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Abstract

With the increasing number of applications for virtual
reality also the research activity on 3D audio through
headphones has risen. Thus, different approaches for im-
proving the perception of the virtual experience have be-
en developed. This paper summarizes and evaluates the
work done on this topic during the last ten years. The in-
vestigations mainly address the individualization of the
binaural technologies for improving the virtual source lo-
calization and externalization. These strategies can be
basically divided into personalized headphone equaliza-
tion and individualized head-related transfer functions
(HRTFs). The former is responsible for getting rid of the
colouration introduced by the headphone used during the
playback, and the latter for introducing personal anthro-
pometric characteristics into the utilized HRTFs.

Introduction

Human natural listening is based on the localization of
sound sources using two ears [1]. The primary cues for
horizontal localization are interaural cues, which repre-
sent differences between the left and the right ear. These
differences appear as disparities in the time of arrival bet-
ween the two ears (Interaural Time Difference, ITD) as
well as level differences due to the head shadowing effect
(Interaural Level Difference, ILD). Although these two
binaural cues enable the horizontal localization, they do
not provide information about the source elevation due to
areas around the interaural axis where the interaural dif-
ferences have identical values [2]. These so-called “cones
of confusion” are the basis for front-back ambiguities and
elevation errors. Therefore, monaural spectral filtering
adds additional information to localize vertical sources
[2]. For instance, high frequencies are stronger attenuated
for rear sources than for frontal sources, due to the orien-
tation and the shell-like structure of the pinna. Additio-
nally, peaks and notches inside the spectrum are import-
ant features for perceiving elevated sources and solving
front-back confusions [3]. All these aspects are summari-
zed inside the HRTFs, which are highly individual due to
differences in size and shape of the bodies between indivi-
duals. Due to these differences between individuals, when
using non-individualized HRTFs during binaural synthe-
sis through headphones, spatial and timbral distortions
can occur [4,5]. These distortions lead to a higher rate of
localization errors and front-back confusions of synthesi-
sed sources in comparison to real sources. Dynamic cues,
which can be included through head tracking, can help
to reduce these undesired effects [6]. These small move-
ments lead to monaural and interaural cue changes that

help the human brain to localize a sound source [7].

In 2007, Xu et al. [8] have summarized seven methods
to individualize HRTFs. The methods, which are visited
are the individualization by direct HRTF measurements,
averaging or using typical HRTFs, subjective selection,
scaling or grouping of non-individual HRTFs, theoretical
computation, physical features, and tuning. In addition
to this review, the present paper summarizes the newest
research activities on 3D virtual audio with headphones
in the last ten years, including approaches for personali-
zed headphone equalization.

In the following, approaches for enhancing the 3D au-
dio reproduction based on individualization methods are
explained. These approaches can be basically grouped
into two main topics. The first topic targets at the in-
dividualization of the used HRTF and the second at the
personalization of the headphone equalization. Finally,
an outlook of additional research topics in the field of 3D
audio with headphones is given and the different methods
are concluded.

HRTF Individualization

In order to measure individual HRTFs, a lot of require-
ments have to be fulfilled, e.g. the need of an anechoic
measurement room and hundreds of different incident
angles, resulting in a time-consuming and financially ex-
pensive measurement setup [8]. Thus, methods for HRTF
individualization are in the main focus of 3D audio recon-
struction via headphones and several different approa-
ches have been developed. State of the art investigations
include faster individual measurements [9,10], anthropo-
metric matching or interpolation with databases [11–21],
finite element simulations of the head [22] or the ear canal
[23,24], and perceptually based selection [25].

Faster individual measurements target on shorten the
measurement procedure of individual HRTFs in time, in
order to offer a high spatial resolution in an acceptable
period of time [9]. This acceleration is based on the usage
of multiple exponential sweeps, which are signals consi-
sting of several interleaved and overlapped sine sweeps
[26]. Nevertheless, the measurement setup still consists of
a rotating arc with numerous loudspeakers on it. In order
to avoid this technical effort, an alternative approach has
been taken by S. Li and J. Peissig [10], which uses an ad-
aptive measurement procedure with arbitrary head mo-
vements, where the subject is sitting in front of a single
speaker. During the measurement, a head tracker cap-
tures the current direction and a normalized least mean
squares algorithm updates the corresponding HRTF.



Secondary, a lot of strategies to individualize HRTFs by
matching the anthropometric data of a new person to
subjects included in a database are still prevailing [11].
In these approaches, the anthropometric data of a new
person is often extracted from a picture or a 3D scan
of the head. Afterwards, the data is compared to all the
subjects inside a database and distance metrics are cal-
culated to find the best match in case of anthropometric
data. Finally, the HRTF of the best match is taken as the
individualized HRTF of the new person. In this research
topic, the main focus lays on identifying the relevant an-
thropometric parameters, which can be used to find the
best match in the view of a subjective localization percep-
tion [27,28]. In addition to the usage of distance metrics
of the anthropometry, also measured ILDs [13] or the
notch frequencies calculated from a photo of the ear [12]
can be used for HRTF matching. In the former, the ILD
is measured for a small set of directions and afterwards
compared to the ILDs inside the database. Furthermo-
re, the latter approach is based on the assumption that
the reflections of the three pinna contours can lead to
destructive interferences at the ear canal entrance [12].
Therefore, the distances of the three contours to the ear
canal entrance are first calculated for different elevation
angles of the incoming sound and then transformed to
the corresponding frequencies. Finally, these frequencies
are compared to the appearing notch frequencies in the
database and the HRTF set with the smallest deviation
is chosen as the individual one. Also the estimation of the
peaks and notches in an HRTF from the pinna anthropo-
metry [29] and the influence of them on the localization
in the median plane [30] are still of main interest.

