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In this paper different cost functions are studied for the optimization of FIR filters as minimum vari-
ance controllers in active noise cancelling headphones. The resulting controllers are implemented in
a headphones prototype and their attenuation performances are measured using a dummy-head. The
measurements are then compared and evaluated in terms of psychoacoustic objective metrics, in order
to establish which one of the cost functions relates more closely to the human perception of noise.
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1. Introduction

Active Noise Cancelling (ANC), also known as Active Noise Control, aims to reduce the sound pol-
lution present in the environment by actively generating sound pressure waves that overlap destructively
on a sweet-spot with the ones of the noise sources. Its origins can be dated back to Lueg’s patent [1] on
the control of acoustical tonal noise inside of a duct, while its particular application to headphones can
be dated to the later work of Simshauser et al. in [2]. In order to achieve a perfect attenuation, the phase
and the magnitude of the noise around the sweet-spot have to be matched. Different approaches can be
used to achieve this, depending on the nature of the noise and the solution’s context.

In the case of ANC headphones, the elements presented in Fig. 1a can be found. An external mi-
crophone measures a time-advanced reference of the disturbance x(n). This signal is measured again as
d(n), after it has entered the ear-cup and reached the so-called error microphone. Thus, P (z), known as
the primary path, is defined as the changes in magnitude and phase that the disturbance suffers by means
of the headphone’s construction materials and its angle of incidence. The control signal y′(n) generated
by the ANC system is phase-inverted, fed to the speaker and measured again by the error microphone as
y(n). Hence, the loudspeaker and the error microphone define the so-called secondary path S(z), which
considers the characteristics of both elements plus the acoustic path between them. At the end, the con-
trol signal y(n) and the disturbance d(n) overlap destructively at the error microphone’s position, and the
residual error e(n) is generated. ANC approaches that use the residual error e(n) for calculating y′(n) are
called feedback control schemes. On the other hand, the ones that use the time-advanced reference signal
x(n) for calculating y′(n) are called feedforward or forward control schemes. Adaptive implementations
of feedforward controllers also utilize e(n) to solve the underlying optimization problem.

Feedback systems are preferred over the feedforward ones in contexts where there is no economical
way to provide a time-advanced reference to all noise sources, or for systems which have to perform upon
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fast moving sources. Nowadays, the design and optimization of such systems are based on the mixed-
sensitivity H∞ method proposed by Zames in [3]. Successful applications of this method to the specific
case of ANC headphones can be found in the literature, e. g. for analog [4] and digital [5] controller’s
circuitry. Here an emphasis on robust stability and performance is made, for which an uncertainty model
of the secondary path is built from a set of measurements. This model is used to establish the variability
over frequency that the secondary path has on different headphones’ wearing situations. This variability
is then used for building worst-case mathematical constraints for the controller’s optimization based on
an H∞ cost function. One drawback of this approach is that a pole-zero model of each secondary path
has to be matched to the measurements first, instead of using the measured impulse responses directly.
Another drawback is that the optimized controller has to have a state-space formulation.

An alternative to H∞ was proposed by Rafaely in [6] on the optimization of an Internal Model Con-
troller [7] by means of an H2/H∞ design method. The robust stability against the uncertainty in the
secondary path is the same as in the H∞ method, but a cost function based on the 2-norm is used in-
stead. Moreover, the pole-zero system modeling is avoided by the use of measured impulse responses,
and the state-space controller is substituted by a finite impulse response (FIR) filter. This formulation is
adapted in this work, in order to optimize the coefficients of a controller in a Minimum Variance Control
(MVC) scheme instead. As shown by Rafaely, if the problem can be formulated as a convex optimization
task, then a solution based on sequential quadratic programming (SQP) yields a global optimum subject
to the designed constraints. Based on this, alternative cost functions are evaluated here, which aim to
incorporate different aspects of the human perception of sound.

