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Abstract—System identification for ANC headphones
considers two transfer functions: one between the outer and
inner microphones, called primary path; and one between
the control speaker and the inner microphone, known as
secondary path. The accuracy of their measurements can be
directly translated into the maximum reachable attenuation
and also into stability, in case of feedback approaches. Using
an exponential sine sweep technique, we compute two auxiliary
impulse responses from an external external loudspeaker to
the outer and inner microphones attached to the headphone
shell. Based on them, the equivalent primary path’s finite
length impulse response is indirectly derived. For computing
the derivation we compare two derivation techniques, one
in frequency-domain, based on cross-power and auto-power
spectra, and the other one in time-domain, based on an ad hoc
adapted Least Squares approach proposed by us. Comparisons
between both techniques on a real system with different lengths
for the primary path impulse response show a mean squared
error reduction of at least 10 dB and up to 24 dB using the
proposed derivation.

Index Terms—Measurement techniques I-INCE Classification
of Subjects Number(s): 72.9.

I. INTRODUCTION

Active Noise Control (ANC) headphones provide the user
with an attenuation of the unwanted environmental noise that
surrounds him. This protection is a combined effect of the
passive attenuation characteristic of the materials used in
the construction of the ear-cups and the active noise control
applied over the remaining noise. In practice, the construction
materials produce a low-pass filtering effect over the incoming
noise, that is capable of attenuating only the medium to
high frequency range. The low frequency range, has to be
addressed actively by generating destructive superposition of
the noise with a sound pressure control signal radiated from
the headphone’s speaker. To achieve this, the ANC headphones
are equipped with an outer microphone in order to have a
measured reference of the incoming noise from the outside,
and an inner microphone, to sense the remaining noise inside
the ear-cup.

The aforementioned microphones and the control speaker
define two main transfer functions: the primary path, between
the outer and inner microphone; and the secondary path,
between the headphone’s speaker and the inner microphone
(see Fig. 1). Alternatively, a third transfer function, the feed-

back path, can be used in the overall analysis of the system,
which is the acoustic path between headphone’s speaker and
outer microphone. The exactness in magnitude and phase of
the measurements of these transfer functions can be directly
translated into the maximum achievable noise attenuation that
the system may be able to produce [1], and into stability, in
case of feedback approaches. In the following a discrete time
notation will be used. The impulse response h(n) of a system
will have a transfer function H(f), which is the discrete-time
Fourier transform of h(n).

Transfer function measurements on acoustic systems have
improved over the years in several aspects [2] [3] [4], specially
since the introduction of the technique presented by Griesinger
in [5] and further developed by Farina in [6] and [7]. The usage
of long sine sweeps can minimize the influence of harmonic
distortions on the impulse response, and allows to almost
completely separate them from the linear behavior of the
system under test [8]. In particular, the usage of exponential
sine sweeps provides higher energy in the low frequency range,
where the environmental noise is frequently present, thus im-
proving the SNR of the measurement. These advantages also
perfectly suit the requirements of high accuracy in the low-
frequency spectrum that ANC headphones transfer functions
require.

The measurement of an impulse response between a speaker
and a microphone, as the one required for the secondary path,
is quite a standard practice for the characterization of an
acoustic path. In the case of the primary path, however, there is
no speaker involved, only two microphones, and therefore no
impulse response per definition. To indirectly derive a transfer
function and generate an equivalent impulse response, p(n), a
physical setup as the one depicted in Fig. 1 is required. Here,
the external loudspeaker and both microphones define two
auxiliary impulse responses: q(n), going from loudspeaker to
inner microphone; and r(n), going from loudspeaker to outer
microphone. Subsequently, these two impulse responses define
the primary path, p(n), which, similar to a regular impulse
response, is valid for a very well defined spatial position of
the source and sinks. This means that, although the transfer
function is intuitively defined between the two fixed positioned
microphones, its validity depends also on the relative position
of the source generating the excitation.

This work is an ad hoc adaption of the Least Squares



Fig. 1. General physical setup. q(n) and r(n) are the auxiliary impulse responses from external loudspeaker to inner and outer microphones used to indirectly
derive the transfer function of the primary path, p(n).

method (LS) described in [9] for the indirect derivation of
the primary path based on auxiliary impulse responses. Its
validity and accuracy are evaluated based on the comparison
with the standard frequency-domain approach based on cross-
power and auto-power spectra (CAPS) used in [10].

