweep
length is chosen as it represents the limit that the platform’s
processor can process in real-time. The exponential sine
sweeps are faded-in and faded-out for Nfade = 500 samples.
The hardware implementation requires additional parameters
to set the precision of the different fixed-point formats and
to set the number of iterations of the CORDIC component.
The number of iterations of the CORDIC processor is set
to 12. Together with a bitwidth of 24 bit for the CORDIC
states s1/2(n) and 32 bit for Ω(n), these parameters provide
a relative error of less than 1% for the sine sweep component
compared to the floating-point reference over the sweep length
in configuration 1. The bitwidth of the excitation signal and

TABLE I
HARDWARE RESOURCES PRESENT ON THE Xilinx Kintex-7 XC7K325T
FPGA AND THE USED HARDWARE ELEMENTS FOR THE PRESENTED

CONFIGURATIONS.

Config. CLB-Slices BRAM Tiles DSP-Slices
Used (%) Used (%) Used (%)

Config. 1 4530 (8.89) 120 (26.96) 36 (4.28)
Config. 2 5007 (9.82) 368 (82.69) 36 (4.28)

Total 50950 445 840

system response is 16 bit due to the underlying platform. The
bitwidth of Afade(n) is set to 24 bit and the bitwidth of the
coefficients of the impulse response ĥ(n) is set to 32 bit.

A. Hardware usage

As all Lx + Lh samples of the system response need to
be stored in block-RAM, the amount of memory becomes
quickly a limiting resource. Thus configuration 2 differs from
configuration 1 only in the increased sweep duration to 10
seconds. Above a sweep length of 10 seconds, the synthesis
time increases exponentially which makes it difficult to de-
termine the exact maximum sweep length for this FPGA that
the synthesis tool is still able to place and route. When longer
sweep durations are required, it might be an option to reduce
the bitwidths of the system response and impulse response.
Naturally this decreases the quality of the measured impulse
response. The synthesis results of configurations 1 and 2 are
listed in Tab. I. The synthesis results show that an increase in
sweep length almost solely effects the BRAM usage. Besides
that, scaling the sampling rate fs or the length of the impulse
response Lh, which is very small compared to Lx, does not
show a significant effect on hardware usage. Thus these config-
urations are not listed in Tab. I. The maximum sampling rate is
rather determined by the time the CORDIC processor requires
to calculate each sample. With the configurations above, the
sine sweep component takes 15 clocks to initialize, operate the
CORDIC-processor for 12 iterations and to resize fixed-point
format. The FPGA operates at a frequency of fclk =100MHz,
which results in a maximum sampling rate of fs =6.67MHz.

B. Generated Exponential Sine Sweeps

In a first step, the accuracy of the oscillator implementation
is evaluated by comparing the generated exponential sine
sweeps on the FPGA and the processor. Here, parameter
configuration 1 is used for the exponential sine sweeps. The
short duration of the exponential sine sweeps results from
real-time processing issues on the processor.

Figure5 illustrates the beginning (t≤0.1s) of the generated
exponential sine sweeps xProc(n) and xFPGA(n). From this,
mainly a phase-shift between the two exponential sine sweeps
is visible. In order to further investigate the differences, the
magnitude spectra |XProc(f)|dB and |XFPGA(f)|dB of the entire
exponential sine sweeps are shown in Fig.6. Additionally, the
difference between the two magnitude spectra

∆XdB(f)= |XProc(f)|dB−|XFPGA(f)|dB (35)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-1

-0.5

0

0.5

1

Fig. 5. Comparison of the generated exponential sine sweeps on the
processor and the FPGA for the first 0.1 seconds, with Tx = 0.5 s,
fs =48kHz, fstart =20Hz, fend =20kHz, and Nfade =500 samples.

is represented on a secondary y-axis in the same figure.
As can be seen, both generated exponential sine sweeps
show similar magnitude spectra with a difference that does
not exceed ∆XdB(f) < 0.25 dB in the main part of the
exponential sine sweep. However, also a bias of roughly
0.03 dB can be seen in ∆XdB(f) for frequencies between
approximately 2kHz and 18kHz. Although small differences
can be seen between the generated exponential sine sweeps, in
the following, these signals are used to measure the impulse
responses of real systems in order to evaluate whether the
differences influence the measurement results.

102 103 104
20

40

60

80

100

-1.2

-0.8

-0.4

0

0.4

Fig. 6. Comparison of the magnitude spectra of the generated exponential
sine sweeps from Fig. 5. Additionally, the difference between them is plotted
at the y-axis on the right.

C. Measurements

In order to evaluate the whole FPGA implementation, the
impulse responses of two different systems are measured. For
comparing the measurement results, two different error metrics

e(n)=hProc(n)−hFPGA(n), (36)
EdB(f)= |HProc(f)|dB−|HFPGA(f)|dB, (37)

are defined in time- and frequency-domain, respectively,
where hProc(n) indicates the impulse response measured by
the processor, hFPGA(n) the impulse response measured on the
FPGA, and |HProc(f)|dB and |HFPGA(f)|dB the corresponding
magnitude responses.