In the following section, the general problem of feedback control in ANC headphones is described.
Based on the observations made, constraints for robust stability and performance are derived. Afterwards,
three cost functions are introduced, which are used for optimizing the coefficients of an MVC controller.
Later on, the cost functions together with the stability and performance constraints are used to optimize
three controllers. The performance of each one of them is evaluated based on psychoacoustic objective
metrics derived from recordings made using a dummy-head wearing the ANC headphones prototypes.
At the end, conclusions are drawn based on the measured performance.

2. The Feedback Control Problem

A conventional SISO feedback system, as the one presented in Fig. 1b, is designed to control the plant
S(z) through the use of a command signal c(n), by means of a controller Wmvc(z). The output signal
y(n) of this series connection is subject to the external disturbance d(n), which generates an effective
system output e(n). A negative feedback loop is used to calculate a correction factor by subtracting e(n)
from c(n), which is fed to the controller Wmvc(z).

Under ideal circumstances, the effective system’s output e(n) follows closely the command signal
c(n), implying that the transfer function

T (z) =
E(z)

C(z)
=

S(z) ·Wmvc(z)

1 + S(z) ·Wmvc(z)
, (1)

also known as complementary sensitivity function, is close to unity. Furthermore, the transfer function

H(z) =
E(z)

D(z)
=

1

1 + S(z) ·Wmvc(z)
, (2)

the so-called sensitivity function, is close to zero, thus rejecting the disturbance d(n) in the effective
system output e(n). For achieving this, a controller Wmvc(z) is designed to maximize the denominator of
H(z), respecting certain stability and performance constraints.
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Figure 1: Feedback control systems: (a) The general ANC headphone without control algorithm. (b) The
conventional feedback control system with controller Wmvc(z), plant S(z), command signal c(n) and
disturbance d(n). (c) The feedback ANC headphones system with additional estimated plant Ŝ(z) and
music signal m(n), as in [5].

The application of this principle to ANC headphones involves either setting the command signal c(n)
to zero, if only noise attenuation is desired, or integrating the music signal m(n) in the signal flow, as
shown in Fig. 1c. Here, an estimated secondary path Ŝ(z) helps generating the transfer function

E(z)

M(z)
= −S(z)

1 + Ŝ(z) ·Wmvc(z)

1 + S(z) ·Wmvc(z)
. (3)

If Ŝ(z) = S(z) is chosen, then the transfer function simplifies to E(z)
M(z)

= −S(z), and m(n) reaches the
error microphone uncolored by the controller Wmvc(z). If the headphones are well designed, the effect
of the secondary path S(z) does not need further treatment. In frequency regions where Ŝ(z) 6= S(z),
the transfer function depends on the gain of the controller Wmvc(z). More specifically, in frequency
regions where Wmvc(z) � 1, the transfer function takes the value −Ŝ(z), and in the opposite case,
where Wmvc(z) � 1, the transfer function approximates to −S(z). Thus, the transfer function moves
between the asymptotes Ŝ(z) and S(z), avoiding an extreme coloration.

2.1 Secondary path variability and multiplicative uncertainty model

In the context of ANC headphones, the secondary path S(z) varies from person to person, because
of anatomical reasons, and may change drastically upon time, because of varying wearing situations. In
order to incorporate this variability in the controller design method, a so-called multiplicative uncertainty
model [10] is built. A multiplicative uncertainty model is based on a set of I secondary path finite impulse
responses, measured under different wearing situations and using different human subjects. The finite im-
pulse responses si(n) of length Ls and i ∈ {0, · · · , I−1} are Z-transformed Si(z) =

∑Ls−1
n=0 si(n)z−n and

evaluated in the positive frequencies of interest by following the well-known substitution rule z = ejΩk ,
with Ωk = 2π

N
k and k ∈ {0, 1, . . . , N/2− 1}. The result is used to calculate the secondary path’s maxi-

mum multiplicative magnitude deviation over frequency

W2(Ωk) = max
i

∣∣∣Si(ejΩk)− S0(ejΩk)