In the following sections the theory of the measurement
procedure of the auxiliary impulse responses q(n) and r(n)
is briefly described. This is followed by the description of the
Least Squares extension used to indirectly derive an equivalent
impulse response, p(n), for the primary path. Afterwards, the
measurement setup used on a real system is described and the
results based on different lengths of p(n) are presented. At the
end, the accuracy of the approach is discussed and conclusions
about it are drawn.

II. THEORY

As extensively described in [6], the exponential sine sweep
excitation signal (ESS)

x(n) = sin

(
ω1 · (Lx − 1)

ln(ω2

ω1
)

·

(
e

n
Lx−1 ·ln(

ω2
ω1

) − 1

))
, (1)

of length Lx, start angular frequency ω1 and stop angular
frequency ω2, is generated together with its deconvolution
filter [4]

xinv(n) = x(Lx − 1− n) · (ω2/ω1)
−n

Lx−1 , (2)

to yield the convolution result given by

x(n) ∗ xinv(n) = α · δ(n− Lx), (3)

with α as a scaling factor. Then the system to be measured,
h(n), may be excited with x(n)

y(n) = h(n) ∗ x(n), (4)

and its output convolved with xinv(n) yields

y(n) ∗ xinv(n) = h(n) ∗ x(n) ∗ xinv(n) (5)

y(n) ∗ xinv(n) = α · h(n) ∗ δ(n− Lx) (6)

y(n) ∗ xinv(n) = α · h(n− Lx) (7)

Applying the above mentioned technique to measure r(n) and
q(n) simultaneously, the speaker is excited with the input
signal x(n) and subsequently the signals yr(n) and yq(n)
coming from the respective microphones are recorded. Then
the approximated time-shifted impulse responses are computed
by convolving the measured signals with the deconvolution
filter xinv(n), as

yq(n) ∗ xinv(n) = α · q(n− Lx) (8)

and

yr(n) ∗ xinv(n) = α · r(n− Lx). (9)

Finally, the time-shift and scaling factor α can be compensated
to retrieve q(n) and r(n).



A. Impulse Response Estimation Extended with Least Squares
Minimization

The measurement of the impulse responses q(n) and r(n)
is depicted in Fig. 2. The indirect derivation of p(n) can be
formulated as an error minimization problem by taking α ·
r(n−Lx) as its input and the error as the difference between its
output and α · q(n−Lx). Finally, if time-invariance is applied
and the scaling factor α is compensated, the right side of the
diagram (see Fig. 3a) can be simplified to the one depicted in
Fig. 3b, and the expression of e(n) is simplified to

e(n) = q(n)− p(n) ∗ r(n). (10)

Fig. 2. System block diagram proposed to indirectly derive the transfer
function of the primary path, based on ESS measurements of the auxiliary
impulse responses q(n) and r(n) and a Least Squares approach.

(a)

(b)

Fig. 3. Least squares error definition refinement: (a) before time-invariance
is applied and (b) after time-invariance is applied.

To find an optimal solution for the minimization of the error
signal using finite-length impulse responses, an appropriate
notation is defined. Let the following example column vectors

y
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be the first Ly , Lh, and Lx samples of the signals or system
impulse responses y(n), h(n), and x(n), respectively. Then,
let y, h, and x be related by the convolution defined by the
scalar product

y = H · x, (13)
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Consequently, their lengths are related by

Ly = Lh + Lx − 1. (15)

Making use of the introduced notation in the final equivalent
system in Fig. 3, Eq. (10) can be re-written as

e = qzp − R · p, (16)

with qzp being q zero-padded to match the length of the
convolution between r and p. Using Eq.(16), one can define
the quadratic error as

eTe = (qzp − R · p)T(qzp − R · p), (17)

which can be differentiated with respect to p and set to zero

∂eTe
∂p

= −2 · (qzp − R · p)T · R = 0, (18)

which finally leads to the optimum solution for the approxi-
mation of p(n) given by

p = (RT · R)−1 · RT · qzp, (19)

with the parameters Lq , Lr, and Lp.

III. MEASUREMENT SETUP

A general overview of the measurement setup can be
seen in Fig. 4. The Beyerdynamic DT 770 PRO headphone
customized with inner and outer microphones presented in
Fig. 5 is used as system under test. The microphone signals
are pre-amplified to reach line-level with amplification factors
of 42.3 dB and 22.3 dB for the inner and outer microphone,
respectively. A Neumann KU100 dummy head is used to
simulate the presence of the human ear in the enclosed space
of the ear-cup. A Genelec 8030B speaker is placed 1 m away
from the dummy head and used to generate a 25 sec long
ESS going from 10 Hz to 23 kHz at a sampling frequency
of 48 kHz . The ESS is faded-in during 62 500 samples and
faded-out during 625 samples, to avoid the speaker to pop.
Consequently the deconvolution filter is also faded-in and out,



Fig. 4. Measurement setup overview. Dummy head (left) wearing the ANC
headphone and external loudspeaker (right) used to generate the auxiliary
impulse responses.

but interchanging the lengths, so that it maintains its original
relation with the ESS. Additionally, 20 480 samples of silence
are post-appended to the signal, to give the system time to
settle before the end of the recording. An RME Fireface UCX
audio interface is used to generate and record the signals,
which afterwards are processed in MATLAB.