As an extension to this matching, Bilinski et al. [14] have
proposed an approach for interpolating the individualized
HRTFs for a new person from a small group of subjects in
a database. In this approach, weighting factors are trai-
ned for the different subjects to recreate the anthropome-
tric data of a new person. Then, the same factors are used
to weight the corresponding HRTF magnitudes while in-
terpolating them. In [15], this approach is extended for
the phases of the HRTFs. Moreover, in [16] the different
anthropometric parameters are considered as unequal-
ly relevant and are therefore weighted differently during
the interpolation process. Additionally, coordinate trans-
forms like the principal component analysis [17, 18] or
spherical harmonics [19] are used to reduce the dimensi-
ons of the data. In fact, all these approaches are based on
a training and testing phase, thus, neural networks can
be used to perform the matching process. Z. Haraszy et
al. [20] and C. J. Chun et al. [21] have presented mat-
ching processes using artificial neural networks or deep
neural networks, respectively. Both networks make use of
backpropagation in order to learn the allocation during
the matching process.

In addition to direct measurements or individualization
of HRTFs, also simulations to estimate the influence of
the head [22] or the ear canal [23, 24] have been propo-
sed. These simulations are based on boundary element
methods, where models are created from the anthropo-

metric data and afterwards, the acoustic properties can
be simulated. These simulations rely on the principle of
reciprocity, where a point source is located inside the ear
and observation points surround the head. The output
contains all the pressure values on the surface of the mo-
del and at the observation points. An important issue in
the fast acquisition of personalized HRTFs is the com-
plexity of generating good quality head models for the
simulation. Therefore, T. Huttunen et al. [22] compared
three different acquistion methods, starting from a sy-
stem with 52 cameras and ending up in a single mobile
phone camera. In [24], M. Hiipakka proposed a method,
in which the sound pressure and velocity are measured
at the entrance of the ear and then the pressure at the
eardrum can be estimated through an ear canal model.

Individual Headphone Equalization

Although headphones easily separate the desired signals
at the two ears, they introduce additional spectral colou-
rations, which degrade the externalization and the deter-
mination of the elevation [31]. Nevertheless, if the sound
pressure at the eardrum of a listener can be precisely
duplicated during headphone playback, a 3D sound ex-
perience can be recreated [32]. Therefore, methods for
the compensation of the headphone transfer function
(HpTFs) between the loudspeaker and the eardrum are
required. The measurement of the individual HpTFs can
be done with individual off-line measurements [24, 33],
perceptual adjustments [31] and on-line adaptive algo-
rithms [34,35].

The most direct way to achieve individual headphone
equalization is to use probe microphones at the eardrum
in order to measure the HpTF [36]. Because of the inva-
sive nature of the measurement, which is dangerous and
impractical for widespread use, the technique developed
by M. Hiipakka [24], that was introduced above for indi-
vidual HRTF measurements, can be used to measure the
HpTF at the eardrum. The advantage over the traditio-
nal measurement method is, that the invasive and dange-
rous placement of the microphone close to the eardrum is
avoided and the microphone can be placed at the entran-
ce of the ear canal, while obtaining similar measurement
results. Another problem of the direct measurement of
HpTFs is the headphone repositioning. For addressing
this matter, B. Masiero and J. Fels [33] proposed a me-
thod, where the upper limit of several measured HpTFs is
calculated. This results in an equalization filter without
strong peaks, which may have led to high amplifications
when the corresponding notch does not occur.

In order to avoid direct measurements, D. Griesinger pro-
posed an application for individual headphone equalizati-
on through equal loudness matching [31]. The procedure
is split into two stages. In a first step, the personal equal
loudness curve for a loudspeaker at a distance of one
meter in front of the user has to be found by adjusting
the loudness of the third octave frequency bands to a gi-
ven reference signal. Afterwards, the same procedure is
repeated for headphone playback with an additional ad-
justment of the level between the two ears to perceive the



sound centred. Finally, the headphone equalization for a
frontal speaker is calculated in frequency-domain by sub-
tracting the dB values of the headphone equal loudness
curve from the one of the loudspeaker.

In contrast to this off-line measurement procedures, an
on-line adaptive equalization approach is proposed by R.
Ranjan and W.-S. Gan in [34], in order to adapt to head-
phone repositioning. The principle of this approach relies
on the basics of adaptive feedforward active noise control
techniques, which are based on a filtered-x least mean
squares algorithm. The resulting FIR filter coefficients,
that normally conduct the active noise control, will now
perform the equalization of the HpTF. Additionally, a
microphone-to-eardrum-reference-point response from an
ear canal model can be used to yield the adaptation for
a virtual microphone at the eardrum [35].

Additional Reserach Topics

Besides the individualization, also other topics are insi-
de the focus of current research in 3D audio with head-
phones. These topics include the improvement of locali-
zation performance with non-individual HRTFs through
training [37], the influence of head tracking on the loca-
lization and externalization [38,39], and the combination
of virtual sources with the real environment [34].

Conclusion

In this literature review a broad spectrum of different ap-
proaches for individualization of binaural synthesis have
been presented. These strategies are mainly split into the
individualization of the used HRTFs and the personaliza-
tion of the headphone equalization. In both topics a lot
of different approaches have been developed or impro-
ved during the last ten years. Additionally, an outlook of
research topics not based on individualization is given.
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