S0(ejΩk)

∣∣∣, (4)

being S0(ejΩk) the nominal secondary path impulse response, which can be chosen as the impulse re-
sponse si(n) that produces the W2(Ωk) with the smallest maximal magnitude over frequency. W2(Ωk) is
used then to model the secondary path as

S(ejΩk) = S0(ejΩk)
(
1 +W2(Ωk) ·∆(ejΩk)

)
, (5)
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being ∆ the subset of complex numbers that fulfills the condition
∣∣∣∆(ejΩk)

∣∣∣ ≤ 1,∀Ωk. Thus, leaving the
phase deviation unbounded.

2.2 Robust stability and nominal performance

Given the redefinition of the secondary path in Eq. (5), a controller can be designed to be robust stable
upon changes in the secondary path. This can be determined by evaluating the controller’s Z-transformed
impulse response wmvc(n) of length Lw in the frequencies of interest Ωk, and calculating the open-loop
transfer function

O(ejΩk) = Wmvc(e
jΩk) · S0(ejΩk) +W2(Ωk) ·∆(ejΩk) ·Wmvc(e

jΩk) · S0(ejΩk). (6)

By using the Nyquist stability criterion for stable plants and discrete-time controllers (which is the case
with these secondary paths and controllers based on FIR filters [11]), a Nyquist plot like the one in Fig. 2
of the nominal open-loop transfer function O0(ejΩk) = Wmvc(e

jΩk) · S0(ejΩk) is drawn. By following
the curve from low to high frequencies, the number of unstable poles in Eq. (2) can be determined by
counting the number of clockwise encirclements that the curve does around the Nyquist point (−1, 0).
If no clockwise encirclement occur, then the system is nominal stable and the analysis can be further
carried out. In a second step the discsOr(e

jΩk) = W2(Ωk) ·∆(ejΩk) ·O0(ejΩk) with frequency-dependent
radii |W2(Ωk)Wmvc(e

jΩk)S0(ejΩk)| are added on top of the nominal open-loop curve. Thus, O(ejΩk) =
O0(ejΩk) + Or(e

jΩk). Finally, if no disc touches the Nyquist point (−1, 0), then the system is robust
stable [6]. This graphical analysis can be expressed mathematically as the inequality

|W2(Ωk)O0(ejΩk)| − |1 +O0(ejΩk)| < 0. (7)

Another design parameter is the maximum disturbance amplification that the system is allowed to pro-

Figure 2: Nyquist plot of the open-loop systemO(ejΩk) evaluated in the positive frequencies 0 ≤ Ωk < π,
with uncertainty W2(Ωk) and specified performance W3(Ωk).

duce. In other words, what is the maximum value that the sensitivity function H(z) can take. For this
purpose, a maximum amplification over frequency 1/W3(Ωk) is defined. This is equivalent to draw a
circle centered in the Nyquist point with a frequency-dependent radius W3(Ωk), as shown in Fig. 2. The
system can be designed to have a nominal performance, under which no point of the nominal open-loop
transfer functionO0(ejΩk) is allowed to enter the circleW3(Ωk) drawn for its respective frequency. Alter-
natively, the system can be designed to have a robust performance. This would mean that no element in
the discsOr(e

jΩk) centered in their respectiveO0(ejΩk) curve points are allowed to enter the circle drawn
by W3(Ωk). This graphical principles can be described mathematically for the robust performance, with
the inequality

|W3(Ωk)| − |1 +O0(ejΩk)|+ |W2(Ωk)O0(ejΩk)| < 0. (8)
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One consideration for the digital implementation is to limit the gain of the controller. This is done not
only for security purposes, but also to avoid the amplification of the ADC’s noise floor to a level that
can be heard. This can be done by comparing the magnitude response of the controller to the one of a
maximum gain curve as in the inequality

|Wmvc(Ωk)| − |W4(Ωk)| < 0, (9)

where W4(Ωk) can be chosen as an inverted ITU-R 468 noise weighting curve. Please note that if we had
chosen to use the Discrete-Time Fourier Transform (DTFT), the inequalities in Eqs. (7) and (8) would
have been expressed in terms of∞-norms and they would have taken a different form than the inequalities
used here, which are based on evaluated single frequencies.

