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ABSTRACT

Nonlinear systems, like e.g. guitar distortion effects, play an im-
portant role in musical signal processing. One major problem
encountered in digital nonlinear systems is aliasing distortion. Con-
sequently, various aliasing reduction methods have been proposed
in the literature. One of these is based on using the antideriva-
tive of the nonlinearity and has proven effective, but is limited
to memoryless systems. In this work, it is extended to a class of
stateful systems which includes but is not limited to systems with
a single one-port nonlinearity. Two examples from the realm of
virtual analog modeling show its applicability to and effectiveness
for commonly encountered guitar distortion effect circuits.

1. INTRODUCTION

Nonlinear systems play an important role in musical signal process-
ing. In particular, there are many effects categorized as overdrive,
distortion, or fuzz, whose primary objective it is to introduce har-
monic distortion to enrich the signal. Usually the nonlinear behavior
is in some way combined with (linear) filtering to spectrally shape
the output signal or to make the amount of distortion introduced
frequency dependent. While many of these systems were origi-
nally designed in the analog domain, naturally, there is interest in
deriving digital models for them, e.g. [1, 2, 3, 4].

One major problem encountered in digital nonlinear systems,
whether designed from scratch or derived by virtual analog model-
ing, is aliasing distortion. Once the additional harmonics introduced
by the nonlinearity exceed the Nyquist frequency, they get folded
back to lower frequencies, just as if the corresponding analog signal
had been sampled without appropriate band-limiting. Contrary to
the desired harmonic distortion, aliasing distortion is usually per-
ceived as unpleasant. Therefore methods to suppress or reduce the
aliasing distortion are needed.

The conceptually simplest aliasing reduction method is over-
sampling. However, if the harmonics decay slowly with frequency,
the oversampling factor has to be high, making the approach un-
attractive due to the rising computational demand. Consequently,
various alternatives have been proposed, e.g. [5, 6, 7, 8]. These
methods, however, usually come with certain limitations, most
commonly the restriction to memoryless systems. In this work,
an extension of [7] is presented that loosens the restriction from
memoryless systems to a certain class of stateful systems.
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2. ANTIDERIVATIVE-BASED ALIASING REDUCTION
FOR MEMORYLESS NONLINEAR SYSTEMS

As the proposed method builds upon the approach from [7], we
shall briefly summarize the latter. Conceptually, the digital signal
is converted to a continuous-time signal using linear interpolation
between consecutive samples, the nonlinearity is applied, and the
result is lowpass-filtered by integrating over one sampling interval
before sampling to obtain the digital output signal. The key insight
is that, as there is a linear relationship between time and input
signal amplitude (within one sampling interval), one can substitute
the integration variable to integrate over amplitude instead of time.
Then, by the fundamental theorem of calculus, one only needs to
evaluate the antiderivative of the nonlinear mapping function at the
input sample amplitudes and does not need to explicitly form the
continuous signal. (For a more detailed explanation, the reader is
referred to [7].)

The result is that the nonlinear system

y(n) = f
(
u(n)

)
, (1)

where f (u) denotes the nonlinear function, mapping input sam-
ple u(n) to output sample y(n), is replaced with

y(n) = f̃
(
u(n),u(n − 1)

)
=

{
F(u(n))−F(u(n−1))

u(n)−u(n−1) if u(n) 0 u(n − 1)
f
( 1
2 u(n) + 1

2 u(n − 1)
)

if u(n) ≈ u(n − 1)
(2)

where F(u) =
∫

f (u)du is the antiderivative of f (u) and the u(n) ≈
u(n − 1) case is treated separately to avoid numerical issues when
dividing by u(n)−u(n−1). In addition to reducing aliasing artifacts,
the approach introduces a half-sample delay and attenuates high
frequencies. This can be readily seen when using the identity
function f (u) = u instead of a true nonlinearity. Straight forward
calculation yields

y(n) = 1
2 u(n) + 1

2 u(n − 1) (3)

in that case, i.e. a first-order FIR low-pass filter with a group delay
of half a sample. The low-pass effect can be countered by a modest
amount of oversampling (e.g. by a factor of two) and the delay
usually is of no concern.

3. EXTENSION TO STATEFUL SYSTEMS

The half-sample delay introduced by the method of [7] becomes
problematic if the nonlinearity is embedded in the feedback loop
of a stateful system. As noted in [7], for the particular case of an
integrator following the nonlinearity and using trapezoidal rule for
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time-discretization, one can simply replace the numerator of the dis-
cretized integrator’s transfer function with the filter introduced by
antialiasing. This fusing of antialiased nonlinearity and integrator
then has no additional delay compared to the nonantialiased system,
hence can be used inside a feedback system without problems.

