

Convolutional Neural Network with Inception Blocks for Image Compression Artifact Reduction

Purbaditya Bhattacharya, Udo Zölzer Dept. of Signal Processing and Communication, Helmut Schmidt University, Hamburg, Germany Email: bhattacp@hsu-hh.de

Introduction

- JPEG performs a lossy compression of an image based on quantization and coding of its BDCT coefficients.
- Different compression ratios invoke different quantization tables.
- For higher compression ratios, aggressive quantization leads to multiple artifacts.

JPEG Artifacts

□High compression ratios lead to the following major artifacts.

- Blurring of image patches Suppression of high frequency information due to low bit allocation, leads to redundant pixels.
- Blocking artifacts Non overlapping block based transform and independent quantization leads to visible discontinuities along block edges.
- Ringing Poor quantization of high frequency information leads to a coarse transition across object boundaries and introduces artifacts.

JPEG Artifacts

Original

Basis Network

- Example based deep learning models are efficient in reducing these artifacts and restoring the image.
- Supervised convolutional neural networks (CNNs) trained particularly for image restoration problems have outperformed classical image restoration methods.
- The basis network known as Denoising CNN (DnCNN) is a residual CNN model with batch normalization (BN) for image enhancement, introduced by Zhang et.al.

Proposed Network

Network Modules

SPONSORS:

Advancing Technology for Humanity

Experiments

Performance over network depth

	Classic5		LIVE1	
# Incp+Conv Blocks with BN	PSNR (dB)	SSIM	PSNR (dB)	SSIM
2	29.46	0.805	29.28	0.814
4	29.53	0.808	29.33	0.816
8	29.56	0.809	29.35	0.817

IEEE **Computational Intelligence** Society THE INTERNATIONAL NEURAL NETWORK SOCIETY (INNS)

EPS

Evolutionary

Programming Society

SPONSORS:

Advancing Technology for Humanity

Experiments

Performance over feature map depth

SPONSORS:

IEEE
Advancing Technology
for HumanityIEEE
Computational
Intelligence
SocietyIEEE
Computational
Intelligence
SocietyIEEE
Computational
Intelligence
SocietyIEEDThe International
Neural Network
Society
(INNS)EPS
Evolutionary
Programming
Society

Results

Results

SPONSORS:

Advancing Technology for Humanity

IEEE Computational Intelligence Society

Conclusion

Summary

- Introduction of inception blocks in the basis network improves the restoration task.
- Parallel convolutions with filters of multiple resolution aggregate multiscale context.
- Dilated convolution increases the receptive field but not the number of filter parameters.
- The performance improves with increasing network and feature map depths.

Future Work

- Further improvements can be obtained by introducing dense skip connections, recursive blocks and improved inception modules.
- Such an approach can be applied to other enhancement tasks like superresolution and impainting.