3. Feedback Controller Optimization

In this section, the design of the controller is formulated as a convex optimization problem by fol-
lowing the strategy suggested in [6]. This guarantees that any local minimum found with sequential
quadratic programming yields also the global one. The convex cost functions presented here are based
on the maximization of the weighted denominator of Eq. (2)

C(z) = W1(z) ·
(
1 +Wmvc(z) · S0(z)

)
, (10)

where S0(z) is the nominal secondary path chosen for the multiplicative uncertainty model of S(z), and
W1(z) as the estimated disturbance signal’s energy content weighted with the ITU-R 468 noise weighting
curve. The first cost function variant is defined as the sum of squared values of C(z), when it is uniformly
evaluated along the first half of the unit-circle as

C1(wmvc) = minwmvc

− 2

N

N/2−1∑
k=0

∣∣∣C(ejΩk)
∣∣∣2
 . (11)

This cost function builds a quadratic dependency upon the controller coefficients wmvc and is tightly
related with the 2-norm of its DTFT counterpart. One problem found with this cost function is that it
does not include the human perception of frequency distance. So for example, an attenuation bandwidth
between 10 kHz and 11 kHz would have the same impact in the cost function as another one between
20 Hz and 1020 Hz, although the perceived bandwidth of attenuation is way higher in the second case.
The cost function C(z) is alternatively evaluated in exponentially spaced frequencies within the lower
and upper band limits of the one-third octave bands, following the substitution Ωexp

k = 2π 1000
fs

2
−18.5K+k

3K ,
with k ∈ {0, 1, . . . , 32K}. For this purpose K can be chosen≥ 1, for generating 32K frequencies within
the one-third octave bands range. This re-spacing of the evaluation points produces that each one-third
octave band has the same amount of frequency taps, and therefore the same impact in the sum of the
resulting cost function

C2(wmvc) = minwmvc

(
− 1

32K + 1

32K∑
k=0

∣∣∣C(ejΩ
exp
k )

∣∣∣2) . (12)

In order to match the perceived attenuation over frequency that the controller under optimization pro-
duces, it is proposed in [12] to sum over dB values, as in the proposed third cost function

C3(wmvc) = minwmvc

(
− 1

32K + 1

32K∑
k=0

10 · log10

∣∣∣C(ejΩ
exp
k )

∣∣∣2) . (13)
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Figure 3: (a) The three wearing situations used during the secondary path measurements. (b) 24 sec-
ondary paths measured with eight subjects using the three wearing situations (in gray), the nominal
secondary path (in black), and the resulting W2 over frequency (in red). (c) The weighting functions
utilized for the controller optimization.

However, because of the calculation of the logarithm over the squared values, the quadratic dependency
with respect to the controller coefficients wmvc is broken. This means that a local minima found with this
cost function is not automatically the global one.

Together with the cost functions, the constraints are also re-defined to yield a convex programming
problem. Because of this, the inequality in Eq. (7) for robust stability is re-written as the constraint
|W2(Ωk)O0(ejΩk)|2 − |1 + O0(ejΩk)|2 < 0, the inequality in Eq. (8) for robust performance yields the
constraint |W3(Ωk)|2 − |1 + O0(ejΩk)|2 + |W2(Ωk)O0(ejΩk)|2 < 0, and the Eq. (9) for limiting the con-
troller’s gain are re-written in its respective squared terms as |Wmvc(Ωk)|2 − |W4(Ωk)|2 < 0. These
changes do not alter the constraints, but introduces a quadratic dependency with respect to wmvc [6].