Here, we consider systems which do not necessarily have an in-
tegrator following the nonlinearity. In particular, we shall consider
the general discrete nonlinear state-space system

x(n) = Ax(n − 1) + bu(n) + fx(px(n)) (4)

y(n) = cT x(n − 1) + du(n) + fy(py(n)) (5)

with

px(n) = cTpx
x(n − 1) + dpx u(n) (6)

py(n) = cTpy
x(n − 1) + dpy u(n), (7)

where x(n) is the state vector, u(n) in the input, y(n) is the output,
A is the state martix, b is the input matrix, cT is the output matrix,
and d is the feedthrough matrix, where the latter three are reduced
to vectors and a scaler, respectively, as we only consider scalar
input and output. The nonlinearity of the system is captured in two
nonlinear functions, fx and fy, influencing state update and output,
respectively. Their arguments px(n) and py(n) are calculated by (6)
and (7) similarly to the linear part of the output equation (5). Some
remarks are in order:

• While we allow multiple states, collected in the vector x(n),
we restrict the presentation to a single input u(n) and a single
output y(n), as that is the most common case. Extension to
multiple inputs and/or outputs is straight-forward.

• The limitation to scalar-valued px(n) and py(n), however,
is necessary, as the method of [7] is restricted to nonlinear
functions with scalar argument. Facilitating this is the reason
why the linear parts Ax(n−1)+bu(n) and cT x(n−1)+du(n)
have not been subsumed in the nonlinear functions in (4)
and (5), respectively.

• If the system is obtained in the context of virtual analog
modeling, usually the nonlinear functions will only be given
implicitly (as the solution of what is sometimes referred to
as a delay-free loop), making solving a nonlinear equation
necessary. However, they are typically based on a common
function, only applying different weighting to its output,
i.e. fx(px(n)) = Wx f (p(n)) and fy(py(n)) = wT

y f (p(n))
with p(n) = px(n) = py(n). While this redundancy should
be kept in mind for optimizing an implementation, we will
derive our method for the more general case of two possibly
independent nonlinear functions for state update and output.

In a first step, we may consider only applying the aliasing
suppression to fy(p), as it is not part of any feedback loop. We have
to be careful though, and may not just replace fy with f̃y in (5), as
that would lead to a misalignment in time of the different summed
terms. Instead, we have to use

y(n) =
1
2
cT

(
x(n − 1) + x(n − 2)

)
+

1
2

d
(
u(n) + u(n − 1)

)
+ f̃y(py(n), py(n − 1)). (8)

However, any aliasing distortion introduced into x(n) by (4) will
not undergo any mitigation (except for the lowpass filtering).

Now, if we naively rewrite (4) as we did with (5), we modify
our system in an unwanted way as we introduce additional delay
in the feedback. But we do that in a very controlled way: The unit
delay in the feedback is replaced by a delay of 1.5 samples. This is
equivalent to reducing the sampling rate by a factor of 1.5, so we
can compensate by designing our system for this reduced sampling
rate, arriving at

x(n) =
1
2
Ã
(
x(n − 1) + x(n − 2)

)
+

1
2
b̃
(
u(n) + u(n − 1)

)
+ f̃x(px(n), px(n − 1)) (9)

y(n) =
1
2
c̃T

(
x(n − 1) + x(n − 2)

)
+

1
2

d̃
(
u(n) + u(n − 1)

)
+ f̃y(py(n), py(n − 1)). (10)

with

px(n) = c̃Tpx
x(n − 1) + d̃px u(n) (11)

py(n) = c̃Tpy
x(n − 1) + d̃py u(n) (12)

where all coefficients are calculated for the reduced sampling
rate f̃s = 2

3 fs. We can only do this because we do not have a
delay-free loop. Or rather, the delay-free loop is hidden inside f (u):
Instead of worrying about a nonlinearity within a delay-free loop,
we treat the solution of the delay-free loop as the nonlinearity to
apply aliasing reduction to. Note that the behavior for frequencies
above 1

2 f̃s = 1
3 fs is ill-defined, but with the mild oversampling

suggested by [7] anyway, we do not have to worry about this.
The increased delay is not the only effect of the modification.

