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ABSTRACT

Peak and shelving filters are parametric infinite impulse response
filters which are used for amplifying or attenuating a certain fre-
quency band. Shelving filters are parametrized by their cut-off fre-
quency and gain, and peak filters by center frequency, bandwidth
and gain. Such filters can be cascaded in order to perform au-
dio processing tasks like equalization, spectral shaping and mod-
elling of complex transfer functions. Such a filter cascade allows
independent optimization of the mentioned parameters of each fil-
ter. For this purpose, a novel approach is proposed for deriving
the necessary local gradients with respect to the control parame-
ters and for applying the instantaneous backpropagation algorithm
to deduce the gradient flow through a cascaded structure. Addi-
tionally, the performance of such a filter cascade adapted with the
proposed method, is exhibited for head-related transfer function
modelling, as an example application.

1. INTRODUCTION

An infinite impulse response (IIR) filter has a distinct advantage
over a finite impulse response (FIR) filter for a given approxima-
tion problem. IIR filter transfer functions containing poles and ze-
ros result in a much lower order compared to an equivalent FIR fil-
ter transfer function containing only zeros across the z-plane with
all the poles at the origin. As a result, IIR filters have a consid-
erably lesser number of coefficients to calculate and adapt, result-
ing in reduced computation. Additionally, parametrization of an
IIR filter with control parameters like gain, bandwidth, and cen-
ter / cut-off frequency provides the option to tune each parame-
ter. The advantage of such parametric filter optimization is that
the above parameters can be tuned independently while in case of
non-parametric filters the entire set of filter coefficients needs to
be recomputed. From an optimization perspective, experimenta-
tion with hyperparameters is relatively easier and more intuitive
in case of the individual parameters compared to the set of co-
efficients. Hence, the design of such adaptive parametric filters
is useful in multiple applications including equalizers for digital
audio workstations, modelling the effects of instruments and loud-
speakers, and approximating or controlling room accoustics.

Designs of first-order low-frequency and high-frequency shelv-
ing filters and second-order peak filters were presented in [1], [2]
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based on an all-pass decomposition. Second- and fourth-order para-
metric shelving filters were also designed in [3] and the design of
higher order shelving filters was proposed in [4]. A comprehen-
sive account about the parametric filters of different orders and
their role in audio equalization has been described in [5]. How-
ever, the proposed filter structure consists of first-order shelving
filters and second-order peak filters only and the filter cascade
is employed in this work with the goal towards transfer function
modelling as an example application. Hereby, the filter stages are
sorted by frequency region of interest, thus the cascade begins with
a low-frequency shelving filter followed by a series of peak filters
and ends with a high-frequency shelving filter. The goal of the
filter structure is to learn the parameters of the individual filters in
order to match a given magnitude response. Earlier research in this
area includes the work done in [6], which introduces a backprop-
agation based adaptive IIR filter. An approach to train a recursive
filter with derivative function, for adapting a controller was intro-
duced in a patent [7]. In the context of neural networks, a cascaded
structure of FIR and IIR filters with multilayer perceptrons was
used in [8] for time series modelling based on a simplified instan-
taneous backpropagation through time (IBPTT). A similar adap-
tive IIR- multilayer perceptron (IIR-MLP) network was described
in [9] based on causal backpropagation through time (CBPTT). In
recent years backpropagation is extensively used in convolutional
and recurrent neural networks, the later being recursive in nature.
However, in the aforementioned literatures the adaptation is pri-
marily performed directly on the filter coefficients. To the best of
our knowledge, optimization of equalizers with respect to the con-
trol parameters and with the help of backpropagation has not been
extensively studied or illustrated.

Hence, this work contributes towards a novel approach where
the necessary local gradients with respect to the control parame-
ters are derived and the instantaneous backpropagation algorithm
is applied to deduce the gradient flow through a cascaded structure
of parametric filters. Finally, this method is applied in an example
application of head-related transfer function (HRTF) modelling in
order to show its effectiveness.