(a) (b)

Fig. 5. Utilized Headphones with (a) outer reference microphone and (b)
inner error microphone

IV. RESULTS AND EVALUATION

Using the measurement setup presented in the previous
section and the impulse response estimation technique de-
scribed in Section II, the impulse responses q(n) and r(n)
are measured (see Fig. 6a and Fig. 7a). The time-shift they
have in common, which is introduced by the measurement
chain, is partially compensated and their lengths are shortened
to Lq = 25 000 and Lr = 25 000 samples to be able to
work with them also in time-domain. Their discrete-time
Fourier transform magnitude responses between 10 - 23 000 Hz
are presented in Fig. 6b and Fig. 7b. A common high-pass
characteristic with a cut-off frequency of around 60 Hz can

be seen in both magnitude responses, which is in accordance
with the technical specifications of the external loudspeaker.
Looking at the magnitude response of r(n), it is interesting to
see a relatively flat response in comparison with the magnitude
response of q(n), with moderate influence of the modes of the
room where the measurement was done. In contrast, but as
expected, the frequency response of q(n) is the one of a low-
pass filter with a cut-off frequency roughly at 200 Hz. Above
3 kHz some significant zeros are introduced by the volume of
air enclosed by the dummy head and the ear-cup.
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Fig. 6. (a) Impulse response q(n) and (b) the magnitude response of its
discrete-time Fourier transform.

Based on the measured r(n) and q(n), the primary path is
then derived using both approaches with lengths starting from
10 240 and increasing in steps of 1 024 up to 20 480 samples.
Because of the different pre-amplification gains, the noise floor
level coming from the inner microphone is higher than the one
from the outer microphone. This produces a boost in magni-
tude outside of the range 10 - 23 000 Hz in the derived p(n).
To get rid of this undesired effect, the derived primary path
is additionally zero-phase band-pass filtered in this frequency
range before evaluating it.

To generate a metric for the accuracy of each derivation of
p(n), and to be able to compare them, the system depicted in
Fig. 8 is used. With it, the desired behaviour of the impulse
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Fig. 7. (a) Impulse response r(n) and (b) the magnitude response of its
discrete-time Fourier transform.

Fig. 8. System block diagram used for the evaluation. Q and R as the
systems based on the measured impulse responses q(n) and r(n), and P
as the estimated primary path transfer function under evaluation.

response q(n) is compared sample-by-sample with the one of
r(n) ∗ p(n). The input x(n) used is a uniformly distributed
white noise signal with zero mean, which is first band-passed
between 10 and 23 000 Hz to match the valid frequency range
of the measured impulse responses. All simulations are run for
10 sec and at the end the mean quadratic error is calculated
and stored. The results of the evaluation routine are resumed
and presented in Table I. The table has 4 columns: the first
one on the left is the length of the impulse response used
for the derivation of p(n) on the respective row; the second

TABLE I
MEAN SQUARED ESTIMATION ERROR OF BOTH APPROACHES FOR

DIFFERENT LENGTHS Lp .

Lp LS [dB] CAPS [dB] Difference [dB]
10 240 -59.0779 -48.1467 -10.9312
11 264 -63.0861 -48.0708 -15.0153
12 288 -64.2488 -48.1622 -16.0866
13 312 -61.4445 -48.1679 -13.2765
14 336 -66.6302 -48.1760 -18.4542
15 360 -71.7577 -48.1980 -23.5597
16 384 -67.7916 -48.1995 -19.5921
17 408 -67.4587 -48.1985 -19.2602
18 432 -70.3107 -48.228 -22.0827
19 456 -71.3243 -48.2251 -23.0992
20 480 -71.2544 -48.2498 -23.0047