There is also the low-pass filtering. To study this in more detail,
assume fx(px) and fy(py) to be linear so that we have a linear
system, and let H(z) denote the transfer function obtained from (4)–
(7). If we instead use (9)–(12) without adjusting the coefficients,
it is straight forward to verify that the resulting transfer function
fulfills

H̃(z) =
1
2
(1 + z−1) · H

( ( 1
2 (z
−1 + z−2)

)−1
)
. (13)

We may observe two effects: The well-known filtering with a factor
on the outside and the substitution z ←

( 1
2 (z
−1 + z−2)

)−1 in the
argument of H. Evaluating the latter for z = e jω , we note that( 1

2 (e
−jω + e−2jω)

)−1
=

1
cos( 12ω)

e
3
2 jω (14)

depicted in figure 1. While in the original system H(z) is evaluated
on the unit circle e jω (shown dotted) to obtain the frequency re-
sponse, for the modified system, it is evaluated on the trajectory
of (14). We notice that, in addition to the frequency scaling by 3

2 ,
there is an additional scaling away from the unit circle, increasing
with frequency. Importantly, as we only evaluate H(z) for z on or
outside the unit circle, we preserve stability, i.e. if H(z) is stable, so
is H̃(z). Nevertheless, especially for higher frequencies, this may
cause a significant distortion of the frequency response.

An extreme example would be an all-pass filter with high Q-
factor, where the transformation might result in the zero moving
onto the frequency axis, turning a flat frequency response into one
with a deep notch. As the examples will demonstrate, many typical
systems are rather well-behaved under the transformation, but one
has to be aware of this pitfall.
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Figure 2: Schematics of the modeled diode clipper

4. EXAMPLES

4.1. Diode clipper

As a first example, we consider the diode clipper of figure 2. The
circuit is simple enough that we briefly repeat the modeling process
here.

From Kirchhoff’s and Ohm’s laws and iC = C Ûy, we immedi-
ately obtain

y = u − R · (iC + iD) = u − RC Ûy − RiD. (15)

Summing over two subsequent sampling instances, we get

y(n) + y(n − 1) =
u(n) + u(n − 1) − RC( Ûy(n) + Ûy(n − 1)) − R(iD(n) + iD(n − 1)).

(16)

We now use the trapezoidal rule to substitute

Ûy(n) + Ûy(n − 1) = 2 fs(y(n) − y(n − 1)) (17)

and obtain

y(n) + y(n − 1) =
u(n)+ u(n− 1) − 2RC fs(y(n) − y(n− 1)) − R(iD(n)+ iD(n− 1)).

(18)

Collecting all quantities from time step n − 1 into canonical states

x(n − 1) = (2RC fs − 1)y(n − 1) + u(n − 1) − RiD(n − 1) (19)

allows simplification to

y(n) = x(n − 1) + u(n) − 2RC fsy(n) − RiD(n). (20)
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Figure 3: Nonlinear function fy(py) of the diode clipper for two
different sampling rates fs

Using Shockley’s equation for the diodes, we get

iD(n) = IS ·
(
ey(n)/vT − 1

)
− IS ·

(
e−y(n)/vT − 1

)
= 2IS sinh

(
y(n)/vT

)
, (21)

where saturation current and temperature voltage have been chosen
as IS = 1 fA and vT = 25 mV respectively. Inserting (21) into (20)
and introducing

py(n) = x(n − 1) + u(n) (22)

then leads to the implicit equation

y(n) = py(n) − 2RC fsy(n) − 2RIS sinh
(
y(n)/vT

)
(23)

for y(n). Note that we do not treat this as a delay-free loop and apply
the antialiasing to the sinh-function. Instead, we let fy(py(n)) =
y(n) denote the solution of the implicit equation. The resulting
function is depicted in figure 3 (obtained using an iterative solver).

To obtain the state update equation, we rearrange (20) to

(2RC fs − 1)y(n) + u(n) − RiD(n) = −x(n − 1) + 4RC fsy(n) (24)

and note by comparing with (19) that the left-hand side equals x(n).
Thus introducing

fx(px(n)) = 4RC fs fy(py(n)) (25)

with px(n) = py(n), we arrive at

x(n) = −x(n − 1) + fx(px(n)) (26)
y(n) = fy(py(n)) (27)

of the desired form.
Applying the aliasing mitigation only to the output equation is

particularly simple in this case, giving

y(n) = f̃y(py(n), py(n − 1)) (28)

with f̃y defined according to (2). The required antiderivative Fy(py)
of fy(py), depicted in figure 4, has to be determined numerically.
For the results below, it has been precomputed at 1024 uniformly
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Figure 4: Antiderivative Fy(py) of fy(py) of the diode clipper for
two different sampling rates fs

distributed points in the relevant range and stored in a table, using
cubic interpolation during lookup.