2. PARAMETRIC SHELVING AND PEAK FILTERS

The transfer function of a first-order shelving filter is given by

H(z) = 1 +
H0

2
[1±A1(z)] , (1)

with

H0 = V0 − 1, (2)

V0 = 10
G
20 , (3)
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and

A1(z) =
z−1 + a

1 + az−1
, (4)

where G refers to the gain of the system in dB, a denotes the cut-
off frequency parameter, and +/- refers to low-frequency shelving
(LFS) and high-frequency shelving (HFS) filters, respectively. As
seen in [10], using the same parameter a for positive and negative
values of G results in an asymmetric magnitude response of the
shelving filter. To make the magnitude response symmetric two
different parameters aB and aC are used for the boost and cut
cases, respectively. For an LFS these parameters are given by

aB =
tan(π fc

fs
)− 1

tan(π fc
fs
) + 1

(5)

for the boost case (G > 0) and

aC =
tan(π fc

fs
)− V0

tan(π fc
fs
) + V0

(6)

for the cut case (G < 0), where fc denotes the cut-off frequency
and fs is the sampling frequency. To achieve a symmetric HFS, the
same coefficient aB from Eq. (5) can be used for the boost case,
but the coefficient for the cut case has to be modified to

aC =
V0 tan(π

fc
fs
)− 1

V0 tan(π
fc
fs
) + 1

. (7)

The block diagram of a first-order shelving filter is shown in Fig. 1
and the corresponding difference equations can be given as

xh(n) = x(n)− axh(n− 1), (8)
y1(n) = axh(n) + xh(n− 1), (9)

y(n) =
H0

2
[x(n)± y1(n)] + x(n). (10)

In a similar way to that of shelving filters where a first-order
low-pass or high-pass filter is added to a constant branch, a second-
order peak filter can be obtained as the addition of a second-order
band-pass filter to a constant branch. In z-domain the transfer
function is given by

H(z) = 1 +
H0

2
[1−A2(z)] , (11)

where A2(z) denotes a second-order all-pass filter given by

A2(z) =
−a+ d(1− a)z−1 + z−2

1 + d(1− a)z−1 − az−2
. (12)

+ ++A1(z)
x(n) y(n)+/-

LFS/HFS

H0/2

+

+

z-1
+

x(n) y1(n)

-a

+
axh(n)

Figure 1: Block diagram of a first-order shelving filter, where +/-
refers to low-frequency shelving (LFS) and high-frequency shelv-
ing (HFS), respectively.
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Figure 2: Block diagram of a second-order peak filter.

The block diagram of a second-order peak filter is shown in Fig. 2.
Based on the block diagram the following difference equations can
be derived:

xh(n) = x(n)− d(1− a)xh(n− 1) + axh(n− 2), (13)
y1(n) = −axh(n) + d(1− a)xh(n− 1) + xh(n− 2), (14)

y(n) =
H0

2
[x(n)− y1(n)] + x(n). (15)

The bandwidth related parameter a and the center frequency pa-
rameter d in the above equations can be calculated [10] as

d = − cos(2π
fc
fs

), (16)

aB =
tan(π fb

fs
)− 1

tan(π fb
fs
) + 1

, (17)

aC =
tan(π fb

fs
)− V0

tan(π fb
fs
) + V0

, (18)

where fc denotes the center frequency and fb denotes the band-
width. Additionally, aB and aC denote the parameter a for boost
and cut case, respectively.

In order to create an equalizer which can be controlled to shape
the magnitude spectrum, M parametric filters can be cascaded.
Here, the spectral regions can be controlled by tuning the gain,
bandwidth, cut-off, and center frequencies. The parameters of the
individual filters can be optimized to attain a desired frequency
response. The block diagram provided in Fig. 3 illustrates the cas-
caded structure having a low-frequency shelving filter followed by
M − 2 peak filters and a high-frequency shelving filter. Addition-
ally, exemplary magnitude responses with different gains G are
shown for each filter stage. The predicted response y(n) is com-
pared with a desired response yd(n), by a pre-defined cost function
or loss function as illustrated in the block diagram in Fig. 4.

3. BACKPROPAGATION

In any supervised learning method a cost function between the pre-
diction and the desired signal is necessary in order to calculate the
gradient of such a function with respect to the control parameters.
The negative gradient is used in a steepest descent algorithm in
order to update and adapt the parameters with a goal towards op-
timizing the cost function. The partial derivative of a pre-defined
cost function with respect to the filter parameters in a cascaded
structure is not straightforward and needs to be calculated as a
product of multiple local derivatives according to the chain rule.
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Figure 3: Block diagram of a parametric shelving and peak filter
cascade along with exemplary magnitude responses of variable
gain G for every filter stage.