As a first system, a simple input-output loop is considered
by connecting an output and an input of the dSpace Micro-
LabBox. In this way, the system consists of a DAC, a wire
connection, and an ADC. The measurement results can be seen
in Fig.7. As can be seen in Fig. 7(a) both impulse responses
hProc(n) and hFPGA(n) show similar characteristics including a

0 10 20 30 40 50 60

-0.5

0

0.5

1

1.5

-0.04

-0.03

-0.02

-0.01

0

(a) Impulse response

102 103 104
-10

-5

0

5

10

-0.6

-0.45

-0.3

-0.15

0

(b) Magnitude response

Fig. 7. Comparison of the measured (a) impulse and (b) magnitude responses
of the input-output loop on the processor and the FPGA. Additionally, the
difference between them is plotted at the y-axes on the right.

one sample delay, which arises from the simultaneous trigger-
ing of DAC and ADC. In addition to the measured impulse and
magnitude responses of the system, also the two error metrics
given in Eq. (36) and Eq. (37) are represented on secondary
y-axes in the corresponding plots. As can be seen, both
measurements show similar impulse and magnitude responses
with only small deviations in amplitude (|e(n)| ≤ 0.006) and
magnitude (|EdB(f)|≤0.22dB), respectively.

0 10 20 30 40 50 60

-0.2

-0.1

0

0.1

0.2

-0.06

-0.04

-0.02

0

0.02

(a) Impulse response

102 103 104
-40

-30

-20

-10

0

10

20

-2

-1.6

-1.2

-0.8

-0.4

0

0.4

(b) Magnitude response

Fig. 8. Comparison of the measured (a) impulse and (b) magnitude responses
of the acoustical path on the processor and the FPGA. Additionally, the
difference between them is plotted at the y-axis on the right.

As a second system, an acoustical path between a
headphone’s loudspeaker and a microphone placed inside the
ear cup of the headphone is measured. Thus, the acoustical

system contains the DAC of the dSpace MicroLabBox,
a headphone pre-amplifier, a headphone’s loudspeaker, a
microphone, a microphone amplifier, and the ADC of the
dSpace MicroLabBox. The measured impulse and magnitude
responses are shown in Fig. 8. In addition to the measured
impulse and magnitude responses, also the error metrics from
Eq. (36) and Eq. (37) are represented on the secondary y-axes
at the right. Similar as for the results of the input-output loop in
Fig.7, only small differences in amplitude and magnitude are
visible between the two measurements. The highest absolute
difference in magnitude (|EdB(f)| ≈ 0.8dB) can be seen at
roughly 17.1kHz, where a notch inside the acoustical path re-
duces the SNR of the measurement. Furthermore, frequencies
close to the starting and ending frequencies of the exponential
sine sweeps show higher differences in the magnitudes due to
the influence of the amplitude fade. For the other frequencies,
the error in magnitude does not exceed |EdB(f)|≤0.24dB.

VI. CONCLUSIONS

In the present work an exponential sine sweep measurement
targeting FPGA platforms is proposed. The implementation
is based on two strategies that minimize the required
computational resources. Firstly, the regular and inverse
exponential sine sweeps are generated using an oscillator
implemented via the CORDIC algorithm. Secondly, only the
part of the convolution of the recorded signal with the inverse
sweep is calculated that leads to the linear impulse response
of the system for a desired length. Furthermore, by storing
the measured impulse response in the memory previously
allocated to the recorded signal, the memory requirements
can be reduced, too. In order to evaluate the proposed imple-
mentation, impulse response measurements are performed on
an FPGA and a processor. The FPGA implementation shows
similar results compared to the reference measurement on the
processor of the same prototyping hardware, corroborating
the validity of the proposed implementation. When evaluating
the hardware usage of the proposed implementation, it was
observed that the memory consumption is the bottleneck of
the proposed implementation. Future work can be focused
on the optimization of the proposed implementation, such as
allocating multiple MACs to accelerate the processing of the
convolution.

REFERENCES

[1] A. Farina, “Simultaneous measurement of impulse response and
distortion with a swept-sine technique,” in Audio Engineering Society
Convention 108, February 2000.

[2] M. Holters, T. Corbach, and U. Zölzer, “Impulse response measurement
techniques and their applicability in the real world,” in Proc. of the 12th
Int. Conference on Digital Audio Effects (DAFx-09), September 2009.

[3] C. Rader and B. Gold, “Effects of parameter quantization on the poles of a
digital filter,” Proceedings of the IEEE, vol. 55, no. 5, pp. 688–689, 1967.

[4] U. Zölzer, “Entwurf Digitaler Filter für die Anwendung im
Tonstudiobereich,” Ph.D. dissertation, Hamburg University of Technology,
Hamburg, Germany, Juni 1989.

[5] J. Laroche, “Using resonant filters for the synthesis of time-varying
sinusoids,” Journal of the Audio Engineering Society, September 1998.

[6] R. Andraka, “A survey of CORDIC algorithms for FPGA based
computers,” in Proceedings of the 1998 ACM/SIGDA sixth international
symposium on Field programmable gate arrays, 1998, pp. 191–200.