To also apply aliasing mitigation to the state update equation,
we have to change it to

x(n) = − 1
2
(
x(n − 1) + x(n − 2)

)
+ f̃x(px(n), px(n − 1)) (29)

and substitute f̃s = 2
3 fs for fs in (23) and (25). Note that this

immediately leads to

f̃x(px(n), px(n − 1)) = 4RC f̃s f̃y(py(n), py(n − 1)). (30)

To study the effectiveness of the method, we consider figure 5,
where the output spectra for a sinusoidal excitation are depicted
for various model configurations. Figures 5(a) and 5(b) give the
baseline, the system without any aliasing mitigation at sampling
rates fs = 44.1 kHz and fs = 88.2 kHz, respectively. Only applying
aliasing mitigation to the output equation according to (28) is of
little benefit, as seen when considering figures 5(c) and 5(d) in
comparison. We do note, however, the low-pass effect in figure 5(c),
where higher harmonics exhibit an attenuation of up to 10 dB.

When also applying the aliasing mitigation to the state up-
date equation according to (29), we observe a significant aliasing
reduction in figures 5(e) and 5(f). As explained, the aliasing mit-
igation should be combined with (modest) oversampling. In this
particular case, as verified in figure 5(e), the model is still a rel-
atively good fit even without oversampling, which however must
be mainly attributed to lucky coincidence. More relevant is the
case of a sampling rate of fs = 88.2 kHz, shown in figure 5(f).
Comparing to oversampling to fs = 220.5 kHz without additional
aliasing mitigation measures, as shown in figure 5(g), we see that
the aliased components at low frequencies, where they are most
easily perceived, are at a comparable level.

4.2. Tube screamer-like distortion circuit

As a second example we consider the distortion circuit of figure 6,
inspired by the Ibanez Tube Screamer TS-808. We shall not go
into details of the modeling procedure (for which we have used
ACME.jl1), but remark that if one allows the three diodes to be

1https://github.com/HSU-ANT/ACME.jl

different, one can no longer derive a closed-form expression for
their combined behavior. Instead, the nonlinear behavior is de-
termined by a system of three equations. Nevertheless, using the
dimensionality reduction approach of [9], the input px(n) = py(n)
to the nonlinearity can be reduced to a scalar value, formed by
linear combination of the input and the capacitor states. Hence, the
proposed method is applicable.

Figure 7 again shows the output spectra for a sinusoidal ex-
citation. As can be seen in figure 7(a), with plain oversampling
to fs = 88.2 kHz, the signal contains strong aliasing components.
Applying aliasing mitigation only to the output equation reduces
the aliasing distortion to a limited extent, as shown in figure 7(b). In
contrast, when also applying aliasing mitigation to the state update
equation, the aliasing is significantly reduced, as seen in figure 7(c).
Again, the aliasing mitigation is most effective at low frequencies,
where it is also perceptually most relevant. As in the diode clipper
example, for low frequencies the system with aliasing mitigation at
fs = 88.2 kHz performs at least as good as an unmodified system
at fs = 220.5 kHz, see figure 7(d).

5. CONCLUSION AND OUTLOOK

The presented approach for aliasing reduction generalizes the ap-
proach of [7] to all nonlinear systems that can be cast in a way
that the nonlinearity takes a scalar input. This includes, but is not
limited to, all models of circuits with a single one-port nonlinear
element. If the system contains a delay-free loop, it has to be re-cast
such that the nonlinearity is defined as the solution of the delay-free
loop. Then, the delay introduced by applying the method of [7]
to the nonlinearity can be compensated by adjusting the system’s
coefficients, even if the nonlinearity is part of a feedback loop.

As is to be expected, the achieved aliasing reduction is com-
parable to that of [7], allowing to significantly reduce the required
oversampling especially for systems which introduce strong distor-
tion, while the additional computational load is modest. Assuming
lookup tables are used for f (u) (in general being implicitly defined)
and its antiderivative F(u), the main price to pay is in terms of
memory used.

It should be noted that the extensions to higher order antideriva-
tives as proposed in [10] or [11] should be straight-forward, follow-
ing the same principle. A more interesting future direction would
be to lift the restriction on the nonlinear function to have only scalar
input. If the method of [7] (or even the higher order extensions
of [10] or [11]) could be generalized to nonlinear functions with
multiple inputs, the method proposed in the present paper would
immediately generalize to all stateful nonlinear systems.
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Figure 7: Output spectra of various model configurations for the
tube screamer distortion circuit when excited with a single sinusoid
of 1 V amplitude at 1244.5 Hz. Crosses mark expected harmonics.
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