This results in the backpropagation algorithm. Given a cascaded
structure with M filters as illustrated in Fig. 3, and a global instan-
taneous cost or loss function C(n) for the nth sample, as shown
in Fig. 4, its derivative w.r.t. a parameter pM−1 can be written as

∂C(n)

∂pM−1
=

∂C(n)

∂y(n)

∂y(n)

∂xM−1(n)

∂xM−1(n)

∂pM−1
, (19)

according to the chain rule of derivatives, as illustrated in Fig. 5,
where y(n) represents the predicted output of the cascaded filter
structure, yd(n) represents the desired output of the system un-
der test, xM−1(n) represents the output of the {M − 1}th filter in
the cascade, and pM−1 represents any control parameter like gain,
bandwidth, or center frequency of the {M − 1}th peak filter. This
will result in a simplified instantaneous backpropagation algorithm
[8]. In order to calculate the above derivative w.r.t. the instanta-
neous cost function it is necessary to calculate the local derivative
∂C(n)
∂y(n)

of the cost function, the local derivative ∂y(n)
∂xM−1(n)

of a fil-

ter output w.r.t. its input, and the local derivative ∂xM−1(n)

∂pM−1
of

a filter output w.r.t. its parameter pM−1. Hence, in general the
above three types of local gradients need to be calculated in order
to adapt the cascaded structure. After the gradient ∂C(n)

∂pM−1
is cal-

culated the corresponding parameter can be updated according to
gradient descent algorithm as

pM−1 := pM−1 − η
∂C(n)

∂pM−1
, (20)

where η is referred to as step-size or learning rate. If the instanta-
neous cost function is assumed to be a squared-error function then
the expression is given by

C(n) = [yd(n)− y(n)]2 , (21)

Filter
Cascade

x(n)

Loss

y(n)

yd(n)

parameter update C(n)

System
Under Test

Figure 4: Block diagram of the model with predicted output y(n)
and desired output yd(n).

HM-1(z) HM(z)
xM-1(n)xM-2(n) Loss

C(n)y(n)
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∂C(n)
∂y(n)

δ =
y∂y(n)

∂xM-1(n)
 δ =

xM-1 .δ
y∂xM-1(n)

∂pM-1
 δ =

pM-1 .δ
xM-1

pM-1 pM

Figure 5: Block diagram illustrating the flow of the instantaneous
local gradients during backpropagation.

and its local derivative w.r.t. y(n) is given by

∂C(n)

∂y(n)
= −2 [yd(n)− y(n)] . (22)

In the following sections the local gradients of the filter output
against the filter input and the control parameters are derived.

3.1. Shelving Filter

For a shelving filter, local derivatives of the filter output are cal-
culated against the filter input, the gain and the cut-off frequency.
Referring to Eq. (10) based on Fig. 1 the derivative of an LFS and
an HFS output y(n) w.r.t. to its input x(n) is calculated as

∂y(n)

∂x(n)
=

H0

2
[1± a] + 1. (23)

The derivative of the shelving filter output w.r.t. the filter gain
G, for the boost case is calculated as

∂y(n)

∂G
=

[x(n)± y1(n)]

2

∂H0

∂G
. (24)

Given Eq. (2) and Eq. (3), the above derivation can be continued as

∂y(n)

∂G
=

[x(n)± y1(n)]

2

∂

∂G

[
10

G
20 − 1

]
, (25)

=
[x(n)± y1(n)]

40
10

G
20 ln(10). (26)

The derivative of the filter output w.r.t. the filter gain G, for the cut
case is different from the boost case because of the dependence be-
tween the gain parameter and the parameter for cut-off frequency.
With the help of Eq. (10) it can calculated as

∂y(n)

∂G
=

[x(n)± y1(n)]

2

∂H0

∂G
± H0

2

∂y1(n)

∂G
, (27)

=
[x(n)± y1(n)]

40
10

G
20 ln(10)± H0

2

∂y1(n)

∂G
, (28)

where the expression ∂y1(n)
∂G

of Eq. (28) can be extended with the
help of Eq. (9) as

∂y1(n)