and third are the mean squared error values in dB, reached
after the simulation time by each one of the derivations; and
the last column is the difference between the values of the
second and third column on the same row. The first thing
to notice by looking at the second and third columns is the
expected reduction of the mean square error as the length of
p(n) increases. In the case of the CAPS method the reduction
is steady but almost marginal, since the lengths of q(n) and
r(n) are maintained constant and, therefore, the solution has
one fixed length, from which the first Lp samples are extracted
to form p(n). In contrast, the LS method shows to be very
sensitive to the number of coefficients for approximating the
optimum p(n), which interestingly not always introduces an
improvement in accuracy. A good example of this is the
case with 15 360 samples, which, although far from being
at the bottom of the table, generates the smallest mean
squared error. Nevertheless, if p(n) is not zero-phase band-
pass filtered between 10 and 23 000 Hz before the evaluation,
the improvement shows to be constant. The results show
that the mean squared estimation error of the LS method is
roughly between three and ten times smaller than the one
produced by the CAPS method, depending on the chosen Lp.
To compare both derivation approaches in more detail, the
case with Lp = 20 480 is chosen. The estimation accuracy
can be qualitatively evaluated by comparing the magnitude
response deviations of R(f) · PCAPS(f) and R(f) · PLS(f)
from Q(f). It can be seen in Fig. 9a, that the CAPS approach
deviates from the desired magnitude response of Q(f) in the
high frequencies and between 10 and 500 Hz, and approaches
the best in the mid frequencies. Comparatively, it can be seen
in Fig. 9b, that the LS approach shows no appreciable devia-
tions beyond 30 Hz. This observation indicates an appreciable
accuracy improvement in low and high frequencies by using
the LS method.

To further corroborate the improvements introduced by
the LS method, the error signals from both derivations are
transformed to the frequency-domain and their magnitude
responses are presented along with the ratio between them
in Fig. 10. It can be seen that the LS estimation error is
roughly 23 dB smaller than the CAPS estimation error, with
the exception of frequencies below 50 Hz, as calculated and
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Fig. 9. Magnitude response of (a) R(f) · PCAPS(f) (in light blue) and
Q(f) (in black dashes), and (b) R(f) ·PLS(f) (in light blue) and Q(f) (in
black dashes), for the case Lp = 20 480, Lq = 25 000, and Lr = 25 000,
between 10 - 23 000 Hz.

presented in Table I. However, the ratio between the estimation
errors is not constant throughout the entire frequency range.
Moreover, the difference shows a major improvement of
estimation accuracy between 10 000 and 23 000 Hz based on
the LS method, reaching a peak of almost 35 dB at 20 270 Hz.
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Fig. 10. Discrete-time Fourier transforms of the estimation error signals
for the case Lp = 20 480, Lq = 25 000, and Lr = 25 000, between
10 - 23 000 Hz. In black dashes, the estimation error from the LS method,
|ELS(f)|; in solid gray, the estimation error from the CAPS method,
|ECAPS(f)|; and in solid light blue, the ratio |ECAPS(f)|/|ELS(f)|.

Finally, the estimated primary paths derived with CAPS
and LS methods are presented in Fig. 11a and Fig. 12a, re-
spectively. Additionally, their discrete-time Fourier transforms
together with |Q(f)| and |R(f)| are shown in Fig. 11b and
Fig. 12b to show the relation between the transfer functions. It
can be seen that in both cases the behaviour of the estimated
primary path resembles a low-pass filter indicating that the ear-
cup performs passive attenuation in the mid to high frequency
range, as mentioned in the Introduction. Additionally, it can
be seen in Fig. 11a and Fig. 12a, that Lp = 20 480 used for
both derivations may be sufficient to represent most of the
behaviour of the system, based on the observation that the
impulse responses have almost settled.
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Fig. 11. (a) Estimated primary path based on CAPS method and (b) the
magnitude response of PCAPS(f) (in solid light blue), Q(f) (in solid gray),
and R(f) (in black dashes).

V. CONCLUSIONS

The ad hoc adapted impulse response derivation technique
based on Least Squares proposed in this work has been
studied. Its performance has been compared with the known
frequency-domain approach based on cross-power and auto-
power spectra. The results based on measurements done over
a real ANC headphone using different lengths for p(n) have
shown an overall improvement of at least 10 and up to 23 dB
in mean squared estimation error. A major improvement in
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Fig. 12. (a) Estimated primary path based on LS method and (b) the
magnitude response of PLS(f) (in solid light blue), Q(f) (in solid gray),
and R(f) (in black dashes).

the 10 000- 23 000 Hz range, with a peak of 35 dB in the case
Lp = 20 480 has been observed. The sensitivity of the results
to the length of p(n) suggests that further investigation has
to be conducted to understand how the minimization of the
mean squared estimation error can be improved through the
increment of Lp. However, the computational complexity
and memory requirements of the method proposed may be
prohibitive for standard personal computers, if lengths longer
than 20 480 samples are to be studied.
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