4. Results and Evaluation

In order to evaluate the proposed cost functions, a multiplicative uncertainty model is built from the
impulse response measurement of the secondary path following the procedure described in [13], under
the three different wearing positions presented in Fig. 3a, using two dummy-heads, and six human sub-
jects. In Fig. 3b, the frequency responses of the resulting 24 secondary path measurements are presented.
The W2 with the smallest maximum magnitude is presented in red, while its respective S0 is presented
in black. In Fig. 3c the weighting curves used during the optimization are presented. W1 is chosen as
the PSD of a low-passed filtered white noise, weighted with the ITU-R 468 curve. The maximum sensi-
tivity function’s disturbance amplification W3 is chosen as 0 dB for f = 0 Hz and 3 dB otherwise. The
maximum controller gain over frequency W4 is chosen as an inverted ITU-R 468 curve, which relative
level is repeatedly changed until the noise floor of the optimal controllers is not heard when using the
prototype. The length of the controllers’ impulse response wmvc(n) is chosen to be 512 coefficients. The
Z-transforms of the impulse responses are all evaluated in 2048 frequencies, following the described dis-
tributions. The optimizations are performed using the SQP algorithm provided by MATLAB for function
minimization under constraints. The initial point of the optimization is chosen as a unit impulse with
amplitude 0.05. The optimizations are carried out during 20 iterations, after which the optimization is
stopped and the controller coefficients are used for the measurements.
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Figure 4: Pressure in dB/20u Pa measured at the dummy-head’s left ear.

For the evaluation the setup described in [14] is used. The excitation signal is a Gaussian white
noise amplitude-modulated with a modulation frequency of 70 Hz and a modulation degree of 30%. The
pressure over frequency and objective metrics are based on the dummy-head recordings and calculated
using the BK Connect. In Fig. 4, the pressure level over frequency on the dummy-head’s left ear is
presented. As a reference, the disturbance when the system is turned off is shown in gray. When the
controller optimized with C1 is turned on, a frequency range between approx. 800 Hz and 2 kHz shows
an attenuation of around 5 dB, while the rest of frequencies show a constant amplification of 3 dB, as
designed, with exception of the frequencies around 10 kHz, where the amplification is higher. This
probably because the measurements are done at the dummy-head’s mic and not at the error mic. On
the other hand, when the controller derived with C2 is used, higher attenuation levels of up to 20 dB
in the frequency range between 90 and 650 Hz are measured. Similarly to the case of C1, outside of
the attenuation bandwidth an amplification of 3 dB is produced and an amplification around 10 kHz is
measured. When the controller optimized with C3 is used, the attenuation bandwidth achieved by C2
increases towards the low frequencies down to 65 Hz.

In Fig. 5, the psychoacoustic objective metrics derived from the recordings are presented. It can be
seen in Fig. 5a that the controller derived with C1 produces the highest loudness, because it amplifies by
3 dB the most prominent frequencies around the 200 Hz. On the other hand, the controllers optimized
with C2 and C3 produce a high attenuation in that region and therefore, a loudness improvement is mea-
sured. In Fig. 5b, the higher amplification measured around the 10 kHz shows an effect in the increment
of the perceived sharpness, which is more prominent in the case of C2 and C3, because these controllers
also attenuate the lower frequencies. In Fig. 5c it can be seen that the perceived roughness shows only
small variations around the 4 asper.

5. Conclusions

In this work an adapted H2/H∞ optimization method for the derivation of a feedback controller has
been described. With this method, the coefficients of an FIR filter can be found which yield a robust
stable system with robust performance upon changes in the secondary path. Based on the measurement
results, it could be shown that the cost functionC3 based on one-third octave bands and accumulation over
dB values produces the best overall performance. In a future work a listening test should be conducted
considering realistic acoustic scenarios, e.g. inside of an aircraft, a coffee shop, or the subway.
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Figure 5: Psychoacoustic objective metrics calculated from the recordings done with the dummy-head
using the controllers derived with the three cost functions (a) Loudness in sone, (b) Sharpness in acum,
and (c) Roughness in asper.
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