∂G
=

∂aC

∂G
xh(n) + aC

∂xh(n)

∂G
+

∂xh(n− 1)

∂G
, (29)

with

∂aC

∂G
=

− ln(10)V0 tan(π
fc
fs
)

10
[
tan(π fc

fs
) + V0

]2 , (LFS) (30)

∂aC

∂G
=

ln(10)V0 tan(π
fc
fs
)

10
[
V0 tan(π

fc
fs
) + 1

]2 , (HFS) (31)

∂xh(n)

∂G
= −∂aC

∂G
xh(n− 1)− aC

∂xh(n− 1)

∂G
. (32)
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From Eq. (32), ∂xh(n−1)
∂G

is calculated via IBPTT with the initial-
ization of ∂xh(k)

∂G
|k=0 = 0.

Finally, the derivative of the shelving filter output w.r.t. the
cut-off frequency fc, is calculated as

∂y(n)

∂fc
= ±H0

2

∂y1(n)

∂fc
, (33)

where

∂y1(n)

∂fc
=

∂a

∂fc
xh(n) + a

∂xh(n)

∂fc
+

∂xh(n− 1)

∂fc
, (34)

with

∂aB

∂fc
=

2π sec(2π fc
fs
)
[
sec(2π fc

fs
)− tan(2π fc

fs
)
]

fs
, (35)

∂aC

∂fc
=

2πV0 sec(π
fc
fs
)2

fs
[
tan(π fc

fs
) + V0

]2 , (LFS) (36)

∂aC

∂fc
=

2πV0 sec(π
fc
fs
)2

fs
[
V0 tan(π

fc
fs
) + 1

]2 , (HFS) (37)

∂xh(n)

∂fc
= − ∂a

∂fc
xh(n− 1)− a

∂xh(n− 1)

∂fc
. (38)

From Eq. (38), ∂xh(n−1)
∂fc

is calculated via IBPTT with the initial-

ization of ∂xh(k)
∂fc

|k=0 = 0.

3.2. Peak Filter

For a peak filter, local derivatives of the filter output are calcu-
lated against the filter input, the gain, the center frequency, and the
bandwidth. Referring to Eq. (15) based on Fig. 2 the derivative of
a second-order peak filter output y(n) w.r.t. to its input x(n) is
calculated as

∂y(n)

∂x(n)
=

H0

2

[
1 + aB/C

]
+ 1. (39)

As done in the case of shelving filters, the derivative of the
peak filter output w.r.t. the filter gain G, for the boost case will
result in

∂y(n)

∂G
=

[x(n)− y1(n)]

40
10

G
20 ln(10). (40)

For the cut case as well the derivative of the peak filter output w.r.t.
the filter gain G, is derived in a similar manner. With the help of
Eq. (15) the derivation leads to

∂y(n)

∂G
=

[x(n)− y1(n)]

40
10

G
20 ln(10)− H0

2

∂y1(n)

∂G
, (41)

and the expression ∂y1(n)
∂G

from the above equation can be ex-
tended with the help of Eq. (14) as

∂y1(n)

∂G
= −∂aC

∂G
xh(n)− aC

∂xh(n)

∂G
− · · ·

d
∂aC

∂G
xh(n− 1) +

∂xh(n− 2)

∂G
+ · · ·

d(1− aC)
∂xh(n− 1)

∂G
,

(42)

with
∂aC

∂G
=

− ln(10)V0 tan(π
fb
fs
)

10
[
tan(π fb

fs
) + V0

]2 , (43)

and

∂xh(n)

∂G
=d

∂aC

∂G
xh(n− 1) +

∂aC

∂G
xh(n− 2) + · · ·

aC
∂xh(n− 2)

∂G
− d(1− aC)

∂xh(n− 1)

∂G
.

(44)

From Eq. (44), the expressions ∂xh(n−1)
∂G

and ∂xh(n−2)
∂G

are calcu-
lated via IBPTT with the initializations of ∂xh(k)

∂G
|k=0 = 0 and

∂xh(k)
∂G

|k=−1 = 0
The derivative of the peak filter output w.r.t. the cut-off fre-

quency fc, leads to the expression similar to Eq. (33) given by

∂y(n)

∂fc
= −H0

2

∂y1(n)

∂fc
, (45)

where

∂y1(n)

∂fc
= −a

∂xh(n)

∂fc
+

∂d

∂fc
(1− a)xh(n− 1) + · · ·

d(1− a)
∂xh(n− 1)

∂fc
+

∂xh(n− 2)

∂fc
,

(46)

with
∂d

∂fc
=

2π sin(2π fc
fs
)

fs
, (47)

and

∂xh(n)

∂fc
= − ∂d

∂fc
(1− a)xh(n− 1)− · · ·

d(1− a)
∂xh(n− 1)

∂fc
+ a

∂xh(n− 2)

∂fc
.

(48)

From Eq. (48), the expressions ∂xh(n−1)
∂fc

and ∂xh(n−2)
∂fc

are calcu-
lated via IBPTT.

Finally, the derivative of the peak filter output w.r.t. the band-
width fb, is calculated as

∂y(n)

∂fb
= −H0

2

∂y1(n)

∂fb
. (49)

From the above equation ∂y1(n)
∂fb

is calculated as

∂y1(n)

∂fb
= − ∂a

∂fb
xh(n)− a

∂xh(n)

∂fb
− d

∂a

∂fb
xh(n− 1) + · · ·

∂xh(n− 2)

∂fb
+ d(1− a)

∂xh(n− 1)

∂fb
,

(50)

with

∂aB

∂fb
=

2π sec(2π fb
fs
)
[
sec(2π fb

fs
)− tan(2π fb

fs
)
]

fs
, (51)

∂aC

∂fb
=

2πV0 sec(π
fb
fs
)2

fs
[
tan(π fb

fs
) + V0

]2 , (52)
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and

∂xh(n)

∂fb
=d

∂a

∂fb
xh(n− 1)− d(1− a)

∂xh(n− 1)

∂fb
+ · · ·

∂a

∂fb
xh(n− 2) + a

∂xh(n− 2)

∂fb
.

(53)

From Eq. (53), the expressions ∂xh(n−1)
∂fb

and ∂xh(n−2)
∂fb

are calcu-
lated via IBPTT.

Given the derivations, as an example, the derivative of the cost
function provided in Eq. (21) w.r.t. the gain of the {M − 1}th
peak filter (GM−1) in the filter cascade, and illustrated in Fig. 5, is
given by

∂C(n)

∂GM−1
=

∂C(n)

∂y(n)

∂y(n)

∂xM−1(n)

∂xM−1(n)

∂GM−1
, (54)

according to Eq. (19). If the boost case is assumed then with the
help of the equations (22), (39), and (40), respectively, the required
gradient for parameter update is derived as

∂C(n)

∂GM−1
= e(n)

(
H0

2

[
1 + aBM−1

]
+ 1

)
...

...
(
K

[
xM−2(n)− y1M−1(n)

])
,

(55)

where

e(n) = −2 [yd(n)− y(n)] , (56)

K =
10

GM−1
20 ln(10)

40
=

V0M−1 ln(10)

40
. (57)

4. HEAD-RELATED TRANSFER FUNCTION
MODELLING

A head-related transfer function (HRTF) is a direction dependent
transfer function between an external sound source and the en-
trance of the human ear canal. Thus, HRTFs account for reflec-
tions and diffractions at the human’s head, torso, and pinna. These
effects result in peaks and notches inside the HRTFs, which take
part in the process humans use for vertical sound localization. Ad-
ditionally, the interaural level difference (ILD), which is a main
cue for horizontal sound localization, can be seen by comparing
the HRTF of the left and right ear. Because of differences in the
size and shape of human bodies, HRTFs are highly individual. The
inverse Fourier transform of the HRTF is the head-related impulse
response (HRIR). In spatial audio through headphones, mono sig-
nals are filtered with the corresponding HRTFs to create a virtual
sound that is localized in a certain direction. In order to achieve
a good resolution of the 3D space, HRTFs have to be saved for
a high number of directions, resulting in a high amount of stored
data. Hence, parametric IIR filters can be used to model the indi-
vidual HRTFs with a lower number of saved parameters.

In [11], HRTFs were modelled with a cascade of second-order
IIR filters. A localization test in the horizontal plane has shown
that four to seven second-order IIR filters achieve similar results to
the original FIR implementation. Furthermore, in [12] a cascade
of a second-order low-frequency shelving filter and multiple peak
filters was proposed for the task of HRTF modelling. There, a pa-
rameter initialization based on the error area between the model
and the target, and a random search based optimization are used
in order to tune the individual filters. This tuning is repeated for a

given number of peak filters and finished by post-processing triples
of neighbouring filters in order to improve their interaction. In
[13], this cascade of parametric filters is converted into a paral-
lel structure of low-pass and band-pass filters. Moreover, in [14],
a cascade of shelving and peak filters is used to find the mini-
mum number of peak filters needed to model HRTFs with a given
error tolerance. For this, a consecutive adding of peak filters in-
cluding the initialization based on the maximum modelling error
and a parameter optimization of the cascade via the Levenberg-
Marquardt algorithm are used. However, the application of our
proposed method to this problem is a new approach and unlike the
aforementioned approaches, we adopt a simpler initialization in
order to focus on the effectiveness of our method.

4.1. Filter Cascade Initialization

For the initialization of the cascaded filter structure, an approx-
imated number of required peak filters needs to be determined.
Afterwards, the allocation of the initial parameter values is done.
A structured initialization is very important in this case because
a random initialization will make the problem extremely ill-posed
and will create a random input response for the cascade with a
poor correlation to the desired response. The entire process can be
described by the following steps:

1. The magnitude response is smoothed, the mean of the mag-
nitude response is subtracted, and the peaks and notches in
the magnitude response are noted.

2. Certain peaks or notches are deleted based on a peak promi-
nence threshold in dB, as defined in Matlab’s peak analysis
method ’findpeaks’, their proximity, and magnitude differ-
ences between adjacent peaks / notches.

3. The initial center frequency of a peak filter is initialized
based on the position of a peak or notch while the initial cut-
off frequencies of the shelving filters depend on the slopes
in the magnitude response.

4. The gain of a filter is initialized by the magnitude of the
transfer function at the position of the peak or notch. In
order to reduce the summation effect due to the cascade,
the gain of every peak filter is scaled by a fractional factor.

5. If a notch exists in the positive half-plane, the gain is con-
verted to a small negative random value, in order to main-
tain the information of being a notch. In the same way, if
a peak is located in the negative half-plane, it’s gain is con-
verted to a small positive random value.

6. The bandwidth of a peak filter is initialized based on the
average local gradient of the magnitude response around
the peak’s position.

Figure 6 shows the desired magnitude response and the initial mag-
nitude response based on the above initialization. Here, 19 peak
filters are selected based on a minimum peak prominence thresh-
old of 0.01 dB, and a threshold of 200Hz for the proposed peak /
notch proximity along with 2 dB as magnitude difference thresh-
old. The number of filters can be reduced or increased based on
the third step. A major drawback of such an initialization is that
more than an optimal number of filters will usually be proposed.
Additionally the peak picking method will be insufficient in flat
regions. However, the direct initialization is simple, sometimes
quite close to the desired, and the simultaneous filter update im-
proves the run-time.
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Figure 6: Magnitude responses of the desired HRTF and the ini-
tial HRTF estimate of the right ear of ’Subject-009’ of the CIPIC
database [15], for an azimuth ϕ = 10◦ and elevation θ = 0◦.

4.2. Objective Function

The cascaded structure represents a minimum phase system and
offers no delay compensation. Hence, a time domain loss func-
tion will be unable to approximate the desired measured impulse
response and more importantly the magnitude response. Since the
goal of the application is to approximate the magnitude response
accurately, a loss function directly in frequency domain should be
used. To adapt the cascaded structure, a log-spectral distance be-
tween the estimated and the desired magnitude responses is con-
sidered as the objective function which is given by,

C (Yd(k), Y (k)) = [Yd(k)− Y (k)]2 , (58)

where Yd(k) and Y (k) are the magnitude responses of the desired
output yd(n) and the estimated output y(n) in decibels, and k de-
notes a frequency bin. The derivative of the Fourier transform be-
tween time and frequency domain can be performed with the help
of Wirtinger calculus as demonstrated in [16] and [17].

4.3. Results and Discussion

In this work, some HRIR examples from the benchmark CIPIC
database described in [15] are chosen for the HRTF approxima-
tion. It contains HRIRs from 45 subjects. The length of the stored
HRIRs is 200 samples. For every subject 1250 directions in the
interaural-polar coordinate system are measured, including 25 dif-
ferent azimuths and 50 different elevations. In the first step, the
HRIRs are converted to HRTFs and the magnitude responses are
treated as the desired signal for the filter cascade. Nevertheless,
before performing the discrete Fourier transform, the HRIRs are
padded with zeros to a length of 1024 in order to achieve a bet-
ter frequency resolution. Afterwards, the initialization described
in Section 4.1 is performed. Due to differences in the HRTFs
between subjects and directions, every transfer function needs a
unique initialization, which can result in a different number of
peak filters and initial parameter values. After the initialization of
the cascaded structure, the filters are trained and updated for 100
epochs with the adam method [18], where each epoch has 1024 it-
erations or recurrent steps. However, in cases of many HRTFs,
a smaller number of epochs is sufficient for convergence. The
learning rate during the update method is selected as η = 10-1.
Additionally, there is a learning rate drop factor of 0.99 for every
time the error in an epoch is higher than the error in the previ-
ous epoch. The aforementioned hyper-parameters might change

Figure 7: Magnitude responses of the desired HRTF, the initial
HRTF estimate, and the final approximation of the right ear of
’Subject-009’, for an azimuth ϕ = 10◦ and elevation θ = 0◦.

for some cases where convergence requires different values. The
entire implementation is done in Matlab. Figure 7 shows the de-
sired magnitude response, the initial magnitude response, and the
predicted response after 100 epochs corresponding to the right ear
of ’Subject-009’. It can be seen that the cascaded structure has
approximated the desired or target response quite well. When the
minimum peak prominence threshold is increased and the other
constraints are less relaxed, a lesser number of filters is usually
found during initialization. Figure 8 shows the initial, desired, fi-
nal approximated, and error magnitude responses corresponding to
the right ear of ’Subject-008’ for an azimuth angle of ϕ = 80◦ and
an elevation angle of θ = 0◦. With a minimum peak prominence
threshold of 1 dB, eleven peak filters are used resulting in a max-
imum absolute error of about 4.2 dB, and a mean absolute spec-
tral distance (MASD) of nearly 0.65 dB, calculated below 20 kHz.
Lesser number of filters result in a shallower cascade and hence a
faster run-time. On the other hand this could also lead to missing
peak proposals and increased average approximation error. The
corresponding filters of the cascaded structure are shown in Fig. 9.
Here it can be seen that the gains of all filters are adapted during
the update while the bandwidths and the center / cut-off frequen-
cies are notably changed for some of these filters. Figure 10 shows
the different magnitude responses corresponding to the right ear of
’Subject-008’ for an azimuth angle of ϕ = 0◦ and an elevation an-
gle of θ = −22.5◦ given a minimum peak prominence threshold

Figure 8: Magnitude responses of the desired HRTF, the initial
HRTF estimate and the final approximation of the right ear of
’Subject-008’, for an azimuth ϕ = 80◦ and elevation θ = 0◦.
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Figure 9: Responses of the individual filters after initialization and
after HRTF approximation of the right ear of ’Subject-008’, for an
azimuth ϕ = 80◦ and elevation θ = 0◦. The vertical lines indicate
the positions of center / cut-off frequencies.

of 0.05 dB. The error response shows a maximum absolute error of
about 2.5 dB and a MASD of nearly 0.45 dB. Additionally, Fig. 11
shows the individual filter responses of the 16 peak filters and the
shelving filters before and after the approximation. Similar ob-
servations can be made for the left ear of the same subject for a
different elevation. Figure 12 shows the corresponding magnitude
responses of the left ear of ’Subject-008’ for an azimuth angle of
ϕ = 0◦ and an elevation angle of θ = −45◦. The error response
shows a maximum absolute error of nearly 2 dB and a MASD of
nearly 0.3 dB. Figure 13 shows the individual filter responses of
the 18 peak filters and the shelving filters before and after the ap-
proximation.

The first ten subjects are selected and simulations are per-
formed for seven elevation angles between θ = −45◦ and θ =
225◦ with a step size of 45◦, and for seven azimuth angles of
ϕ = −80◦,−55◦,−20◦, 0◦, 20◦, 55◦, 80◦, to evaluate an aver-
age performance of the proposed method in terms of its error min-
imization. The corresponding filter initialization is done with a
low minimum peak prominence threshold of 0.005 dB, a separa-
tion threshold of 300Hz, and a magnitude difference threshold
of 3 dB. Table 1 displays the average performance of the method
based on the above simulation, for both ears. About 72% of the
examples show very good approximation with each less than 1 dB
MASD, while some bad examples show difficulties in converging,

Figure 10: Magnitude responses of the desired HRTF, the initial
HRTF estimate and the final approximation of the right ear of
’Subject-008’, for an azimuth ϕ = 0◦ and elevation θ = −22.5◦.

Figure 11: Responses of the individual filters after initialization
and after HRTF approximation of the right ear of ’Subject-008’,
for an azimuth ϕ = 0◦ and elevation θ = −22.5◦.

a few even having a maximum absolute spectral distance as high as
13 dB. This behavior is primarily attributed to the lack of propos-
als in the flat spectral regions, very steep and deep notches or large
peaks in the high frequency region, and an occasional slow con-
vergence of the high-frequency shelving filter resulting in higher
errors above 18 kHz. The lowest final MASD in the experiment
is about 0.08 dB while the highest final MASD is about 3.84 dB.
It is also noted that the rate of change in gain and bandwidth is
more predominant than the rate of change in the center or cut-off
frequencies. This outcome results from the initialization, where
the center or cut-off frequencies are more likely to be close to their
local optimum solutions compared to the other parameters.

Table 1: Average performance based on 10 subjects and 49 di-
rections, in terms of average MASD reduction below 20 kHz and
average number of peak filters for both ears.

Ear Init. MASD (dB) Fin. MASD (dB) Peak filters
Left 3.75 0.83 18

Right 3.58 0.77 18

As a future endeavor, a better initialization method and smooth-
ing technique can be used with the goal to reduce the number of
required filters, from the perspective of this particular application.
This can be achieved with the help of incremental modelling of

Figure 12: Magnitude responses of the desired HRTF, the ini-
tial HRTF estimate and the final approximation of the left ear of
’Subject-008’, for an azimuth ϕ = 0◦ and elevation θ = −45◦.

DAFx.7

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

107



Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

Figure 13: Responses of the individual filters after initialization
and after HRTF approximation of the left ear of ’Subject-008’, for
an azimuth ϕ = 0◦ and elevation θ = −45◦.

an HRTF where a filter is individually and sequentially adjusted
and adapted. Another approach can be residual learning where the
initial number of filter proposals is drastically reduced based on a
strong smoothing, followed by an adaptation, a subtraction from
the original HRTF and addition of a few filters based on strong
residual peaks. Both of the above proposals require multiple adap-
tation phases and following any improvement comparisons can be
made with existing methods for HRTF modelling. The gains can
be properly adapted in the frequency domain as well to improve
the initialization. The parameters can also be constrained and the
HRTF dynamic ranges can be normalized to a fixed range in order
to stabilize the performance of the method and ensure an optimal
hyper-parameter setup for all examples. A deep cascaded structure
might also invoke the problem of vanishing gradients during back-
propagation, which should be studied. The fundamental method
could replace the instantaneous backpropagation with the normal
backpropagation, introduce non-linear functions in the cascade,
and use an improved optimization method. Finally, the derivations
can be extended to higher order parametric filters.

5. SUMMARY

In this paper, a new method of updating the parametric filters in
a cascaded structure with the backpropagation algorithm, is de-
scribed. The structure is usually comprised of a first-order low-
frequency shelving filter, followed by a number of second-order
peak filters and a first-order high-frequency shelving filter. The
expressions for partial local derivatives of each parametric filter
inside the cascade are derived w.r.t. a set of control parameters and
the required gradients for iterative parameter update are calculated
during backpropagation. Since only a few control parameters are
updated in this structure it is computationally less expensive com-
pared to update of filter coefficients in traditional FIR and IIR fil-
ters, particularly for high orders. Finally, the cascaded structure is
used for HRTF modelling, as an example application, to illustrate
its performance and discuss the scope of the proposed method.
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